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Multivariate outbreak detection 
 

BY LINUS SCHIÖLER1

University of Gothenburg 

 and MARIANNE FRISÉN1 

On-line monitoring is needed to detect outbreaks of diseases like influenza. Surveillance is also 
needed for other kinds of outbreaks, in the sense of an increasing expected value after a constant 
period. Information on spatial location or other variables might be available and may be utilized. 
We adapted a robust method for outbreak detection to a multivariate case. The relation between 
the times of the onsets of the outbreaks at different locations (or some other variable) was used to 
determine the sufficient statistic for surveillance. The derived maximum likelihood estimator of 
the outbreak regression was semi-parametric in the sense that the baseline and the slope were non-
parametric while the distribution belonged to the exponential family. The estimator was used in a 
generalized likelihood ratio surveillance method. The method was evaluated with respect to 
robustness and efficiency in a simulation study and applied to spatial data for detection of 
influenza outbreaks in Sweden. 

1. Introduction 
On-line surveillance is used to give an alert signal as soon as possible after an important change 
has occurred. Overviews of the inferential issues in surveillance are given by Lai (1995), 
Woodall and Montgomery (1999), Ryan (2000), Frisén (2003), Frisén (2009) and others.  

Here we will consider the detection of an outbreak, defined as a change from a (possibly 
unknown) baseline to a monotonically increasing (or decreasing) regression. Other definitions of 
outbreaks are discussed in Section 7. 

The motive for this study was the spatial surveillance of influenza outbreaks. The detection of 
outbreaks of epidemiological diseases is an important area of on-line surveillance. Surveillance in 
public health is reviewed by for example Sonesson and Bock (2003), Lawson and Kleinman 
(2005), Woodall (2006), Shmueli and Burkom (2010), and Kass-Hout and Zhang (2010). By 
monitoring incidences, outbreaks of reoccurring diseases may be detected, for example the yearly 
influenza epidemic. Such monitoring is also useful to detect new diseases, such as SARS, avian 
flu and swine influenza, as well as effects of bioterrorism. Early detection of the onset of an 
outbreak is useful in order for health authorities to act timely and also for the planning of health 
care. Epidemics, such as influenza, are for several reasons very costly to society and it is 
therefore of great value to monitor the epidemic period in order to properly allocate medical 
resources (Andersson et al. (2008b)). A semi-parametric method for detecting the onset of a 
monotonic increase was suggested for univariate surveillance by Frisén and Andersson (2009). It 
was successfully applied to the incidence of influenza in Sweden as a whole by Frisén et al. 
(2009).  

As information on the incidence in different regions of the country is available, we will here 
generalize the univariate method to utilize this information. Spatial surveillance is a special case 
of multivariate surveillance, as pointed out for example by Sonesson and Frisén (2005) and Joner 
Jr. et al. (2008). The relation between different variables (here locations) is important in the 
monitoring of the onset of the outbreak. We will use information from a study by Schiöler (2010) 
on the spread of influenza in Sweden. The spreading pattern is described in Section 6.1. We will 
investigate how information on time lags in the onset at different locations should be used in an 
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outbreak surveillance system. Another case there a time lag might be relevant is when you have 
an early but rough indicator which might be combined with a later and more accurate one,. In 
Hulth et al. (2009) and Ginsberg et al. (2009) it was shown that data of search patterns on the 
Internet could be used as a proxy for influenza incidence. Ginsberg, et al. (2009) found that the 
lag in reporting was about one day compared to between one and two weeks for traditional CDC-
data. The method suggested in this article may possibly be useful also for situations like that one, 
where the lag is in the reporting rather than in the onset of the outbreak at the various locations. 

In Section 2, we will specify univariate and multivariate models for outbreaks. In Section 3, 
we will derive a sufficient reduction of the data for multivariate outbreak situations. Sufficient 
reduction for detection of step changes was earlier derived by Frisén et al. (2010c) but here it is 
derived for detection of gradual outbreaks. In Section 4, we will discuss general approaches of 
how multivariate surveillance can be constructed from univariate surveillance, and construct a 
simple multivariate outbreak detection method, based on the univariate method by Frisén and 
Andersson (2009). In this section, we will also derive the recommended method. This is done by 
deriving the maximum likelihood estimators based on the multivariate monotonicity restrictions 
and using these in a generalized likelihood ratio method. In Section 5, we evaluate the suggested 
method by a simulation study, where properties like predictive value and robustness are 
examined. The robustness is important since you never can expect assumptions to be exactly 
fulfilled. In the comparison with other methods we will use the evaluation metrics suggested by 
Frisén et al. (2010b) for multivariate surveillance. In Section 6, the method is applied to data for 
several influenza seasons in Sweden, and the efficiency of the suggested multivariate outbreak 
detection method is demonstrated. Concluding remarks are given in the final section.   

  

2. Specification of the outbreak model 
At each time point, t, a new observation is made on a process Y. We want to detect the change 
from one state to another as soon as possible after it has occurred, in order to give warnings and 
to take corrective actions. 

2.1. Univariate outbreak 
In Andersson et al. (2008a) Swedish influenza data from six seasons (2001–2007) were analyzed, 
and it was suggested that a non-parametric approach based on monotonicity restrictions (the 
outbreak regression) should be used. It was also suggested that the outbreak could be modeled 
using a Poisson distribution for the incidence. The parameter λ(t) of the distribution at time t has 
a constant value λ0 before the outbreak but depends on time after the onset of the outbreak. We 
will use τ to denote the unknown time of the onset. Thus 
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with λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λs. The aim at decision time s is to determine whether or not the outbreak 
has started yet, thus if τ≤s or τ>s. The state at the outbreak is characterized by a monotonically 
increasing expected incidence.  

