Software Requirements Division

[An Interview Study at Saab AB, Electronic Defence Systems]

Emelie Tyvik
Department of Applied Information Technology
Forskningsgangen 6
Gothenburg, Sweden
emelie.tyvik@gmail.com

ABSTRACT

Software requirements are a crucial part of software de-
velopment. They are also part of the main reason why
projects fail. The previous research in the area of software
requirements has not been focused on the division of soft-
ware requirements. This paper presents an interview study
with such a focus. Five people working at Saab AB, Elec-
tronic Defence Systems, Operations Goteborg (Saab EDS)
were interviewed about software requirements division and
how they conduct such divisions at Saab EDS. The respon-
dents answers were summarized and analysed. The analysis
showed that Saab EDS divide software requirements into
four levels; customer, system, subsystem and lower level.
The software requirements division are conducted through
group discussions. The basis of the division of software re-
quirements is indicated to be based upon expert knowledge
and that the software requirements division decisions are
people dependent. The improvement that Saab EDS can
proceed with, suggested by the paper author, is to take ”soft-
ware requirements division decision”-notes to be able to keep
track of the reasoning behind the software requirements di-
vision decision.

General Terms
software requirements division, software requirements, soft-
ware requirements engineering, software development

Keywords
requirements, division, development, software, industry, in-
terviews, qualitative

1. INTRODUCTION

The software requirements process is considered a critical
aspect of software development[25][1] as software require-
ments are the rationale for the software and the customer’s
needs.[23][16] With a strong increase in the IT sector since
2003 in Sweden[26] and inadequate software requirements
being the largest problem when developing software and the
main reason to failed projects[9], how can companies secure
that projects do not fail and loose a large amount of money?
One key is to shift the focus to requirements and realise their

*This paper is available through the IT University of
Goteborg and the University of Gothenburg.

The author of this paper, Emelie Tyvik, is a student
at the Software Engineering and Management program at
the IT University of Goteborg. She has a Bachelor of Arts
with a major in Sociology from the University of Boras.

importance for the success of the project[9][15] and improv-
ing the requirements process can significantly improve the
probability of the software project to succeed.[15]

Software requirements are a part of the software develop-
ment process in the requirements elicitation and analysis
step.[25] Wiegers states that there is ”"no universal defini-
tion of what a requirement is”[28], but there are many defi-
nitions of what a software requirement can be. Sommerville
describes the difference in requirements definitions to ev-
erything from ”a high level, abstract statement of a ser-
vice that the system should provide or a constraint on the
system”[25] to "it is a detailed, formal definition of a sys-
tem function”.[25]. To grasp the concept of what a require-
ment is, Aurum and Wohlin states that a requirement shows
”what the system should do, rather than 'how’ it should be
done”.[2] IEEE has published a definition of what a software
requirement is and that definition will be used in this paper,
since it is a standard and as Aurum and Wohlin states it is
the one definition that is usually cited.[2] The definition is
as follows:

”(1) A condition or capability needed by a user
to solve a problem or achieve an objective.

(2) A condition or capability that must be met
or possessed by a system or system component
to satisfy a contract, standard, specification, or
other formally imposed documents.

(3) A documented representation of a condition
or capability as in (1) or (2).”[18]

This paper will focus on specific aspects of software require-
ments: division of software requirements. The software re-
quirements division process will be investigated in a real
industry setting at Saab EDS, at the Operations Géteborg
section, in order to investigate how industry reasons about
software requirements division as practitioners.

The intended contribution of this research is:
e To increase the body of knowledge on how software

requirements division is conducted in an industry set-
ting.

The questions to be researched in this paper are:

1. How do Saab EDS divide software requirements into
different levels of abstraction?

2. What is the software requirements division based upon
at Saab EDS?

3. How is the validation and verification of software re-
quirements effected by the division of software require-
ments in different levels of abstraction at Saab EDS?

1.1 Structure of Paper

This section will be followed by an overview of the previous
research done in the software requirements area. After that
the research approach will be described and how the method
is applied in this paper. The research approach section will
be followed by the data collection section, where the data
found will be presented. The data will be analysed in the
analysis section. The last section of the paper concludes the
whole study and gives suggestions to further research.

2. RELATED RESEARCH

This chapter will contain a summary of the related research
in the software requirements area and the position of this

paper.

2.1 Software Requirements

The research done within the software requirements area in-
cludes everything from analysing the requirements in them-
selves and how they are interpreted to how one can monitor
requirements with the use of code. Delugach’s research is in
one end of the spectrum with his paper "Specifying Multiple-
Viewed Software Requirements With Conceptual Graphs”
where he provides conceptual graphs that shows a general
description of how one can interpret a requirement.[8] While
on the other end Robinson suggest an implementation of
requirements monitoring using the Java programming lan-
guage.[22]

The Standish Group conducted a research in 1995 with the
purpose of identifying the main reason to why projects fail.
The conclusion of that study states that "incomplete require-
ments”[14] is the main reason.[14]

In the specific area of how software requirements are created,
the focus has been on how to write them, not on which level
they are specified on. The recommendations are for exam-
ple that software requirements should be written in natu-
ral language, that the text can be supported with diagrams
and equations[15], where text and graphical forms are useful
to represent some software requirements.[28] Further details
that should be noted are: use short and direct sentences, an
active voice in the text, avoid synonyms, have a glossary, use
the word ’shall” when writing software requirements. An-
other aspect that one should not use words that can cause
ambiguity in the software requirements.[28] On a more ab-
stract level it is stated that the software requirements should
be complete and consistent.[25] The software requirements
validation focuses on precisely those two aspects plus the
accuracy of the software requirements.[15] Contradictory to

all the above recommendations Wiegers state that it is im-
possible to specify the software requirements before building
the desired system.[28]

When it comes to the division of software requirements the
statements are of a more vague character, for example that
different levels of software requirements are useful when di-
viding them|[25], that the functional requirements should be
specified on a level of detail that is suitable for the develop-
ers that shall implement them.[28] Furthermore, as a part
of the requirements elicitation and analysis process, Som-
merville expresses a step concerning software requirements
division under the title "Requirements classification and or-
ganisation”[25]:

"This activity takes the unstructured collection
of requirements, group related requirements and
organise them in coherent clusters.”[25]

But there is no detailed description of how that division
should be done. Terms such as requirements at organisa-
tional level, product level, and project level are used[2], but
no details what characteristics a software requirement at the
different levels consists of.

Aurum and Wohlin have also conducted a study concern-
ing the decision-making process of requirements engineering.
They found that through:

"Studying the decision-making process in RE [re-
quirements engineering] activities in more detail,
it is possible to conduct an analysis of the RE
[requirements engineering] process and its under-
lying decision-making processes.”[1]

Aurum and Wohlin furthermore map the requirements en-
gineering process with two decision-making models. They
found that it is important to document the discussions and
decisions that takes place and that one should do that on
all levels in for example projects and organisations. This
to enable a continuous tracking of the decisions so that they
are actually made compliant with the goal of the business.[1]
Aurum and Wohlin also suggests five steps to improve the
requirements engineering activities:

”1. Keep track of the decisions, their rationale
and the effect that they have on the software
product.

2. Identify the stakeholder involved in each re-
quirements engineering step.

3. Identify the decision types, their actions and
options.

4. Identify the knowledge needed for each deci-
sion phase.

5. Provide decision support tools.”[1]

Aurum and Wohlin conclude that managing the require-
ments engineering will lead to developers being able effec-
tively design a product that will meet the requirements that
the stakeholder has.”[1]

2.2 Case Studies

Several case studies in the software requirement area has
also be conducted. Crow and Di Vito made in a study in
1998 where they compared four case studies on how one
should formalise the requirements process for space shuttle
software. Three of the case studies used a standardised way
of verifying and specifying the requirements and the fourth
used a state exploration method. They found that formal
methods match the common requirements analysis processes
and that formal methods can be beneficial to the product
even if the method only is partially applied.[5]

Regnell et al. have also done a case study in the software
requirements area. They investigated how a distributed pro-
cess is proposed, observed and then evaluated in industry.
The setting was in different marketing offices around the
world. Regnell et al. found that if product management got
charts on the prioritisation of software requirements from
the stakeholders, it was possible to identify unforeseen dif-
ferences in the stakeholders requirements prioritisations.[20]

Kotonya and Sommerville conducted a case study where
they were involved in a project of developing a web-based
library system for the United Kingdom Higher Education
sector. They concluded that the use of viewpoints was effec-
tive when developing user requirements. Furthermore, when
defining requirements one should use a multi-perspective
technique to take into account the different stakeholder’s
requirements. [15]

Gorschek and Svahnberg performed a case study where they
studied six companies who wanted to improve their require-
ments process. They found that through applying the as-
sessment methods: model-based process assessment and in-
ductive assessment, the companies had areas to improve in.
Those companies with high domain knowledge in process as-
sessment were the companies that could apply requirements
process improvements to a greater extent than those com-
panies with low domain knowledge.[11]

2.3 Paper Position

This paper is an interview study and will contribute to
the present knowledge in the software requirements divi-
sion area. There has not been any recent research at Saab
EDS in this area and this paper aims to increase the do-
main knowledge at Saab EDS. The goal is; by increasing
the domain knowledge at Saab EDS, they can in the future
improve their software requirements division process to be
able to even further enhance their products as suggested by
Gorschek and Svahnberg report[11].

