
Understanding Patterns in Software through Reverse Engineering

Karl Annerhult
karl.annerhult@gmail.com

Bachelor of Applied Information Technology Thesis
Report No. 2010:059, ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology

Gothenburg, Sweden, May 2010



Abstract

Software patterns are common solutions to common prob-
lems. The key difference in making the most of such patterns
lies in understanding what patters are actually used and
how an organization or individual may improve their ways
of designing software based on them. This paper presents
the results of software pattern evaluations performed on
five projects within a small game development organization.
The aim of the study has been to reverse engineer the five
projects, and to use the models and diagrams produced in
the process as a foundation for the conversations and inter-
views with the developers. Additionally the analysis is look-
ing at how design recovery in a number of different projects
in house of one organization can support them in under-
standing their own patterns. The main contribution of this
paper lies in the discussion around how reverse engineer-
ing and design evaluation can support organizations under-
standing of patterns, and how the understanding of software
patterns can aid organizations in future development.

Keywords

Software Patterns, Design Patterns, Reverse engineering,
Reverse Architecting, Design Recovery, Action Script 3.0

1. Introduction

In the field of construction, a pattern describe a prob-
lem which occurs over and over again in an environment
and then describe the core of the solution to that problem
[Alexander et al., 1977]. This should be done in such a way
that the solution can be used a million of times over, with-
out ever doing it the same way twice. This is also true for
software-, and design patterns.

In the fall of 1994, Eric Gamma, Richard Helm, Ralph
Johnson and John Vlissides, also known as the Gang of
Four (GoF) published their seminar book Design Patterns
- Elements of Reusable Object-Oriented Software. This
was the first catalogue of well described design patterns
for Object-oriented (OO) software. Since then design pat-
terns have become an essential part of OO software design.
Design patterns represent well-known solutions to com-
mon design problems, or as defined by GoF: ”descriptions
of communicating objects and classes that are customized
to solve a general design problem in a particular context”
[Gamma et al., 1995]. They are the time-honored, battle-
tested best-practices and lessons learned [Appleton, 1998].
They have also been proposed as techniques to encapsu-
late design experience and aid in reuse. Preserving col-
lections of individual design techniques useful for the or-
ganization as a whole is a first step towards creating an
institutional memory of design techniques, which can be
reused in an organization-wide context [Shull et al., 1996].
Another benefit of design patterns is the increased re-
silience to changes they bring, avoiding system evolution

to cause major re-design [Aversano et al., 2007]. Making
changes to a complex system can be simpler if the sys-
tem i built in good OO programming with appropriate use
of design patterns, reducing change or global problems
[Sanders and Cumaranatunge, 2007].

While using design patterns for forward engineering has
obvious benefits, using reverse engineering techniques to
discover existing patterns in software artifacts can help in
areas such as program understanding, design-to-code trace-
ability, and quality assessment [Antoniol et al., 2001]. Re-
verse engineering is the process of analyzing a system to
identify components and their relationships and represent-
ing them at a higher level of abstraction. The objective
of reverse engineering is to gain design-level understand-
ing to aid maintenance, strengthen enchantment, or sup-
port replacement [Chikofsky and Cross II, 1990]. Design
pattern detection and/or recovery techniques have since
Gamma et al.(1995) emerged from manual processes to au-
tomatic and semi-automatic processes. An example of a
manual reverse engineering process to recover design ra-
tionale is the BACKDOOR technique proposed by Shull
et al. (1996). The output of their process is a knowl-
edge base that describes patterns used by an organization
[Shull et al., 1996]. More resent work focus more on au-
tomatic or semi-automatic techniques to support recovery
of design rationale, such as the SPOOL technique used by
Keller et al.(1999), or the tool proposed by Tsantalis et al.
(2006) using a graph-matching based approach also tested
by Aversano et al. (2007). Bergenti and Poggi (2000) takes
their design pattern detection techique one step further. The
tool presented in their study does not only detects instances
of patterns but it also implements a system of critique to the
patterns detected [Bergenti and Poggi, 2000].

This paper outlines a reverse engineering analysis of
software patterns used in five OO software systems at a
small game development organization. The goal is to com-
bine the interest of a specific organization with formalized
reverse engineering and design pattern recovery. Subse-
quently, the main contribution is to illustrate how theory
and practice stand to gain from enriching the largely theory-
driven related literature of reverse engineering and design
pattern recovery, while at the same time deliver suggestions
for improvement to the organization.

This rest of the paper is organized as follows: Chapter
2 positions the paper to related research. Chapter 3 out-
lines the research approach used. Chapter 4 presents the
data collected. Chapter 5 presents the analysis of the data,
and chapter 6 concludes the paper.

2. Related Research

2.1. Software Architecture and Design

In the 1970s Software Design acquired a great deal of
attention from research. This attention arose as a response
to the problems of developing large-scale programs in the
1960s. In the 1980s research in the field of Software Engi-

ii



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) iii

neering moved away from a design specific approach to-
wards integrating designs and design processes into the
broader context of the software process and the manage-
ment of it [Perry and Wolf, 1992].

The architectural design process concerns establishment
of a basic structural framework that identifies major compo-
nents of a system and the establishment between the com-
ponents [Sommerville, 2007]. Design means to create and
through this to give meaning and order to the environment
[Stolterman, 1999].

The Software design process is about making decisions
regarding the logical organization of software. This log-
ical organization is sometimes presented in different kind
of models such as Unified Modeling Language (UML) dia-
grams or informal notations and sketches. The process of
designing Object-Oriented architectures concerns design-
ing objects and classes and the relationships between them
[Sommerville, 2007]. The objects in an OO design are di-
rectly related to the solution to the problem.

Although the benefits of good architectures and designs
are clear to most software producing companies, some
neglect proper documentation of such. This can bring
two issues. The first concerns how companies can pre-
serve design knowledge and experience, why did we do
what we did. The information exists mainly in the minds
of the people and in the source code. The second con-
cerns how to more effectively integrate newcomers into the
company’s design culture. In such cases where little fo-
cus are put in documenting design, ways to preserve de-
sign rationale can be useful. Designs can be made more
reusable and self explaining by documenting the patterns
used [Odenthal and Quibeldey-Cirkel, 1997].

2.2. Software Patterns

In software architecture and design, patterns can exist on
different levels and cover various ranges of scale and ab-
straction. Buschmann et al. (1996) groups patterns into
three categories, architectural patterns, design patterns,
and idioms. Architectural patterns express the fundamental
structural organization for software systems and represent
the highest level of abstraction in this pattern system. Bass
et al. (2003) describes an architectural pattern as ”... a de-
scription of elements and relation types together with a set
of constraints on how they may be used”. The authors dis-
tinguishes an architectural pattern from the two concepts
reference model and reference architecture but show the
link betweens them. Their description of a reference model
is ”... a division of functionality together with data flow
between the pieces [Bass et al., 2006]. The reference archi-
tecture is described as ... a reference model mapped onto
software elements (that cooperatively implement the func-
tionality defined in the reference model) and the data flows
between them [Bass et al., 2006].