The situation where the regression is constant at first and then monotonically increasing will 
be called “outbreak regression”.  
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2.2. Multivariate outbreak 
In multivariate surveillance the process under surveillance is a p-variate vector, denoted by 

{ ( ), 1,2,...}t t= =Y Y , where Y(t) = {Y1(t), Y2(t),..., Yp(t)}. The components of the vector 
represent, for example, the incidence of a disease at p  different locations. Each component has 
the same properties as λ(t) described in Section 2.1. The time of the onset may differ for the 
components and will be denoted τi for component i. At decision time s, we base the decision 
whether an outbreak has occurred or not on the available information, Ys = {Y(1), Y(2)... Y(s)}. 

When several processes are observed, knowledge about the relation between the times of the 
onsets of the outbreaks is essential. Different methods are suitable for different relations. The aim 
is to detect an outbreak in any of the processes, which means that we aim at detecting the first 
one. The time τi of the onset of the outbreak of process Yi may not be the same for all i=1,...p. 
The relation between the times is important. We will concentrate on the case of  a known time 
lag. This can be the case for spatial data and data from several sources (possibly including proxy 
data). The case where the lag is misspecified is examined in Section 5.5. For notational 
convenience we order the processes according to which changes first, so that 1 ... pτ τ≤ ≤ , and 
denote the time lag for process Yi by qi, where q1=0 and qi= 1–  iτ τ  for i=2,...,p. The case where 
the onsets are simultaneous, that is τi = τ for i=1,...p, is of special interest. In this case qi=0 
i=1,...p. We denote this by lag=0. In numerical examples and applications we will also use the 
special cases of two processes with q2=1 or q2=2. We denote this by lag=1 and lag=2, 
respectively. 

We assume that the distributions of the processes all belong to the one-parameter exponential 
family. In the application to influenza data in Section 6, the Poisson distribution is relevant. 

If a parametric shape of the outbreak pattern is known, this should be used to increase 
efficiency. However, we do not assume a parametric outbreak pattern here. Instead, we assume 
that the different processes are identically distributed except for the time of the onset. 

3. Sufficient reduction at multivariate outbreaks 
In Frisén, et al. (2010b) it was demonstrated that the relation between the change points of the 
different processes is very important, since it affects the properties of different surveillance 
methods in different ways. In simple examples, it was demonstrated that a method which is 
optimal for simultaneous changes is inefficient in other cases. Thus, any knowledge on the 
change points should be utilized. A sufficient reduction will not reduce the information and still 
allows a joint solution to the full surveillance problem. It is of special interest to study a 
simultaneous outbreak at all locations and also a time lag in the onset of the outbreaks. 
Robustness when the time lag is only approximately known is studied in Section 5.5. 

3.1. Simultaneous change at all locations 
Many evaluations of multivariate surveillance methods are made by the zero-state ARL (see 
Section 5.3) where the change occurs at the start.  When all processes change at the start it 
follows that they change simultaneously. 

Wessman (1998) and Frisén, et al. (2010c) demonstrated that if all processes have the same 
change points, i.e. τ1= τ2=...τp=τ, then the univariate vector of partial likelihood ratios, {L(s,t), 
t=1,...s} where ( , ) ( ; ) / ( ; )L s t f Y t s f Y sτ τ= = ≤ > , is sufficient for the sequence of distributional 

families. Thus, in order to monitor a simultaneous fully specified change in distribution, it is 
possible to construct a univariate surveillance procedure based on the sufficient sequence of 
likelihood ratios. Zhou et al. (2010) used this result for the simultaneous shifts of mean and 
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variance in a normal distribution. For the case with no lag between the change points of two 
processes (lag=0), the sufficient statistic is denoted by SuffR0. We will use this notation in the 
application of spatial surveillance of Swedish influenza outbreaks. In this case, SuffR0 
corresponds to the total incidence in the country as a whole. The statistic OutbreakPSuffR0 of the 
method in the application is hence equivalent to the statistic of the univariate surveillance of 
influenza in Sweden reported in Frisén and Andersson (2009) and Frisén, et al. (2009). 

3.2. Changes with a time lag between locations 
Järpe (2000) studied the case of a known time lag for independent normal distributions with 
equally sized shifts in the expected value at the change points and demonstrated that a sufficient 
reduction to univariate surveillance exists. Frisén, et al. (2010c) studied the case of changes in the 
general one-parameter exponential family (including the Poisson distribution) but also only for 
step changes. Different levels of the parameter before the change as well as differences in shift 
size were considered.  

The earlier results on sufficiency for the detection of a step change cannot be used directly for 
outbreak detection, since we are interested in detecting a change from a constant level to a 
monotonically increasing one rather than a sudden shift. Here, we study the case where each 
process Yi increases monotonically from the onset of the outbreak τi and onwards and there is a 
known time lag between the onsets of each process. The indices of the observation vectors {y1, 
y2, …yp} are ordered according to ascending time lag, i.e. the change occurs first in Y1.  Theorem 
1 shows that a sufficient reduction to a univariate statistic exists for the situation with different 
outbreak times, and in Example 1 (after Theorem 1 and its proof) the theorem is illustrated for a 
simple case. A numerical illustration is given in Example 2 in Section 4.6. 

 
Theorem 1: For p processes Y1, Y2, ..., Yp which all belong to the one-parameter exponential 
family and which are independent and identically distributed, conditional on the change points 
and time lags (independent over time as well as across processes), there exists a sufficient 
reduction of the set of observation vectors to a univariate statistic for the detection of outbreaks 
with equal (but possibly unknown) parameter values from the onset of the outbreak when the 
changes occur with known time lags (q1=0,q2, q3,… qp) where qi=τi - τ1. A sufficient statistic for 
inference on the first onset τ1 is the sequence  

 ( )
t

i i
i I

Y t q
∈

+∑ t=1,...s, where { : ,1 }t iI i q s t i p= ≤ − ≤ ≤ . 

This is true both for the situation when the time of change is fixed but unknown and for a 
stochastic time of change. 
 
