
Exploring variation 
mechanisms in the automotive 
industry
A case study

EMIL M. JANITZEK
MARCUS P. LJUNGBLAD

Bachelor of Software Engineering and Management Thesis

Report No. 2010:008
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2010



Exploring variation mechanisms in the automotive industry:
a case study

Emil Janitzek

emil.janitzek@quandoo.se

Marcus Ljungblad

marcus.ljungblad@quandoo.se

ABSTRACT

Today car manufacturers are expected to deliver cars configured

for each customer. Through software, and by adapting software

product line methods, car manufactures respond to the increased

customization needs. This emphasizes the need for careful variant

handling. Thus, based on a problem definition from Volvo Cars

this case study explores variation techniques to support massive

numbers of built-to-order cars using AUTOSAR. In essence, this

study argues that run-time variability, tested with a prototype de-

velopment, is a way to meet this need. It establishes the publisher-

subscriber pattern as a viable run-time variation mechanism, and

identifies limitations and areas to consider related to subscription

management, real-time performance and data transparency within

an automotive environment. Finally, this study also demonstrates

how run-time variability enables manufacturers to better support

after-market services and enable 3rd party integration.

Keywords: AUTOSAR, Volvo Car Corporation, Variability, Soft-

ware product lines

1 INTRODUCTION

For a car manufacturer like Volvo Cars, producing 400 000 cus-
tomized cars each year, it is essential to have access to a range of
techniques to meet customer demands and to support after-market
services (Weiss et al. 2009). For instance, each manufactured car is
designed with the customer’s preferences of stereo, engine capacity
and appearance. Since it is impossible for manufacturers to antic-
ipate all configurations at design-time and since they have limited
access to the car once it has left the factory, some choices about
how the software operate must be delayed. The concept of software
product lines was introduced to increase the ability to re-use soft-
ware and to meet customization requirements (Bosch 2000). Soft-
ware product lines focus on the methods and tools required to cre-
ate similar products based on a collection of software assets. One
of the vital aspects in software product lines is the management
of variants, or in other words, the combination of assets to form a
single, possibly unique, product. The automotive industry, which
has a long tradition of using product line manufacturing, has over
the past years been adopting similar techniques for their software
development (Broy 2006). Effectively, this means manufacturing
organizations are transforming to software organizations, relying
on effective use of software methods.

As a consequence of this transformation, the organizations are
increasingly concerned with variability management. A num-
ber of variability patterns and mechanisms have been suggested
by researchers applicable from system design time to run-time
(Bachmann & Bass 2001, Svahnberg et al. 2001, Van Der Hoek
2004, Bachmann & Clements 2005). However, extant research
overlooks variability within industry standards. Solutions for vari-
ability are created by manufacturers and suppliers independently,
which forces manufacturers to carefully design the requirements
when outsourcing sub-system development. For many automo-
tive manufacturers the AUTomotive Open System ARchitecture
(AUTOSAR) standard is currently being integrated into production

(Fürst 2009), and the latest version 4.0 supports only limited vari-
ant handling as will be illustrated in the following sections.

Creating a unique design for each manufactured car is obliviously
unrealistic. Thus, architectures with clear variation points are used.
Based on a case study from Volvo Cars this paper argues for run-
time variation as one way to support the massive numbers of config-
urations. Specifically, our study elicits the key elements required to
support run-time variability using the AUTOSAR 4.0 standard. We
chose to develop a prototype of a run-time variation mechanism due
to the lack of current research on variability in AUTOSAR, as well
as for the importance of having a full range of variability options in
software product lines to chose from.

Subsequently, this study contributes in three ways. One, we illus-
trate that run-time variability is possible using the AUTOSAR stan-
dard - something which is likely to improve after-market services,
3rd party integration and increase software re-use. Two, we pro-
vide hands on details of how to in practice translate the standard
guidelines into an actual prototype. Three, we extend the variabil-
ity catalog by reflecting on the implications our findings have on
current research.

2 RELATED WORK

Variant handling is the ability to modify a system without making
a big impact on the system or imposing a need to restructure the
design (Svahnberg et al. 2001). It is a part of the foundation of soft-
ware product lines. To conceptually understand the variations, lets
look at an example. Car manufactures today want to use the same
software, or as similar software as possible, in each car model even
though they differ from each other. The industry often talks about
families of cars; cars which originates from a common platform, in-
cluding both hardware and software. For example, the inside light-
ing system depends on if the model has two or four doors. With
different car models, different doors are used with different lights.
The lighting system needs to know which type of doors are installed
in a particular car so that it can switch on the right lamp at the right
time. This variation, variation in technology as Bachmann & Bass
(2001) calls it, must be described, linked to requirements, as well
as realized using a variation mechanism sometime during develop-
ment. However it does not end there, each car within a family can
be adapted individually this creates higher demands on the variation
technology in place.

In the following sections we outline how run-time variation is re-
lated to other types of variation mechanisms. Based on existing
literature, we also motivate what types of variation are usually dealt
with in run-time, or in other words, why run-time variability is pre-
ferred in some cases. Thereafter, we provide a summary of the vari-
ation mechanisms that are available in AUTOSAR. Finally, we out-
line a theoretical framework for analyzing variation mechanisms.

2.1 Software product lines

With the introduction of software product lines Bosch (2000) re-
alized the need to reflect variability in architectures. Variabil-
ity is defined in the architecture through variation points (Bosch

1



Table 1: Variability overview

Variability Pattern Examples of Mechanisms Binding time Usage

Product Architecture
Derivation

Configuration management, Generators Pre-build Implementations during the architecture and design phase

Compilation Compiler switches Pre-build Compiler flags will resolve to one binary output

Linking Binary replacement Pre-build Linkage with library/binaries to produce one binary output

Runtime Adaptation during start-up, condition on vari-
able

Post-build Uses inline code to resolve variability at runtime

et al. 2002), or a specific place in the architecture at which a feature
can take one of two or more shapes. In general, variability means
the “ability of a system, an asset, or a development environment
to support the production of a set of artifacts that differ from each
other in a preplanned fashion.” (Bachmann & Clements 2005). Ac-
cording to Bachmann & Bass (2001) variation points are in direct
relation to requirements made by the customer and should be doc-
umented in the architecture.

Bachmann & Bass (2001) outlines six sources for variability: in
function, in data, in control flow, in technology, in environment and
in quality. Particularly interesting from a run-time perspective, are
variation in data and in control flow. In control flow, the application
executes differently depending on, for example, available compo-
nents or settings passed to a module designed to handle variability.
Variation in control flow also encompass unknown variation, such
that when variables are distributed to multiple components, some
which may be developed by 3rd party suppliers, the execution path
cannot be determined beforehand. The authors continue to state
that adaptation during startup, by reading a configuration file, is a
common way of managing variation. Software designed with run-
time variability, like adaptation during start-up, must implement all
possible variations. This means that the object code will contain all
variations.