The theory in focus will be Aurum and Wohlins steps to
improve the software requirement engineering as listed in
section 2.1 Software Requirements.

3. RESEARCH APPROACH

This chapter will contain a description of the research ap-
proach used in this paper.

3.1 Interview Study

This study is a qualitative study with an interview method.
The choice of a qualitative approach is based upon the re-
search aim to get a deeper understanding of the division of

software requirements at Saab EDS. According to Trochim
using a qualitative approach enables one to achieve that -
a deeper understanding of the object of interest. The posi-
tive aspects of using a qualitative method are that one will
get a large amount of details based upon the viewpoints of
the respondents. There are also drawbacks of using a qual-
itative approach, for example that it is hard to generalise
the results.[27] In this research the aim is not to get a gen-
eral picture of the software requirements division. The aim
is to get a more deeper understanding of how the software
requirements division is conducted at Saab EDS.

3.2 Finding Related Research

First the research started with a literature review on what
has been researched in the software requirements area through
a search with specified keywords in Google Scholar. The key-
words are specified in Appendix A - Keywords. The first 4
pages (10 hits/page) were reviewed by reading abstracts, in-
troductions and conclusions. Three books included in that
search were ordered from other university libraries: one from
the University West Library and two from the University of
Boras Library.

3.3 Company Information

Saab AB develops systems for military defence and civil se-
curity, where Electronic Defence Systems is one of the busi-
ness areas.[13] Electronic Defence Systems has as main focus
on surveillance, threat detection and location, platform and
force protections, and avionics systems. Saab EDS develops
those solutions through the use of microwave and antenna
technology.[12]

To be able to conduct the interviews, a review of Saab EDS’s
development process structure and background information
was performed. A review of documents was also included,
in order to be able to focus the questions and avoid asking
unnecessary questions. Through that review the author of
this paper identified that the development process at Saab
EDS is of an iterative sort with a varying amount of cy-
cles depending on the size of the development project. The
different development stages are divided into smaller steps
that results in a product and documentation of the work per-
formed. This leads to that a large portion of the questions
of the interviews was focused on the division of software re-
quirements based upon a fact of the use of documents, since
the software requirements division at Saab EDS is enforced
by the use of documentation.

By getting a insight of the development process, a clearer
understanding of whom to interview was developed. The
mentioning of any classified details will be removed from the
data collection since such information is company restricted.
The mentioning of classified details such as product names,
product areas and document numbers can reveal the identity
of the respondents, thus breaking the anonymity agreement.
Resulting in that such information has been removed and
the respondents have been assigned with fictive names. This
though did not effect the data collected and the conclusions
drawn.

3.4 Interview
The interview questions were drafted based upon the re-
search questions, related research and internal process and

requirement documents from Saab EDS. The models (listed
in Appendix D - Division Models) were drafted based upon
the internal Saab EDS documents on their process currently
used, with the aim of being a list of believed to be exhaus-
tive models. The respondents also had the option of drafting
their own model. The use of open-ended questions was cho-
sen to get the respondents to talk freely about the software
requirements division. Using open-ended questions enables
the researcher to get emerging data and will be able to de-
velop themes of the object of interest.[4] The drawback with
using open-ended questions is for example the large amount
on non-answers. The so called non-answers, i.e. answers
where the respondents does not answer the question,[21] will
however still be reviewed to ensure that vital information is
not overlooked. The interview questions are listed in Ap-
pendix C - Interview Questions. 25 main interview questions
where stated. The questions were also discussed with the
experts Ph.D. Thorvaldsson and Ph.D. Berling from Saab
EDS, and supervisor Jonas Oberg from the IT University
of Goteborg to ensure the appropriateness of the questions
and alignment with the research aim. The interview ques-
tions were stated in an interview plan with instructions on
how to conduct the interview and what to say to the respon-
dents. This was done to ensure that the same information
was presented to all the respondents.

An interview letter describing the research and the aim of
the research was created and sent out the respondents. A
description of the interview and research aim was also pre-
sented to the respondents before the interviews started. This
is a part of the interview procedure that Bell enforces.[3]

A test interview was held to both test the questions and to
get an estimation of the time it would take to conduct the
real interviews. Doing a test interview is a good way to get
feedback on the interview plan before executing the actual
interviews from which you gather the research results.[3] Af-
ter the test interview, the questions were narrowed down and
some were removed due to not producing any valid material.
This is a common results when executing a test interview.[3]
The respondent Erik (fictive name) also had the chance to
comment on the questions after the interview to improve the
questions even further. The time was estimated to about
one hour including preparation before the audio-recording
started.

Five persons from Saab EDS were chosen from three product
areas. The respondents either had a system level position or
a subsystem level position in the development structure at
Saab EDS. The fictive names of the respondents are: Bengt,
Linus, Mattias, Peter, and Simon. The product areas are as
well replaced with fictive names and they are named: prod-
uct area 1, 2, and 3. The decision of choosing respondents
from the different product areas was based upon the aspect
that there could be a difference between the product areas
and to have a diverse group of respondents. To ensure that
the respondents actually worked with software requirements
division, the respondents were chosen by Ph.D. Thorvalds-
son due to the fact that she has a larger domain knowledge
about Saab EDS, than the author of this report had. Ph.D.
Thorvaldsson was the higher instance that Bell describes
that one needs to ask to be able to get permission to con-
duct the interviews.[3] Five respondents was considered the

optimum amount of respondents, based on an estimation of
the amount of data each interview would generate and the
time it would take to analyse it.

Before the interview the respondents were informed of their
anonymity towards Saab EDS, and any other third party
and that their name would be replaced with a fictive name
in the report. Even though Ph.D. Thorvaldsson knows who
the five persons plus the test respondent are she does not
know who of them said exactly what. The respondents were
both informed of this in the interview letter and verbally be-
fore the start of the interview. Choosing to have the respon-
dents anonymous was based upon the fact that anonymity
can enable answers that otherwise would be withheld due
to dependency situation between the respondents and their
employer. Having a anonymity agreement with the respon-
dents is also an important aspect that one needs to have
before the interviews according to Bell.[3]

The interviews were held in Swedish since it was the respon-
dents native language and it was also a demand from Saab
EDS, since the respondents could not be expected to be flu-
ent in English. The data collected from the interviews that is
presented in this paper has been translated from Swedish to
English and any citations are also translated by the author
of this paper.

The interviews were audio-recorded, so that the material
collected during the interviews could be transcribed in a
correct way. Ryen recommends to use an audio-recorder
during interview to allow a correct reproduction of the col-
lected material.[24]

The interviews took place at Saab EDS (two at Saab EDS’
offices in Lackarebick and three, plus the test interview, at
the offices in Kallebéck) in a closed off room some distance
away from the respondent’s respective offices. This deci-
sion was based upon the fact that qualitative research takes
place in what Creswell states as a natural setting and the re-
searcher goes to the site where the phenomenon takes place
to develop a higher level of detail.[4].

The length of the interviews were: Test interview: 43 min,
Interview 1: 44 min, Interview 2: 25 min, Interview 3: 24
min, Interview 4: 36 min, Interview 5: 32 min. All the same
main questions were asked to all the respondents.