One of the best known architectural patterns is the
Model-View-Controller pattern (see figure 1).

Design patterns represent the middle level of abstraction

Figure 1. Example of the Model-View-
Controller pattern.

of the Buschmann et al. (1996) system of patterns. They are
smaller in scale then architectural patterns, but are higher
abstractions then idioms. Working with design patterns help
developers communicate design or architectural decisions.
They provide a common vocabulary and remove the need
to explain a solution to a particular problem with a lengthy
and complicated description [Buschmann et al., 1996]. De-
sign information can be communicated more quickly and
accurate through design patterns [Vlissides, 1995]. A uni-
fied understanding of common design techniques can there-
for also be helpful for developers to comprehend programs
and code produced by others.

Another key aspect of design patterns is their ability to
ease the task of making changes in a complex software pro-
gram. Sanders and Cumaranatunge authors of the Action
Script 3.0 Design Patterns summarizes design patterns as
”...tools for coping with constant change in software design
and development” [Sanders and Cumaranatunge, 2007].

Odenthal and Quibeldey-Cirkel (1997) stress the dual
nature of design patterns: that they are both genera-
tive and descriptive. The attribute generative refers to
a pattern’s content: the objects constituting a micro-
architecture. The attribute descriptive refers to a pat-
tern’s form: the way we capture and articulate this thing
[Odenthal and Quibeldey-Cirkel, 1997]. The interplay be-
tween the form and the content promotes, according to the
two authors, the principle of documenting by designing.

GoF divides design patterns into three classifications:
creational, structural, and behavioral. Creational patterns
are concerned with object creation. Structural patterns
are concerned with capturing the composition of classes
or objects. Behavioral patterns are concerned with the
way which classes or objects distribute responsibility and
interact [Gamma et al., 1995]. According to Antoniol et
al.(2001) the complexity of extracting information from a
design or source code is not the same for the different kind
of patterns. Structural patterns information is explicit in
their syntactic representation; the purpose of the pattern is
visible on a abstract level by just looking at the relationships



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) iv

between components.

Figure 2. Example of the Composite pattern,
a structural pattern included in the GoF col-
lection.

This is not the case for the other two categories. In their
cases information must be recovered more deeply within,
which may involve the analysis of messages exchanged and
the code of class methods [Antoniol et al., 2001]. In other
words one must look inside the components and analyze
their functionality in order to comprehend the purpose of
the pattern.

Further, Gamma et al.(1995) divides a single pattern in
different elements. Among them there are four essential el-
ements: The pattern name is a handle of a word or two
used to describe a design problem, its solution, and con-
sequences. The problem describes when to apply the pat-
tern. The sulotion describes the elements that makes up the
design, their relationships, responsibilities, and collabora-
tions. The consequences are the results and trade-offs of
applying the pattern.

An idiom is a low-level pattern that describes how
to implement the particular aspects of components and
their relationships using the features and syntax of a
specific language. They are at the lowest level of
the pattern system, and specific in their representation
[Buschmann et al., 1996]. Because of their low level of de-
tail idioms are less portable between different programming
languages then design patterns.

Since some idioms describe the concrete implementation
of a specific design pattern [Buschmann et al., 1996], it can
in certain cases be hard to draw a clear line between the
two. To exemplify an idiom embedded in a design pattern
we can use the Singelton pattern. The solution and example
of the design pattern description would look quite different
in a language as Smalltalk then it would in ActionScript
3.0. The following example of a Smalltalk implementation

is taken from Buschmann et al., (1996):

Solution - Override the class method new to ensure only
one instance of the object is created. Add a class variable
TheInstance that holds a single instance. Implement a
class method getInstance that returns TheInstance.
The first time the method getInstancemethod is called,
it will create the single instance with super new and
assign it to TheInstance.
Example

new
self error: ’cannot create new object’

getInstance
The instance isNil ifTrue: [TheInstance
:= super new].
ˆ TheInstance

A description of the singleton design pattern imple-
mented in ActionScript 3.0 could look like:

Solution - Add a variable _instance that holds a
single instance of the Singleton class. Apply a
PrivateClass as parameter to the Singleton class
construct method used to assure that no other object
can instantiate the Singleton. Implement a method
getInstance() that returns a PublicClass. When
the getInstance() method is called it first checks
if the variable _instance points to an instance of
the Singleton class and if not instantiates a new
Singleton and points the _instance variable
to it. Finally the method returns the _instance.
Close the Singleton class and the package. Add
a class PrivateClass with a constructor method
public function PrivateClass(). This is the
class used to assure that only the Singleton class can
call its own constructor method.
Example

package {
public class Singleton
{
private static var _instance:Singleton;
public function Singleton(pvt:PvtClass){
}
public static function getInstance():
Singleton
{
if(Singleton._instance == null)
{
Singleton._instance = new Singleton(
new PrivateClass());
}
return Singleton._instance;
}
}
}
class PvtClass



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) v

{
public function PvtClass() { }
}

The underlying programming language is important
to consider when designing for the use of design pat-
terns since some patterns are not applicable in all cases
[Gamma et al., 1995] or may look different for different
languages [Buschmann et al., 1996]. ActionScript 3.0 is
based on ECMAScipt [Sanders and Cumaranatunge, 2007],
a scripting language standardized by Ecma International
in the ECMA-262 specification and ISO/IEC 16262
[Ecma International, 2009]. Since the ECMAScript specifi-
cation does not support private classes, the implementation
of the Singleton pattern in ActionScript 3.0 utilizes a tech-
nique of creating a class in the same .as file as the Singleton
class but outside the package. This way only the Singleton
class can instantiate the class and use it as parameter for the
call to its constructor method.

2.3. Reverse Engineering

Reverse engineering is defined by Chikofsky and Cross
II (1990) as ”the process of analyzing a subject system to

• identify the system’s components and their interrela-
tionships and

• create representations of the system in another form or
at a higher level of abstraction”

The goal of reverse engineering is to develop a
more abstract or global picture of the subject system
[Keller et al., 1999]. Generally reverse engineering con-
cerns extraction of design artifacts and to build or com-
pound abstractions that are less implementation-dependent.
The process in, and of, it self does not include changing
the system or creating a new system based on the reverse
engineered subject system. Thus, reverse engineering is a
process of examination, not a process of change or repli-
cation. The general purpose of reverse engineering is by
increasing the overall comprehensibility of a software sys-
tem to aid both in maintenance and future development
[Chikofsky and Cross II, 1990].

In cases where a system documentation is scarce, code
can be one of the few reliable sources of information about
the system. In response to this reverse engineering has
focused on understanding the code [Müller et al., 2000].
However, not all information needed to fully understand a
system can be found in the source code. Knowledge about
architectural decisions, design trade-offs, engineering con-
straints, and the application domain exist in the minds of the
Software Engineers [Bass et al., 2006].