In the next section we outline common mechanisms organized into
four patterns. Several authors describe similar mechanisms but of-
ten describe these with varying terminology and detail. We provide
an overview of variation mechanisms available as a complement to
run-time variability.

2.2 Existing variability patterns

Even though many agree that planning for variability is important,
doing this in a unified manner can be hard. Bachmann & Bass
(2001) and Svahnberg et al. (2001) represents two attempts to cat-
egorize and characterize archetypical approaches for variant man-
agement. When looking at variability, one of the most crucial as-
pects is when the actual variant will occur. This is referred to as
variation points. A variation point is a representation by the de-
signer to delay the design decision (Bosch et al. 2002). The point
in time when the design decision has been made is referred to as
binding time. This is when the actual variant becomes bound, after
this point only one implementation is used. Hence, the chosen vari-
ant will exist in the system. For variation in run-time, this means
that the variation point is in run-time and the binding of that varia-
tion point happens during application execution. Not until the data,
for example a configuration variable, is passed to a function is the
variation bound.

A pattern describes where and how a variation is implemented
(Bachmann & Bass 2001). Several mechanisms can be categorized
into one pattern. Svahnberg et al. (2001) uses a different terminol-
ogy and focuses on a lower abstraction level. They focus on im-
plementations, hence the example mechanisms in Table 1. Where

to implement the variation is decided by the architect, and this de-
cision will affect the structure of the software from design to exe-
cution. However, most mechanisms apply at pre-build time which
is natural considering variability stems from requirements or fea-
ture diagrams (Bachmann & Clements 2005). The ability to vary
decreases the closer to the final product you come since “variation
points are bound to selected variants” (Bosch et al. 2002). In this
article we will referrer to the patterns defined by Bachmann & Bass
(2001) while using the more detailed description of mechanisms
provided by Svahnberg et al. (2001). This decision was made since
Bachmann & Bass (2001) provides a clear and consistent way when
defining the main variability patterns while Svahnberg et al. (2001)
goes into the details in different variation mechanisms.

As described in Table 1 there are four main variability patterns that
all represent different stages during software development.

• Product Architecture Derivation
The earliest variation point available is during the architec-
ture and design phase. Planning for variability may impose
the use for configuration management systems or the need to
create generators for product specific behaviors, but this can
be both time consuming and costly (Bachmann & Bass 2001).
A generator can be used for creating a product specific archi-
tecture which only covers the needs for the current product.
In the same way a configuration management system will cre-
ate a specific product by only including the desired modules,
this makes it easy to handle different variants within the same
configuration management tool. Equally, planning for vari-
ability is one of the biggest factors for a successful software
product line (Bosch 2000). Doing so well will decrease the
risk of problems during development.

• Compilation
During the compilation of software different version can be
compiled depending on flags sent to the compiler. This
method is commonly used to, for example, produce platform
specific binaries, primarily since it requires little effort and
is easy to use. However, too many directives can impede on
code comprehensibility (Spencer 1992).

• Linking
Similar to the compilation pattern; linking will result in
one product specific binary by linking the correct pack-
ages/libraries together with the object-code generated after
compilation.

• Runtime
Runtime can be further refined into two phases, adapta-
tion during startup and adaptation during normal execution
(Bachmann & Bass 2001). Variation points introduced in run-
time often depend on the ability or access to the system once
deployed.

2



Van Der Hoek (2004) postulated an alternative approach to variabil-
ity points. He takes the concept of variability further such that it can
be achieved at any time during development. This is achieved by
inserting a unbound variation point, instead of choosing one of the
variation points as defined by Bachmann & Bass (2001). This gives
the ability to change the variability pattern at a later stage without
having to make any changes to existing design or code. An example
of this is, instead of defining runtime variability with if-statements
in the code, the unbound variation points would make it possible
to change this to a compiler variability with #ifdef instead, and
producing a unique binary for this variation. Variability is achieved
by changing the settings within the anytime variability tool. This
would make it possible for any combination of core assets arranged
at any time to yield the same final product.

2.3 Variability in the automotive industry

AUTOSAR is an open and standardized architecture for the auto-
motive industry. It was developed jointly by some of the largest
companies within the industry together with third party suppliers
and tool developers. According to its official web-site the standard
aims to improve the way electronic equipment is developed so that
ultimately one can increase safety, performance and environmental
friendliness. 1

Variability is only recently introduced in the AUTOSAR standard.
As of version 4.0, released early 2010, AUTOSAR explicitly states
that managing variability within the standard is more about docu-
mentation rather than implementation (AUTOSAR 2010b). Never-
theless, UML meta-models are used to describe four variation pat-
terns, which is implemented in three abstraction levels. The most
abstract level does not provide any details of variability, thus it pri-
marily models functionality. The second, called Annotated meta-
model, provides information about where variability should take
place. In other words, this level indicates where the variation points
are used in the application. Finally, the lowest UML abstraction
level, called Extended meta-model allows the developer to model
latest binding time and constraints that apply to these.
There are four patterns described in the standard: aggregation
value, association value, attribute value, and property set value pat-
tern. The patterns are primarily discussed at system design level but
the standard does support variability all down to post-build. Note
that AUTOSAR uses a different notion of post-build compared to
Bachmann & Bass (2001). Post-build in the standard is primar-
ily concerned with linking. AUTOSAR distinguishes between post-
build and runtime, and explicitly states that runtime variability is
excluded.
To our knowledge, there is only one paper discussing run-time vari-
ability from a strict automotive perspective. Weiss et al. (2009)
describes a method for self-organizing software. For example, if a
software controller fails another controller can take over its func-
tionality. This is done via a third component which monitors the
health of other controllers and in case of a problem, re-instantiate
the software from the faulty controller on the healthy controller.
The authors takes a pragmatic approach to building theory and are
not concerned about an AUTOSAR compliant implementation.

2.4 Theoretical framework

There are relatively few studies on how to evaluate a variation
mechanism or pattern. Largely due to the subjective nature of
studying patterns, as it is in the situation which they are used that
determines whether they are suitable or not. However, Fritsch et al.
(2002) proposes a complete methodology for assessing and catego-
rizing variant patterns used in an organization. It is complete in the

1AUTOSAR Official website, http://www.autosar.org, 2010-03-14

sense that it not only looks at one particular pattern at the time, but
evaluates them against each other. By acknowledging the subjec-
tiveness of their implementations, through the construction of qual-
ity attributes for a pattern, they are able to represent the patterns
nature in a particular situation. The quality attributes are organized
in a quality tree (see figure 4). Thereafter each quality attribute is
given a rating, for example, 1 to 5 where 5 represents that this at-
tribute stands out in this specific area more than in any other pattern.
The authors recognize the trade-offs that have to be made when pat-
terns are weighed against each other by emphasizing that it is only
guiding, rather than definite. Once the qualities have been deter-
mined, the patterns can be organized in a matrix to make it easier
for developers and architects to find and use the right pattern at the
right time.