Proof: Since the observations are independent given the values of the change points, the 
distribution can be written as a product. We will first consider a fixed but unknown value of τ1. 
The likelihood expressions for the one-parameter exponential family can be written as  
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Thus, we have the log likelihood ratio  

 

[ ]

[ ]

min( 1, )
1

0 0
1 11

1 1 0 0
1 1 1

1 0 1 0

( ; )log ( )( ) ( ) ( ( ))
( ; )

( )( ) ( ) ( ( )) ( )( ) ( ) ( ( ))

( )( ) ( )( ) ( ) ( )

i

i i
i

i i

sp

i i
i t

p ps s

i t t i i i
i t t i

i t i t
t

f Y s y t g h y t
f Y s

y t g h y t y t g h y t

y t y t g g

τ

τ τ
τ

τ τ
τ

τ ϕ ϕ
τ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

−

= =

− + − +
= = = =

− + − +
=

≤
= + +

>

 + + + − + + 

 = − + − 

∑ ∑

∑∑ ∑∑

[ ]

1 1

1

1 1

1

1 1

1

1

1

( ) 1 0 0 1
1

1 0 0 1
1

1 0 0 1

1 0

( )( ) ( ,..., )

( )( ) ( ,..., )

( )( ) ( ,..., )

( ) ( )

i

i
i

i

t

p s

i

p s

i t q s
i t q

s qp

i i t s
i t

s

i i t s
t i I

t i i
i

y t z

y t q z

y t q z

y t q

τ τ
τ

τ τ
τ

τ τ
τ

τ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

=

− + + − +
= = +

−

− + − +
= =

− + − +
= ∈

− +

 = − + 

 = + − + 

 = + − + 

= − +

∑∑

∑ ∑

∑∑

∑∑

1

1

0 1( ,..., ),
t

s

s
t I

z τ
τ

ϕ ϕ − +
= ∈

+∑ ∑

 

which depends on the observations only through the statistic in the theorem. The likelihood ratio 
is sufficient for the problem, and hence the statistic is sufficient. This completes the proof when 
τ1 is fixed but unknown.  

If τ1 is stochastic with some distribution g(t), then the density of Y can be written: 

 1
1

( ) ( ) ( | )
t

f Y g t f Y tτ
∞

=

= =∑ , 

which is a function of 1( | ),f Y tτ =  and hence the arguments above can be used to show that the 
statistic in Theorem 1 is sufficient for the problem also in this case.■ 
 
Since any one-to-one function of a sufficient statistic is sufficient, the sequence 

  ( )/ | |: 1,..., ,
t

i i t
i I

Y t q I t s
∈

+ =∑
 

where | |tI  denotes the cardinality of tI , is also sufficient. This transformed statistic is useful 
when dealing with the monotonicity restrictions of the outbreak regression, since this statistic 
preserves the monotonicity properties.  

When we have two processes we will use a simpler notation, 
SuffRq(s,t)= ( )/ | |: 1,...,

t

i i t
i I

Y t q I t s
∈

+ =∑ ,where q is the lag between the two processes.
  

EXAMPLE 1. For two processes Y1 and Y2 with time lag q=1, the index set  is 
{ : ,1 }t iI i q s t i p= ≤ − ≤ ≤ . For s=1 we have 1 { : 0,1 2} {1}iI i q i= ≤ ≤ ≤ = . For s=2 we have 
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1 { : 1,1 2} {1,2}iI i q i= ≤ ≤ ≤ =  and 2 { : 0,1 2} {1}iI i q i= ≤ ≤ ≤ = . For s=3 we have 

1 { : 2,1 2} {1,2}iI i q i= ≤ ≤ ≤ = , 2 { : 1,1 2} {1,2}iI i q i= ≤ ≤ ≤ =  and 

3 { : 0,1 2} {1}.iI i q i= ≤ ≤ ≤ = Hence, the sufficient reduction is 
1

( ) : 1i
i

Y t t
=

 
= 

 
∑ ={Y1(1) at s=1, 

( ) : 1,2
t

i i
i I

Y t q t
∈

  + = 
  
∑  

{1,2} {1}

(1 ), (1 )i i i i
i i

Y q Y q
∈ ∈

 
= + + 
 
∑ ∑ { }1 2 2(1) (2), (2)Y Y Y= +  at s=2, 

{Y1(1)+Y2(2), Y1(2)+Y2(3), Y1(3)} at s=3 or more generally {Y1(1)+Y2(2), Y1(2) +Y2(3),...., 
Y1(s-1)+Y2(s), Y1(s) } at s. A numerical example is given in Section 4.6. ■ 

 
The sufficient statistic at decision time s is SuffRq(s,t) t=1,...s, where 

SuffRq(s,t)= ( )1 2( ) ( ) / 2Y t Y t q+ +  for t≤s -q and SuffRq(s,t)= 1( )Y t  for t>s-q. In Example 1 we 

have {SuffR1(1,t)}= {{Y1(1)} at s=1. At s=2 we have {SuffR1(2,t)}= { }1 2 2[ (1) (2)] / 2, (2)Y Y Y+ . 
At s=3 we have {SuffR1(3,t)}= {{Y1(1)+Y2(2)]/2, [Y1(2)+Y2(3)]/2, Y1(3)}. More generally we 
have {SuffRp1(p,t)}= {[Y1(1)+Y2(2)]/2, ...[Y1(2) +Y2(3)]/2,...., [Y1(s-1) +Y2(s) ]/2, Y1(s) }. 

4. Surveillance methods for multivariate outbreak detection 
In this section we will first describe the univariate outbreak detection method, OutbreakP, 
suggested by Frisén and Andersson (2009). Then, we will review common approaches to 
adapting univariate surveillance to multivariate surveillance and show how OutbreakP can be 
adapted by these approaches. After that, we will derive a joint multivariate method based on the 
sufficiency principle. Finally, we will give the maximum likelihood estimator of the parameters 
and a generalized likelihood ratio method for outbreak detection. 