The interviews were fully transcribed. The time spent on
transcription was: Test interview: 4 h and 30 min, Interview
1: 5 h, Interview 2: 2 h, Interview 3: 2 h, Interview 4: 2 h
and 45 min, Interview 5: 2 h and 15 min.

3.5 Analysis Method

The transcribed material was analysed with the focus on
finding key points stated by the respondents, to find the
sentences and material with high value and the material that
answers the asked question. The transcribed material was
also reviewed at least twice to ensure that the key points
drawn matched the full picture of the answer.

4. DATA COLLECTION

This chapter will contain the collected data from the in-
terviews. The data collection is structured based upon the

interview questions (stated in the Appendix C - Interview

Questions) and the results are presented using summaries

and quotations. The areas that will be gone through are:

general questions, documentation, validation, verification and
end questions. The respondents came from three product

families: product area 1, 2, and 3 (fictive names). The fol-

lowing names used are fictive names, to ensure the anonymity
of the respondents. From product area 1 a system level

person was interviewed - Linus. From product area 2 two

persons were interviewed; from system level - Mattias and

subsystem level - Bengt. From product area 3 from sys-

tem level - Simon, and from subsystem level - Peter, were

interviewed.

4.1 General Questions

4.1.1 Division Procedure

All the respondents saw that there was a division of software
requirements into different levels. Simon stated that prod-
uct area 3 had customer requirements, system requirements
in different levels and subsystem requirements in different
levels. Peter, also from product area 3, stated customer re-
quirements, system requirements, subsystem requirements
and then another lower level of software requirements that
focused on printed circuit cards and another that focused on
components. Mattias stated system and subsystem require-
ments on product area 2. Bengt, also from product area 2,
stated that they only had subsystem requirements. Linus,
from product area 1, talked about customer requirements
that can be any type of requirement; system requirements,
subsystem requirements and radar requirements.

Peter and Simon both stated that they at product area 3
try to sit together with persons involved with the same level
of development; the system developers sit together and the
subsystem developers sit together when conducting the di-
vision of software requirements. Peter said that they had
meetings. Simon stated it more as sitting together dividing
the software requirements. Both stated that they tried to
conduct the division in that way, but both expressed that
sometimes they fail in doing so. Simon expressed:

"There is no idea to create requirements if the
others below do not understand [them]”. (Au-
thors translation)

Simon also expressed that in the end it is always the higher
level of development that decides the software requirements
division. Peter contradicted this with saying that the person
responsible for the software decides what they will develop
and that the subsystem people decides how they want to de-
velop, and then they try to connect those two parts. Mattias
from product area 2 stated that they also try to collaborate
when dividing software requirements to get a cost efficient
solution, but that in the end it is the system level that is
responsible for ensuring that the requirements are divided
from the system level to the subsystem level. Mattias also
concluded that the subsystems write their own requirements
for the subsystem level. Bengt, also from product area 2, fo-
cused on the collaboration aspect and he stated that they
sit together when new requirements arise to find out which
subsystems will be effected by the new requirements. Linus

as well focused on the fact that the division is based upon
many discussion, but sometimes the division takes place in
a meeting and sometimes a person performs the division by
themselves.

4.1.2 Division Discussions

The question of how the discussion actually looked like when
it come to software requirements division, Mattias stated
that the focus of discussion is on the end efficiency, the per-
formance, the cost and the calendar time. Peter stated that
software requirements discussion focused on that one had
already chosen a platform or an interface that the rest must
comply with. Simon also stated the arguments was often
based on expert knowledge that only a single person only
had. Another argument was also that a person could refer
to a rule for a software requirements division, but the others
could never find that rule even though they had searched for
it. In the end one had to go according the hierarchy (system
level dominant over subsystem level) to resolve some issues.
Simon stated that there could be many discussions but that
those discussions occurred more on the lower level, since the
system level focused on what the system should manage.
Even though there were many discussions they never turned
into conflicts and that people that had been a long time in
their post of responsibility had a lower amount of conflicts
concerning the software requirements division. Bengt stated
that it was hard to say anything general about the discus-
sions, but in the end there is always a good will to solve
any issues to get the best result. Linus saw that some of
the arguments focused on calculation capacity, cost, main-
tainability or code. But generally there were many different
types of arguments.

Mattias stated that he liked the way they had their discus-
sion now, but saw that it was people dependent; if he knew
the people involved it made it easier to find a good solution.
Mattias also noted that in the end not everyone can be sat-
isfied with everything and that there will always be someone
that has to do more then someone else. Peter saw that they
needed a bit more clarity but as soon as rules are written
down one does not want to follow them. Simon saw that
there has to be more room for discussions and today peo-
ple talk too little with each other. Bengt was satisfied with
how it was today and it all comes down to having the right
persons involved. Linus was as well satisfied with how the
discussions were conducted today. Generally all the respon-
dents were positive to how the software division discussion
were conducted.

When it came to the question of how the software require-
ments division process would look like if they could change
anything, Mattias suggested the idea of having a document
supporting the division. Peter would like to have a model to
support the division. He suggested that for each project, in
the beginning, the group would decided a specific division
model to be used and that they would get time to educate
themselves on that model and then use it. Bengt stated the
following about the division of software requirements:

"Things like that [software requirements division]
are really difficult to build into processes [...].”
(Authors translation)

Bengt also stated that in the end it was all due to personal
chemistry when it came to a critical division moment. Simon
further continued on the need for room for discussions and
also adding that a better collaboration needs to take place.
He saw that the subsystem level often had too little time
for such things. Linus focused more on that there was room
for building better constructional specifications then seeing
anything in the software division that needed change.

The respondents were also asked if it was something charac-
teristical in the software requirements that determined the
division. Peter did not see such a connection, neither did
Simon. Bengt saw that, since subsystem level decides the
division of software requirements themselves, it is not some-
thing characteristical of the actual software requirements,
but the division is determined on the person’s experience.
As he concluded:

”If one has a concept that shows to hold, of course
you try to follow that [concept].” (Authors trans-
lation)

Mattias saw that it all came down to the higher division on
subsystem level but one could not formulate a simple answer
for it. Simon stated that it was not the software require-
ments in themselves that decided the division and stated
that it was dependent on the background of the person di-
viding the software requirements. He continued with saying
that often performance requirements was highly determin-
ing for the software requirements division since they would
effect the whole system. Linus saw that characteristics con-
cerning software requirements on a subsystem level focus on
either construction or algorithms, and on a system level the
focus was more on an overall picture of construction. Linus
also pointed out that the division was based on a natural
order that was already present in the development process
and that software requirements division was supported by
documents.

4.1.3 Division Model

All the respondents were shown six models on how software
requirements could be divided down to be on different lev-
els. The respondents were also given the choice to draw their
own model. All the respondent stated that model four was
the one used as a standard. Model four depicts the division
process where a software requirement is presented as a cus-
tomer requirement. That customer requirement is divided
down to a system requirement and then split into two sub-
system requirements. Model four is stated below. The other

Customer Requirement

|

System Requirement

!

Subsystem Requirement Subsystem Requirement

Figure 1: Model 4 - Software Requirements Division

five models can be seen in the Appendix D - Division Mod-

els. None of the respondents chose to draw their own model.
Bengt and Mattias stated that for product area 2 they used
model four. Mattias thought on of the other product ar-
eas, product area 3, used model two. Simon and Peter from
product area 3 both stated that model four is used. Simon
though saw that sometimes they use model three and it was
dependent on that some software requirements could not be
tested on the subsystem level and had to be tested on the
system level. Peter also said that sometimes they use model
one, and they use model two in a few cases if they for ex-
ample buy an already made subsystem. Model three he has
tried to use, but it created too much documentation, and
that model six is used when they conduct internal develop-
ment projects. Linus pointed out sometimes, new software
requirements could arise on the subsystem level inside model
four. No one of the respondents said that model five was
used.

4.1.4 Legacy Systems

When it came to the question regarding if products and
projects had software requirements that continue on to the
next project in the product family (the next version of the
same product) both Simon and Peter from product area
3 saw such a continuous process. Simon stated that they
have a consistent software requirements structure. Peter
also mentioned this by stating that since the platform is the
same between projects many software requirements are the
same. Peter stated that since the products they develop
have a life time of at least 20 years but since software has
a tendency not to live more than five years that when up-
dating the software some previously made custom solutions
can instead be bought, since the market has had time to
adapt. Mattias, from product area 2, stated that 95 % of
the software requirements are the same from one product to
the next version of the product. But sometimes new require-
ments has to be created due to the fact that people either
have put together many requirements into one requirement
or that they were not formulated in the right way. Bengt
and Linus both stated that most software requirements are
the same from project to the next.