For the purpose of this case study, we chose to adapt a subset of
the method described by Fritsch et al. (2002) to organize and an-
alyze our data, namely the quality tree. The leaf nodes represents
strengths and weaknesses discovered during the implementation.
Once they are grouped under quality attributes an indication of
which qualities the implementation affects is discovered. The clas-
sification is based on which quality attribute the quality primarily
concerns. Eventually, the quality tree provides guidance for the ar-
chitect when making decisions for how to manage variability. In
addition to guidance, the quality tree provides a good overview of
the characteristics of one specific pattern. This is considered advan-
tageous here since only one implementation was completed, and for
future work it is available for comparison against other implemen-
tations.

3 RESEARCH METHOD

In this section we present the result of a three month long interpre-
tive exploratory case study (Walsham 1995). After a motivation for
this research design we outline the impact of the study by describ-
ing the environment we have worked in. The following subsection
introduces the data sources used, and finally the process used to
implement the prototype is described.

3.1 Case setting

In an interpretive case study the researchers are allowed to make
use of preconceptions and use it to their advantage through, for ex-
ample, deeper insight (Walsham 1995). On that account, we used
Volvo Cars’s preconceptions for managing variability to implement
a variant mechanism for run-time variability. In other words we
are basing our findings on what developers at Volvo Cars have al-
ready tested and deployed. This establishes a level of credibility
and reliability in the data used. Although we could have opted for a
positivistic approach, thus neglecting previously discovered advan-
tages and disadvantages, we intentionally continued to build on a
solution that is already accepted in industry.

It is difficult to predict the variables that will influence the work,
hence we provide insight on what is required of the standard and the
developers respectively. In addition it is difficult, since the existing
body of knowledge is limited, to state beforehand which variables
will influence each other. Contrary to stating a number of hypothe-
ses in advance, we have chosen to provide a starting set of guide-
lines. These have been elicited from an architectural specification
provided by Volvo Cars as well as through meetings with one of its
software architects. The guidelines are presented in 3.3.

This study is exploratory in the sense that, despite previous research
in variability management and variability mechanisms, no one has
looked at the implications on massive product line productions. In
addition, we provide insights on what is required for run-time vari-
ability to be successful. The huge amount of cars produced at Volvo

3



Table 2: Summarized data sources

Source Type Advantages Limitations

Volvo Cars component specification Document, architecture specifica-
tion

Valuable information based on re-
fined domain knowledge

Restricted by confidentiality agree-
ment.

Volvo Cars run-time variability
specifications

Document, architecture specifica-
tion

Valuable information based on re-
fined domain knowledge

Draft document, may change. Re-
stricted by confidentiality agree-
ment.

Software architect at Volvo Cars Regular discussions 10 years of hands-on architect expe-
rience at Volvo Cars

Data is interpreted twice

AUTOSAR 4.0 Specification Documents and UML meta-models Publicly available. Thorough and
with examples.

Difficult to address all relevant sec-
tions.

Cars each year, where all are adapted individually by the customer,
presents a unique case with high demands on the variant handling.
The ability to alter software and implement variation points de-
creases further into the product development (Bosch et al. 2002)
and most variability studies evaluates design-time, compilation and
linker variant mechanisms. There are, at least, three stages in devel-
opment that variants are used today at Volvo Cars including compi-
lation mechanisms, local parameterization, and distributed parame-
terization. The last two are examples of adaptation during startup.
The compilation mechanism is a variant dealt with before run-time
and already supported in AUTOSAR. Consequently, this study focus
on the last two mechanisms.

As described in section 2.4 variability is recently introduced in the
AUTOSAR standard and it has in most cases not yet been put in to
practice. Our direction will be to discover how one will be able to
support the variability patterns needed by the automotive industry
in the AUTOSAR standard. Generalizing a run-time variability solu-
tion is beyond the scope of this paper as that would require studies
on how a larger set of manufacturers deals with run-time variation.
We provide a better understanding of what is required of one partic-
ular industry standard to encompass run-time variability due to the
limited insight of the run-time variation problem in the automotive
industry.

3.2 Data sources

The primary sources for this case study are provided by Volvo
Cars’s architectural specifications for handling variance. First and
foremost, these specifications concern the adaptation during start-
up and run-time variability. Due to a confidentiality agreement
any specifics from these sources are removed. These documents
describe the way Volvo Cars currently are applying variant pat-
terns and mechanisms in their software product lines, and so far
AUTOSAR is not addressed in any of them.

Moreover, discussions with a software architect at Volvo Cars have
provided valuable insights in the architecture used in Volvo cars, as
well as terminology and concepts used in the automotive industry.
Additional discussions with tool developers at Mecel AB have also
contributed to detailed technical understanding of the possibilities
and limitations of the AUTOSAR specification.

Discoveries made during the prototype implementation have been
evaluated together with the software architect from Volvo Cars. As
stated earlier, instead of trying to avoid preconceptions, we make
use of the insights acquired by the architect’s 10 years of experience
in the automotive industry. This knowledge contributes to a better
understanding of the individual constituents, i.e the mechanisms, as
well as the whole, when the mechanism is tested within the standard
(Klein & Myers 1999). The results from the discussions with the
architect were collected as a set of suggested improvements to build

upon. This reviewing process is described by Klein & Myers (1999)
as an important constituent in hermeneutics.
Our secondary source is the AUTOSAR 4.0 specification pub-
lished in January 2010, and more specifically, the template doc-
uments concerning variability management and variability patterns
in AUTOSAR (2010a). There are also UML meta-models provided
with the standard which describes the variation patterns, the con-
straints imposed and how to apply them in development.
Table 2 summarizes the data sources used in this case study accord-
ing to Creswell (2008) methodology of categorizing data in quali-
tative studies.
The data outlined above is part of the specific case and thus directly
applies to Volvo Cars. Each source is subject to our interpreta-
tions. Where applicable, for example through the discussions with
the software architect, our interpretations are tested in a broader
context where the architect’s contribution and background provides
added value through rich insight (Walsham 1995). Eventually, the
results are applicable to industry and academia as we are able to
draw on best practices and provide a conceptualization, the proto-
type, of variant handling within an industry standard.

3.3 Process

Interpretive case studies promotes an iterative process for data col-
lection and analysis such that initial assumptions and theories can
be re-evaluated when needed (Walsham 1995). Therefore, we di-
vided the implementation into three phases. The first and second
phase are written entirely in C, and the third is developed using
AUTOSAR compliant tools. To assess the specification provided
by Volvo Cars, the first phase intentionally avoided any use of
AUTOSAR. Consequently, this made it possible to discover what
was required of the variant before making the prototype more true
to the automotive environment. In the second phase, the findings
from the first phase were used to further refine the implementation
towards the automotive industry. The implementation in the third
phase is based on the findings, with some limitations, from the pre-
vious phases.
We started the development based on the following premises and
requirements:

• as much as possible takes place in run-time

• a solution must be independent from the data it is supposed to
pass

• data used by a service does not have to be stored on the ECU2

where the service is running

2Electronic Control Unit, any embedded system in automotive electron-
ics to control a system or sub-system.