John Vlissides (1995), one of the GoF authors, intro-
duces a concept of reverse architecting as a contrast to re-
verse engineering. He argues that, since reverse engineer-
ing software focus rather on recovering design then imple-
mentation, the term reverse architecture would be more ap-
propriate. He extends his concept reverse architecting with

reverse architecture which would apply to the art of sci-
ence behind the activity. Reverse architecture then refers
to an analyze of many software systems in an effort to
recover recurring designs and the rationale behind them
[Vlissides, 1995].

According to Chikofsky and Cross II design recovery is
a subpart of reverse engineering. In addition to just exam-
ining the system design recovery adds domain knowledge,
external information, and deduction or fuzzy reasoning to
the observations [Chikofsky and Cross II, 1990]. Ted Big-
gerstaff argues that design recovery must reproduce all of
the information required to fully understand what a program
does, how it does it, and why it does it [Biggerstaff, 1989].
Recovering design patterns may well serve Biggerstaffs ar-
gument as part of their purpose is to answer the questions
what, how, and why. Yet, Keller et al.(1999) argue that most
of the reverse engineering tools ignore to recover the ratio-
nale of the design decisions that have led to the shape of the
programs [Keller et al., 1999]. One reason for this could
well be because, even if patters are a suitable language for
humans, they are are a rather complex language for auto-
mated systems [Bergenti and Poggi, 2000].

3. Research Approach

3.1. Action Case

The study follows an Action Case approach for research
method. Vidgen and Braa, (1997), suggests the Action Case
approach as a supplement to other approaches falling in be-
tween more traditional research methods. The Action Case
approach then positions between an intervention approach
and an interpretative approach. Thus we strive to gain in-
creased understanding of the research domain while at the
same time acquire purposeful change.

The characteristics of the Action Case study approach,
as proposed by Vidgen and Braa, (1997), can been seen
as follows: First, the scope of the study is restricted such
that small scale interventions are made. This to gain under-
standing of IS used and at the same time achieving a rich
understanding of the context. This was important in this
study since we wanted to be able to enrich the theory of
reverse engineering and design pattern evaluation, while at
the same time deliver and test suggestions of improvements
for the organization. Second the time frame for the study
will typically be short to medium. This was suitable since
the time frame for the study is short. Third, the intervention
should be focused and direct so that the change related ef-
fects can be studied in detail. Fourth, the action case study
will take from the action research a concern with building
the future through purposeful change while still maintaing
an interest in the historical conditions in which the study is
set.



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) vi

3.2. Research Setting

The study took place at a small game development com-
pany in Gothenburg. Most projects at the company are rel-
atively small and developed within a, from a IS production
view, short period of time. To save time in every project,
minimum such is spend on designing architectures for each
one of them. Instead, reuse of architectural structure and
design have gained high priority. As an aid they have built
large portions of their software based on reference models,
architectural patterns, and design patterns. This gave a rich
setting for looking for, and analyzing software patterns as
we knew they were there, but got no design documented
telling us where to find them. Many of the patterns they use
comes along with the different external frameworks they
follow, and it was expected that not always had they fully
comprehended all of them before integrating them into their
projects. This was important since it meant we knew that for
certain part their understanding of the design could grow
and there by opened up room for interventions.

3.3. Research Process

A pilot-study marked the starting point of this research
project. The goal was to establish a firm starting point so
that related literature could be identified that would be likely
to have particular relevance to the setting.After the pilot-
study, the research continued by performing a literature re-
view on areas connected to the research topic. This was im-
portant for me as a researcher to gather in depth information
since my experience in the field was limited. The literature
study is not reported as a whole in this paper. Rather, the
core elements identified are what make up section two of
this paper. Furthermore, techniques for data treatment iden-
tified during the literature review are used and presented in
section four. The data was collected using three different
techniques, Direct observations of technical artifacts, Con-
versations with the developers, and a Formal Interview.

3.3.1 Direct observation of technical artifacts

The technical artifacts were studied in-context at the orga-
nization. This provided a rich setting for investigating the
work, management, and technology issues associated with
IS research [Braa and Vidgen, 1999]. Since no documen-
tation existed, the source code and the developers were the
only sources of information regarding architectural and de-
sign decisions taken in the past. This process of collecting
technical data followed the BACKDOOR design recovery
technique [Shull et al., 1996] but with modifications to bet-
ter fit the Action Case method. The process was then in
accordance with the technique divided in six smaller steps.
Although these steps are defined in a sequent order here,
they where really iterated within and across steps.

During the first step the five projects was briefly been
studied. This was done for me to gain a general understand-
ing of the overall architectural structures and features of the

systems. The architectural similarities between the five dif-
ferent projects, immediately clear to a trained eye, served as
a good starting point to where to start looking for instances
of patterns. Also this is helpful to get a rough idea about the
level of complexity of the source code and thereby the level
of difficulty to reverse engineer.

The second step concerned automatically reverse engi-
neering the projects into Class diagrams according to the
Unified Modeling Language (UML) notation. The software
Architect Enterprise was used as a tool to aid this process.
It was an important step since it allowed for a more clear
overview of the components and constructed diagrams to
use in later phases of the study.

During the third step I took a deeper look at the code im-
plementing the classes, trying to figure out more about how
the components communicate with each other. This pro-
cess was based on the diagrams from step two and served
as an aid to clarify them. The process was a manual ac-
tivity of analyzing the code where the diagrams could not
clearly show the communications and relations between the
objects. Therefor it also served as a link between step two
and four to enable more accurate detection of pattern in-
stances.

The forth step was to manually trying to detect pattern
instances in the projects. A couple of different sources was
used to aid in this process. First the he automatic reversed
engineered diagrams from step two was used to give a more
clear overview of the components. Secondly the formal de-
scriptions of the patterns from the reference set was used as
a help to know where to start looking. When looking for
structural similarities Shull et. al (1996) defined a couple of
indicators can serve as a useful aid.

• Classes that serve as the receiving end of communica-
tion links from many other classes could play a mediat-
ing role in the interactions between these other classes.

• A class positioned at the sending starting point of links
with many other classes may act as an interface to
those classes.

• Classes that have parallel inheritance are likely to be
working together closely.

• An object which link two clusters of classes with high
coupling may be sophisticated communication link be-
tween two subsystems.

This, the forth step, did not aim at finding any ad hoc
design solutions the could make a possible candidate for
becoming a pattern. There were simply no time for such
activity, but this might be an interesting future task.

The fifth step concerned analyzing the patterns detected.
To aid in this process the detected patterns where com-
pared to the formal descriptions of their original purpose
and structure to see how well they match or deviate. There
was a need during this step for a technique for assessing the
potential pattern matches found. This system of measure
was developed based on the ranking metric used by Shull



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) vii

et. al (1996), but since the intended purpose of pattern de-
tection in this study differ from their purpose the measuring
system needed to be modified in some aspects. To be able to
do so the patterns were divided into three main components,
and then each component was compared to the correspond-
ing pattern in the reference set:
Structure - The structure of the pattern refer to the classes,
objects, and relationships that builds the pattern. How well
does the pattern match the structure of the corresponding
pattern in the reference set.
Purpose - What effect will the pattern have on the system.
Is the pattern trying to solve the same problem as the cor-
responding pattern in the reference set, and are the conse-
quences the same.
Implementation - How well does the pattern match the so-
lution aspect of the corresponding patter in the reference
set.

