

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2010

Architectural Support for
Openness in Mobile Software
Platforms

Mohsen Anvaari

Master’s Thesis in Software Engineering and Management

Report No. 2010:064
ISSN: 1651-479

Table of Contents

Abstract ... 3

1. Introduction ... 4

2. Research Approach ... 6

2.1. Research Methods .. 7

2.2.1. Literature Review.. 8

2.2.2. Qualitative Interviews ... 10

3. Related Works ... 11

4. The Results of Research Activities ... 12

4.1. Software Openness and Software Extension Mechanisms 12

4.2. Mobile Software Platforms and their Architecture .. 14

4.3. Architectural Openness Model and Openness Factors for Mobile Software

Platforms ... 15

4.4. Openness in Main Mobile Platforms ... 17

4.4.1. Android ... 18

4.4.2. iPhone ... 20

4.4.3. Symbian .. 23

4.4.4. Blackberry ... 26

4.4.5. Windows Mobile ... 27

4.5. Qualitative Interviews Results ... 29

4.5.1. Relationship of Openness in a Mobile Platform with Architectural and

Licensing Aspects of the Platform .. 29

4.5.2. Importance of Openness in a Mobile Platform for Developers 30

4.5.3. Openness in Main Mobile Platforms .. 31

5. Analysis .. 35

6. Discussion ... 38

7. Conclusions ... 39

7.1 Research Objectives: Summary of Findings and Conclusions 40

7.2 Recommendations for Future Works .. 41

8. References ... 42

Appendix ... 48

A. Questionnaire for Qualitative Interviews .. 48

 3

Abstract

Introduction: The answer to the frequently asked question “how open is a software

platform” is not binary; especially when it comes to software platforms for mobile

devices. The openness of these platforms is determined by the openness strategy of a

software producing organization. The decision to open up a platform, however,

determines the degree of freedom for third parties to adopt the platform for commercial

opportunities.

Objective: The aim of this thesis is identification of the openness strategies of the main

mobile platforms based on their architecture.

Methodology: The openness strategies are uncovered using literature review and several

qualitative interviews with mobile application developers.

Results: An architectural openness model, several architectural openness factors and

identification of openness strategies in the main mobile platforms are results of this

thesis.

Conclusions: The proposed architectural openness model shows how the openness

strategies of mobile platform suppliers affect the software architecture of the platforms.

Architectural openness factors demonstrate how open the mobile software platforms are.

Finally based on the model and the factors, the openness degree of five main mobile

platforms is indentified.

Audience: Researchers of the mobile software community, mobile software platform

suppliers, application developers and architects could benefit from using the results of

this thesis.

Keywords: Mobile Software Platforms, Openness Strategy, Platform Architecture,

Platform Accessibility, Literature Review, Qualitative Interview

Note: A paper from this thesis is submitted to the 2nd Workshop on Software Ecosystems

in conjunction with 4th European Conference on Software Architecture 2010,

Copenhagen, Denmark.

 4

1. Introduction

Open source or proprietary; which of them is more successful? Which strategy has

received more attention from the developers? Which does lead to more innovative

applications? These are some among several frequently asked questions in the software

community. The discussion was stimulated by Raymond's paper “The Cathedral and the

Bazaar” in which open source community is compared to a bazaar while proprietary

community to a cathedral (Raymond, 2001). One can say the open source strategy is

more successful due to its creativities and inventions and on the other hand, one can

believe that the proprietary strategy is more prospering because it will lead to more

qualified products due to strong control. But the reality is not that black and white,

especially when it comes to the software on the smartphones called mobile software

platform. Considering a platform as open or closed is rarely a binary decision and

generally is a question of “how open” (Maxwell, 2006). The answer of the question deals

with openness strategy of the platform.

Openness strategy is the degree to which a platform approaches to open attributes which

depend on different technical and commercial aspects such as platform architecture,

platform accessibility, licensing state, marketing policy, etc. Mobile software platform

means the overall structure of the software on the mobile devices (Cho and Jeon, 2007).

The openness strategy is different among various mobile software platforms of

smartphone ecosystem. Generally, a software ecosystem is “a set of actors functioning as

a unit and interacting with a shared market for software and services, together with the

relationships among them” (Jansen et al., 2009). When the definition comes to the

smartphones area software platform suppliers, device manufacturers, operators,

application developers, device customers, etc are considered as the actors and participants

of the ecosystem. In the current smartphone ecosystem Symbian, Windows Mobile,

iPhone, BlackBerry, and Android are the main software platforms competing for

superiority (Canalys research, 2010). Some of these mobile platforms are more successful

than others and many differences between these platforms exist. Some are available for

any hardware such as the Android platform, whereas others are only available on limited

hardware such as the iPhone platform. To implement the openness strategy that platform

suppliers have made, the architecture of their platform should support proper platform

accessibility for their application developers and device manufacturers.

 5

This thesis studies the openness strategy of the different mobile platforms. The scientific

contribution of this thesis lies in the identification of the openness strategy of the main

mobile platforms based on their architecture. The intended audience of this thesis is

researchers of the mobile software community, mobile software platform suppliers,

application developers and architects.

Figure 1 shows the domain model of the research. The platform suppliers define their

openness strategy based on their business model by considering the architectural aspects

of the platform. The strategy they choose affects device users, application developers,

device manufacturers and operators. In this research, the architectural aspects of the

platforms and some licensing aspects related to platform accessibility are studied.

Platform architecture is the structure of the software platform compromises its

components and the relationship between them (Bass et. al, 2003) and platform

accessibility means the methods and points that developers can use to extend or modify

the platform. Since other aspects of the business model such as marketing are not in the

scope of software engineering and management they are not studied in this thesis. To

validate the openness strategy in different mobile platforms, only application developers

are chosen to be interviewed. This is due to time limitation, although the device

manufacturers are also in the scope of this research.

The remainder of this report is structured as follows: In part 2, the research questions of

the thesis are clarified and a summary of the research methods is presented. Before

describing the activities of the study, a summary of related works is presented in the part

3, and then in part 4, results of the activities of thesis, which are literature study and some

qualitative interviews, are described. Part 5 and 6 discuss the research results and argue

how the research methods and the research progressed. Part 7 summarizes all sub-

questions and answers, and provides some pointers for future research.

 6

Figure 1. Domain model of the research

2. Research Approach

As mentioned before, the aim of this research is identifying the openness strategies in the

five main mobile platforms based on their architecture. The research question and sub-

questions are defined as follows:

RQ: How does the software architecture expose the openness strategy of mobile software

platforms?

• SQ1: Can a model be developed that describes the architectural openness of

mobile platforms?

• SQ2: How would the licensing aspects of the platforms relate to such a model?

• SQ3: How open are the five main mobile platforms?

In the following section the methods chosen for this research are discussed.

 7

2.1. Research Methods

To answer above questions, two research methods are conducted:

• Literature review for finding the relationship between openness strategies and the

software architecture of mobile platforms and finding out the platform

accessibilities their application developers have to extend the platform.

• Several qualitative interviews (semi-structured interviews) with mobile

application developers in the Netherlands to verify the platform accessibility in

the five main platforms that allows application developers to extend the platforms,

which previously has been captured from the literature and platform documents.

In order to address the questions, the literature and also the documents of the mobile

platforms are studied to find the openness strategy in the platforms, the software

architecture of the platforms and the platform accessibilities. A reference model is

defined to make a connection between the openness strategy and the software architecture

in mobile software platforms. The model is made based on common architecture of

mobile software platforms and common platform extension ways application developers

use to extend the mobile platforms. The extension ways deal with the openness strategy

of platforms.