4



After all phases were completed and summarized in a quality tree
(see 2.4), we revisited AUTOSAR’s and Volvo Cars’s specifications
to see what could be learned from existing variant patterns. It also
opened up the opportunity to find the places where the AUTOSAR
specification needs to be modified to support run-time variability.

4 RESEARCH DATA

The results outlined in this section are coming from a prototype im-
plementation of a run-time variability pattern. It is based on the
architectural specification provided by Volvo Cars and concerns the
distribution of configuration parameters in run-time. Gamma et al.
(1995) named this pattern publisher-subscriber which is a mecha-
nism for components, during application execution, to subscribe to
state updates generated by another component, the so called pub-
lisher. A publisher broadcasts, upon state change, new information
about the state to all its subscribers. A broker, or distributor, is occa-
sionally introduced to support multiple publishers and delegate the
responsibility of the actual transaction of data. Take note, however,
that Volvo Cars’s specification in its current state does not require
subscription to take place in run-time. Our implementation, on the
other hand, does. This decision was taken to fully understand the
complexity of complete run-time variability where no decisions are
made beforehand.

4.1 Implementation phases

The three phases are: 1) a pure implementation using the C pro-
gramming language, 2) an improved implementation which more
closely resembles the automotive environment, especially that of
a Controller Area Network (CAN), which is an network imple-
mentation widely used within the automotive industry (ISO 11898-
1 2003), and 3) an implementation which follows the AUTOSAR 4.0
specification. During all three phases the main source of influence
for the design decisions were the AUTOSAR specification, and an it-
erative approach was used where each consecutive phase built upon
an earlier. Descriptions of the implementations of all three phases
are outlined below.

4.1.1 Phase 1: C Implementation

Subscriber

Publisher

Figure 1: Diagram showing the c-implementation

In the initial phase we wanted to explore the general characteristics
of a publisher-subscriber implementation. The implementation was
made completely in C and to simulate the data network mandatory
in cars, we used a native TCP-sockets with listeners and receivers
in separate threads and processes. A component that wants to make
a subscription does, in other words, so using a TCP request to a
port specified by the publisher. This design allowed us to early on
investigate the distributed constraints of the pattern.
As showed in figure 1 the system consist of two components, the
arrows indicate communication between the components where the

yellow arrow is an incoming request and the blue striped arrow
shows the outbound parameter.

The two following phases implements a push technique in contrast
to a pull technique which this phase uses. Hence, the publishers are
not aware of the subscribers and decisions about which data to keep
is delegated to a message broker. This is in-line with the AUTOSAR
specification.

4.1.2 Phase 2: CAN-bus implementation

Subscriber

Distributed
Configuration

Publisher

Figure 2: Diagram showing the implementation with CAN-bus

Phase two aimed to develop a prototype true to the cars actual com-
munication system to simulate the CAN-network more accurately.
The implementation in phase one used communication between
subscribers and publishers with external means of communication,
hence the sockets. When adapting to the CAN bus, broadcasting
cannot be done to individual addresses. This lead to a function
calls for subscriber communication, instead of using sockets to reg-
ister parameters. As showed in Figure 2, between the publisher and
subscribers a message broker was constructed. The message broker
listened for incoming parameters and saved only those parameters
that were registered by subscribers present in the same process, il-
lustrated by the dashed line. Each subscriber ran in a separate thread
communicating with the broker in the same process. The publisher
ran in a separate process to simulate a different ECU and commu-
nicates with the broker over a socket sending all variables one after
each other.

4.1.3 Phase 3: AUTOSAR implementation

In Figure 3 the proposed architecture for how to implement a pub-
lisher subscriber pattern within the AUTOSAR standard is illus-
trated. It contains three types of elements (see figure 3). First,
the Distributed Configuration running as a basic software compo-
nent which is available on every ECU. Second, the publisher run-
ning as an application software component. This component have
the responsibility of reading and publishing parameters to the Dis-
tributed Configuration. Also note that there could be more than one
publisher per ECU. The last, and third, type of elements are the ac-
tual software components which acts as subscribers. All application
software components have the ability to act as a subscriber by sim-
ply registering their interest of a parameter to the Distributed Con-
figuration. When accessing the parameter they use the AUTOSAR
RTE which connects the applications with the Distributed Configu-
ration and the parameters are available throughout the run cycle.

5



AUTOSAR Runtime Environment (RTE)

ECU-Hardware

Communication

Application 
Software 

Component

AUTOSAR 
Interface

Application 
Software 

Component

AUTOSAR 
Interface

Config
Software 

Component

AUTOSAR 
Interface

Distributed 
Configuration

AUTOSAR 
Interface

Basic Software

Figure 3: Proposition for AUTOSAR implementation of Configuration

System

There are two possible scenarios for the Distributed Configuration
to handle variables on the ECU. Either they are treated as a local
configuration parameter, and only used within the applications on
the same ECU, or global and distributed to many ECUs. Local
configuration could be useful for specifying static variables, like
different language files for a car’s dashboard. Secondly, the param-
eters can be broadcasted both locally and globally. The Distributed
Configuration is responsible for broadcasting the parameters on the
CAN-bus. The parameters are then received by another Distributed
Configuration component on the receiving ECU which stores the
parameters locally, and may be used as described above through
functional RTE calls.

During this phase the code used in previous phases where integrated
into an AUTOSAR environment3. The AUTOSAR environment con-
sist of three different components, namely a AUTOSAR configura-
tion tool, a workbench with supplied basic software components in
C, and a Testbench which simulates the CAN-bus used within a car.
The Testbench displays all messages passed for debugging and it is
possible to inject messages into the CAN-bus. We used the supplied
configuration tool to create a basic software component, namely the
distributed configuration. The component was configured to listen
to the CAN-bus with the ability the send and receive 8 bytes of
data in each frame. This gave us an AUTOSAR compliant XML-
file which was used to generate the structure for the basic software
component in C, together with the correct AUTOSAR interfaces.

By using the built in Testbench and injecting messages in the CAN-
bus the implementation was tested with simulated publishers. The
implementation consisted of one Application Software component
and one Basic Software component. The application component
was constructed with a simple control loop initializing one param-
eter with the distributed configuration. Once registered the appli-
cation continues reading the value and operates as normal. The

3Picea Evaluation Package 2.0, generously provided by Mecel AB

distributed configuration is listening for incoming parameters, and
when a new set of parameters is received these are made available
for the application component.

4.2 Learnings during implementation

There are several aspects to highlight which were derived during
the development of the three phases. These are outlined here.

4.2.1 Subscription

A problem which emerged early in the first implementation is that
of subscription. All software components that require external vari-
ables must register to those during subscription. A software com-
ponent which depends on a set of variables before it can enter an
operational state must be guaranteed that these are delivered. If a
subscription is not instantiated appropriately, such that the variables
are not being delivered, the software component may be left in an
erroneous state. Three questions arise:

1. What if the distribution component taking the subscriptions is
not yet initialized?

2. When is the first set of parameters distributed to all sub-
scribers?

3. If subscription takes place in run-time, for how long is the
publisher going to wait before distributing the initial set of
parameters to the subscribers?