Then the respondents were asked if there was something in
the software requirement division or the software require-
ment that determined if the software requirement was kept
in the next product. Bengt saw that performance require-
ments often continued on, but that persons responsible for
handling the requirements were not always the same. Mat-
tias focused more on that from one version to next they
tried to improve the software requirements and that it was
all dependent on the unique requirements that the customer
had. Peter saw that there was nothing in the division of the
software requirements that determined if they were kept or
not, since improvements are made constantly. Simon also
saw that the software requirements changed from one ver-
sion to the next, but the ones that often continues on are
performance and functional software requirements. At the
same time they also try to keep the subsystem parts and
function blocks so they both can be re-used and sometimes
also be implemented into other product families. They tried
to keep the software structure, since they build upon a basis
from the 1990’s over time, to improve even further. Linus
even went so far to say that all software requirements con-
tinue on to the next one but sometime new ones are added

to the consistent software requirement basis and that was
not differentiated dependent any singular characteristic in
the software requirement.

4.2 Documentation

4.2.1 Different Division Documents

The respondents were also asked concerning documentation
of software requirements division. Linus stated that they
had different specifications, but the software requirements
division was specified inside those through a focus on dif-
ferent function blocks. Bengt described that they only had
one requirements document, but also an electronic solution
where all the requirements where listed. The division was
also documented in this electronic tool. Mattias described
earlier in the interview that the requirements were docu-
mented on different levels. Peter described that they have a
model for document requirements and that they use a writ-
ten document in a text format, which either is called func-
tional specification or construction specification. He also de-
scribed that they had a paper that he called ’division paper’.
Simon described that they have customer requirements spec-
ifications, system requirements specification and subsystem
requirements specification followed by a construction spec-
ification or design specification. Simon also described that
they use a requirements metrics where they divide the re-
quirements into different part of the system.

Mattias was not satisfied with the way the division was doc-
umented. He wanted that in the constructional specification
it ought to be clearer what software requirement that was
solved when a solution was applied. It was hard to trace
the requirements up from the subsystem level to the sys-
tem level. Peter did not want to document the division of
software requirements and the documentation should only
be applied in "really tricky cases” (Authors translation). Si-
mon wanted to document the division in the way that it was
conducted at the moment, but stated that the issues lies in
that sometimes they do not follow the division process. He
though pointed out that there was an improvement process
that was on the way, where they are starting to be able to
trace a software requirement even down to the single line
of code. Simon stated that this was a "difficult area” (Au-
thors translation). Bengt thinks it works really well and
that people are clear with what works and it was easy for
people to read up on the software requirements. Linus was
also positive about how the division takes place, but saw
that there was always a problem to draw the line between
system and subsystem level. He thought that it was hard
having different levels based upon the inheritance from the
previous versions of the product, based upon that earlier all
the software requirements were written by the system level
but had now changed to that both system and subsystem
level wrote the requirements. Linus concluded that in the
end it came down the decision of how the software require-
ments were to be verified, but that all the division was done
in a collaboration.

4.2.2 Receiver of the Division Document

When it came to if the division of software requirements
are effected if the writer of the document knows who is the
recipient of the software requirements document; all the re-
spondents agreed that so was the case. Linus thought that it

did and he really hoped that everyone knew who they were
writing for and what the aim was of the writing. Bengt
stated that it depended on the persons people are working
with and when creating and writing a division document one
always writes for a person that was lower down in the sys-
tem development hierarchy. Mattias also thought it effected
the writing but did not know if it applied to everyone else.
Simon thought it effected but only to a little extent, but in
the end it all came down to individuals and how they write.
Peter thought that it effected, but the documents were sel-
dom adopted to who that was going to read it, which he
thought ought to be done.

If the software requirements division document was vital
for them to be able to conduct their work Peter answered
that it was not vital for him. Simon answered that he did
not need the requirements in a document since he knew the
product and thought that it depended on his experience.
He also said newly employed persons would want all the
requirements to be written down, but those who had worked
at Saab EDS for 10-15 years only needed a meeting and
then they could start developing, without documentation of
the software requirements division. He concluded that there
needs to be a balance of the amount of what was documented
and what was not. Bengt said that he would be able to
work without the documentation, but to get quality in the
product and to be able to verify the product they needed to
have documentation. Also Linus did not see any personal
need for the division documentation, but saw that it was
good to have a structure.

4.2.3 Detailed Descriptions Are Important

If there were aspects that could be removed in the software
requirements division document, Mattias could not think of
anything to be removed. Simon thought initially that there
were things that could be removed, but ended up in the
question stating that there was often to little information
between the system and subsystem levels in the documenta-
tion. Peter thought that the requirement of actually being
required to develop the documentation could be removed.
Bengt did not find anything on the spot that could be re-
moved. He focused his answer more on that when develop-
ing software requirements people ought to have a broader
view and think of the whole system before developing spe-
cific software requirements. Linus thought that there was
probably something that could be removed but did not give
an example of what that could be.

In the aspect of what needs to be kept in the software re-
quirements division document, Bengt stated that the re-
quirements description must be kept. Mattias stated that
the division of what subsystem should develop a certain as-
pect needed to be kept. Peter saw the importance of keeping
the information intact of what platform the system had been
developed for. Furthermore also that the customer require-
ments and the lowest level of detail needs to be kept. Simon
discussed that it depended on the size of the company and
if you are a larger company you need to have more detailed
documentation. Linus thought that he could not answer
that question, probably since he in the previous question
stated that they are currently restructuring some aspects of
their process.

4.2.4 Effects on Not Documenting in the Right Way
Concerning what the effects could be if the software require-
ments were not documented on the right level: Simon and
Mattias saw that the software requirements would not be
implemented. Bengt saw that the quality of the product
would become faulty. Peter did not state the same concern
and described that it would sooner or later be implemented,
if the software requirement was important. Linus stated that
there would be faults in the construction or functions of the
system.

If software requirements would be documented in the wrong
document Bengt did not see that as an issue, since the soft-
ware requirements would eventually be found anyway. Si-
mon saw that the people would not know that certain as-
pects of the product existed. Mattias also saw that the de-
velopment would become flawed. Linus listed that a function
would be missed, that the product would not be verified or
that the product would be flawed in the realisation. Pe-
ter saw a future flaw risk that maintenance would become
flawed if the documentation was not consistent with the sys-
tem that had been developed.

4.3 Validation

4.3.1 Division Effects Validation

Concerning the connection of software requirements division
with the validation of software requirements, Peter said it
effected, since the validation was very focused on the differ-
ent levels of the product. Simon did not initially think it ef-
fected since all the involved from different levels were present
in the validation, and further on in the interview he stated
that they are connected since different levels are sometimes
validated separately. He continued on by saying that some
software requirements could only be validated together with
another function block and then it was hard to validate a
certain requirement if it was not validated with that function
block. Linus described it as that the validation was effected
by the division since the software requirements were grouped
together in function blocks. Mattias saw it as an administra-
tive issue, since sometimes many subsystems were validated
jointly, but not as a development issue. Bengt stated that
they were connected, since sometimes complicated software
requirements descriptions made the validation hard to per-
form.

4.3.2 Getting the Context

On the question if they wanted to change something in
the software requirement validation none of the respondents
stated anything concerning the division of the software re-
quirements. Mattias, Bengt and Simon were satisfied with
the way the validation was conducted at present (by the us-
age of validation meetings). Peter wanted more room for
discussion and that the documents up for validation ought
to be combined with all the other documents so that the
validation aim instead was to validate a context and not de-
tails in the document. Linus saw that there was room for
improvement in getting a better overview of the above ef-
fected software requirements and to ensure that it really was
the customer requirements that were realised in the function
that was validated.

If there was any other information needed about the soft-
ware requirements that needed to be present to be able to

validate the software requirements, Mattias did not see any
need for such information. Bengt stated that sometimes one
needed information about the context of the requirement,
even though that the software requirements ought to be in-
dependent. The context Peter stated was always needed to
validate the software requirement. Linus also focused on
context but thought the need for a know-how of the level
above effecting requirements. Simon had not seen any such
information concerning software requirements and did not
see any need for that.