4.1. Univariate outbreak detection 
For the outbreak detection situation, one way to specify the in-control state versus the outbreak is 
to use a parametric model of the outbreak curve. This requires extensive modeling as in for 
example Held et al. (2006). Here we will use a non-parametric univariate method as a base for the 
suggested adaption to a multivariate situation. When seasonal or other components are important, 
it might be useful to apply the non-parametric method to the residuals of a more complex model.  

For the case of unknown parameters, generalized likelihood ratios (GLR) can be used by 
substituting the parameters with the maximum likelihood estimates. Lai (1995) suggested that in 
the CUSUM method, GLR should be used to handle unknown parameters after the change. This 
approach was also used by Höhle and Paul (2008) for Poisson and negative binomial distribution 
at surveillance of infectious diseases. In Frisén and Andersson (2009) a method for outbreak 
detection was suggested. The method utilized the GLR approach by using the maximum 
likelihood estimators under the monotonicity restrictions in Section 2.1, as derived in Frisén et al. 
(2010a) for the exponential family. The method was derived for the normal and Poisson 
distributions and was named the OutbreakP method for the Poisson distribution. Here, we will 
only consider the Poisson distribution, which is suitable for the application in Section 6. The 
method is semi-parametric since the distribution is parametric, but the regression is non-
parametric since the only restriction on the regression is by monotonicity. A user-friendly 
computer program can be downloaded at www.statistics.gu.se/surveillance. The 
method is also available in the R package Surveillance, described in Höhle (2010) and 
available on CRAN, and the open JAVA package CASE described in Cakici et al. (2010). 
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For the univariate surveillance of the influenza incidence in Sweden as a whole, the OutbreakP 
method was evaluated by Frisén and Andersson (2009) and Frisén, et al. (2009). We will now 
adapt this method for a multivariate situation. 

4.2. General approaches to adapting univariate surveillance to multivariate surveillance 
There are several approaches to multivariate surveillance. The most commonly used approach is 
the reduction to one scalar statistic, such as the sum for each time. This will be described in 
Section 4.3. Another approach is to use several univariate systems in parallel, one for each 
process. An intermediate approach is vector accumulation, for example MEWMA suggested by 
Lowry et al. (1992). When the multivariate distribution is available, as in e.g. Paul (2008), this 
might be used as a base for a surveillance method. An important situation treated by e.g. 
Tartakovsky and Veeravalli (2008) is where change in only one location can be expected and the 
identification of the correct one is crucial. General reviews on multivariate surveillance methods 
can be found for example in Basseville and Nikiforov (1993), Sonesson and Frisén (2005), 
Bersimis et al. (2007) and Frisén (2010). 

4.3. Reduction to one scalar statistic for each time 
Dimension reduction is always a reasonable choice in multivariate problems provided that it does 
not reduce important information. The most far-going reduction is the reduction to a scalar for 
each time. This is the most common way to handle multivariate surveillance. The observations at 
each time point consist of a vector, and we can first transform the vector from the current time 
point into a scalar statistic, which we then accumulate over time. In Sullivan and Jones (2002) 
this is referred to as “scalar accumulation”. One natural reduction when dealing with multivariate 
normal variables is to use the Hotelling T2 statistic suggested by Hotelling (1947). The Hotelling 
T2 statistic is defined as 2 1

0 ( ) 0( ) ( ( ) ( )) ( ( ) ( ))T
tT t t t t t−= − −YYμ S Y μ , where ( )tYS  is the sample 

covariance matrix. Originally, the Hotelling T2 statistic was used in a Shewhart approach, and 
this is sometimes referred to as the Hotelling T2 control chart.  

One example of scalar accumulation is when, for each time point, a statistic representing the 
important aspects of the spatial pattern is constructed from a purely spatial analysis. This statistic 
is then used in a surveillance method. The reduction to a univariate variable can be followed by 
univariate monitoring of any kind. In Rogerson (1997) and Rogerson (2001), different statistics 
measuring clustering were used for each time, and the information was accumulated by the 
univariate CUSUM method. In Zhou and Lawson (2008), the spatial pattern was characterized by 
a Bayesian model for each time, and the statistic was then monitored by the EWMA method.  

For the influenza incidence, a natural reduction is the sum, even though information on 
different parts of the country is available. Using the sum means that no regional information is 
used. Instead, the surveillance is based on total data for the country as a whole, as in Frisén and 
Andersson (2009). However, other reductions may be more efficient, as is seen in Section 3. In 
our evaluations in Section 5, the reduction to a scalar is included. 

 

4.4. Parallel outbreak detection 
To illustrate a frequently used approach to multivariate surveillance, we will include a parallel 
system in our evaluations. By the parallel approach, each process is monitored separately and an 
overall alarm is called if some condition is fulfilled. The most common condition is that one of 
the systems calls an alarm. We will use this condition when the univariate OutbreakP method is 
applied to each process. An overall alarm is called the first time that any of the processes gives an 
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alarm. The method is called OutbreakPParallel. Results for this method, as compared to others, 
are given in Section 5.3. 

4.5. Outbreak surveillance based on sufficient reduction and known parameters 
The likelihood ratio of an outbreak versus no outbreak with onsets of the outbreaks at τ1, τ2,... τp , 
is 

 1 1
1
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= =
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For known time lags (q1=0,q2, q3,… qp), this can be written  

 L(s,t1)= 1 1
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τ

=
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For detection of an outbreak as defined in Section 2 L(s,1) is the relevant statistic, see Frisén and 
Andersson (2009). For the Poisson distribution and known values of the parameters of the 
regressions, we have that  

L(s,1)= 0
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where { : ,1 }t iI i q s t i p= ≤ − ≤ ≤ . 
For two processes we have 

L(s,1)=
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In Section 4.7 we will use the generalized maximum likelihood and substitute the unknown 
parameters with their maximum likelihood estimators derived in Section 4.6.   