Possible solutions include immediate distribution on subscription,
as well as the alternative to design the software component with
an initial waiting time before entering an operational state. Since
the publisher will have instant access to the parameters it could dis-
tribute these immediately upon subscription. This would imply the
pattern is initially used as a client-server pattern.

Additionally, subscription in the first implementation is done by
attaching a list of parameter identifiers that the software component
is interested in. It is, therefore, necessary to have a discussion on
what parameters are likely to change during run-time. For example,
a car will not suddenly have four doors instead of five. Basically,
a limit between how much should be known by each part of the
pattern must be drawn, and such discussion is beyond the scope of
this paper.

In addition to classes of parameters, to attain full subscription sup-
port in run-time it should be possible to change a subscription dur-
ing the whole driving-cycle, i.e from unlocking the door to locking
it again. Hence, a software component can, based on a certain set
of parameters, choose to register for more parameters or change the
current set of parameters.

4.2.2 Multiple publishers

There is also the question of whether multiple publisher should be
allowed or not. It is unreasonable to assume that all variables re-
quired in a car can be provided from a central unit. Instead sensors
are spread physically in the car, promoting the support for multiple
publishers. That said, in the current implementation only one pub-
lisher is available. One could use a central message broker and al-
low multiple publishers to pass messages through this central point,
however, that would mean the establishment of one single point of
failure. Due to the nature of the CAN network, used to distribute
data in a car, subscribing and/or publishing ECUs must be aware of
which frames to use. If a frame is wanted or not is determined at

6



design time. Usually, with a configuration tool during ECU config-
uration. The AUTOSAR specification states that a software compo-
nent must not be aware of the CAN frames the ECU is registered
to, this should be abstracted away between the basic software layer
and the application layer.

To minimize complexity this study use one publisher distributing
parameters using one CAN frame id.

4.2.3 Push vs Pull strategies

There are two scenarios possible as defined by Gamma et al. (1995);
either the publisher pushes updates to the subscribers and these are
responsible for keeping track of what changes has been made to the
parameters that it is interested in. Alternatively, you let the pub-
lisher(s) know something about its subscribers. That means, when
updates are to be sent out, the publisher knows which subscribers
to update. In phase 1, but not phase 2 and 3, the publisher was
aware of the subscribers. The publisher is able to tell how many
subscribes, and what they subscribe to and one can therefore make
informed decisions about which parameters to update.

In the CAN-bus network the messages are broadcasted to every
ECU, and it is not possible to specify a receiver for the frame. This
suggests that a push methodology should be opted for, and as a re-
sult subscribers keeps track of which parameters to update on pub-
lication.

4.2.4 Register parameters of interest

These learnings are primarily drawn from phase 2 and 3 where all
parameters that are going to be used by a Software Component
needs to be registered with the Distributed configuration during the
initialization sequence. This is so that the Distributed Configuration
can keep track of what parameters it listen to. The registration can
take place anytime during the driving cycle but if the registration
is not done during initialization, parameters published earlier could
be missed. This is not a problem if publication is cyclical, although
timing is likely still an issue.

All components with run-time variability needs an initialization
state where it register parameters of interest to the publisher. Until
publication is complete, the component works with a set of default
values. These may have to be specified in design time. The use
of default values will ensure the stability of the system even if the
broadcast would take longer then expected. As soon as the real
value is assigned by the publisher the old values will be replaced in
the Distributed Configuration’s cache.

There is a complete separation between the publisher and subscriber
through the broker. Hence, the subscriber has no knowledge of
where the parameters are coming from and the publisher has no
knowledge of which components are using the parameters it dis-
tributes.

4.2.5 Local and Global configuration files

The prototype was designed to be location independent, meaning
that the publisher could be implemented on the same ECU or any
other ECU with the distributed configuration implemented. When
the publisher is located on the same ECU, the parameters could
also be limited to distribute locally within the ECU or published
globally. Since the software application component is independent
on the publisher, it will operate in exactly the same way no matter
where the publisher is located.

Table 3: Quality scenarios learnt during implementation

Identifier Description

L1 Low coupling - publisher and subscribers separate

L2 Parameter identification

L3 Initial effort

L4 Scaleability

L5 When subscription takes place

L6 Multiple publishers

L7 Changing subscription

L8 Push data vs. Pull data

L9 Initial waiting time

L10 Full distribution vs. Individual distribution

L11 Transparent storage

L12 Only store relevant parameters per ECU

4.2.6 Parameters in an AUTOSAR environment

When using parameters within AUTOSAR, the size restrictions to a
maximum of eight bytes in the CAN protocol will have to be taken
into consideration. Looking at how Volvo Cars are using the param-
eters show that the limit of eight bytes is not enough for some pa-
rameter values. Instead these have to be split over multiple frames
and a method for maintaining data integrity has to be added. This
ensures correctness and quality for message delivery.

Also the parameters have to be identified in a unified matter. Look-
ing at the configuration system at Volvo they identify the parame-
ters with their position in the frame. Using this way is easy when
dealing with a fixed number of parameters and the length of each
parameters is bound. However, in an more general implementation
in AUTOSAR this could raise a problem. A possible solution tested
in the implementation is to use separators between parameters and
instead look for the parameter number as identifier. The other im-
plementation discussed is using a dictionary implementation, us-
ing a key-value storage. This could prove useful since the order
and number of parameters sent would not affect the output. This
would also give the possibility to resend a single parameter without
sending all parameters again. The implicit drawback would then be
the extra number of bits needed for sending identifiers within each
frame, and the limitation of 8 bytes would make this even more
complex.

4.3 Summary

After each phase in the implementation, time was taken to reflect
over the lessons learnt during the implementation and these where
discussed together with the Software Architect from Volvo Cars.
To be able to have a discussion on the previous data we provide
a summary in the form of a few words. These are summarized in
table 3 and highlight the important aspects from each lesson learnt
during the implementation.

5 ANALYSIS

In this section we will discuss and analyze the data gathered dur-
ing the implementation against related work to provide a solid base
for understanding why run-time variability is needed and what is
needed when implementing this in the AUTOSAR standard. We
start with discussing the quality attributes defined in the quality

7



Quality Tree 

Development

Run-time

Maintainability

Extensibility

Availability

Performance

Data storage

Low coupling

Parameter identification

Initial effort

Scaleability

When subscription takes place

Multiple publishers

Changing subscription

Push data vs. Pull data

Initial waiting time

Full distribution vs. Individual distribution

Transparent storage

Only store relevant parameters per ECU

Figure 4: Quality tree for publisher-subscriber pattern

tree, moreover looking at how this affects the automotive indus-
try’s variability catalogue. Finally, we go through the limitations
for this study and give suggestions where future research could be
conducted.