4.4 Verification
4.4.1 Build to Verify

Concerning the verification of software requirements and the
connection with the software requirements division, four of
the respondents Bengt, Linus, Peter and Simon all said that
it effected. Mattias did not think so, but as he described it he
was not involved in the aspect of verifying software. Bengt
even stressed that the software requirements to a large ex-
tent were connected to verifying, since they were written
with the aspect of being verifiable. Simon also saw that the
division of software requirements was effected by the aspect
of verifying them, since the verification and testing some-
times combined testing methods that were high in cost, to
be able verify more aspects at the same time, even though
the detail might not come from the same part of the sys-
tem. There was also a focus on trying to get verification
as soon as possible since the feedback would come earlier,
if the tests were done at an earlier stage. Linus described
that for example if algorithms were often tested in construc-
tional tests and what is written in the software requirement
specification was for example verified through a subsystem
verification instead.

On the question if the respondents liked the way they ver-
ify now, concerning the aspect of software requirements di-
vision, Peter wanted them to be built upon experienced
people. Through that one could both remove unnecessary
software requirements and also verify software requirements
that had been missed in the documentation. He also stated
that one could not write a process for that, since it comes
from routine. Simon thought that they needed more struc-
ture concerning verification and that a good way to go would
be to use more software to help in that aspect. Furthermore,
Simon stated that there ought to be more demands on the
designers, so that they could catch more errors there. Bengt
thought it would be a good idea to involve the verifiers more,
to look at the software requirements and conclude if the
software requirements actually are verifiable. Linus thought
that they could improve in the constructional tests to find
more faults on the lower levels, instead of catching them
on a higher level. Mattias did not have any opinion about
the question, as he stated that he was not involved in the
verification.

Concerning if there was any information needed about soft-
ware requirements division to be able to verify, Bengt did
not see that information was needed. Simon stated that
when verifying a requirement, a verification specification was
used together with a requirements metrics. Peter saw that
sometimes certain requirements were just submitted to the
subsystem level as information, but were not going to be
developed there. He questioned that one should submit in-

formation in that way. Linus wanted more background in-
formation, the thought behind the software requirement, so
that people could make even better verifications than just
sitting ticking of requirements that had been tested. Mat-
tias, even though not involved in verification, stated that
often the verifiers were not concerned with background in-
formation.

4.5 End Questions
4.5.1 Effects on Not Dividing in the Right Way

As some final questions the question of what the respondents
could see would be the results if the software requirements
were not divided into the right level. Mattias focused on
the cost aspect and stated that it would become expensive
and take longer time. Peter saw that the problem would be
pushed upwards and create extra work. Simon stated that
the software requirements would not be developed and he
saw that the cause would be the lack of system knowledge,
if software requirements were not divided on the right level.
Bengt saw that the end product would be of poor quality.
Linus pointed out that the end product would not be what
you expected.

4.5.2 Alternative Methods

Concerning if the respondents wanted another way in which
information was documented about how the system would
function, Bengt said that they had used use-cases and that it
was an internal requirement on subsystem level to use such,
but in the end not all requirements were suited for a use-
case description. Simon wanted a larger use of pictures in
the descriptions, but not an overuse of diagrams or models.
Peter saw that it would be nice to try another approach but
a prerequisite had to be that one then needed a solid group
to work with. Mattias wanted to see another method, but
saw a problem with applying that at their work place, since
their products were very unique and used a large amount
of performance requirements. Linus stated that he thought
model-based development would be a good way to develop,
since it would give a better overall picture of the product.

S. ANALYSIS

Here follows an analysis of the data collected from the five
interviews. The analysis is structured through the questions
asked during the interviews and stated in the following cat-
egories: general questions, documentation, validation, veri-
fication and end questions.

5.1 General Questions

5.1.1 Division Procedure

Sommerville describes that there is a division of software
requirements in software development[25], such a division is
also conducted at Saab EDS. All the respondents identified
that there were different levels of software requirements and
the joint one was subsystem level requirements. An interest-
ing aspect was also that in the labels of customer, system,
subsystem and lower levels that there were levels inside those
levels as well. No respondent described those in between lev-
els in detail so there is room for further investigation of what
those levels could be identified as. The terms of organisa-
tional, project and product level as described by Aurum och
Wohlin[2] was not mentioned by the respondents. This can

either indicate that those levels does not exist or that they
do exist but under other names. Since the question was
not formulated to explicitly ask about those labels it is also
hard to rule out their existence, but only identify that the
respondents did not mention them during the interviews.

All of the respondents stated that the division took place
through a group of people having a discussion. But there
was sometimes a deviation from that and as Mattias stated,
in the end it was always the system level people that was
responsible for the division from the system level to the sub-
system level. None of the respondents mentioned that they
took notes during those discussions. Aurum and Wohlin
suggest taking notes is a good way to improve the software
requirements engineering process.[1]

5.1.2 Division Discussions

When it comes to how the discussion about the division of
software requirements looks like the respondents focused on
two aspects. One of what the areas of argumentations were
about, and the other was what caused the division. The
areas of discussions were: end efficiency, performance, cost
(mentioned by two), calendar time, platform and interface,
calculation capability and maintainability.

One respondent stated a specific reason behind the deci-
sion of software requirements division. He focused on that
it was based upon expert knowledge. Lyytinen and Robey
state that an important “source of knowledge is internal”[17],
i.e. that knowledge that comes from companie’s own expe-
riences. They even further state that it is more important
and strategical than external information. Both due to that
internal information can come from anything from informal
communication to formal analyses of the experiences that
has been gathered. But also to its low cost compared to
external information.[17] Concluding that:

”[...] internal learning can more often produce
competitive advantages because such lessons may
be concealed from other companies.”[17]

The author of this paper see that for being able to handle
such division, the expertise and experience knowledge that
is required to conduct a successful division of software re-
quirements, needs to value in a good way. As Gorsheck and
Svahnberg reasons about domain knowledge being the foun-
dation of improving the software requirements process[11],
the author see experience as a foundation for being able to
create a good division of software requirements. This is also
visible when Mattias stated that their division discussions
were people dependent. The aspect Bengt also pointed out
as a reason for the good discussions, a further example that
the discussions are people dependent. Curtis et al. states
as one of the major aspects of what must be supported in
software development. It is that broad communication that
is needed to integrate people.[6] Hence one should support
the division discussions that take place at Saab EDS accord-
ing to all the respondents. As two respondents stated, the
software requirements process is people dependent - hence
not only dependent on one person. The author see that as a
support for Curtis et al.’s theory of developing large systems
projects is a team effort and that talented people operates

inside those teams. Hence also seeing that all levels of the
software development must be seen as a larger social and
organisational process.[6] Paulk et al. also states that for
long term success one should not rely on sole individuals,
but instead focus on[19]:

”[...] building a process infrastructure of effec-
tive software engineering and management prac-
tices”.[19]

One improvement aspect, that none of the respondents men-
tioned, is to take notes during the division discussions to
keep track of how the reasoning behind the software require-
ments division went. This to be able to return in the future
to that decision and be able to make a new well founded
software requirements division decisions. This improvement
suggestion is based upon Aurum and Wohlin’s article "The
fundamental nature of requirements engineering activities as
a decision-making process”, where they suggest five steps to
improve the software requirements process. The above men-
tioned suggestion is a part of the first step for improving
further, where one should keep track of the decision ratio-
nal.[1]

Concerning if the respondents wished to change something in
the software requirement process, all the respondents stated
different solutions: having a division document, project spe-
cific models, more discussions. One respondent stated that
the software requirements could not be built into the process,
that it all came down to the people chemistry. That response
shows what Aurum and Wohlin describes as that important
decisions in software industry are subjective ones. But as
Aurum and Wohlin also points out that there is a risk with
such decisions and that precautions should be taken against
such risk consequences.[1] The author supports the freedom
of having such discussions and decision-making, but to min-
imise the risk, as Aurum and Wohlin mention with such a
subjective decision[1], with the use of a formal method, with
the support of Crow and Di Vito’s conclusions of a formal
method that is partially applied can still be beneficial for the
product.[5] One should also remember that the software re-
quirements process is dependent on what Sommerville calls
’local factors’” where the expertise of the employees is one
aspect (the system developed and standards that are used
are the two other mentioned).[25]