The following scale have been applied to the three cate-
gories on all projects:

1 = Not relevant
2 = Similarities, but not close match
3 = Parts match close to perfectly
4 = Near perfect match
The sixth and final step was to clarify design issues

in discussions or interviews with the developers. As the
founders of BACKDOOR puts it: ”Such interviews can
sometimes be the only way to gain an understanding of what
context issues influenced a particular design, or how vari-
ous subsystems interrelate” [Shull et al., 1996]. This sixth
step was included in the following two techniques for gath-
ering of data.

3.3.2 Conversations with the developers

The second technique were conversations with the develop-
ers. While analyzing the projects and reverse engineering
the code informal conversations were held with the creators
of the code to better understand how and why certain so-
lutions have been chosen for certain problems. This was
considered important since not all aspects the design of the
architectures was expected to me clear to me as an external
viewer. This then aided me in understanding the reasoning
behind technical solution not directly clear. The conversa-
tions were held informal and took place as questions arose.

3.3.3 Formal interview

The third technique was a formal interview. When enough
technical data had been collected an interview was held to
aid the analyze of their understanding of the patterns used.
The interview followed a semi-structured interview tech-
nique to allow for reflection while still having a clear direc-
tion. The interview was mainly held for me as a researcher
to understand more of the reasoning behind their design.
Additionally during the interview the technical analysis was
presented to be able to discuss and reflect with the intervie-
wee regarding the findings and thereby increase the under-
standing of the patterns under study.

4. Empirical findings

4.1. Presentation of Architectural Patterns

As representation for architectural pattern the Model-
View-Controller was chosen. This decision was taken upon
a few different factors. The pre-study conducted at the com-
pany showed that all the projects under study had high po-
tential of showing similarities with the pattern. Additionally
the foundation of the micro architecture Cairngorm, which
some of the projects followed, builds on a mvc structure.

The pattern description in the reference set is a compi-
lation of the general descriptions of the pattern taken from
Buschmann et al. (1996), and Sanders and Cumaranatunge
(2007), and was defined as follows:

The Model-View-Controller is a compound mi-
cro architecture built by multiple design patterns
[Sanders and Cumaranatunge, 2007]. The pattern con-
sists of, as the name implies, three main elements, model,
view, and controller. The model contains the core func-
tionality and data to manage the state of the application.
The view presents the state of the application to the user.
The controller handles user input. A change propagation
mechanism should ensure consistency between the user
interface and the model [Buschmann et al., 1996]. The
diagram modeling the graphical representation of the
pattern looks as figure 1.

The following table shows the scores for how well each
of the projects match the MVC pattern from the reference
set:

Table 1. MVC Architectural Pattern measure-
ment

Project Structure Purpose Implementation
IFS 4 3 3

Magic 5 4 3 3
Intersport 4 3 3

Puma 3 2 2
Volvo 3 2 2

Structure Three of the projects match the structure of the
reference pattern relatively well. These are also the three
pattern that heavily builds on the Cairngorm framework. In
fact these three projects follows a very similar architectural
structure, and will hence forth be refereed to as the three
Cairngorm projects. The other two projects have a founda-
tional structure that matches well to the reference pattern,
but specific object are missing and some relationships are
also missing to be a complete match.
Purpose It seems like in all projects the MVC pattern has
been integrated for the purpose of giving an architectural
structure to the projects, but not really to solve the main
problems the original pattern aims to solve. Still the three
Cairngorm project matches parts of the patterns purpose
close to perfectly. But all projects seems to miss, or use



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) viii

in a way not as intended by the original pattern, one major
part, namely the change propagation mechanism.
Implementation As with the purpose, none of the projects
have a perfect match in implementation of the pattern. Still
the three Cairngorm projects come close. They have a very
sofisticated implementation, which seems to deviate from
the original purpose for the sake of working around some
unwanted consequences of the pattern.

4.2. Presentation of Design Patterns

As representation of Design Patterns the Commands pat-
tern was chosen for the reference set. The pattern represent
a major part of the Cairngorm framework used in some of
the projects. This is important since it gives a great hint
of where to start looking, but also ensures that there will
be some matches. The class diagram of the pattern is pre-
sented in figure 3. The pattern description in the reference
set is based on the general description of the pattern from
GoF [Gamma et al., 1995], and follows:
Intent To encapsulate an object, and thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations. These are the
participants of the pattern:

Command Declares an interface for executing an opera-
tion

ConcreteCommand - defines a binding between a Re-
ceiver object and an action and implements Execute by in-
voking the corresponding operation(s) on Receiver.

Client - Creates a ConcreteCommand and sets its re-
ceiver.

Invoker - asks the command to carry out the request
Receiver - knows how to perform the operations associ-

ated with carrying out a request. Any class may serve as a
receiver.
Motivation Sometimes it is necessary to be able to issue re-
quests to objects and still not know anything about the op-
eration being requested or the receiver of the request. The
key to the Command pattern is an abstract Command class,
which declares an interface for an abstract Execute opera-
tion.

Table 2. Commands Design Pattern measure-
ment

Project Structure Purpose Implementation
IFS 4 4 4

Magic 5 4 4 4
Intersport 4 4 4

Puma 1 1 1
Volvo 1 1 1

The Commands patter is not utilized in the projects Puma
and Volvo and therefor not relevant.
Structure The Commands structure of the three Cairngorm
projects differ in some minor aspects to the original pattern.

Figure 3. The graphical representation of the
Commands Design Pattern from the reference
set.

Still all the components are represented and in most aspects
the structure is close a perfect match. The commands is
represented by the class ICommand. The ConcreteCom-
mand is represented by the GeneralCommand class. The
Client is represented by the FrontController class. The In-
voker is represented by all the event triggers spread out in
the projects but is not a part of the class diagram in figure 5.
The Receiver is represented in some cases by the Model, in
some cases by the different View classes, and in some cases
other classes or even other Commands.
Purpose The intent of using the pattern in the three Cairn-
gorm projects matches close to perfect the patterns original
purpose.
Implementation The implementation of the pattern in the
three Cairngorm projects is sophisticated and matches well
to the original pattern from the reference list. The projects
extend the pattern even further, implementing a pattern of
chain where every pattern has a reference to an next com-
mand in the chain, or null if none.

4.3. Presentation of Idioms

As representation for Idioms the Singleton pattern was
chosen. The pre study showed that there are different im-
plementations of the Singleton pattern spread through out
the projects which made it an interesting pattern to base the
Idiom pattern match on. The pattern description in the refer-
ence set follows is based on GoF [Gamma et al., 1995] and



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) ix

Figure 4. The graphical representation of the
Commands Design Pattern as implemented in
the three Cairngorm projects.

follows:
Intent Ensure that a class only has one instance, and pro-

vide a global point of access to it.
Motivation In some cases it is important that a class can

have no more then one instance. The solution to assure this
is to let the class itself be responsible for keeping track of its
own instance. This class should ensure no other instances
can be created, and should provide a global access to the
instance reference.