5.1 Qualities of publisher-subscriber pattern as run-
time variation mechanism

In figure 4 our findings from the three phases have been categorized
into what Fritsch et al. (2002) calls a quality tree. From the left,
the two categories Development and Run-time are constructs from
the original model. Development concerns quality attributes which
emerges during implementation, like maintenance or extensibil-
ity. Run-time, on the other hand, contains quality attributes which
emerges when the product line is being used, such as availability
or memory consumption. The level below development and run-
time, for example performance, are quality attributes based on our
interpretations of the characteristics outlined in section 4.2. This
tree provides us with an overview of the run-time variability im-
plementation. The leaf nodes in the quality tree describe strengths
and possible weaknesses in the implementation. As an exploratory
case study, these leaf nodes represents areas for further exploration.
Basically, they are problems or challenges identified throughout the
implementation. Below we discuss how these are significant for a
production ready implementation.

5.1.1 Maintainability

The responsibility between the different components have to be
clearly separated, no component should depend on another. In
this case application software components are the subscribers, de-
coupling them completely from the publishers, using the distributed
configuration component. By registering all parameters with the
distributed configuration the software component does not need to
know when or from whom the parameters are coming. In the same
way the distributed configuration does not need to know who is reg-
istering the parameters. This is crucial from an AUTOSAR perspec-
tive, which uses a layered architecture, since calls must be made
top-down. Hence, the distributed configuration does not need to
know any details about the software component or how many sub-
scribers are attached to it. The interesting parameters are stored in
a cache belonging to the distributed configuration. Likewise, when
new parameters are published these parameters will be updated in
the cache.

Parameter identification is not addressed by this study. For a more
detailed discussion, see section 5.4.

5.1.2 Extensibility

Developing software which satisfy variability is, depending on
strategy used, a costly endeavor (Bachmann & Bass 2001). For ex-
ample, constructing a code generator for particular configurations
is both time and cost consuming.
The initial effort for developing the distributed configuration is high
due to the complexity of the component. But, in comparison, adapt-
ing a software component to become a subscriber is easy as it only
requires the use of functional calls through the AUTOSAR RTE.
However, since it is possible to re-use this component in all ECUs
of a car the initial effort may be neglected. On top of that, at least
one publisher has to be provided to distribute data. Thereafter, it is
possible for as many software components as required to make use
of the information once they have registered with the distributed
configuration. Additional components can be added, for example,
with a software upgrade, at later times without affecting existing
software components.

5.1.3 Availability

Availability contains, perhaps the most important, findings in this
case study as they affect the entire system. In no particular order,
we pose the following questions:

• How should subscriptions be managed if the distributed con-
figuration is not ready or unable to accept subscriptions, for
example, during start-up?

• If there are multiple publishers available in the system, how
are identical or similar messages handled?

• Again, in a multiple publisher set-up, should it be possible to
define priorities between them, and how is this handled by the
distributed configuration components?

The first question is primarily about fault-tolerance and down to the
real-time specification of the system. As, for example, more sub-
scriptions will take place when the car is starting one may question
if the system is able to initialize the distributed configuration be-
fore all software components starts sending subscription requests.

8



While this may partly be a question of performance, it is also down
to prioritizing the resources. We have discussed the option of op-
erating on default values, implying that the component needs to be
carefully designed with regard to this. For example, how long can
a software component operate on default values? This is closely
related to the function that the component is to perform. An alter-
native is to avoid using run-time variation for safety critical com-
ponents. As further elaborated in section 5.4, real-time constraints,
which in the automotive industry is linked to safety, are not a part
of this study.

The Testbench provided in the AUTOSAR environment did not allow
us to test multiple publishers in a distributed setting since it does
not support more than one ECU simulations. Although it is theo-
retically possible to use multiple publishers (Gamma et al. 1995),
we do not have sufficient data to provide any conclusive insights on
how this should be tackled in AUTOSAR.

5.1.4 Performance

Within the car industry, safety is paramount. There are real-time
requirements with hard deadlines that has to be guaranteed. For ex-
ample, an airbag system must respond when the car is in a crash.
There is simply no room for alternatives. One issue that we discov-
ered with the publisher-subscriber pattern is closely related to sub-
scription and can be summarized in the following question: “when
is the first set of parameters distributed?” As mentioned above, one
may choose to not attach any software components to this type of
run-time variation mechanism.

Furthermore, if a software component registers in the middle of, or
just after, a set of parameters has been distributed a parameter value
could be missed. And, on the other side, if the publisher is wait-
ing for too long before distributing the first set of parameters other
parts of the system might be negatively affected. One possible solu-
tion from a publisher perspective would be to resend all parameters
within an interval to guarantee that all software components even-
tually receives their correct values. Until then, the components will
run using its default value. Possible side effects of such implemen-
tation have to be considered.

Based on the characteristics of the CAN-network, we suggest
adopting a push technique for the publisher. The ECUs need to be
configured to listen to CAN frames designated to carry publisher-
subscriber parameters. But beyond that configuration, the software
components need and should not know about any frame specifics.
Thus, distributing the data is managed entirely at lower levels in the
architecture. This is further confirmed by the ability for publisher
to directly publish data to the CAN-network, basically side-tracking
the distributed configuration. Although, that would defeat the pur-
pose of the distributed configuration.

5.1.5 Data storage

The software components does not need to know where and how the
parameters are stored. In the quality tree we call this transparent

storage, meaning that the publisher of the data could actually be
next-doors to the subscriber, or on an entirely different ECU. In the
latter case, the parameter is passed to all distributed configuration
components over the CAN-network.

Moreover, the publisher is completely responsible for reading the
parameters. For example, these may be read from sensors or a
configuration file. How the parameters are stored is decided by
the individual implementation of the publisher and could easily
be adapted by each manufacturer. Consequently, as Gamma et al.
(1995) explains, the implementation is provided with further exten-
sibility via the broker, or the distributed configuration as we call it.

Take note though, that we also give it a larger responsibility com-
pared to Gamma et al. This is closely related to maintainability for
de-coupling reasons, but with this quality attribute as it concerns
where data originates from.

5.1.6 Core arguments

We argue for a publisher-subscriber to be successful in an
AUTOSAR environment it will deviate from the traditional pattern
as defined by Gamma et al. (1995). This is primarily due to the
added responsibility to the broker and the methodology chosen to
distribute parameters. The latter may affect the real-time properties
of the system. Moreover, we recognize the usefullness of providing
a transparency of where data is stored - an issue coupled with main-
tainability. With respect to the AUTOSAR architecture, good main-
tainability and extensibility are relatively easy to retain since the
architecture provides clear guidelines for separation of concerns.
Finally, we also warrant for careful management of subscriptions.
Which, if not done properly, will affect the performance and the
availability of the publish-subscriber implementation. Based on our
prototype, we consider these aspects vital for a successful, produc-
tion ready implementation.