In order to verify the answer of the third sub-question captured from the literature,

several interviews with the mobile application developers are conducted. Based on the

reference model and the results from the interviews, the discussion and analysis about the

control and strategy of the platforms are argued and some suggestions are mentioned. The

objectives that should be achieved stepwise during this research are:

• Building a model to describe the architectural openness of mobile platforms.

• Defining architectural openness factors by considering the licensing aspects of

mobile platforms in the model.

• Looking at main mobile platforms by the lens of developed model and factors to

determine how open the platforms are.

• Conducting some qualitative interviews with application developers of the

platforms to confirm the results of previous step.

The activity diagram demonstrated in Figure 2 shows the execution process followed in

order to conduct the research.

 8

Figure 2. Execution Process of the Study

In the following sub-sections, more details about the literature review and qualitative

interviews are presented.

2.2.1. Literature Review

A review of prior, relevant literature is an essential feature of any academic project.

An effective review creates a firm foundation for advancing knowledge. It facilitates

theory development, closes areas where a plethora of research exists, and uncovers

areas where research is needed (Webster and Watson, 2002).

To conducting a scientific and high quality literature review, “systematic literature

review” is one of the main suggested methods among researchers. Planning the review,

conducting the review and reporting and dissemination are the key stages of the process

of a systematic review (Tranfield et al., 2003). Nevertheless, as Bryman and Bell

mention, this approach contains some parts that cannot be easily applied in a student

research project (like a master thesis) due to limitations of time and resources (Bryman

and Bell, 2007). However, they believe there are some aspects of the approach can be

used in a student research (ibid). In this research a similar but customized approach to the

 9

systematic literature review is conducted. In the plan stage, according to the research

objectives, some keywords were chosen to search the literature and due to access

permissions, some relevant online databases were selected. To conduct the review, after

finding preliminary results, the backward and forward approach suggested by Webster

and Watson was applied to find more relevant resources. Going backward by reviewing

the references of the articles and going forward by reviewing articles citing the

preliminary founded articles is the main instruction of the approach (Webster and

Watson, 2002). After reading and filtering all the founded articles by reviewing the

abstract (filter 1) and the whole article (filter 2), several relevant articles were chosen to

be summarized and cited in the research. Finally, to summarize the relevant resources, a

similar approach to the concept matrix (Salipante et el., 1982) was conducted. For each

main topic, the relevant resources are compiled in a table. For each resource as a row, the

table includes a column for the covered keywords and one for the relevant quotes. Table

1 shows the summary of literature review.

Table 1. Summary of literature review

Topic Keywords

Number of

relevant

articles

Sources

Conducting

literature

review

literature review, systematic literature review,

structure literature review
4

IEEE, ACM,

Springer Link

(databases) and

Engineering

Village, ISI

Web of

Science,

Google Scholar

(search

engines)

Related works architectural openness model, software

architecture and openness, open mobile

platforms, ecosystem of mobile platforms

9

Software

openness and

software

extension

mechanisms

open software, software openness, open source,

closed source, open platforms, open standards,

open foundation, open architecture, software

extension, platform extension, platform API,

architecture and openness, open and closed

architecture, architecture and software

extension, platform architecture

11

Mobile

software

platforms

open mobile operating system, open mobile

platforms, android architecture, android

openness, iphone architecture, iphone openness,

windows mobile … , blackberry …, symbian …

37

 10

2.2.2. Qualitative Interviews

The qualitative research interview is a construction site of knowledge. An

interview is literally an inter view, an interchange of views between two

persons conversing about a theme of mutual interests. (Kvale, 1996)

There are three types of research interviews: structured interview which is usually

conducted by a structured questionnaire, semi-structured interview which is conducted on

the basis of a loose structure consisting of open ended questions and unstructured (in

depth) interview which is less structured and usually covers one or two issues in great

details (Britten, 1995). Considering the context of interview, more than one interviewee

(group interviews or focus groups), more than one interviewer and interviews by

telephone are another types of interviews (Bryman and Bell, 2007). In qualitative

researches, the two main types of interviews are semi-structured interview and

unstructured interview. “Researchers sometimes employ the term qualitative interview to

encapsulate these two types of interviews” (ibid).

For this research semi-structured interview is chosen. In this type of interview the

researcher has a list of questions on specific topics to be covered, but the interviewee has

a great deal of leeway in how to reply. Questions may not follow in the way outlined on

the questionnaire. Questions that are not included in the questionnaire may be asked as

the interviewer picks up on things said by interviewees. But all the questions will be

asked and a similar wording will be used from interviewee to interviewee (ibid). The

main objective of interviews of this research is validating the openness strategy of mobile

platforms by gaining experiences of mobile platform developers. To prepare the

questionnaire, some general questions are created based on the objectives of interviews.

Some more specific questions about favorite mobile platform of interviewees are added

to the list of questions. The questionnaire is presented in Appendix. In the same time,

several application developers are contacted to see whether they are interested to be

interviewed or not. The initial plan was to find one application developer for each

platform. However, for Android no developer was found available for a face to face

interview, therefore an online discussion with developers of Android group in LinkedIn

website is chosen as the secondary plan. After finalizing the questionnaire and making

appointments with interviewees, the interviews are conducted. The interviews are

recorded by a voice recorder, so transcription is the next step of the interview process.

Finally for analyzing the interview data, the proposed stage-by-stage method by Burnard

 11

is applied. The aim of this method is “to produce a detailed and systematic recording of

the themes and issues addressed in the interviews and to link the themes and interviews

together under a reasonably exhaustive category system” (Burnard, 1991).

3. Related Works

The most recently published article in the area of smartphone ecosystem states that few

attempts have been made to demonstrate the comparison of smartphone OSs (Lin and Ye,

2009). It is also true particularly about comparing the openness strategies in different

mobile software platforms. Lin and Ye, themselves, have compared the ecosystem of

iPhobe, Symbian, Windows Mobile and Blackberry by discussing about the value chain

(they call it “food web”) of the ecosystems, but they have not discussed the openness

strategy of the platforms based on the architectural aspects. Further, Android is not in

their comparison. Cho and Joen have discussed and compared Symbian, Linux and Rex

(Cho and Joen, 2007), which, except Symbian, are not the current major platforms.

Besides that, although they have compared the architecture of the platforms and also the

openness strategy of the platforms, but not a connection between two subjects has been

settled. Yamakami has covered Android, Symbian, iPhone and Windows Mobile in his

competitive analysis (Yamakami, 2009). But the factors he has considered in his analysis

are governance, ease of maintenance, interoperability, ecosystem, cost reduction and

reliability, which are not related to architectural aspects. Constantinou has discussed open

source in mobile platforms and shows the current state of openness in software stack of

mobile platforms (Constantinou, 2008). It is very general and not applied to any specific

platform.

Beyond the software platforms on mobile devices, in the software area in general, there is

again a lack of works that discuss how software architecture is treated in open source

projects (Nakagawa et al., 2008). Nakagawa et al. have shown that software architecture

has an important role in open source projects via a case study, but they have not

discussed how the openness strategy affects the architecture. Prehn has concluded in his

article that one characteristic that is shared by the largest and most successful open source

projects is a software architecture and it has to be modular (Prehn, 2007). Arief et al. in a

similar conclusion shows that for open source projects the architecture must be

modularized (Arief et al., 2001). Both are not applicable results for the case of comparing

the openness strategy in different mobile software platforms.