The Singleton pattern exists in many occasions and in
different implementations through out the projects. There-
for the name of the class is added to the table of Singleton
Idioms. Also, since many of the Singleton object follow the
same implementation, representatives from all projects are
included but not every instance of the Singleton classes. In
the projects where two, or more, different implementations
of the pattern exists, representatives for each implementa-
tion will be included. Since Idioms are so code specific the
category Structure has been removed.
Purpose The analyze of the patterns shows two groups of
Singletons in the projects. In the first group are Single-
tons that score low on the measurement scale which will
be referred to as the low group, and in the second are those

Figure 5. The graphical representation of the
Single Design Pattern in the reference set.

Table 3. Singelton Idiom measurement

Project Class Purpose Implementation
IFS ApplicationModel 3 2
IFS SoundController 4 4

Magic 5 ApplicationModel 3 2
Magic 5 SoundController 4 4

Intersport ApplicationModel 3 2
Puma Model 3 2
Volvo Model 3 2

that score high which will be referred to as the high group.
The intended purpose of the low group seems to lie close to
the reference pattern, the actual consequences are far from
matching. The purpose of the high group match close to
perfectly.
Implementation The implementation of the low group lies
far from the reference pattern. It allows for multiple in-
stances of the class, which violated the main intention of the
pattern. Still it has a global access and it does hold it own
reference, even though other classes can create and hold that
reference. For the high group the implementation is close to
a perfect match.

4.4. Interview

The interview was conducted following a semi structured
interview technique. It was held in swedish, recorded on
audio, and then transcribed from audio format into text in
english.

The interview was performed for two main purposes.
First it helped the study clarify certain aspects of the techni-
cal data. In the final step of BACKDOOR, as proposed by
Shull et al. (1996), conversations or discussions can to be
held with the developers of the software. How ever skilled
the person performing the manual design evaluation is, one
can only make qualified estimations or guesses around cer-
tain aspect of the design. Therefor this is an important step
for the researcher to be able to test the technical data on
the developers to increase the understanding of the rationale
behind the designs. The second reason was to, by present-
ing the findings of the technical analysis, try to increase the



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) x

developers awareness of their implementation of the three
patterns.

The interview was divided into four topics, the first three
being the patterns from and the reference set and the last
regarding the future. However, all questions where either
touching upon one of the two purposes for the interview.
The discussions regarding the technical data will not be pre-
sented here, but rather as part of the analysis. The following
section summarizes the discussion around how the analysis
of the technical data could help the organization in the fu-
ture.

The developer thinks the a greater understanding of de-
sign patterns and architectural structures would aid them in
their everyday work. As he puts it:

As an example we have had a external developer in-
house for six months who comes from a background as
a educated programmer and understood well architectural
patterns. This way she could easy grasp our structure and
understand why it was designed this way. This is not the
case for most of our developers, as they come more from
a background as graphical designer. Thus an increased un-
derstanding can lead to them being more effective in their
work.

Even though the developer had never seen any problem
with their implementation of the Singleton pattern he did
admit it could become a potential problem in the future.
This has directly increased their own understanding of their
pattern.

The developer believes that increasing their understand-
ing of patterns, as has been done in this study, can increase
their possibility to reuse code.

5. Analysis

5.1. Software Architecture and Design

For a smaller companies, such as the one in this study,
where most projects are short, the process of documenting
the design can have lower priorities then other processes
more directly focused on the implementation of software.
How then can such companies still build robust and cor-
rect software? The solution at the company has largely
been dependent on external frameworks for how to struc-
ture projects such as theirs. One of these external frame-
works is the Flex and Action Script specific micro architec-
ture Cairngorm [Adobe, 2008]. Cairngorm can be seen as
an architectural pattern as it is defined by Buschman et al.
(1996), but it can also be refereed to as a reference model
as defined by Bass et al. (2006). Their definition of a refer-
ence model follows: ”... a division of functionality together
with data flow between the pieces”. An architectural pat-
tern and a reference model is, according to them, not the
same. The fundamental structure behind the framework is
the Model-View-Controller which is seen as an architectural
pattern [Buschmann et al., 1996], but it also extends further
and in its completeness gives deep information of how the
data flows between the elements, and in that aspect could

be seen as an reference model [Bass et al., 2006]. Therefor
I refer Cairngorm to both a reference model and an archi-
tectural pattern dependent on the situation.

A reference model does not make an architecture, nor
does an architectural pattern or any other software pattern
for that matter. They are concepts that capture elements of
an architecture [Bass et al., 2006]. Most software systems
are to complex to be structured according to one single ar-
chitectural pattern, and have requirements that can only be
supported by different patterns [Buschmann et al., 1996].
For the organization studied in this research, most of the
projects under study followed at least two architectural pat-
terns, but also integrated smaller components and micro
architectures from their home made in-house framework.
When it comes to architecture the developer at the company
gives some hints that they would like to be able to document
the design, but they lack both skills and time to do so. Dur-
ing the process of reverse architecting the five projects, a
basic architectural model over each of the projects where
created. This gave us a clear view over the structure of
the projects and their components. But it did not say much
about the reasons behind the design decisions. The problem
here lies in the complexity of automatically reverse engineer
code. As an example from the diagrams produced in this
study, no cross-package references are drawn. This became
a big problem for understanding how the components of the
architectures interact, especially for the projects based on
Cairngorm where most parts of the reference model i placed
in a different package [Flex-Cairngorm-Community, ]. To
get deeper understanding of the design we had to move fur-
ther into the reasoning behind it; we had to look specifically
at the software patterns building up the architecture.

5.2. Software Patterns

The reasoning behind the patterns used in the projects
lies to some extent in the minds of the developers, but in
the company’s case it also lies a lot in the hands of the cre-
ators of the external frameworks and patterns used. As the
interviewed developer puts it when I asked if some of the
patterns in the project are there simply because they are a
part of the external frameworks, rather then being picked
by them for their specific purpose: ”Yes that is likely to be
the case. For example it could be the case that we know how
to use the Command pattern, but not why we should use it.”

The architectural structure of the Model-View-
Controller pattern in the projects complies quite well
to its original structure, especially in the Cairngorm
projects, but when it comes to purpose and implementation
of the pattern it does not score as high. This could be an
effect of the reasoning behind using the pattern as a way
to structure projects rather then the specific consequences
of the pattern. As an example, one of the main benefit of
the pattern is that you can easily have multiple views of the
same model [Buschmann et al., 1996]. This was not some-
thing the company had considered a usefulness for their
projects as they never thought of having different views of



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) xi

one model. This illustrates how a limited understanding of
patterns original purpose may lead to a less sophisticated
implementation. By reverse engineering the projects we
have found that the potential usage of the pattern can be
extended in future development.