5.2 Automotive industry

The motivation for introducing variability in AUTOSAR is three-
some. First, it is to establish a common language to enable sup-
pliers and manufacturers to work closely together. Second, it is
to avoid redundancy between artifacts. And thirdly, it provides a
basis for basic software product lines in which, for example, a sup-
plier can support more options than that delivered to a manufacturer
(AUTOSAR 2010b). Previously, variability was not standardized
and instead managed internally by each manufacturer. This also
caused issues when communicating with suppliers as each party
would have a different understanding of when and where, for ex-
ample, variation points were introduced. Therefore, in AUTOSAR,
variant handling is mostly about documentation at architectural lev-
els, the meta-model is considered a documentation artifact too, and
the actual implementation is left to tool vendors and suppliers.

We have demonstrated how run-time variability can be encom-
passed in an industry standard, acknowledging that pre-build varia-
tion patterns are not enough to encompass the growing customiza-
tion demands. Implementing the publisher-subscriber pattern is one
way of supporting run-time variability in AUTOSAR. Furthermore,
the implementation fully complies to the current specification in the
sense that is written as standalone software components. No struc-
tural changes are required to the specification, thereby we enable
manufacturers to add a publisher-subscriber pattern for run-time
variability as a complement to the specification. In other words,
remaining compliant with the 4.0 specification and retaining back-
wards compatibility.

There is no support at all for run-time variability in the AUTOSAR
4.0 specification. This may require an extension of the meta-model
and at least one additional pattern specification to be added, i.e a
description of how the pattern is implemented and used. More-
over, another binding time, that of run-time, must be added. Since
a variation mechanism bound at run-time requires all variations
to be implemented and provided with the object code (Bachmann
& Bass 2001), it is also suggested that necessary constraints and
checks are added to avoid missing implementations. For example,
one wants to avoid that the software enters states requiring parame-
ters that is not provided by a publisher. The latter applies primarily
to tool support, but if possible this should be considered also when
extending the meta-model. Note, that in this study we will not go
into further detail about how, or consider if, the standard should be

9



extended. We merely note that these areas have to be investigated
to support run-time variability.

Broy (2006) notes that better re-use of software is preferred
within the automotive industry. We cannot entirely confirm that a
publisher-subscriber pattern will increase re-use. The pattern, how-
ever, provides a mechanism to share and distribute configuration
parameters and other variables between ECUs and software com-
ponents during run-time. As a methodology, the pattern can operate
on any set of configuration parameters depending on the implemen-
tation of the publisher. Therefore, in-line with Weiss et al. (2009),
run-time variability support increases the ability to support after-
market services. The choice of variation mechanism partly depends
on the ability to interact with the product once it has been deployed
(Bachmann & Clements 2005). Our case supports reconfiguration
once the product, a car in this case, has left the factory. Making it
possible for service garages, car dealers and 3rd party suppliers to
update a part of, or the entire, configuration at a later time. Fur-
thermore, entire sub-systems can be added to make use of existing
configuration variables that are passed via the distribution configu-
ration as long as the new sub-system subscribes to them. This sig-
nificantly improves extensibility on the after-market, as there is no
need for changes to the already deployed systems. Therefore work-
ing in the same way as a plug-in architecture. Moreover, as long as
the core is maintained, there will always be backward compatibil-
ity for the deployed systems. Meaning, 3rd party and after-market
components can be added and removed at any time without affect-
ing the base. Due to real-time constraints, however, at some point
the CAN network may become saturated. Managing this type of
fault-tolerance is part of the limitations of this study.

5.3 Extending the variability catalogue

In contrast to the method for self-organizing software proposed by
Weiss et al. (2009) who moves towards moving functionality be-
tween controllers, we take a different approach. The publisher-
subscriber implementation described above originates from a spec-
ification for distribution of configuration parameters. In essence,
two characteristics particularly distinguishes our research from
Weiss et al (2009)’s, namely data structure complexity and com-
pliance to a standard. First off, our implementation only supports
data up to 8 bytes, which amounts to the carrying capacity of CAN
frames. Since the distributor determines which parameters are rel-
evant to the subscribing software components it limits, or rather
influences, the type of data sent. We recognize two approaches
to managing data integrity, either let the distributor control this
or leave this responsibility to the subscribing software component.
The latter will allow for greater flexibility of data structures passed.
The second characteristic, compliance to a standard, is extensively
covered in our case. Weiss et al (2009)’s work recognizes AUTOSAR
but does not attempt to follow it for their implementation, whereas
we do. While the work of both groups are far from production ready
implementations they argue for run-time variability and contribute,
in their own aspect, with the difficulties that have to be addressed,
both by AUTOSAR and by the individual manufacturer, before ap-
plying it in practice.

While there are numerous case studies and observations for vari-
ation mechanisms during pre- and post-build, there are, to our
knowledge, few on run-time variation. We successfully provide
a case where the publisher-subscriber pattern is used as a varia-
tion mechanism. In comparison to product architecture derivation,
compiler switches, and binary linking, and if-statements for run-
time variability (Bachmann & Bass 2001, Svahnberg et al. 2001),
the publisher-subscriber pattern extends the variability spectrum.
The pattern, as implemented, will not bind the variant until the pa-
rameters is used by the software component. Moreover, it is easily

extended with new software components if the distributer is sup-
plied as an integral part of the core system. The initial development
effort before implementing new software components that follow
the pattern is confined to defining the initialization. In addition,
the publisher-subscriber pattern illustrates a more complex case for
managing variability that is not limited to one software component.
From an architectural perspective this is important if multiple varia-
tions must be accounted for. As Bachmann & Bass (2001) explains,
variation points described in an architecture must be linked to the
functional or non-functional requirement instantiating them. Since
the publisher-subscriber pattern will affect a system architecturally
(see figure 3), it is unclear how the variation point, which could be
multiple, are linked to requirements. Further studies are required to
examine this.

In addition to above mentioned studies, this study provides a case
for how variant handling is used in large consumer-oriented sys-
tems. There are several studies on variation management in large
systems but with relatively few deployments (Svahnberg et al. 2001,
Jaring & Bosch 2002, Keepence & Mannion 1999, Brownsword &
Clements 1996), on the other side, there are few studies on how
organizations delivering products to end-users manage variation
(Svahnberg et al. 2001). Examples of the type of system that has
been investigated is military naval system with few deployments.
Another example is the mobile phone industry, which are produced
in thousands, and are not varied on a per-customer basis. The case
we are looking at is where each of the 400 000 cars produced by
Volvo is adapted to suit the customer’s wants and needs. This calls
for a wider selection of variation mechanisms.

When working within software product lines the ability to reuse
software is important and introducing variability gives a the needed
flexibility for the system to adapt (Jaring & Bosch 2002). However,
implementing run-time variability does not only give extra flexibil-
ity it also increases the constraints on the system. For every runtime
variation, the system needs to include code for handling both cases,
even if only one variation is performed. This leads to an increased
size of the software and extra complexity is introduced.