 12

4. The Results of Research Activities

As mentioned earlier, the research activities of this thesis are studying the literature and

conducting some qualitative interviews. The structure of the activities and methods was

described in part 2. In this section the results of the activities are presented.

4.1. Software Openness and Software Extension Mechanisms

Openness is the “quality or condition of being open” (Oxford English dictionary, 2010).

The software openness, in the scope of this research, means the degree to which a

software platform approaches to open characteristics which depend on accessibility and

licensing as key aspects. There might be other aspects which determine openness in a

software platform but only these two are researched here as explained in the research

domain. Although openness affects many aspects of computing besides degree of

accessibility to view and modify source code (Lamothe, 2006) but when accessibility

aspect is considered, degree of freedom to modify components of a software system will

be a key factor to define the openness of software platforms. On the other hand, software

extension mechanisms let people modify the software’s functionality or architecture

(Scacchi, 2004). So the terms “software openness” and “software extension mechanisms”

are related and therefore are discussed in this part together. First openness in software,

open-source software, closed-source software, proprietary software and other related

issues are discussed based on the literature and then software extension mechanisms are

presented.

To clarify the meaning of the openness, Maxwell in his article starts with this question

that what is the technical and philosophical meaning of openness? He answers that many

definitions are possible and it is not simple to say a work or process is open or closed. He

compares the openness concept to a spectrum and discusses if a person creates a work but

does not share it with anyone, the work is closed and on the other end of the spectrum are

works made available to and modifiable by all. Then he explains that most works stand

between two extremes (Maxwell, 2006). Brown and Booch use open term for further

phenomenon in software area by defining open software, open collaboration, open

process, open release, open deployment and open environment (Brown and Booch, 2002)

and in all of them, the openness should not be considered as a binary characteristic. West

in his article called “how open is open enough” expands the traditional open-close view

 13

to a more flexible range. He assigns proprietary, opening parts, partly open and open

source to the openness degree of a software platform. Proprietary platform consists of an

architectural standards controlled by one or more sponsoring firms where architectural

standards typically encompass a processor, operating system (OS), and associated

peripherals. In opening parts platforms, suppliers wave control of commodity layers of

the platform, while retain full control of other layers that presumably provide greater

opportunities for differentiation. In partly open platforms, suppliers disclose technology

under such restrictions that it provides value to customers while making it difficult for it

to be directly employed by competitors. Open source platforms are those that the ability

to create and modify software products is governed by the access to the source code

(West, 2003). Asplaugh et al. in their research mention several software elements

included in common software architectures that affect the openness of architecture. The

elements are software source code components, executable components, application

program interfaces (APIs) and configured system or sub-system architectures (Asplaugh

et al., 2009). The ways that architectural elements of a software system affect the

openness of the system are being expressed as software extension mechanisms and

approaches. Klatt defines software extension mechanism based on extension points. An

extension point is the definition of the provided interface for extensions. An extension

itself is an implementation according to an extension point. And an extension mechanism

includes everything about an explicit extensible part of a software” (Klatt, 2008). Jansen

et al. mention several mechanisms in their article that extend software functionality. The

mechanisms are component calls, service calls, source code inclusion, and shared data

objects (Jansen et al., 2008). To analysis more specifically the extension in mobile

software platforms, a discussion of extension mechanisms on operating systems is needed

since software platforms on mobile devices are expressed as operating system of the

devices (Verkasalo, 2009). Alexandrov et al. present different approaches for extending

the operating system. The ways they have mentioned are extension or modification of

different levels of an operating system from the lower levels to the higher levels. The

approaches are changing operating system (kernel) itself, modifying device drivers,

installing a network server, adding user level Plug-Ins, making changes to user level

libraries, applications specific modifications and intercept system calls (Alexandrov et

al., 1997). Their point of view about extension approaches is employed to develop the

architectural openness model for this research and is discussed in the following chapters.

 14

4.2. Mobile Software Platforms and their Architecture

In the last decade, mobile phones have become programmable handheld computers

which have internet connectivity, computing power and open application

programming interfaces (APIs) providing prospective platforms for an infinite set of

new mobile services and applications (Verkasalo, 2009). The new mobile phones which

are usually called smartphones have both hardware and software parts the same as all

computing systems. The software part is called mobile software platform. Some authors

like Verkasalo use software platform as a synonym to operating system of mobile devices

(ibid). Some others like Cho and Jeon believe that software platform of a system means

the overall structure of the software on the system and operating system is a part of it

(Cho and Jeon, 2007). Cho and Jeon consider a layered architecture for the software

platform of typical mobile devices consists of operating system layer, middleware layer

and applications layer (ibid). Layered architecture is an architectural pattern helps to

structure systems that can be decomposed into groups of subtasks in which each group of

subtasks is at a particular level of abstraction (Buschmann et al., 1996). The software

platform of mobile devices is such a system, therefore the layered architecture is

applicable to the architecture of mobile software platforms. The suggested model for

architecture of mobile software platforms for this research is the same as proposed

architecture by Cho and Jeon with some modifications. In their model, they have not

separated the default applications which are set by device manufacturer from applications

developed by third-party community and installed by users. Since third-party

applications have a main role in defining the openness of a platform, the proposed model

for this research has two different sub-layers in the applications layer: native applications

and extended applications. Native applications are those developed by device

manufacturers and in some platforms are not modifiable. Extended applications are those

developed by application developers and installed by device users, so these applications

extend the applications layer of the platform. Middleware layer consists of main libraries

and services of the platform like data storage, virtual machine, multimedia libraries, etc.

When application developers create extended application, they usually call this layer in

their applications instead of calling the core libraries of the platform. The kernel layer,

which in Cho and Jeon’s model is called operating system layer, is the core the platform.

It consists of the lower level components of the platform such as device drivers, power

 15

management framework, security framework, etc. Figure 3 shows the proposed

architecture for mobile software platforms.

Figure 3. Architecture of Mobile Software Platforms

The architecture of main mobile platforms include Android, iPhone, Symbian,

Blackberry and Windows Mobile is looked by the lens of this architecture and the results

are presented in the following parts. In the next section, the architectural openness model

which is built based on the proposed architecture is discussed.

4.3. Architectural Openness Model and Openness Factors for Mobile

Software Platforms

As presented in the previous part, a mobile software platform like other software systems

has an architecture which is the structure of the platform. A proposed mobile software

architecture that is a general model and can be applied to different mobile platforms was

shown. To discuss the openness strategy of mobile platforms based on their architecture,

the proposed model is not sufficient and it should be expanded to an “architectural

openness model” to demonstrate platform extension mechanisms and platform

accessibility since these notions have a connection with the openness concept as

discussed before.

The architectural openness model to accommodate the platform accessibility and

platform extension methods and in a higher view the platform openness, should illustrate

how much and under which conditions the platform extenders (application developers,

device makers, customers…) can access to different layers and components of the

 16

platform and extend its functionality. Two online resources of Google Android have used

and defined integrate, extend and modify concepts to clarify the openness notion in the

architecture of Android platforms (Chen, 2008 and Live from Google I/O – Android,

2008). Sim et al. mention similar meanings when consider integration and customization

as issues in mobile operating systems (Sim et al., 2006). To expand the “mobile software

architecture” presented in the previous part to “architectural openness model”, the same

terms and definitions are used here:

Integrate a layer: To use the existing components of a layer in a mobile application via

API, Service Call, source code inclusion, shared data object and other software

extensions mechanisms.

Extend a layer: To enhance the functionality of the components of a layer. The

application uses the built-in Google map application and adds its own functionality on

top of Maps is an example.

Modify a layer: To replace or change the components of a layer. Writing your own

device driver is an example.