All the interview respondents except one saw that the soft-
ware requirements division was not dependent on a charac-
teristic in the software requirement. One respondent pointed
out that division was based upon the experience of the peo-
ple involved in the software requirements division. Yet again
supporting the previous analysis of people dependency and
expert and experience knowledge. That analysis is enforced
by that one respondent focusing on people background de-
pendency. One respondent even took it so far as to say that
their software requirements division follows a natural order
already present in the software development process. The
same respondent also stated that the software requirements
division was already supported by documents, the same as-
pect another respondent from another product area sought
as a change needed in the software requirements division.
Here a documentation, as in a formal specification Crow

10

and Di Vito sees it, is a good starting point, since if changes
to the software requirements are introduced it will give the
best return of investment.[5]

5.1.3 Division Model

All the respondents chose model four (See Appendix D -
Division Models) as the division process of software require-
ments. The respondents also had the option to draw their
own, but none of the respondents did so. Model four is
also supported by Saab EDS’s internal documents - hence
the respondents state that they follow the same software re-
quirements division process specified by Saab EDS. But the
respondents also stated that sometimes they deviate from
that process. The deviation reasons were that sometimes
software requirements that was on the system level had to
be divided down to a subsystem level since it was only there
they were verifiable. Another reason was if the software was
purchased from an external party. This indicates the fact
that a process is a good way to support the present meth-
ods, even though they are only partially applied.[5]

5.1.4 Legacy Systems

All the respondents identified the fact that many of the soft-
ware requirements are continued from one version to the
next in the product family. Davis et al. states that to be
able to reuse such documented software requirements, the
sentences, paragraphs and sections must be easy to adapt
to the next version.[7] Again pointing out a potential for
Saab EDS to look deeper into when according to the re-
spondents such a large amount of software requirements are
being reused.

Two respondents saw that it was something specific in the
software requirements division that made them continue on
to the next product in the product family. They identified
performance software requirements as those that continued
on. One respondent earlier identified that Saab EDS devel-
ops products that at least has a life time of 20 years. This life
time of 20 years is common for military systems according to
Sommerville and classifies those systems as legacy systems
since they have an old basis that is built upon.[25] Hence
supporting the fact that many of the software requirements
continue on at Saab EDS, not based upon the division, but
instead on the basis consistency of the system. Sommerville
also supports the continuous process of improvement that
one respondent mentioned in the interview since in legacy
systems that the basis is improved with new software re-
quirements.[25]

5.2 Documentation

5.2.1 Different Division Documents

The documentation of software requirements was mentioned
early by all the respondents, when they talked about the
software requirements division process, before they got spe-
cific questions about documentation. The respondents men-
tioned a couple of different documentation places for the
software requirements division:

e It was done inside other software requirements docu-
mentation.

e It was listed in an electronic solution.

e Used a written document with a list in text format.

e It was stated in a division metrics.

This gives a diverse picture of how the software requirements
division is documented at Saab EDS. Since processes are
“fundamental to human activities”[15] and since processes
are dependent on the changes that take place in the organ-
isation[15] and furthermore because of the process is essen-
tial[28], a solution the author see is to join those different ap-
proaches; to do as Wiegers suggests: give all the involved in
the different projects a chance to see the effects of their dif-
ferent views and methods through a team-building activity
to improve the understanding for software requirements.[28]
Through that it would also improve the way they all doc-
ument the software requirements division and then if they
choose to change to having one way or to have different ways
would be up to them. But at least as Wiegers states it will
increase the knowledge about the different views[28] - hence
the view that all of them have about how the software re-
quirements division should be documented.

Concerning if the respondent were satisfied in the way the

software requirements division was, a diverse picture emerged.

The respondents expressed:

e Was not satisfied with the way the division were doc-
umented.

e Did not want a division document (with some excep-
tions).

e Wanted to continue in they way they do now.
e Thought it worked really well as it was done now.

e Positive, but could identify some difficulties.

Having such a diverse group of opinions gives that a differ-
ence in satisfaction regarding how the software requirements
division is conducted is present at Saab EDS. This indicates
an improvement area to look deeper into, if one wants to
strive to get all involved towards the same satisfaction level
of how the software requirements division is documented.

Comparing the above answers with the question about if
they could wish for changes in the division process, some
differences were visible. Mattias still stuck to his idea of hav-
ing documents supporting the division. Peter, that did not
want any documentation, with some exceptions, did not re-
mention the idea of model-based method that he suggested
earlier in the interview. Simon did not mention anything
about documents in the earlier question, but emphasised a
need for discussion and a better collaboration. This empha-
sis was not mentioned in the connection to the document
question. Bengt earlier pointed out that the division was
people dependent and in the later answer he mentioned the
people aspect, but not as clearly, as he also weaved in that it
is easy for people to read up on software requirements. Linus
continued to not see the software requirements division as an
issue. Only two of the respondents, Mattias and Linus, con-
tinued to express similar answers concerning the two ques-
tions. This might be dependent on the fact that the answers

11

from the respondents became more extensive the longer the
interview proceeded, and also giving the respondents more
time to reflect, while they were being interviewed.

5.2.2 Receiver of the Division Document

Every respondent thought that the software requirements
division was effected if the writer knew who they wrote
for. This yet again points to the people dependency as-
pect of software requirements division mentioned earlier in
this analysis.

None of the respondents saw their work as dependent on the
software requirements division. Simon answer indicates the
experience aspect since he stated that people at Saab EDS
that has worked there for 10-15 years only needs to sit down
in a meeting to be able to start to develop. Bengt’s answer
indicates an aspect; if one wanted quality in the product and
to be able to verify the product one needed to have documen-
tation. Linus also stated that one needed documentation to
have a good structure. These aspects can indicate that peo-
ple do not need documentation to develop software systems,
but that they need experience and a place to communicate
with each other. As Faraj and Sproull states:

”’[...] software development is knowledge work,
its most important resources is expertise.”[10]

5.2.3 Detailed Descriptions Are Important
Concerning if the respondents wanted to remove anything in
the software requirements division document, the following
results was concluded:

e Nothing could be removed.
e Could not suggest anything for removal.

e There was something that could be removed. (Did not
specify what could be removed.)

e Initially thought that there was thing to remove, but
ended up in that there was too little information in the
document.

e Wanted to remove the need to develop the software
requirements division document.

All these answers show a spectrum of answers from the re-
spondents concerning the removal of aspects in the software
requirements division document. Due to this diversity of an-
swers the author can only see that at least the respondents
have different opinions and that no joint picture can be seen
in this question.

Three of the five respondents had an opinion of aspects that
needed to be kept. The suggestions were the software re-
quirements description, the division of what system that
should develop the aspect, platform information, customer
and low level requirements. One respondent saw that a
larger company needs a detailed documentation. One stated
that he could not answer the question. The suggested as-
pects to be kept, if all joined would give a document with a

large amount of information, compared to what Simon an-
swered in the previous question that there today was too
little information in the division of software requirements in
the system and subsystem level.

The aspect of what could happen if a software requirement
would not be documented on the right level, four of the five
respondents expressed a negative view - such as that the
software requirement would not be implemented, faults and
faulty product quality would occur. One respondent had
a more optimistic view, where he saw that sooner or later
if the software requirements would be implemented if they
were important enough. The majority of the respondents
sees the importance of documenting the software require-
ments division on the right level. This can be seen in that
none of the respondents needed the software requirements
division to conduct their work. The question arises what is
it then that needs to be in place to both secure the right
level of documentation of software requirements and some-
thing one needs to have to conduct ones work. Here the
author would like to return to the aspect of the use of dis-
cussion, where Curtis et al. see the broad communication
will support the software development.[6] The author of this
paper see that as the respondents expresses that there is a
need for documentation, but these documents needs to be
supported by discussions.