Another example where there implementation suggests
a Publisher-Subscriber pattern, also known as Observer, to
implement the change mechanism of the MVC pattern. The
company has decided to implement the pattern without hav-
ing a change mechanism for the model to notify observing
objects that it has updated. This clearly limits the pattern,
since it will remove many beneficial effects from the list of
consequences, such as multiple views of the same model
and synchronized views [Bass et al., 2006]. On the other
hand, the solution of the company also removes or eases
some of the unfavorable effects such as, increased com-
plexity, potential for excessive number of updates, and close
coupling of views and controllers to a model. Thus, while
the implementation clearly limit the pattern from many po-
tentially beneficial effects, the limitations themselves are
not simple mistakes during implementation, but rather con-
scious choices made to limit potentially negative effects.

Another reason for a looser coupling of the views and the
controllers to the model is the application of the Commands
design pattern to the Cairngorm projects. The pattern is a
essential part of the framework and many beneficial con-
sequences comes from using this particular pattern. As the
pattern allows for clients to issue requests to objects without
making assumptions about the request, or the receiving ob-
ject [Sanders and Cumaranatunge, 2007], it decouples the
sender from the receiver.

Two of the projects did not utilize the pattern, and there-
for they have been excluded from this analyze. It could have
been interesting to compare these two projects with those
using the pattern and compare differences in how well we
can understand them, but it lies beyond the scope of this
study.

The other three projects that uses the pattern, does so in
a sophisticated manner that complies well to the original
purpose of the pattern. It seems like the Commands pat-
tern was integrated into these projects, not only for being
a part of Cairngorm, but the beneficial aspects of this spe-
cific design pattern was was taken into consideration by the
company. This is how the developer reflected on why they
use the Commands pattern: ”I wanted to break out things,
get logic away from views.”

The pattern has also been a way for them to increase the
understanding of the code for the developers. As the inter-
viewee explains how the separation of logics from the views
and graphical parts of the systems allowed for a more sepa-
rate division of staff, letting those with higher programming
skills work more on code, and those with less such skills
work more on graphics.

The understanding of patterns can differ from individ-
uals in the same organization, or even in the mind of one
developer over time. As an example of this we can look
at the Singleton data. It has been implemented in differ-

ent ways through out the projects. Some instances of the
pattern complies well to the original purpose, and some in-
stances deviates much.

5.3. Reverse Engineering

The reverse engineering the five projects was a time de-
manding process. Action script 3 is a rather new language.
Few softwares for automatic reverse engineering such code
exists today. The software chosen in this study did support
action script 3.

The diagrams produced in this process did comply with
the Chikofsky and Cross II (1990) definition, as the com-
ponents and the relationships where represented in a higher
level of abstraction. One aim of the reverse engineering
process for the company was to find out if it could aid them
in future reuse of components and structure, as well as in
maintenance of code. The ultimate goal for them was to
have a system of synchronized architecture and code, where
developers could create and change software either by writ-
ing code or by drawing components in a diagram connected
to the software. The reverse engineering software used in
this study does support this, but it lies beyond the scope of
the study to investigate further into.

Though the architecture was remodeled in accordance to
the formal definition of reverse engineering, it gave very lit-
tle information about the rationale behind the design. To
be able to capture the answers to the what, why, and how
the systems where built I manually remodeled parts of the
architectures in even more abstract diagrams. These new di-
agram gives a better overview of the design of the projects
and thus a more stable foundation for detecting and analyz-
ing patterns.

5.4. Key findings

This study shows us that the reasons for integrating pat-
terns in software design can be different from what the lit-
erature of software pattern usually propose. As the de-
veloper at the company describes regarding their choice
to start building their projects according to the reference
model Cairngorm: ”... if we at least could have a set foun-
dational structure of how to build things, and thats when
Cairngorm came into the picture as an MVC pattern. This
led to that people new to a project could easier find where
to start looking for the problems.” Other common quality
attributes, such as reusability or robustness, were no major
issues for their choice. Even so, Bass et al. (2006) argues
that a useful aspect of architectural patterns is that they ex-
hibit quality attributes. This has led to a situation where
the company unintentionally has built products with quality
attributes inherited from the consequences of the patterns
in the reference model. What we have found here is that
by pattern detection and evaluation organization can dis-
cover new quality related attributes in their software sys-
tems. Thus reverse engineering and pattern evaluation, as
the one performed in this study, can support organizations



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) xii

discover new or potential candidates of features of their own
software.

But what is the effect of misinterpreted pattern purposes
and implementations and are there any drawbacks. One
finding of this study is the problem of reusing an archi-
tectural pattern. The interviewed developer saw a prob-
lem in that he thought that having a set architecture based
on a reference model in their case have inhibited the cre-
ation of smaller reusable components. A reference model
such as Cairngorm is general and abstract and the smaller
project-specific components have to fit the architecture, in-
stead of an architecture fit for the problems. Such architec-
tures should be more customized and de-generalized for it
to serve the complexity of software [Brooks, 1987]. Under-
standing the architectural patterns behind the systems in-
creases our ability to specialize them for a more specific
purpose.

The reverse engineering of the five projects show that the
three projects following the Cairngorm architecture are very
similar in structure. Even though the developer argues that
the framework inhibits reusability of specific components,
this study illustrated how it support reusability on an higher
architectural level as the structure of the three projects were
very similar. Thus reverse engineering can help organiza-
tions rethink their understanding of their own patterns.

5.5. Limitations and future research

The software used for reverse engineering the projects
did not comply to the needs of the pattern detection. To
manual detect and evaluate pattern put high demands on the
person or group performing the process. Therefor, techni-
cal drawback are unwelcome and it is necessary to know
the limitations of the softwares used in the process in be-
forehand. I as researcher propose that a study such as this
one could gain in complexity, have more proper evidence,
and thus greater findings should it have been a quantitative
study performing automatic pattern detection for the techni-
cal gathering of data. As mentioned earlier the decision to
use a manual technique was taken based on the researcher
disability to understand and make use of the complex al-
gorithms that comes with the automatic pattern detection
techniques. On the other hand, the manual process have led
to a great understanding of the organizations code for me as
researcher, as I have been forced to dive deeply into their
systems.

The patterns used in this study where chosen because we
knew they would exist in some instances in the projects.
The reason for this was that since we rather discuss how
reverse engineering can help us understand software, then
how well we can discover patterns. A future study could
look for recurring ad hoc solutions that can make possi-
ble candidates for patterns, instead of having already well
known pattern in a reference set. This is something the or-
ganization asked for, but time limitations forces us to push
the idea in the future.