The architectural openness model to support the openness strategy in mobile software

platforms is illustrated in the Figure 4.

Figure 4. Architectural Openness Model for Mobile Software Platforms

Although the model shows the platform access and extension methods in different levels,

but to demonstrate the openness degree of a platform, licensing aspects of mobile

platforms should also be considered. Different mobile platforms have various licensing

considerations. Besides the possibility to integrate, extend or modify the components of a

platform, the permission of these activities depends on the platform supplier’s licensing

policy. In some platforms you do not need any permission to extend the platform whereas

 17

in others you need to submit the change to the platform supplier first and if they accept,

the changes will be confirmed.

Based on the proposed architectural openness model and possible states of licensing, the

following table shows the architectural openness factors for mobile software platforms.

Applying this table to a particular mobile platform, the result for instance for middleware

layer of the platform can be like this: Integrate the components of the layer is allowed and

doesn’t need any permission. Extend the components of the layer is allowed but needs

permission from the platform supplier. And modify the layer is allowed only for some

components and needs permission.

Table 2. Architectural openness factors for mobile software platforms

Layer Factor Possibility statuses If possible�Licensing statuses

Extended

applications

Integrate extended applications

Possible/ Possible for

some components/ Not

possible

Permission is not needed/ In

some situation permission is

needed/ Permission is always

needed

Extend extended applications

Modify extended applications

Native

applications

Integrate native applications

Extend native applications

Modify extended applications

Middleware

Integrate middleware

Extend middleware

Modify middleware

Kernel

Integrate kernel

Extend kernel

Modify kernel

These factors and their statuses provide a continuum to determine how much a platform

is open based on the architecture of the platform. A platform is considered entirely open

if in all the architectural layers of the platform integrate, extend and modify the

components are possible without any permission from the platform supplier. On the other

end, a platform is totally closed if within all layers of the platform integrate, extend or

modify the components are not possible. Other platforms are situated between these two

boundaries. In the following part, the situation of five main mobile platforms being

Android, iPhone, Symbian, Blackberry and Windows Mobile in the openness continuum

based on the architectural openness model and the openness factors is discussed.

4.4. Openness in Main Mobile Platforms

In this section, based on the architectural openness factors presented in the previous part,

the openness strategy in five main mobile platforms being Android, iPhone, Symbian,

Windows Mobile and Blackberry is discussed. In the section of each platform before

 18

arguing about the architecture and openness of the platform, an introduction about the

platform, its history and current situation is presented.

4.4.1. Android

Introduction: In November 2007, Google formed a group of mobile and technology

companies called The Open Handset Alliance. The aim of this conglomerate is improving

mobile phones to change the mobile experience for customers by increasing the openness

in the mobile ecosystem. Their first joint project is Android which has been released

officially on October 2008 (Open Handset Alliance, 2007). Android is a Linux-based OS

that's geared to run on lightweight devices like mobile phones (Childers, 2009) and has

recently launched on TVs (Fleming, 2010). At the time of releasing the platform, Android

Market was also made available to users as a store where developers can publish and

distribute their applications to users of Android-compatible phones for free (Android

Market, 2008).According to Canalys research, the proportion of smart phones running

Android OS in 2009 was almost 5% only after less than two years of releasing (Canalys

research, 2010).

Architecture: Software architecture of Android platform is a layered architecture

described in the official website of the platform (What Is Android?, 2010). Looking at the

architecture through the “architectural openness model” lens, the result will look like

Figure 5. In the application layer, there are some native applications including an email

client, SMS program, calendar, maps, browser, etc which are written in Java (ibid).

Developers can extend this layer by adding their own applications. In the middleware

layer an application framework, a virtual machine and several libraries are provided to

offer developers the ability to build rich and innovative applications (ibid). Kernel of

Android is built on the Linux kernel, but does not include the full set of standard Linux

utilities. It relies on Linux for core system services such as process management, memory

management, security, etc (ibid).

Openness Factors: When Android was released, one of its major architectural goals was

to allow applications to reuse components from one another. This reuse applies to

services, data and UI. As a result, the Android Platform has some architectural features

that keep this openness a reality (Hashimi and Komatineni, 2009). To see how open the

Android architecture is, the openness factors presented in the section 4.3 are discussed for

Android as follows:

 19

Applications: According to the official website of Android, “any application can publish

its capabilities and any other application may then make use of those capabilities (subject

to security constraints enforced by the framework). This same mechanism allows

components to be replaced by the user” (What Is Android?, 2010). It means that all

integrate, extend and modify factors are supported by the platform for any application

including native and extended one.

Middleware: Since all source code of Android platform is officially available, and all

components of the platform can be called through APIs, therefore middleware layer of

Android as a part of the whole platform is allowed to be used by developers. So integrate

factor is supported for this layer. In the official documents of Android, there is no

statement about the possibility of extend and modify factors for the middleware layer in

general. But there are some examples show at least some components of this layer are

customizable. For instance in Dalvik, which is the virtual machine of Android “it is

possible to customize the set of optimized instructions for your platform” (Dalvik, 2010).

To see how much other services and libraries of this layer such as windows manager or

media framework are open to be extended or modified by developers there is lack of

literature. So it is evaluated via an interview with an Android developer and the results

are presented in the section 4.5.

Kernel: The same as other parts of the platform, Android kernel can be integrated directly

in developer’s application via APIs. After building default kernel, developers can begin

to modify some components of the kernel such as device drivers to be compatible with

their target devices. They can write their own drivers or customize the default drivers

(Bring Up, 2010). So it means device drivers of this layer are allowed to be integrated,

extended and modified. But it is not true about whole the layer. Power management is an

example. “User space native libraries … should never call into Android Power

Management directly. … Bypassing the power management policy in the Android

runtime will destabilize the system. All calls into Power Management should go through

the Android runtime PowerManager APIs” (Android Power Management, 2010). So it

means power management can be just integrated and is not accessible for developers and

users to be extended or modified. Conclusion is that kernel layer is totally allowed to be

integrated by developers and partly allowed to be extended and modified.

Licensing status: Although “developers do not need permission to ship an application”

(Chen, 2008) but to identify the author of applications, all Android applications must be

 20

digitally signed with a certificate whose private key is held by the application’s

developer. This certificate establishes trust relationships between applications and is not

used to control which application the user can install. It does not need to be signed by a

certificate authority and Android developers can use self-signed certificates (Signing

Your Application, 2010). As a conclusion, in the application layer of Android including

native and extended applications integrate, extend and modify the components are

allowed without permission but any change needs to be digitally signed before installing

on the platform. It is not defined in the documents of the platform whether a person needs

to sign the change of components in the middleware or kernel layer for his personal

purpose not for using in an application. This question is answered via interview and

presented in section 4.5. Figure 5 shows the architectural openness model in Android

based on the results of this study.

Applications

Middleware

Kernel

Extended ApplicationsNative Applications

Home Contacts Phone Browser... App1 App2 App3 AppN...

Application Framework

Libraries Android Runtime

Activity

Manager

Windows

Manager
Content

ProvidersPackage

Manager

Telephony

Manager

Resource

Manager
View System

Location

Manager

Notification

Manager

Device Drivers (Display,

Camera, IPC, Flash

Memory, Audio, WiFi,

Keypad…)

Power

Management

Surface

Manager

Media

Framework
SQLite OpenGL | ES

FreeType WebKit SGL SSL

Core Libraries

Dalvik Virtual

Machine

Integrate

Extend

Modify

Integrate

Extend

Modify

Integrate

Extend

Modify

Integrate

Extend

Modify

Security
Memory

Management
...