5.2.4 Effects on Not Documenting in the Right Way
If the software requirements would be placed in the wrong
document, expressed by four of the five respondents the fol-
lowing risks were mentioned: that certain aspects would not
be known to people, functions would be missed, maintenance
flaws, inconsistency in the document, and flawed realisation
in the product. Again the respondents showed that a miss
in the division of software requirements can cause huge neg-
ative effects concerning the product. A finger of warning
ought to be raised to secure that such flaws should to be
minimised. One should remember the importance of doc-
umenting software requirements since it ”[...] is the offi-
cial statement of what the system developers should imple-
ment.”[25]

5.3 Validation
5.3.1 Division Effects Validation

In the aspect of identifying the connection of software re-
quirements division and validation, four of the five respon-
dents stated that they are connected. Where the validation
is effected by which level of software requirement and which
software requirements that are validated at a certain point.
Sometimes some software requirements are validated sepa-
rately and sometimes they are grouped together. One re-
spondent only saw it as an administrative issue and not as a
development issue. Sommerville emphasises the importance
of software requirements validation, since if there are flaws
in the requirements document it would ”[...] lead to exten-
sive rework costs”[25], since it is cheaper to fix a software
requirement issue in a document than having to re-design
the system or fix code errors.[25] This will be returned to in
the section 5.5 End Questions.

12

5.3.2 Getting the Context

Concerning if the respondents wanted to change anything
regarding the validation process, none of the respondents
stated the software requirements division. However, to im-
prove even further, Peter suggested more discussions and Li-
nus wanted a better overview of the software requirements.
This implies a general satisfaction amongst the respondents
that they like how the validation process is conducted to-
day. Here it was another suggested more discussions, from a
respondent who had not earlier in the interview expressed a
need for having more communication between the employees
through discussions.

The information questions about validation, three of the five
respondents saw a need to get the context of the software
requirements to be able to validate the software requirement.
Two did not see any need for any other information that
needed to be present. According to Sommerville one needs
to look at the consistency of the software requirements. To
be able to compare the software requirements so that they
do not conflict with each other.[25]

5.4 Verification
5.4.1 Build to Verify

The connection between software requirements verification
and software requirements division was strongly identified
by all the respondents that were involved in the verification
(four out of five respondents). One respondent described it
as the software requirements were constructed with the as-
pects of being verifiable, which is one of the foundations that
is identifies during the validation process. As Sommerville
states it[25]:

”A general principle of requirements engineering
[...] is that requirements should be testable.”[25]

One respondent described that the division of software re-
quirements were effected due to the verification, since Saab
EDS combines testing methods that are high in cost when
testing different parts of the system. The focus was also
to verify as soon as possible to get the feedback earlier in
the development process. Here it is important to realise
that there are software requirements that are hard to ver-
ify. Those are: ambiguous, undecidiable and not worth the
cost.[7] To fight those problems of having hard to verify soft-
ware requirements one needs to have experienced testers
that can review those software requirements.[7] Yet again
pointing out the importance of having experienced people
in the organisation as analysed earlier in the sections 5.1
General Questions and 4.2 Documentation. This aspect is
also brought up by Peter in the next question asked, if they
liked how the verification is done now, where he points out
that he wants them to build upon experienced people. And
he yet again states what Bengt expressed earlier that one
can not build a process for that. Peter also states that is
based upon routine. Simon wanted more structure in the
verification. Bengt wanted to involve the verifiers more in
the software requirements. Linus wanted to improve in the
lower levels, to find more faults in the lower levels instead
of higher up. These three above suggests a desire for more
structure, involvement, and room for improvement from the
respondents concerning verification.

5.5 End Questions
5.5.1 Effects on Not Dividing in the Right Way

The aspect of what would be the results if software require-
ments were not divided into the right level was partly men-
tioned by the respondents in the section 4.2.4 Effects on Not
Documenting in the Right Way. In the End Question sec-
tion (See section 4.5 End Questions.) all the respondents
expressed that there would be negative consequences. Mat-
tias pointed to the cost effect and an increase in the develop-
ment cost and as mentioned in section 5.2 Documentation,
increased cost will according to Sommerville be the results of
developing faulty software requirements.[25] Here Simon re-
turned to the aspect mentioned of Gorschek and Svahnberg
of domain knowledge, where they state that those compa-
nies with higher domain knowledge where those that could
improve to a higher extent, than companies with low do-
main knowledge.[11] Simon describes that the lack of system
knowledge would lead to software requirements not being di-
vided in the right way.

5.5.2 Alternative Methods

The interviews were finished with asking a broad question
if anyone of the respondents wanted another way of docu-
menting the information regarding how the system should
function. They suggested:

e Use use-cases to a lager extent.

e A larger use of pictures.

Try another development approach. (Stated by two

respondents.)

e Model-based development.

This shows that the respondents have a creative side and
that they can see solutions to how Saab EDS should improve
further.

6. CONCLUSION

This chapter contains the conclusions of this study.

A software requirements division is present at Saab EDS.
The respondents stated a usage of the labels: customer, sys-
tem, subsystem and lower levels for the division of software
requirements. The division of software requirements takes
place in a setting of a group of people having division discus-
sions. The discussions often focus on two aspects: the way
people discussed and what arguments to how one should
proceed and what caused the particular division. The ba-
sis for the division discussions were mentioned by one re-
spondent where he focused on the aspect of expert knowl-
edge. That could indicate that one needs to value the ex-
pert knowledge and experience to be able to create a good
division of software requirements. Another respondent fol-
lowed that by stating that it was dependent on the back-
ground of the people involved. Omne improvement aspect,
that none of the respondents mentioned, is to take notes
during the division discussions to keep track of how the rea-
soning behind went. This improvement suggestion is based
upon Aurum and Wohlin’s article ”The fundamental nature
of requirements engineering activities as a decision-making

13

process”[1], where they suggest five steps to improve the soft-
ware requirements process. The above mentioned suggestion
is a part of the first step for improving further.[1]

The respondents also identified that there is a connection be-
tween the division of software requirements and validation,
where the validation is effected by which level of software re-
quirement and which software requirement that is validated
at a certain point. Three of the respondents stated a need for
context of the software requirements to be able to validate
them.

The connection of software requirements division and ver-
ification was strongly identified, where even the software
requirements were constructed for the intent to be verifi-
able. The software requirements division is connected to
when the software requirement is verified, since some soft-
ware requirements are high in cost to verify. Where even
if the software requirement was not optimal to develop on
an a specific level it was still verified on the most cost ef-
fective level, hence moving the software requirement in the
development structure based on the verification cost.

Since many of the software requirements are based upon
discussions, a way to improve for Saab EDS would be to take
more notes during those discussion, hence to apply the best-
practice suggested by Aurum and Wohlin[1] to improve the
software requirements division even further by keeping track
of the software requirements division. Saab EDS could also
focus on investigating further how the software requirements
division process actually takes place, and look deeper into
how the division discussions are executed, since that has
been proven to be how the software requirements division
process is described by the respondents in this research.

The main conclusions based upon the research questions in
this paper are:

e The software requirements division is done in group
discussions.

e The software requirements division is indicated to be
built upon expert knowledge and is people dependent.

e Taking software requirements division decision-notes
can help keeping track of the reasoning behind the
software requirements division decision.

6.1 Future Research

To further research how the software requirements division
takes place in industry, one could conduct an observational
study to further verify that the process of software require-
ments divisions actually takes place through discussions or
if they are conducted in a another way.

Another future research suggestion could be to investigate
how Aurum and Wohlins five steps of improving the software
requirements engineering[1] would effect the software devel-
opment if implemented. To goal could be to verify if those
five steps will give a positive outcome for the development
of software.

7.

ACKNOWLEDGEMENTS

The author of this paper would like to thank the following;:

8.
1]

Bengt, Erik, Linus, Mattias, Peter, and Simon (fictive
names) - For sharing their experiences and knowledge.

Ph.D. Karin Thorvaldsson - For her support in this re-
search and expert knowledge in the software require-
ments area.

Jonas Oberg - For his encouragement and guidance in
academic writing.

Ph D. Tomas Berling - For his expert knowledge in
how Saab EDS functions and the on-site guidance.

Saab EDS and involved employees - For the opportu-
nity to conduct this research and their encouragement.

IT University of Goteborg - For the three years at the
Software Engineering and Management program.

Family and friends - For their support in this research
and in the author of this paper’s academic studies.

REFERENCES

A. Aurum and C. Wohlin. The fundamental nature of
requirements engineering activities as a
decision-making process. Information and Software
Technology, 45(14):945-954, 2003.

A. Aurum and C. Wohlin, editors. Engineering and
Managing Software Requirements, chapter 1.
Requirements Engineering: Setting the Context, pages
1-15. Springer-Verlag Berlin, 2005.