4.6. Maximum likelihood estimation of the multivariate outbreak regression 
If the distribution of the processes is not fully specified, the approach of the generalized 
likelihood ratio can be used. Hence, we need estimates for the likelihood ratio in Section 4.5, 
both for the situation with an outbreak and for the situation with no outbreak. When we have no 
outbreak, and thus all observations are independent and identically distributed, the maximum 
likelihood estimator of λ0 is the average of all observations. We have 

 0
1 1

ˆ ( ) /
ps

i
t i

y t spλ
= =

= ∑∑ . 

In the outbreak situation, we have the monotonicity restriction described in Section 2. A useful 
technique to find least squares estimates, which here are maximum likelihood estimates, is the 
Pool Adjacent Violator Algorithm, PAVA, described for example by Robertson et al. (1988). 
 
Theorem 2: For the multivariate outbreak regression in Section 2.2 with processes which all 
belong to the one-parameter exponential family and which are independent and identically 
distributed, conditional on the change points and time lags (independent over time as well as 
across processes), the maximum likelihood estimators of λt, for the increasing phase are obtained 
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by the PAVA algorithm with weights proportional to the number, |It|, of processes used for the 
specific component of the sufficient statistic. 
 
Proof:  
In order to obtain the maximum likelihood estimators of the expected values λt for τ1=1, we 
utilize the assumption λ0 ≤λ1 ...≤λs. Frisén, et al. (2010a) demonstrated that in the univariate case, 
the maximum likelihood estimators of the expected values λt of the outbreak regression can be 
obtained by the PAVA algorithm. For p processes, with known lags (q1=0,q2, q3,… qp), any 
observation of Yi(t) such that t<τi is an observation with the expected value λ0. In the same way, 
any observation of Yi(t) such that τi =t has the expected value λ1 and so on until the last 
observations of Y1(s) and any other Yi(s) such that τi = τ1, which are observations with the 
expected value λs. Thus, the number of observations, |It|, with expectation λt depends on t and (q2, 
q3,… qp). It follows from results on isotonic regression, with different numbers of observations 
for different values of the independent variable (see for example Theorem 1.5.2 in Robertson, et 
al. (1988)), that the maximum likelihood estimators are obtained by the PAVA on the average of 
the observations of λt with weights proportional to the number of observations, |It|. ■ 
 
EXAMPLE 2 
To illustrate how the sufficient reduction and PAVA are used, we give a simple example for two 
processes with lag q=1. SuffRq(s,t) is the sufficient reduction described in Section 3.2, where q 
indicates the lag between the two processes and s is the decision time. In Table 1, we illustrate 
how the sufficient statistic and the maximum likelihood estimators are calculated for a numerical 
example. 

 
Table 1. For an example of observations on two processes we give the sufficient statistic SuffR1 for s=1, 2, 3, 4, 5 and the 

maximum likelihood estimate t̂λ at s=5.  

t y1 y2 SuffR1(1,t) SuffR1(2,t) SuffR1(3,t) SuffR1(4,t) SuffR1(5,t) t̂λ  

1 4 2 4 2.5 2.5 2.5 2.5 2.25 
2 3 1 

 
3 2 2 2 2.25 

3 3 1 
  

3 3 3 2.25 
4 1 3 

   
1 1.5 2.25 

5 6 2 
    

6 6 

 

The estimate of 0̂λ  is the average of all observations. At s=5 we have 0̂λ =2.6. To estimate t̂λ  
at time s=5, we apply the PAVA to the sequence SuffR1(5,t), t=1,...5. We see that the first 
violation of the order restriction occurs at t=2, and hence we replace the observations by the 
weighted average, (2.5∙2+2∙2)/4=2.25. This does not violate the first obs ervation, Y2(1), since 
2≤2.25. The observation at t=4 constitutes a violation, and hence we use (3∙2+1.5∙2)/4=2.25, 
which does not violate the order restriction of the previous observations. ■ 

4.7. Generalized likelihood ratio surveillance of multivariate outbreaks 
We will use the generalized likelihood ratio, i.e. substitute parameter values by their maximum 
likelihood estimators, in our semi-parametric multivariate method. 

By substituting the parameters of the outbreak regression in L(s,1) in Section 4.5 with the 
maximum likelihood estimators in Section 4.6, we get the alarm statistic of the multivariate 
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OutbreakPSuffR method. Here P stands for the Poisson distribution while SuffR stands for the 
sufficient reduction in the multivariate case. The general method depends on the set of lags 
(q1=0,q2, q3,… qp) and has the alarm statistic  

 0
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where { : ,1 }t iI i q s t i p= ≤ − ≤ ≤ . For two processes with time lag q, we use the notation 
OutbreakPSuffRq for the method and OutbreakP SuffRq(s) for the alarm statistic. For this case 
we have 

 

( ) ( ) ( )1 2 1

0 0
ˆ ˆ ˆ ˆ2( )

1 10 0

ˆ ˆ
ˆ ˆ

Y t Y t q Y t

t t

s q s
t t

t t s q
e eλ λ λ λλ λ

λ λ

+ +

−
− −

= = − +

   
   
   

∏ ∏  

In the case q=0 this simplifies to the univariate OutbreakP statistic described in Frisén and 
Andersson (2009) and Frisén, et al. (2009). 
 
EXAMPLE 3. For the situation of Example 1 and 2, we have for s=5 the alarm statistic 

 OutbreakPSuffR1(5)=

( ) ( ) ( )1 2 1

0 0

4 5
ˆ ˆ ˆ ˆ2( )

1 50 0
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6.14ˆ ˆ

Y t Y t q Y t

t tt t

t t
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λ λ

+ +

− −

= =

   
=   

   
∏ ∏ .■ 

5.  Simulation study to determine the properties of the multivariate OutbreakP method  
In a multivariate situation, some reduction of the dimensionality of data is often useful, but it is 
important that no information is lost. This could be achieved by the use of a sufficient statistic. If 
the outbreaks appear simultaneously for the different processes, then we have a univariate 
sufficient statistic with one change point. However, when the outbreaks appear at different times, 
the sufficient statistic has more than one change point in the distribution. Even though each 
component has one change point, the distribution of the sufficient statistic is not constant either 
for t< τi or for t≥τi. The proofs commonly used for minimax or expected delay optimality require 
that there is only one change between two distributions.  