Possible / Permission is not needed

Possible for some components / Permission is not needed

Possible / In some situation permission is needed

Possible for some components / In some situation permission is needed

Figure 5. Architectural Openness Model in Android

4.4.2. iPhone

Introduction: In January of 2007, Apple announced iPhone at the MacWorld expo in

San Francisco (Hall and Anderson, 2009). iPhone was created to be the operating system

at the heart of iPhone smartphones and iPod touch devices and recently has been

 21

launched on iPad tablet computers (Smith and Evans, 2010). The iPhone OS platform

was built on Mac OS X. Despite its similarity to Mac OS X, there are some technologies

available only on iPhone OS such as Multi-Touch interface (iPhone OS Overview, 2009).

In July 2008, Apple launched its iPhone App Store as a marketplace for third-party

developers to sell iPhone applications or offer them for free (Medford, 2008). According

to Canalys research, in 2009 just two years after iPhone’s unveiling, its share in the

smartphone market was about 15% more than Windows Mobile share (Canalys research,

2010).

Architecture: iPhone software platform is built on a layered architecture described in the

official website of Apple (iPhone OS Technology Overview, 2009). The architecture in

the view of “architectural openness model” looks like Figure 6. In the application layer,

there are some native applications such as calendar, photos, compass, etc settled by the

platform supplier. Customers can install extended applications that are written by third-

party developers and confirmed by platform supplier. In the middleware layer of iPhone,

there are three sub-layers: Cocoa Touch, Media and Core Services (ibid). Cocoa Touch

layer consists the key frameworks that provide infrastructure developers need to

implement applications. The platform supplier advises developers to always start with

this layer and drop-down to lower layers only as needed. In the Media layer there are

graphic, audio and video frameworks for creating multimedia applications. Core Services

layer provides the fundamental system services that all applications use either directly or

indirectly via high-level frameworks. Address Book Framework, Core Data Framework,

SQLite Library and Core Location Framework are some of the components of this layer.

One layer downer than middleware layer is kernel layer of Core OS of iPhone, which acts

as an intermediary between the iPhone hardware, and the higher level layers of the

platform. It compromises Device Drivers, Security Framework, Accessory Framework,

etc (ibid).

Openness Factors: The iPhone is a proprietary smartphone running a proprietary OS

meaning Apple has the full control on its software and does not license iPhone OS to

other device manufacturers. “Apple uses its OS to gain control over its product, and it

sees iPhone and iPhone OS as a package in the smartphone competition” (Lin and Ye,

2009). In the following parts, the openness factors are discussed for the iPhone to see

how much open its architecture is in more details.

 22

Extended Applications: The iPhone software development kit (SDK) supports the

creation of foreground applications that appear on the device’s Home screen (iPhone OS

Technology Overview, 2009) It means adding applications written by developers to the

platform or in other words extending the “extended applications” layer is allowed. About

integrating or modifying these applications the documents of the platform have not

presented an explicit statement and it is evaluated via interviews presented in section 4.5.

Native Applications: The iPhone does not support the creation of background

applications (ibid). It means that developers are not allowed to extend or modify the

native applications. About integrating these applications there is no clear statement in the

documents of platform and it is also evaluated via interviews.

Middleware: The same as the native applications, modifying the components of

middleware layer is not supported by the iPhone. But developers can integrate the

components of this layer by linking the code of the component statically in their

application’s executable files when building their project (ibid). About extending this

layer the documents of iPhone do not present a clear statement and it is evaluated via

interviews.

Kernel: Although the iPhone has suggested developers to use high-level frameworks over

low-level frameworks, “the lower-level frameworks are still available for developers who

prefer using them or who want to use aspects of those frameworks that are not exposed at

the higher level. … iPhone OS provides a set of interfaces for accessing many low-level

features of the operating system” (ibid). The term “many” means developers can not

integrate all components of this layer in their applications and due to security purposes,

“access to the kernel and drivers is restricted to a limited set of system frameworks and

applications” (ibid). About extending or modifying the components of this layer there is

lack of documentation. So it is evaluated by interviews as well.

Licensing status: All Applications must be signed with a certificate in order to be

installed on registered devices. If a developer makes any changes to an application after

submission to Apple, he must resubmit the application to Apple. After submission or

resubmission of an application, it might be selected and digitally signed for distribution

via the App Store or be determined that does not meet all or any part of the

documentation or program requirements, or in the third case be rejected for distribution

for any reason even if it meets the requirements (iPhone Developer Program License

Agreement, 2009). An example for rejecting an application by Apple is calling a private

 23

API in the application. “Private APIs refer to frameworks that are not accessible by

Xcode” (Sadun, 2008). Xcode is an integrated development environment (IDE) provided

by Apple. So as a conclusion, the licensing status of iPhone is very restricted and

therefore if integrate, extend or modify of any of the platform layers is allowed, should be

controlled and certificated before distributing.

Applications

Middleware

Kernel (Core OS)

Extended ApplicationsNative Applications

App 1 App 2 App 3 App N...

Integrate

Extend

Modify

Integrate

Extend

Modify

Integrate

Extend

Modify

Integrate

Extend

Modify
...

App 1 App 2 App 3 App M...

Core Services

Drivers Security Framework CFNetwork
Accessory

Framework
...

Address Book
Core Data

Framework

Core Location

Framework
SQLite

Core Foundation

Framework
...

In App Email
Map Kit

Framework

Address Book

UI Framework

UIKit

Framework

Apple Push

Notification Service
...

Cocoa Touch

Graphics Framework Audio Framework Video Framework

Media

Possible / Permission is always needed

Possible for some components / Permission is always needed

Not possible

Figure 6. Architectural Openness Model in iPhone

4.4.3. Symbian

Introduction: Symbian OS is still at the highest position in the worldwide smartphone

market (Canalys research, 2010). Its creator is Symbian Limited founded in 1998 by

Ericsson, Nokia, Motorola and Psion. But in 2008, Nokia acquired all the remaining

shares of Symbian Limited (Lin and Ye, 2009). Cho and Jeon in 2007 before releasing

the Android believed that Symbain software platform is more open than other existing

mobile software platforms (Cho and Jeon, 2007). After releasing the Android, Nokia

wanted to compete with it in the openness degree (Hall and Anderson, 2009), therefore

has formed Symbian Foundation in 2008. “One of the goals of the Symbian Foundation

was to make the source code for the entire Symbian platform available to everyone, free

of charge” (Symbian is Open Source, 2010). This goal has been reached on February

 24

2010 by completion of releasing the entire platform as open source under Eclipse Public

License (Symbian Foundation, 2010). The same as Android and despite iPhone, any

device manufacturer can launch Symbian on its devices.

Architecture: Symbian is a layered software platform. According to the official website

of Symbian, there are currently three layers within the main platform and 158 packages

within the layers. The layers are application layer, middleware layer and OS layer

(Symbian System Model, 2010). All 158 packages within three layers are represented in

the official website of Symbian developer community (Symbian Foundation System

Model, 2009). Each package has its specific owner which is responsible for the quality of

the package and releasing the package to the Symbian Foundation source code

(Foundation Builds, 2010). The three layers are similar to layers described in the

architectural openness model. The result of looking at the platform by the architectural

openness model is shown in Figure 7. In the native applications sub-layer there are the

applications available as part of the Symbian platform, such as the organizer application

suite, multimedia applications, telephony and IP applications, and applications for

controlling device settings and so on (Symbian Foundation System Model, 2009). Within

the extended applications sub-layer the users can install applications developed by third-

party community. The middleware layer represents the functionality that is independent

of applications. It provides services to applications and other higher-level programs by

application programming interfaces (API). Services and frameworks in this layer can be

specific application technology such as multimedia, or more general device services such

as web services, security, IP services and so on. Finally the kernel layer includes the

hardware adaptation layer (HAL) required to support a specific hardware platform and

the Symbian kernel including physical and logical device drivers (ibid). There is also

another layer called hardware adaptation which is outside the platform but depends on

kernel layer (Software Structuring Principle, 2010).