6. Conclusion

Software patterns represents the rationale behind soft-
ware design. They are the well tested best practices to solve
common software related problems. To understand the pat-
terns used in a software can aid grasping the question for
what, how, and why we have done something in a particu-
lar way. This study has illustrated how reverse engineering
software code into abstract models to discover and analyze
the design can help organizations better understand the soft-
ware patterns used. Systems inherits quality attributes from
the software patterns it holds, and therefor we have found
that organizations can discover new non functional features
of their systems through pattern detection and evaluation.
This way an increased understanding of software patterns
can aid organizations in future development by the new
quality attributes discovered, such as changeability, main-
tainability, portability, etc. Manual design detection tech-
niques, such as BACKDOOR, can serve as a great aid in un-
derstanding software where design documentation is sparse,
though it puts relatively high demands on technical skill of
the person or group of persons performing the manual pat-
tern detection. Lack of a reverse engineering software that
can comply to the need of in depth design information from
the diagrams produced, limits the ability to analyze the ra-
tionale behind the projects. Thus high skilled designers with
access to well working tools and techniques for pattern de-
tection are key to best grasp the architectures and designs of
software through reverse engineering.

References

[Adobe, 2008] Adobe (2008). Introducing cairngorm.
Technical report.

[Alexander et al., 1977] Alexander, C., Ishikawa, S., Sil-
verstein, M., Jacobson, M., Fiksdahl-King, I., and An-
gel, S. (1977). A Pattern Language: Towns Buildings
Constructions.

[Antoniol et al., 2001] Antoniol, G., Casazza, G., Penta,
M., and Fiutem, R. (2001). Object-oriented design pat-
terns recovery. The journal of Systems and Software,
59:181–196.

[Appleton, 1998] Appleton, B. (1998). Patterns and soft-
ware: Essential concepts and terminology.

[Aversano et al., 2007] Aversano, L., Canfora, G., Cerulo,
L., Del Grosso, C., and Di Penta, M. (2007). An empir-
ical study on the evolution of design patterns. In ESEC-
FSE ’07: Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software en-
gineering, pages 385–394, New York, NY, USA. ACM.

[Bass et al., 2006] Bass, L., Clements, P., and Kazman, R.
(2006). Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) xiii

[Bergenti and Poggi, 2000] Bergenti, F. and Poggi, A.
(2000). Improving uml designs using automatic design
pattern detection. In In Proc. 12th. International Confer-
ence on Software Engineering and Knowledge Engineer-
ing (SEKE 2000, pages 343–336.

[Biggerstaff, 1989] Biggerstaff, T. J. (1989). Design recov-
ery for maintenance and reuse. Computer.

[Brooks, 1987] Brooks, F. P. (1987). No silver bullet:
Essence and accidents of software engineering. Com-
puter, 20(4):10–19.

[Buschmann et al., 1996] Buschmann, F., Meunier, R.,
Rohnert, H., Somerland, P., and Stal, M. (1996). Pattern-
Oriented Software Architecture - A System of Patterns,
volume 1 of Software Design Patterns. WILEY.

[Chikofsky and Cross II, 1990] Chikofsky, E. J. and Cross
II, J. H. (1990). Reverse engineering and design recov-
ery: A taxonomy. IEEE Software, 7.

[Ecma International, 2009] Ecma International (2009).
Standard ecma - 262. Technical Report 5th edition,
Ecma International.

[Flex-Cairngorm-Community, ] Flex-Cairngorm-
Community. http://www.cairngormdocs.org/.

[GaiaFramework, ] GaiaFramework.
http://www.gaiaflashframework.com.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R.,
and Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley,
Menlo Park.

[Keller et al., 1999] Keller, R. K., Schauer, R., Robitaille,
S., and Pagé, P. (1999). Pattern-based reverse-
engineering of design components. In ICSE ’99: Pro-
ceedings of the 21st international conference on Soft-
ware engineering, pages 226–235, New York, NY, USA.
ACM.

[Müller et al., 2000] Müller, H. A., Jahnke, J. H., Smith,
D. B., Storey, M.-A., Tilley, S. R., and Wong, K. (2000).
Reverse engineering: a roadmap. In ICSE ’00: Proceed-
ings of the Conference on The Future of Software Engi-
neering, pages 47–60, New York, NY, USA. ACM.

[Odenthal and Quibeldey-Cirkel, 1997] Odenthal, G. and
Quibeldey-Cirkel, K. (1997). Using patterns for design
and documentation.

[Perry and Wolf, 1992] Perry, D. E. and Wolf, A. L. (1992).
Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes, 17(4):40–52.

[Sanders and Cumaranatunge, 2007] Sanders, W. B. and
Cumaranatunge, C. (2007). Action Script 3.0 Design Pat-
terns, volume First edition. O’Reilly Media Inc.

[Shull et al., 1996] Shull, F., Melo, W. L., and Basili, V. R.
(1996). An inductive method for discovering design
patterns from object-oriented software systems. Tech-
nical report, Computer Science Department/ Institute
for Advanced Computer Studies, University of Mary-
land, Computer Science Department, College Park, MD,
20742 USA.

[Sommerville, 2007] Sommerville, I. (2007). Software En-
gineering. Addison-Wesley, eight edition edition.

[Stolterman, 1999] Stolterman, E. (1999). The design of
information systems parti, formats and sketching. Infor-
mation Systems Journal, 9(1):3–20.

[Vlissides, 1995] Vlissides, J. (1995). Reverse architec-
ture.

[Webster and Tanner, ting] Webster, S. and Tanner, L.
(Adobe Consulting). Developing flex rias with cairnform
michroarchitecture.



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) xiv

7. Apendix A - BACKDOOR

7.1. Step one - pre-study of technical artifacts

During the first step in phase one the five projects have
briefly been studied. This has been done for me to gain a
general understanding of the overall architectural structures
and features of the systems. The architectural similarities
between the five different projects, immediately clear to a
trained eye, serves as a good starting point to where to start
looking for instances of patterns. Also this is helpful to get a
rough idea about the level of complexity of the source code
and thereby the level of difficulty to reverse engineer.

External frameworks. HelloThereFramework is a com-
pilation of artifacts, libraries, and structures often re-used
in HelloThere projects. Two parts of the framework, Gaia
framework and Cairngorm, builds on external frameworks
for best-practice structures and collections of design pat-
terns.

Cairngorm is a lightweight micro architecture for Flex
or AIR applications. It is described as an approach to or-
ganize and partition software code [Adobe, 2008]. Cairn-
gorm build heavily on the well known micro architecture
Model-View-Controller. All the five projects under study
follows a Cairngorm structure. This also means that all the
five projects inherently utilizes best-practices techniques in-
tegrated in the framework. Now, since the framework pro-
vides a guide, and not definite rules, with interfaces for
how the architecture should be structured, variations from
its intended purpose and the purpose of different patterns
may well, and perhaps must, exist. The architectural frame-
work provides a generic starting point for the applications
[Webster and Tanner, ting]. Since the Cairngorm is built by
a compilations of different design patterns this provides a
good starting point for where to start looking for patterns
in the five projects. Some of the patterns included in Cairn-
gorm are: ValueObjects FrontController Commands Single-
ton Model (Strategy the view-controller relationship)

Gaia framework is a front-end for webpages developed
in Action Script 2 and 3. It provides solutions to the chal-
lenges and repeated tasks that most Flash developers face
when developing sites. Such challenges are navigation,
transition, preloading, asset management, site structure, and
deep linking [GaiaFramework, ]. All the five projects inte-
grates the framework for their view structure. HelloThere
have interconnected the Gaia framework and Cairngorm so
that the View structure of the Cairngorm framework is also
implemented in a Gaia framework fashion.