In anytime variability as defined by Van Der Hoek (2004) the vari-
ation point does not need to be decided in design time. This con-
cept could also be adapted within an AUTOSAR environment, for
example the tools used to create AUTOSAR compliant code. How-
ever, this do not effect the AUTOSAR standard merely the way the
standard is used. Since AUTOSAR 4.0 variability has been avail-
able but it is still limited. This prevents the possibility of anytime
variability, however, one could postulate that if runtime variability
is introduced within the AUTOSAR standard the anytime variability
mechanisms could be introduced in the configuration tools to sup-
port an even broader concept of variability. This gives the designer
or developer even more flexibility, and instead of bounding the vari-
ation points early in the design, it can easily be changed depending
on current settings by exporting a new version with different varia-
tion patterns, hence supporting anytime variability.

5.4 Study limitations

As in all research there is no time to follow-up on every aspect.
In this section we discuss the limitations imposed on this study.
They are all, in their own aspect, relevant to run-time variability
in AUTOSAR, but have not been evaluated or tested thoroughly. A
limitation in scope provides a targeted contribution, consequently
these issues are suggested for future research.

The proposed structure requires all software components that need
a distributed parameter to register their interest at startup. How-
ever, there is no guarantee that this will occur within a specified
time frame. In section 5.1.4 we outlined the issue of performance
with the publisher-subscriber pattern. As the goal was to establish

10



whether or not it was possible to add run-time variability to an in-
dustry standard, and not to evaluate the performance issues of such
implementation, performance requirements were omitted.

One also need to evaluate the data structure for the parameters.
In our research we identified two possible solutions, however, no
proper testing has been conducted to be able to elicit possible ad-
vantages and drawbacks with either solution. Using a position-
based structure, for example, parameter number 15 describes type
of doors mounted on the car, allows us to send more parameters in
a shorter period of time. However, resending a single parameter is
not possible in such setup since the whole list of parameters need
to be sent to maintain the position structure. Using a dictionary ap-
proach gives the flexibility to only send the parameters needed at
that moment. This may imply other difficulties though, for exam-
ple, meeting real time constraints and separation of concerns.

This article looked at a small portion of the automotive industry,
namely passenger cars, and more precisely from Volvo Cars per-
spective. It is likely that the needs for other manufacturers and other
areas of the automotive industry are different. For example, require-
ments for a truck will prioritize different quality attributes, affecting
the choices of variation patterns and their implementations in other
ways. Before suggesting run-time variability to be included in the
AUTOSAR standard, further studies on other manufacturers should
be conducted.

6 CONCLUSION

This paper set out to improve software product line manufacturing
of unique products in large-scale settings. In this exploratory case
study we provided contributions on three levels. First, and on a
practical level, implementing run-time variability is possible while
remaining compliant to AUTOSAR 4.0 using a publisher-subscriber
pattern. And, we identified where changes to the standard is re-
quired to support the variation mechanism. As a consequence, we
argued that run-time variability improves a manufacturer’s capacity
to support after-market services, 3rd party integration and increase
software re-use. Second, from a developer perspective, we showed
that the traditional publisher-subscriber pattern have to be adjusted
for the real-time constraints existing in the automotive industry.
In addition, transparent storage enables low-coupling and easier
scaleability, but real-time constraints and subscription management
needs further consideration. Finally, and on a general level, we
demonstrated that the publisher-subscriber pattern can be used as
a run-time variation mechanism. In conjunction with Weiss et al.
(2009)’s paper on self-organization of software, we strengthen the
support for run-time variability and argue that it is a crucial com-
ponent when developing large numbers of unique products derived
from one software product line.

ACKNOWLEDGEMENTS

The authors would like to thank: Ulrik Eklund at Volvo Cars for his
valuable contributions to this research, Mecel AB for providing the
development environment and technical insights on AUTOSAR used
to develop the prototype, and Carl Magnus Olsson for his continu-
ous thoughtful guiding of this thesis work.

REFERENCES

AUTOSAR (2010a), ‘AUTomotive Open System ARchitecture 4.0’, [Last
accessed: 2010-03-16].
URL: http://www.autosar.org

AUTOSAR (2010b), Generic structure template, 3.0.0 4.0, AUTOSAR.
Bachmann, F. & Bass, L. (2001), ‘Managing variability in software architec-

tures’, ACM SIGSOFT Software Engineering Notes 26(3), 126–132.
Bachmann, F. & Clements, P. (2005), ‘Variability in software product lines’,

Software Engineering Institute, Pittsburgh, USA .
Bosch, J. (2000), Design and use of software architectures: adopting and

evolving a product-line approach, Addison-Wesley Professional.
Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J. & Pohl, K.

(2002), ‘Variability issues in software product lines’, Lecture Notes in

Computer Science pp. 13–21.
Brownsword, L. & Clements, P. (1996), ‘A case study in successful product

line development’, Software Engineering Institute (SEI) Technical Re-

port, CMU/SEI-96-TR-016. Carnegie Mellon University, Pittsburgh,

PA .
Broy, M. (2006), Challenges in automotive software engineering, in ‘Pro-

ceedings of the 28th international conference on Software engineer-
ing’, ACM, p. 42.

Creswell, J. (2008), Research design: Qualitative, quantitative, and mixed

methods approaches, 3 edn, Sage Pubns.
Fritsch, C., Lehn, A. & Strohm, T. (2002), Evaluating variability imple-

mentation mechanisms, in ‘Proceedings of the Second International
Workshop on Product Line Engineering-The Early Steps: Planning,
Modeling, and Managing (PLEES’02)’, Citeseer.

Fürst, S. (2009), Autosar - a worldwide standard is on the road, Technical
report, BMW Group.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design patterns:

elements of reusable object-oriented software, Addison-wesley Read-
ing, MA.

ISO 11898-1 (2003), Controller area network (CAN) – Part 1: Data link

layer and physical signalling.
Jaring, M. & Bosch, J. (2002), ‘Representing variability in software product

lines: A case study’, Software Product Lines pp. 219–245.
Keepence, B. & Mannion, M. (1999), ‘Using patterns to model variability

in product families’, IEEE software 16(4), 102–108.
Klein, H. & Myers, M. (1999), ‘A set of principles for conducting and evalu-

ating interpretive field studies in information systems’, MIS quarterly

23(1), 67–93.
Spencer, H. (1992), ifdef considered harmful, or portability experience with

c news, in ‘In Proc. Summer’92 USENIX Conference’, pp. 185–197.
Svahnberg, M., Van Gurp, J. & Bosch, J. (2001), On the notion of vari-

ability in software product lines, in ‘Proceedings of the Working
IEEE/IFIP Conference on Software Architecture’, IEEE Computer
Society Washington, DC, USA, p. 45.

Van Der Hoek, A. (2004), ‘Design-time product line architectures for any-
time variability’, Science of computer programming 53(3), 285–304.

Walsham, G. (1995), ‘Interpretive case studies in is research: nature and
method’, European journal of information systems 4(2), 74–81.

Weiss, G., Zeller, M., Eilers, D. & Knorr, R. (2009), ‘Towards Self-
organization in Automotive Embedded Systems’, Autonomic and

Trusted Computing pp. 32–46.

11