Openness Factors: Before launching the Symbian Foundation, Symbian OS was not

open source and only the licensees of the OS could get the source code (Sukanen, 2004).

In that time the Symbian OS offered programming interfaces for developers to access

different subsystems of the device (Sonera MediaLab, 2003) and it means, only the

integration of components of the platform was allowed. After launching Symbian

Foundation and therefore releasing the source code of the platform, the openness degree

of the platform has been risen up and due to the claim of the official website of the

Foundation the Symbian platform is now a free open-source software platform for mobile

 25

devices. From the third Symbian platform release (Symbian^3) onwards developers can

get any of the source, modify it, and contribute back the changes (Platform Opening/Get

Started, 2010). To find out more about the current situation of openness in the platform,

the openness factors for Symbian should be discussed for all three layers of the platform.

Extended applications, native applications, middleware, and kernel: The documents

claim that you can download the whole source code of the platform or any individual

package, and rebuild the platform or packages. Even in the kernel layer, there are some

samples that show when a developer wants to build a package, he should implement

some classes which are an abstract class. One example is the “power controller” class in

“power management” framework inside the kernel layer of the platform (Symbian Power

Manegement, 2010). It means that integrate, extend and modify of all three layers in the

Symbian platform are allowed. To validate this statement a qualitative interview is

conducted with a Symbian application developer and the results are presented in the

section 4.5. The licensing status of the platform is presented concretely in the documents

and discussed as follows.

Licensing status: “Source code is the life-blood of the Symbian platform, so we love

source code contributions. We'd like to give everyone the freedom to check-in source

code, but to ensure that the Symbian platform continues to be great for a long time in the

future and to make sure we make best use of our valuable community, some checks and

balances are required” (Contribution Process, 2010). This statement from the official

website of the Symbian Foundation shows that the developers and users of the platform

are free to do change in the source code of the platform but under some conditions and

controls which are set by the platform supplier. They have categorized the contributions

and the source code solutions to four types based on the size and complexity of the

solutions. The categories are fix a defect, enhance the platform by a minor change, extend

the source code by a major modification and invent a community based project on the

platform. More complexity level of the contribution leads to additional process of

controlling and therefore longer control time (ibid). It means that although the platform is

an open source mobile platform, but control and licensing issues are restricted by the

platform supplier.

 26

Figure 7. Architectural Openness Model in Symbian

4.4.4. Blackberry

Introduction:

“In 1999, Research In Motion (RIM) introduced the Blackberry which started as a simple

two-way pager, but quickly became one of the most widespread of mobile computing

devices … The device became so widely adopted, that PC magazine ranked it the 14th

most important gadget invented in the past 50 years” (Hall and Anderson). Blackberry’s

share in the smartphone market in 2009 was almost 21% (Canalys research, 2010). The

same as iPhone for Apple, Blackberry OS is also a proprietary OS for Blackberry phone

devices and RIM does not not give license to any other device manufacturer to use the

OS on their phone device. Blackberry App World is the official store for Blackberry

applications which is governed by RIM.

Architecture:

There is no significant information about the structure of the platform in either in

literature or in official documents of the platform. So the architecture of the platform is

get from the interview with a Blackberry application developer. The same as other mobile

platforms, Blackberry software platform has a layered architecture. In native applications

layer, there are default applications set by RIM such as email, calendar, contacts, maps,

browser, etc. The platform is open for users to install extended applications which are

developed by third-party developers. In the middleware layer there are libraries and

services developers can integrate them in their applications such as Java Virtual Machine.

 27

Finally in the kernel layer there are core services like device drivers which are only

accessible for middleware components.

Openness Factors:

Openness strategy of the platform is not discussed clearly in the documents of the

platform. So the results for this part is gained from interview and presented in the

interview section. Figure 8 demonstrates the architectural openness model of the platform

based on the explanations about the architecture of the platform and the results of the

interview.

Figure 8. Architectural Openness Model in Blackberry

4.4.5. Windows Mobile

Introduction: Around the same time the Blackberry was gaining traction, Microsoft

released its first OS targeted at the mobile device market (Hall and Anderson, 2009).

Microsoft licenses Windows Mobile to any mobile phone maker who is interested in

launching Windows Mobile on its device (Lin and Ye, 2009), therefore it is not a

proprietary OS. The first version of the OS was under the name Pocket PC 2000 and

current name of the OS which is planned to be released after Windows Mobile 6.5.5 and

has been announced in February 2010 is Windows Phone 7 (Koh, 2010). The same as

other main platforms, users can install applications of third-party on the Windows

Mobile. Applications can be purchased from the Windows Marketplace for Mobile. For

Windows Phone OS, Marketplace will be the only way to get applications (Patel, 2010).

 28

According to Canalys research, Windows Mobile share in smartphone market is still

decreasing and is almost 9% in the latest report (Canalys research, 2010).

Architecture:

Operating system of Windows Mobile is built based on Windows CE which is an

operating system developed by Microsoft handheld computers and embedded systems. So

the architecture of Windows Mobile is the same as Windows CE which according to the

official website of the platform is a layered architecture includes application layer,

operating system layer and OEM layer (Windows CE Architecture, 2010). The result of

looking at the architecture of the platform by the architectural openness model is shown

in Figure 9. In the native applications layers there are default applications set by

Microsoft such as internet client services and user interfaces. Middleware layer includes

core DLL, object store, multimedia technologies, etc. Kernel layer includes OEM

adaptation layer (OAL), device drivers, boot loader, etc (ibid).

Openness Factors:

There same limitation in documentation of Blackberry is observed in Windows Mobile

platform and there is not explicit statement to discuss the openness degree of different

layers of the platform. However, there is some explanation in the documents of the

Windows CE platform shows to some extend the platform is open for developers and

device manufacturers to customize the operating system. For instance, platform builder is

a tool introduced in the Microsoft development guide for customizing the Microsoft

Windows CE (Platform Development, 2010). It seems that device manufactures and

developers can modify, extend or completely replace various elements of Windows CE

(ibid) but it is not determined whether the same openness is considered for Windows

Mobile or not. So the openness degree of each layer of Windows Mobile platform is

validated by a qualitative interview. Figure 9 is created based on the results of the

interview.

 29

Figure 9. Architectural Openness Model in Windows Mobile

4.5. Qualitative Interviews Results

The aim of architectural openness model and factors is identification of accessibility in

different architectural layers of a mobile platform from the highest level (application

layer) to the lowest level (kernel layer) and also finding out the licensing aspects of

platforms. The goal of interviews with application developers of main mobile platforms

is confirming this identification based on developers’ experiences. The following results

are gained from the interviews.

4.5.1. Relationship of Openness in a Mobile Platform with Architectural and

Licensing Aspects of the Platform

All of the interviewees believe that architectural and licensing aspects of a mobile

platform affects its openness degree. One of them counts the programming language, the

way libraries of a platform work, if the frameworks are object oriented or not and the

SDKs provided to extend the platform as the architectural aspects of the platform and

believes that “a lot of openness depends on the architecture”. Another interviewee thinks

that if the architecture of a platform is messy it will be hard to make it open and on the

other hand, if the architecture is modular and has layers and subsystems then it will be

easy to open it up. In their point of view, the licensing aspects also affect the openness of

 30

a platform since to access the different layers of the architecture of a layer or to modify

the components of a platform you need to have a license.