Since exact optimality cannot be expected, the properties of the OutbreakP method are 
presented by the results from a simulation study. In Section 6 the method will be evaluated by the 
application of the method to observed Swedish influenza data.  

5.1. Model for simulations 
We used a model that is relevant for the application to the influenza data described in Section 6. 
The model is based on the study by Andersson, et al. (2008a) on the seasonal influenza in 
Sweden. The Poisson distribution was used for the incidences. The suggested method is non-
parametric with respect to the shape. However, to examine the properties of the method by a 
simulation study, we used a parametric model to generate data. For the total influenza incidence 
in Sweden, the level at the constant phase, λ0, is set to λ0 = 1, and the parameter λ(t) of the Poisson 
distribution follows an exponential curve λ(t) = exp(β0 + β1(t-τ+1) for the increasing phase. The 
parameters were estimated to β0 = -0.26 and β1 = 0.826 from Swedish influenza data from the 
season 03-04, which was not extreme in any sense but “typical”. 
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For the multivariate case, we use a model with two processes resembling those of the influenza 
data in Section 6. We use the results by Schiöler (2010) on how the incidence develops for the 
Metropolitan, M, and Local, L, areas, respectively. We use E[M(t)]=0.5 for t<τ and E[M(t)]= 
exp{β0+β1(t-τ+1)}, and E(L(t)= 0.5 for t<τ and E(L(t))= exp{β0+β1 (t-τ+1+q)}). With 
parameters, β0 = -0.622 and β1 = 0.826.  

 

5.2. False alarms 
The most commonly used measure for false alarms is the in-control average run length, ARL0, 
E[tA|τ=∞]. This can be used also in a multivariate situation. A similar measure, which is more 
convenient to calculate, is the median run length, MRL0. We used the same MRL0 (780) in all 
comparisons in this paper. It was used also for the univariate OutbreakP method in Frisén and 
Andersson (2009). The technique chosen by Frisén and Sonesson (2006) was used to ensure that 
the alarm limit was determined with enough accuracy to make the error in the curves of delay less 
than the line width. 

5.3. Delay 
One measure of the detection ability is the average run length, given that the change occurs 
immediately (τ=1). This is widely used in univariate surveillance and often named zero-state 
ARL or ARL1. Zero-state ARL is the most commonly used evaluation measure also in the 
multivariate case. However, it is seldom explicitly defined. The definition implicit in most 
publications is E[tA| τ1= τ2= …  τp =1]. Here, it is assumed that all processes change at the same 
time. As seen in Section 3.1, a sufficient reduction to a univariate problem exists when all 
processes change at the same time. Zero-state ARL is thus questionable as a formal measure for 
comparing methods for genuinely multivariate problems. Instead, we will here use a measure 
which allows different change points. 
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Fig. 1 The conditional expected delay for the OutbreakPParallel and OutbreakPSuffR0 methods for two processes 
with simultaneous onset of the outbreak (lag=0) as a function of τmin=t. 
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The conditional expected delay ( ) [ | ]A ACED E t tτ τ τ= − ≤  can be generalized for multivariate 
surveillance to CED(τ1, τ2... τp) = min min[ ]A AE t tτ τ− ≤ , see Frisén, et al. (2010b). For a given lag 
this depends on only one of the change points. Thus we can write 

min min min( ) [ | ]A ACED E t tτ τ τ= − ≤ . When we have lag=0, i.e. simultaneous outbreaks, this 
reduces to the univariate CED. In Figure 1, we can see that the OutbreakPParallel method has a 
worse delay than the OutbreakPSuffR0 method for simultaneous outbreaks. OutbreakPSuffR0 is 
based on SuffR0, which corresponds to the total incidence. In Figure 2 we can see that the delay 
for the parallel method is worse than that for the OutbreakPSuffR1 method based on SuffR1 
when lag=1.  
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Fig. 2 The delay in detection of the outbreak for the OutbreakPParallel and OutbreakPSuffR1 methods for two 
processes with lag=1 as a function of τmin=t.  

5.4. Predictive value 
If a method calls an alarm, it is important to know whether this alarm is a strong or weak 
indication of a change. The predictive value is a well-established measure in epidemiology. In 
surveillance, however, we need a variant that also incorporates time. The difference in 
surveillance, as compared to situations involving only one decision, is that we can get an alarm at 
any time point, and therefore we need a measure of the predictive value at each of them. In order 
to judge to what degree an alarm at time tA can be trusted, it is necessary to consider the balance 
between the risk of false alarms, the detection ability and the probability of a change. If we have 
one change point τ and this is regarded as a random variable, this can be done by the probability 
of an outbreak, at an alarm, as suggested by Frisén (1992):  

1

1
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( ) ( | )

( ) ( ) ( ) ( )

t
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PV t P t t t
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τ τ
τ
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=

=
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= ≤ = =

= = = + = > >

∑

∑
.  

In a multivariate setting this was generalized by Frisén, et al. (2010b) to 



13 
 

( )

( )

min min
1

min

min min min min
1

( ) ( )
( ) ( | )

( ) ( ) ( ) ( )

t

A
i

A t

A A
i

P t t i P i
PV t P t t t

P t t i P i P t t t P t

τ τ
τ

τ τ τ τ

=

=

= = =
= ≤ = =

= = = + = > >

∑

∑
. 

The predictive value depends on whether outbreaks appear frequently or rarely. Knowledge of 
the exact distribution of τmin is seldom available, but we will nevertheless try to give a rough 
indicator. In the simulation study, τmin was assumed to be geometrically distributed, i.e. 