J. Bell. Introduktion till forksningsmetodik.
Studentlitteratur, 2nd edition, 1995.

J.W. Creswell. Research Design: Qualitative,
Quantitative, and Mized Method Approaches. Sage
Publications, Inc., 2002.

J. Crow and B. Di Vito. Formalizing space shuttle
software requirements: Four case studies. ACM
Transactions on Software Engineering and
Methodology, 7(3):296-332, 1998.

B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems.
Communications of the ACM, 31(11):1268-1287, 1998.
A. Davis, S. Overmyer, K. Jordan, J. Caruso,

F. Dandashi, A. Dinh, G. Kincaid, G. Ledeboer,

P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos.
Identifying and measuring quality in a software
requirements specification. In Software Metrics
Symposium 1993. Proceedings, pages 141-152. The
Institute of Electrical and Electronics Engineers, 1993.
H.S. Delugach. Specifying multiple-viewed software
requirements with conceptual graphs. Journal of
Systems and Software, 19(3):207-224, 1992.

M. Dorfman. Requirements engineering. Software
Engineering Institute Interactive, 3:1-30, 1999.

S. Faraj and L. Sproull. Coordinating expertise in
software development teams. Management Science,
46(12):1554-1568, 2000.

T. Gorschek and M. Svahnberg. Engineering and
Managing Software Requirements, chapter 18.

14

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

[24]

(25]

[26]

27]

(28]

Requirements Experience in Practice: Studies of Six
Companies, pages 405—426. Springer-Verlag Berlin,
2005.

Saab Group. Electronic defence systems. Accessed:
2010-05-17, 13:09, http://wuw.saabgroup.com/en/
About-Saab/Company-profile/Organisation/
Electronic-Defence-Systems/.

Saab Group. Saab in brief. Accessed: 2010-05-17,
12:59, http://wuw.saabgroup.com/en/About-Saab/
Company-profile/Saab-in-brief/.

The Standish Group. Chaos: The standish group
report. Accessed: 2010-03-11, 12:01, http:
//www.projectsmart.co.uk/docs/chaos-report.pdf,
1995.

G. Kotonya and I. Sommerville. Requirements
Engineering. Wiley Chichester, 1998.

S. Lauesen. Software Requirements: Styles and
Techniques. Addison-Wesley Professional, 2002.

K. Lyytinen and D. Robey. Learning failure in
information systems development. Information
Systems Journal, 9(2):85-101, 1999.

The Institute of Electrical and Electronics Engineers.
Teee standard glossary of software engineering
terminology, 1990. Std 610.12-1990.

M.C. Paulk, MB. B. Curtis, Chrissis, and C.V. Weber.
Capability maturity model for software, version 1.1.
Technical report, Software Engineering Institute, 1993.
B. Regnell, M. Host, J. Natt och Dag, P. Beremark,
and T. Hjelm. An industrial case study on distributed
prioritisation in market-driven requirements
engineering for packaged software. Requirements
Engineering, 6(1):51-62, 2001.

U. Reja, K.L. Manfreda, V. Hlebec, and V. Vehovar.
Open-ended vs. close-ended questions in web
questionnaires. Advances in Methodology and Statistics
(Metodoloski zvezkti), 19:159-177, 2003.

W. Robinson. Monitoring software requirements using
instrumented code. In Proceedings of the Annual
Hawaii International Conference on System Sciences,
pages 276-276. Citeseer, 2002.

W.W. Royce. Managing the development of large
software systems. In Proceedings of IEEE Wescon,
volume 26, pages 328-338, 1970. Accessed:
2010-03-03, 10:52, http://leadinganswers.typepad.
com/leading_answers/files/original_waterfall_
paper_winston_royce.pdf.

A. Ryen. Kwalitativ intervju - fran vetenskapsteori till
faltstudier. Liber, 2004.

I. Sommerville. Software Engineering. Pearson
Education Limited, 8th edition, 2007.

Statistics Sweden. Swedish electronics industry and
companies in the ict service sector 2006-2007. 2009.
Accessed: 2010-03-07, 11:33,
http://wuw.tillvaxtanalys.se/tua/export/sv/
filer/statistik/Statistik_2009_06.pdf.

W.M.K. Trochim. The research methods knowledge
base. Accessed: 2010-05-06, 09:34,
http://www.socialresearchmethods.net.

K. E. Wiegers. Software Requirements. Microsoft, 2:nd
edition, 2003.

APPENDIX
A. KEYWORDS

The following keywords where used to search for previous
research in the software requirement area:

e software division
e software requirement
e software requirements

e software validation

B. GLOSSARY

This is a glossary of the abbreviation used in this paper.

e Saab EDS = Saab AB, Electronic Defence Systems,
Operations Goteborg

C. INTERVIEW QUESTIONS

The below interview questions were used during the five in-
terviews. Here they are translated from Swedish to English,
by the author of this paper.

General Questions

1. In what product area do you work?

2. Do you have a division of requirements in different
levels? (If yes continue to question three.)

a. If no: Why do you not have that?

i. Would you like to have a division of
requirements?
ii. Terminate the interview.

3. How does the division situation look like concerning
software requirements, for example do you sit in a
division meeting or do you do the division by yourself?
(If they are by themselves go to question five.)

4. What does the discussion concerning software
requirements look like? (What argumentation do
people to get their point across?)

a. Does the discussions look like you want them to?

ir If yes: Why?
ii: If no: Why not?

5. How would you want the software division process to
look like?

a. If another way: How would you want the software
division process to look like?

6. Is it something characteristical in the software
requirements themselves that determines the division?

7. Does the practices software requirements division models
look like any of these models? (Show Model paper.) You
also have the option to draw your own model. (Show
blank paper and pen.)

a. If one of the software requirements division
models but not exactly: What differs?

b. If many of them: Is it something in the software
requirement or something else that determines
the model used?

8. Are their software requirements and division of
software requirements that always are present in every
project or product?

15

Documentation
9. How is the division of software requirements
documented? (Are there many documents based on
different level and do they look the same?)
10. Do you want the division to be documented in that
way?
a. If yes: Why?
b. If no: How do you want it to be documented?
i: Why?
Who is the recipient of the software requirements
division document and do you think it effects the
division of software requirements?
Do you see that the documentation of the software
requirements division is necessary for you to
perform your work?
Are there aspects of the software requirements
division that you think can be removed?
Are there aspects of the software requirements
division that you think must be kept?
What do you see can be the effect of not
documenting the software requirements on the right
level?
If there are many documentation places: What can
you see as the effect of not documenting the
software requirements division in the right
documentation place (for example in the right
document)?

11.

12.

13.
14.

15.

16.

Validation
17. Is the validation effected of how the software
requirements are divided?
a. If yes: How?
i: Is it always like that?
b. If no: Why not?
18. How do you want the division of software
requirement in the aspect of validation to look
like?
a. If yes: Why?
b. If no: Why not?
i. How would you like it to look like?
Is there information about how the software
requirement are divided that need to be present for
the software requirement to be able to be validated?

19.

Verification
20. Is the verification effected of how the software
requirements are divided?
a. If yes: How?
i: Is it always like that?
b. If no: Why not?
21. How do you want the division of software requirement
in the aspect of verification to look like?
a. If yes: Why?
b. If no: Why not?
i. How would you like it to look like?
22. Is there information about how the software
requirement is divided that need to be present for
the software requirement to be able to be verified?

End Questions

23. What can you see as the effect of not dividing
software requirement on the right level?

24. Would you like that documented information about

how the system should function was presented in
another way? (In other words not in by the book
requirements but in for example exploratory
development, models or so on?)

25. Is there something you would like to add?

D. DIVISION MODELS

The division models on this page were used during the in-
terviews. Here the are translated from Swedish to English,
by the author of this paper.

l = division

Figure 2: Model Description

Customer Requirement

System Requirement

Figure 3: Model 1 - Software Requirements Division

Customer Requirement

Subsystem Requirement

Figure 4: Model 2 - Software Requirements Division

Customer Requirement
System Requirement

Subsystem Requirement

Figure 5: Model 3 - Software Requirements Division

16

Customer Requirement

!

System Requirement

L

Subsystem Requirement Subsystem Requirement

Figure 6: Model 4 - Software Requirements Division

Customer Requirement

!

Subsystem Requirement Subsystem Requirement
Figure 7: Model 5 - Software Requirements Division
System Requirement

Subsystem Requirement

Figure 8: Model 6 - Software Requirements Division