But in their opinion, the architectural and licensing aspects are not the only parameters

that affect the openness degree of a platform. “You can do a lot with architecture to open

a platform but it is not the only aspect”, one of the developers believes. He explains that

the available samples and examples for developers, the provided community and the

platform documentation are some other aspects that affect the openness of a platform.

4.5.2. Importance of Openness in a Mobile Platform for Developers

Overall, for most of interviewees the openness degree of a mobile platform is not such

important and they care less about the openness of a platform. Since they are commercial

developers, for choosing a platform the financial aspects of the platform is more

important and determinant for them. One of them believes that managers should more

care about openness and they should be aware what is allowed to do and what is not

allowed. Another explains that if a platform is open enough to make a lot of money for

him, then the platform is interesting for him.

Nevertheless, openness in higher levels of a mobile platform is a considerable aspect for

interviewees. For example, although Apple has supported some APIs in the kernel layer

of the iPhone and RIM has not supported any API in the kernel layer of the Blackberry,

one of the interviewees considers the Blackberry more open than the iPhone, because

native applications in the Blackberry are allowed to integrate but in the iPhone are not.

All of the interviewees are more confident about the openness degree of higher layers in

their favorite platform than the lower layers. They are not sure about kernel layer and

most of them about middleware layer because they have not tried to integrate, extend or

modify components of these layers. One of them explains that “the middleware you want

to integrate is huge, so … you as a business developer do not care about extending or

modifying it”. Most of them believe that even if a platform opens up its middleware or

kernel layer, the people who benefit from the openness of the platform and are interested

to access or modify the components of the lower layers are device manufacturers not

application developers. All of the interviewees are almost satisfied by current openness

degree of their favorite platforms and just one of them would like to see a small part of

his favorite platform to see opened up which is Wi-Fi library in Blackberry.

 31

4.5.3. Openness in Main Mobile Platforms

Openness in Android: For the Android, as mentioned before, an Android developer who

could be contacted via a qualitative interview was not available. So the results are gained

from online discussion and also some interviewees who have some experiences about

Android.

Although it is difficult to commit modifying of lower layers of the platform as Google

controls it closely, but it is possible for a developer to code in any of the layers, one of

the Android developers explains online. He clarifies more his opinion about openness in

Android by separating the situation in theory and in reality based on his experience: “In

theory, Android is open source. If a developer wanted to make changes to something in

the Kernel, they could submit it to Google who manages the project, and Google would

approve the change, and allow it into the framework. In practice, I think it is difficult for

anyone outside of Google to get changes into the core of the framework”. He explains

that for instance replacing the Dalvik Virtual Machine would be difficult, as it is the core

of the middleware framework. But another interviewee who is mainly a Blackberry

developer but has some experiences in Android thinks that developers can replace Dalvik

Virtual Machine or SQLite library by their own libraries. All of them believe that even if

in practice Android is totally open and everyone can modify the source, but this openness

makes sense for device manufacturers not commercial developers.

Figure 5 shows the architectural openness in Android which is acquired from literature

and documentation of the platform and online discussion.

Openness in iPhone: In general, Apple has published some public APIs for the iPhone

that are the access points of the platform and developers can integrate them in their

applications, as the iPhone application developer explains. There are also some private

APIs which, if developers use them in their applications, the applications will be rejected

when developers want to publish them on AppStore.

To discuss specifically about accessibility of each of architectural layers of the platform,

the interviewee explains each layer according to his experiences. “So for really small and

specific parts of native application you can integrate them and I would not say you can

integrate native applications” (or you can integrate just 5 or 10 percent of them such as

AppStore application). “You cannot extend the native applications and add functionality

to them”. About extended applications, depends on how they operate, developers can

integrate them into their applications. “For example you can open a twitter application on

 32

the phone and send a message to twitter from your application”. They might be some

open source applications on AppStore which developers can get them, integrate them in

their applications, extend or modify them and submit them again into AppStore. One

example is a framework which Facebook application uses it and is an open source

framework. In the middleware “often you would be able to extend the components of this

layer”. Although you do not have the source of the APIs but you can add category of

methods to the classes and subclass everything you want to. “Then you can recompile it,

use it in your application and submit it to AppStore without any problem … There are

some exceptions that you should not do this or better not to do this”. The components of

this layer are not modifiable and developers cannot change them. And finally in the

kernel, developers can integrate the components of the layer, but it is less important for

developers and they less often use this layer. It is hard to extend this layer because it is

written in C language. But still there are some components although it is hard to extend,

but developers can add new functions to them. For instance the core foundation network

library which is used to get data from URLs, developers can extend it and put a layer on

top. The same as middleware layer the components of this layer are not possible to be

modified. As a conclusion, the interviewee believes that developers and users are not

allowed to extend or modify the native applications, or modify the middleware and kernel

layer. They are allowed to integrate and extend all of the components of the middleware

and integrate all of the components of the kernel layer and extend most of the

components of this layer. And about extended applications everything depends on the

application.

To discuss more about the openness degree of the iPhone, the interviewee also describes

the licensing status of the platform. He explains that “when you want to publicize an

application, Apple will do a quality testing, to make sure it does not crash, does not use

internet connection gracefully, you do not use anything there is copyright on, and on

more technical phase, to check if you have used APIs that have make public and

documented. ... If you use an API which is not documented your app will be rejected. So

you know it and you do not want to get permission”.

Figure 6 shows the architectural openness in the iPhone which is gained from literature

and confirmed by the interview.

Openness in Symbian: The interviewee of Symbian part which is a Symbian application

developer explains about openness degree of the platform by describing the accessibility

 33

of each layer. Extended applications seem to be like iPhone and access to them depends

on the way the applications support. “If other applications support an open architecture,

you can use them”. He believes that extend or modify them is almost impossible. In

native applications, those applications that have API, developers can integrate them.

Contacts application is one of them but all of the applications of this layer do not have

API and it is confined to some of them. He thinks that although Symbian Foundation has

released the whole source code of the platform, but “if you get the source code of the

applications from Symbian foundation, modify them and submit them to the platform,

they will be rejected”. So in his point of view native applications are only possible to be

integrated, not extended or modified. In the middleware layer, “everything which is

documented and has public API you can integrate”. The interviewee has not used all of

the components of this layer but he thinks developers can extend and subclass most of the

components and modifying is almost not allowed. About kernel layer, he also thinks

although it is open but only manufacturers benefit from this openness and “integrate,

extend or modify this layer is pointless for developers”. The reason is that “if you as a

commercial developer change a component of the kernel and use the new component in

your application, then all of the people who want to use your application should have

your new version of the kernel on their phone and it is not possible”. He also mentions

another reason for willingness of developers to extend or modify the middleware or

kernel of the platform. He explains that with use of engines, developers can have their

own for example middleware and integrate it to their application, but since middleware of

Symbian works better so developers are not interested to change the middleware or

kernel of the platform. He concludes that regarding to releasing the source code of the

platform by Symbian Foundation, “you as a person who is interested, can change most of

the components of the phone for yourself, but it does not have sense for commercial

developers. It is more interesting for phone manufactures”.