1
min( ) (1 )iP iτ ν ν−= = − . This may not give the closest fit of the onset times in Sweden, but in 

order to detect outbreaks which occur at unexpected times we did not want to include information 
on which week is the most common one for the onset. The level of intensity was roughly 
estimated from all available historical data on seasonal influenza to be ν = 0.1. With this intensity 
the PV is above 0.99, and for a lower intensity, ν = 0.01, which weakens the PV, it is above 0.95. 
The method and alarm limit used in the simulation study were considered potentially useful for 
practical application since the predictive value was high. 

5.5. Robustness 
Some models and assumptions are needed in order to efficiently make inferences from data. 
Hence, it is important to chose assumptions which are suitable for the application. Here we will 
concentrate on robustness related to a possible time lag. First we will describe the effect of using 
the method but with a wrong lag, then we will describe the consequences of different population 
sizes of different regions. 

The lag between the outbreaks is seldom exactly known. We examined the effect of using the 
sufficient statistic for lag=1 when in fact lag=2, and vice versa. In Figure 3, we have simulated 
influenza outbreaks where the true lag is 1. We can see that when we used the method 
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Fig. 3 The delay, as a function of τmin=t, for outbreak detection by OutbreakPSuffR0, OutbreakPSuffR1 and OutbreakPSuffR2 
when the true lag is 1. 
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OutbreakPSuffR1, which is based on the true lag, we got the best results. When we used the 
method for lag=2 or lag=0, the results were slightly worse. In Figure 4, we have simulated 
outbreaks with the true lag 2. When we used the outbreak detection method based on the true lag 
we got the best results, except for a very minor advantage for SuffR1 at τ=1 and 2. In this 
complex situation, the method based on the sufficient statistic is not always exactly optimal, but it 
usually works very well. When we used the statistic for lag=1 the results were similar to those for 
the true lag. However, when the lag was two steps away from the true one and we used the 
sufficient statistic for lag=0, while the true lag was 2, we got clearly worse results. The 
conclusion is that an approximate lag may work well, provided that it is not too far away from the 
true one. 
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Fig. 4 The delay, as a function of τmin=t, for outbreak detection by OutbreakPSuffR0, OutbreakPSuffR1 and 
OutbreakPSuffR2 when the true lag is 2.  

 
In the simulation model used above, we assumed equal distributions given the possibly 

different times of onset. In practice, however, the two processes may be based on different 
population sizes or otherwise have different parameters. If the difference is large, this should be 
handled by adjustment of the weights and the alarm limit. The ratio in size between the two areas 
analyzed in Section 6 is approximately 1.17, and a suitable simulation model for this case was 
derived in Schiöler (2010). We examined what would happen if no adjustments were made and 
the same weights and alarm limit were used, as if the population sizes were the same. The 
OutbreakPSuffR methods performed slightly worse if different population sizes were used. 
However, the predictive value of an alarm was still greater than 0.99 for the intensity 0.10. The 
conclusion is that the predictive value did not change much and that the interpretation of the 
results would not be dramatically changed. 

6. Application of the multivariate OutbreakP method to Swedish regional influenza data 
There are several national and international institutes that collect data on epidemic diseases, for 
example the European Centre for Disease Prevention and Control in Europe and the Centers for 
Disease Control and Prevention in the US. The monitoring of influenza in Sweden is mostly 
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based on reports from all Swedish laboratories providing laboratory diagnoses of influenza (LDI). 
We will use these LDI data to illustrate the proposed method. In Sweden, data of infectious 
diseases are collected by the Swedish Institute for Infectious Disease Control, SMI. Andersson, et 
al. (2008a) and Andersson, et al. (2008b) give descriptions of the collection of these data. Here 
we use the laboratory-confirmed incidences of influenza type A or B. For some purposes, it may 
be of interest to monitor each location separately. However, the aim here is to get an alarm when 
the influenza epidemic has reached any part of Sweden. This means that the aim is to detect the 
first outbreak.  

6.1. The spreading pattern of influenza in Sweden 
The spatial pattern of how a disease spreads between regions is important. Spatial clustering of 
adverse health events is discussed for example by Kulldorff (2001), Rogerson (2001), Lawson 
and Rodeiro (2004), Marshall et al. (2007) and Sonesson (2007).  However, in some situations, 
such as in the case of influenza in Sweden, the outbreak pattern is not characterized by clustering.  

The spread of epidemic diseases, such as influenza, often follows geographical patterns. 
Schiöler (2010) searched for geographical patterns  in the spread of influenza in Sweden (for 
example a pattern from south to north or from west to east). No such pattern was found. Instead it 
was found that influenza epidemics tend to start in the larger cities and then spread to the smaller 
ones. Data from areas classified as Metropolitan areas generally showed an earlier outbreak than 
those from the Locality areas. The Metropolitan areas have major international airports nearby 
(Arlanda, Landvetter, Umeå and Kastrup), and commuting to other countries is common. This is 
a plausible explanation for the early start of the influenza season in these areas. This is also in 
accordance with the results of Crepey and Barthelemy (2007), who investigated the relation 
between travelling and influenza in the US and in France and found a stable impact. 

The time difference in the onset of the influenza outbreak was about one week. This 
information will be used to increase the efficiency of our surveillance system.  

6.2. Outbreak detection of influenza in Sweden 
Based on the results on sufficiency in Section 3, the maximum likelihood estimation in Section 
4.6, the generalized likelihood ratio in Section 4.7 and the choice of alarm limit in Section 5 to 
give MRL0=780 and a predictive value greater than 90 %, we applied the OutbreakPSuffR1 to 11 
seasons of influenza. 

Figure 5 shows the results for the season 06-07. By accumulating the information by the 
OutbreakPSuffR1 alarm statistic, the outbreak is more clearly seen than when by the statistic 
based on the total number of cases in Sweden.  
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Fig. 5 The alarm statistic of the OutbreakPSuffR1method compared to that of OutbreakPSuffR0 up to the week of alarm during 
the season 06-07. 