In addition for these two parts there are a number of dif-
ferent micro architectures for supporting best-practice inte-
grated in the projects, but due to the small size and time-
frame of the study these part will not be investigated.

Three of the five projects seems to follow a very simi-
lar architecture, where all build on the external framework
Cairngorm. The last two projects are also very similar in
their architecture, and they seem to follow a MVC struc-
ture.

7.2. Step two - Automatic Reverse Engineering

The tool Enterprice Architect was used as an aid in this
process. The pre-study on tools to automatically reverse en-
gineer Action Script code shows that few exists. Enterprice
Architect is the only tool I could find that integrates Action
Script source as input. Other ways to automatically reverse
engineer the code has been studied but rejected due to the
complexity behind the processes. (Should I include an ex-
ample here?).

Enterprice Architect builds diagrams for all classes and
objects in the source. Since the process is automatic, it
is extremely fast relative to manually reverse engineer the
projects.

But there is one major downside to the diagrams pro-
duced. Due to the lack of possibilities to show cross pack-
age references between the components, relationships are
not always clearly visible. To add to that problem, the spe-
cific source code of HelloThere builds on multiple pack-
ages to separate all the different components connected to
the Cairngorm micro architecture. Many of the different
patterns in the structure includes cross package references
and are therefor quite hard to detect just based on these dia-
grams.

This is why the next step becomes so important, look-
ing at how the objects communicate and the relationships
among them.

7.3. Step three, Looking at the code implement-
ing the classes and how the objects relate and
communicate with one another.

This process will base on the diagrams from step two
and serves as an aid to clarify them. It will be a manual
activity of analyzing the code where the diagrams can not
clearly show the communications and relations between the
objects. Therefor it also servers as a link between step two
and four to enable more accurate detection of pattern in-
stances. Some of the patterns from the reference list con-
cerns capturing the compositions of objects and classes, and
some concerns the way in which classes and objects dis-
tribute responsibility and interact.

7.4. Step four, Manual Detection of Pattern In-
stances.

The manual detection of patterns uses mainly the dia-
grams from step two as input. During the process, parts of
the diagrams will be remodeled manually to integrate the
communications and relations discovered in step three into
the models. The parts to be remodeled will be the potential
matches of patterns.

7.5. Step five, Analyze of patterns detected.

The fit step as to analyze the patterns detected, compar-
ing them to the patterns in the reference set. There was a



K. Annerhult / Understanding Patterns in Software through Reverse Engineering (2010) xv

need during this step for a technique for assessing the po-
tential pattern matches found. This system of measure was
developed based on the ranking metric used by Shull et. al
(1996), but since the intended purpose of pattern detection
in this study differ from their purpose the measuring system
needed to be modified in some aspects.

7.6. Step six, Interview transcription

Model-View-Controller
K -Three of the projects follows a Cairngorm structure.

Was there a specific problem that you tried to solve when
you decided to integrate Cairngorm into your projects?

B -It depends how you look at it. Developers tend to do
things ”their own way”. Which works fine for them, but
when something happens (that was not planned for), and
external developers needs to be added to the project, which
always does, it is always a hell for the now comers to get
into the projects. On my previous job we where eight de-
velopers, and the skills of us differed. And then I thought
that if we at least could have a set foundational structure of
how to build things, and thats when Cairngorm came into
the picture as an MVC pattern. This led to that people new
to a project could easier find where to start looking for the
problems. But still developers solves things differently, but
when when you know sort of where things are.

K -Can you say that after introducing Cairngorm, that
it has worked as you wanted, and that new comers faster
have been able to comprehend the projects? B -Well, we
have used some external recourses, and they have not been
used to working with structure. So quite opposite, they get
surprised and lost because it’s not they way they are used to
doing things. Now, instead of just doing things and bloating
stuff all over where they them selves know they would find
it, they now have understand why they should place things
in certain places. This has been a big problem which has led
to them being slower then they would have been otherwise.

K -Would it have helped if these developers would have
a greater understanding of Design Patterns, and Arcitectural
structures?

B -Yes I think that would help. As an example we have
had a external developer in-house for six months and she
comes from a background as a educated programmer and
understood well why MVC patterns are good and why and
where to put things. But most often flash developers doesn’t
have such education, but usually are graphical designers
originally, with low understanding for patterns.

K -Regarding the issue with your specific implementa-
tion of how the model can tell listeners that it has updated.
Is there a problem in there as you see it?

B -It’s a unfortunate must.
K -Have you ever considered an Oberver pattern?
B -No, we thought about this a couple yeas back and the

solution still exists today as it did then.
K -The two project that do not follow cairngorm? What

about them?
B -Well they kind of follow Cairngorm.

Commands
K -When you decided to use Cairngorm, did you reflect

on why to use the Commands pattern?
B -I wanted to break out things, get logic away from

views. When we started with this the skills of the developers
differed a lot, and then by removing as much code as possi-
ble away from the binary graphical files into classes, some
developer could work more in graphics and some more on
code. So a structural division seemed good, but much more
then that was not considered. The biggest problem with
these commands, sometimes you don’t know where to put
things.

K -One of the grate features of the Commands is that it
allows for a undo function. Have you thought about this?

B -Yes but it has not been utilized.
K -When you look for other solutions, do you ever look

on an abstract level, or just action script forums?
B -Just action script.

Singleton
K -In some cases your implementation of the Singleton

pattern deviates from its original purpose, namely you have
made it possible to create multiple instances of the Single-
ton classes. Have this ever been a problem for you?

B -No. We always do things in a certain way. If we see
the function getInstance() we know it’s a Singleton.

K -But what happens if an external developer comes in
and just creates the Singleton by calling it’s constructor
(new SingletonClass();)?

B -That could be a problem, yes.
K -But then you also have implementations of the Sin-

gleton that very much applies with its original purpose.
B -Well, this is probably because classes get copied from

project to project.
K -Does the Design Patterns you use in some cases get

integrated into your projects because of the frameworks you
use rather then for their specific purpose?

B -Yes this is likely to be the case. For example it could
be the case that we know how to use the Command pattern,
but not why we should use it.
The Future

K -Do you think that an increased understanding of de-
sign patterns would increase the possibility to reuse code?

B -Yes, I think so. Then we would be able to build more
reusable components.

B -The understanding of Patterns, lets you understand
better where to use them. Using Architectural pattern can
give you good structure, but in my opinion it can sometimes
inhibit the construction of reusable components.

K -The architecture of three of the projects are very sim-
ilar, which must mean that the architecture is very reusable?

B -Our architectural is very reusable and have been used
in many projects.

K -But I get the impression the you think a very reusable
architecture can inhibit the building of reusable compo-
nents. What you take on this?

B -Yes, we have seen this in many cases in our projects.