 
The situation varies from year to year. In Table 2, the week of the alarm is given for 

OutbreakPSuffR0 and OutbreakPSuffR1 for all years with available data. The alarm limits were 
chosen by way of the simulation study in Section 5 to have the same false alarm property with 
MRL0=780. The OutbreakP based on SuffR1 gives an alarm the same week or earlier compared 
to OutbreakP based on the SuffR0, the total. As can be seen from the table, the alarm is given at 
the same time for eight seasons and earlier for three seasons for OutbreakP based on SuffR1 as 
compared to SuffR0. Note that the last season differs from the earlier ones due to the new H1N1 
influenza. The incidences (of influenza type A or B) were very low this season and highly 
dominated by the metropolitan areas. This explains why there was an alarm of an outbreak by the 
OutbreakSuffR1 method, which utilizes information on the metropolitan areas, but not by 
OutbreakSuffR0, which uses only the total for the country as a whole. 

 
Table 2. Results for 11 influenza seasons in Sweden. The week of alarm is given for the methods based on the SuffR0 and 
SuffR1, respectively. The last column shows which method gave the first indication of an outbreak. 

Season SuffR0 SuffR1 First 
99_00 49 49 Same 
00_01 52 52 Same 
01_02 2 2 Same 
02_03 1 1 Same 
03_04 46 46 Same 
04_05 50 48 SuffR1 
05_06 1 1 Same 
06_07 47 46 SuffR1 
07_08 51 51 Same 
08_09 48 48 Same 
09_10 No alarm 24 SuffR1 
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7. Discussion 
In recent years, there have been several events that highlight the importance of outbreak 
detection. The outbreaks of new kinds of influenza (SARS, avian and H1N1) are such recent 
examples.  

Several different definitions of an outbreak are used, explicitly or implicitly, in literature. 
Three commonly used approaches to outbreak detection are: i) the detection of an increasing 
incidence, ii) the detection of an incidence that is higher than expected, based on the information 
available up to that point and iii) the detection of a spatial clustering of cases which results in a 
higher incidence in an area than in its surroundings. The choice of method and evaluation 
procedure depends on which definition is used. Therefore, it is important to state the aim 
explicitly. Different methods may be optimal under different conditions, which means that the 
methods can often be seen as complements to each other. 

The semi-parametric method used here detects outbreaks defined as a monotonic increase 
following the constant level before the onset of the outbreak. Such outbreaks are of interest in 
connection with several diseases and syndromes. Often, the information about the baseline is 
limited. Errors in the estimation of the baseline can have serious effect, as demonstrated for 
example by Frisén and Andersson (2009). Also, there may be seasonal effects with the same 
periodicity as the disease as well as large variation between years, thus making it hard to state the 
expected incidence. Therefore, it can be of value to have access to a method, which does not 
require knowledge about the baseline but is focused on the increasing incidence at an outbreak. A 
semi-parametric maximum likelihood ratio surveillance method was derived in Frisén and 
Andersson (2009) for the regular exponential family and applied and compared in Frisén, et al. 
(2009). The likelihood principle makes it possible to include knowledge on the probability of an 
outbreak depending on the season. However, here we chose a non-informative approach, since it 
may be valuable to detect outbreaks that occur at unexpected times. 

When data from different sources are available, multivariate surveillance should be applied. 
This is the case for detection of influenza outbreaks on the basis of data from different regions. 
The two simplest approaches of multivariate surveillance are the reduction to a suitable univariate 
statistic and parallel surveillance with due concern to the multiplicity. We included these 
approaches in our evaluations by simulations. We also suggested a joint generalized likelihood 
ratio method based on maximum likelihood under multivariate monotonicity restrictions. The 
properties depend heavily on the relation between the times of onset in the different processes.  

The relation between different processes is important in multivariate surveillance, as 
demonstrated by e.g. Frisén, et al. (2010b). The method that is optimal for simultaneous changes 
is not efficient at a time lag. The exact relation between the onset on different location is seldom 
exactly known. However, there can be some information as demonstrated in e.g. Schiöler (2010) 
where it was found that the influenza outbreak in Sweden in general started a week earlier in 
major cities than the rest of the country. In the application to the Swedish influenza data it was 
demonstrated that the performance of the surveillance was improved by utilizing this knowledge. 
The simulation study demonstrated that the even if the true time lag is only approximately known 
it can be an improvement to use it in the method. 

Most theory of statistical surveillance is based on a change between two distributions – one for 
the times before the change point and another for the times after it. For simultaneous changes, we 
demonstrated that the sufficient statistic has one change point and that the suggested method is 
optimal. However, when changes occur at different times we can have several changes in the 
multivariate distribution. Thus, we cannot expect optimality. Here, we demonstrated that the 
suggested method gave good results both in the simulation study and when applied to spatial 
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information on influenza in Sweden. We used a simulation model mimicking the behavior of 
Swedish influenza data, based on the results of Andersson, et al. (2008a), where a discussion on 
data quality problems was included. When evaluating methods for on-line monitoring it is 
important to use measures that incorporate the time issue, i.e. the fact that there are repeated 
decisions, not just one decision as in hypothesis testing. Here, we used evaluation measures by 
Frisén, et al. (2010b), which are better suited for multivariate on-line surveillance than the 
conventional ones.    

The primary motive for this paper was the need for spatial surveillance of influenza outbreaks 
in Sweden. The suggested method may also be useful for other applications. The case of proxy 
data for influenza was discussed in Section 2.2. The detection of a change from a constant level 
to a monotonic trend is of special interest in connection with outbreaks of epidemic diseases. 
However, it may be useful also in other areas. For example, Schiöler and Frisén (2008) discussed 
the application of the outbreak method for detecting a decline in the results of financial managers.  
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