The interviewee also explains the licensing status of the platform. “If you want to publish

your application you need to submit it to the platform and sign your application. The sign

process is easy. You can do it on Symbian website. Symbian will check technical aspects

to see if you have used API properly”. If a device user install an application which is not

signed, every time the application wants to use an API of the platform the user should

confirm that it is true and application is allowed to use the API. Besides this reason, other

 34

developers can steal an application which is not signed. So developers sign their

applications in Symbian.

As a summary, Figure 7 shows the architectural openness in Symbian which is figured

out from literature and confirmed by the interview.

Openness in Blackberry: The Blackberry application developer who is the interviewee

for Blackberry part initializes the discussion by a general statement: “About blackberry,

if my boss comes to my desk and says would it be nice if we have stuff like x, y or z in

the application, I will probably say sure no problem then I will find APIs … and then I

can just develop stuffs that I would want to do”. He adds that there is one exception, “Wi-

Fi access point is not available in library”.

Then he goes further through different layers of the application from the lowest one to the

highest. “In Blackberry you cannot do anything with Kernel layer and everything which

is provided in kernel is abstracted for used by Middleware layer”. He believes that as a

business developer nobody cares about kernel because every service a developer needs is

supported by middleware. The middleware which is possible to be integrated is huge, and

again he believes that nobody care about extending or modifying it. In native

applications, there are pretty much applications which have API and developers can

integrate them such as map application. Developers cannot extend or modify native

applications since there is no source code of them, but it is possible to extend or modify

their appearance via the user interface. About extended application the story is the same

as other platforms. If the application is open source or supports an API, developers can

integrate or modify it. He believes that there is some open source stuff in application

store but not a lot of them.

Finally he explains about licensing situation of the platform. A user can install an

unsigned application on Blackberry. “But if the application uses protected features such

as Location or Radio Access it needs to be signed”. Since it is hard for a developer to just

use unrestricted APIs, usually they need to sign their applications. Figure 8 demonstrates

the architectural openness in Blackberry platform, which is gained from literature and

confirmed by the interview.

Openness in Windows Mobile: In case of Windows Mobile also, the interviewee who is

a Windows Mobile application developer explains about the openness degree of the

platform by describing the accessibility of different layers of the platform. He starts to

 35

describe the layers from the lowest one to the highest: “You can create your own driver. I

do not have experience about other components of the kernel but I think you are not

allowed to modify power management and other components, but they have API and you

can only use them. You can extend some components of the middleware like GPS library,

but you cannot modify them. You cannot integrate or extend or modify the native

applications in Windows Mobile. For extended applications, if developers support the

source code or the API you can extend, integrate or modify the application but usually it

does not happen”. He also mentions the licensing situation of the platform. “For some

mobile devices you need to sign the applications and for some you do not need”. If a

developer wants his application to be signed or certified by Microsoft, he would have to

explain why he is change or extending some. If integrating, extending or modifying the

components is not done in a proper way, the application will be rejected. Figure 9 shows

the architectural openness in Windows Mobile, which is gained from documents and

literature and confirmed by the interview.

5. Analysis

The results of the research process show the different openness strategies in the main

platforms. According to literature and documents, the Android and Symbian platforms

are almost completely open since Google and Symbian Foundation have released the

whole source code of the platforms and device manufacturers, developers and users can

download the source code and do everything they want with the components of each

layer of the platforms. In this case even Symbian is more open since there is no limitation

set by Symbian Foundation about integrating, extending or modifying of any components

of the platform, where in the kernel layer of the Android some components, like power

management which users are only allowed to integrate it and not extend or modify. But

the situation in practice is different and the experiences of developers show that these two

platforms are not as open as they seem, since there are some controls governed by Google

and Symbian Foundation which do not allow commercial developers to make every

desired change to the platform and the target people of releasing the source code are

device manufacturers like HTC. In this case Android is more open since there is less

restriction set by Google for submitting an extension or modification of the platform.

However, even in practice Android and Symbian are the most open platforms among

current main mobile platforms, although they are not completely open. After these two

 36

platforms, Windows Mobile and Blackberry are situated near together. There are not

enough materials on the documentation of these platforms to discuss about accessibility

to different layers of the platforms, but according to the experiences of the developers,

Windows Mobile is more open than Blackberry since kernel layer in Blackberry is almost

close and users cannot access to it directly but in Windows Mobile users even can write

their own drivers for the device. But on the other hand native applications users can do

more with Blackberry than Windows Mobile. In Windows Mobile, even integrate the

native applications is not possible, but in Blackberry some native applications that have

APIs can be used by users. The licensing situation for both platforms is almost the same

and in both cases there is some situation that people can use unsigned applications. The

big difference here is that Windows Mobile can be installed on different devices, but

Blackberry is a proprietary software platform that is installed only on Blackberry devices.

So totally the conclusion is that Windows Mobile is more open than Blackberry. And

finally in the spectrum of openness, after these two platforms the iPhone is situated which

the least open platform among the main mobile platforms. Although developers can

integrate the kernel layer of the platform in their applications and in this sense it is more

open than Blackberry, but on the other hand developers can integrate several native

applications in the Blackberry which is almost not possible for any native applications of

the iPhone. So in the case of accessibility of architectural layers, Blackberry and iPhone

are situated nearly in the spectrum but the main thing that distinguish the iPhone from

Blackberry and brings it to the end of the spectrum is licensing situation which is

controlled for the iPhone and restriction set by Apple is much more than other platforms

since every application before submitting to the application store should be signed by

Apple and the process of quality testing of the application is strongly controlled. Table 3

summarizes the comparison of openness strategy in the main mobile platforms based on

the architectural aspects and licensing situation of the platforms.

 37

Table 3. Comparison of Openness Strategy in the Main Mobile Platforms

Platform Factor Possibility statuses If possible�Licensing statuses

Android

Integrate extended applications Possible for some components Permission is not needed

Extend extended applications Possible for some components Permission is not needed

Modify extended applications Possible for some components Permission is not needed

Integrate native applications Possible Permission is not needed

Extend native applications Possible Permission is not needed

Modify native applications Possible In some situation permission is needed

Integrate middleware Possible Permission is not needed

Extend middleware Possible Permission is not needed

Modify middleware Possible In some situation permission is needed

Integrate kernel Possible Permission is not needed

Extend kernel Possible for some components Permission is not needed

Modify kernel Possible for some components In some situation permission is needed

Symbian

Integrate extended applications Possible for some components In some situation permission is needed

Extend extended applications Possible for some components In some situation permission is needed

Modify extended applications Possible for some components In some situation permission is needed

Integrate native applications Possible for some components In some situation permission is needed

Extend native applications Possible In some situation permission is needed

Modify native applications Possible In some situation permission is needed

Integrate middleware Possible In some situation permission is needed

Extend middleware Possible In some situation permission is needed

Modify middleware Possible In some situation permission is needed

Integrate kernel Possible In some situation permission is needed

Extend kernel Possible In some situation permission is needed

Modify kernel Possible In some situation permission is needed

Windows

Mobile

Integrate extended applications Possible for some components In some situation permission is needed

Extend extended applications Possible for some components In some situation permission is needed

Modify extended applications Possible for some components In some situation permission is needed

Integrate native applications Not possible

Extend native applications Not possible

Modify native applications Not possible

Integrate middleware Possible In some situation permission is needed

Extend middleware Possible for some components In some situation permission is needed

Modify middleware Not possible

Integrate kernel Possible In some situation permission is needed

Extend kernel Possible for some components In some situation permission is needed

Modify kernel Possible for some components In some situation permission is needed

Blackberry

Integrate extended applications Possible for some components In some situation permission is needed

Extend extended applications Possible for some components In some situation permission is needed

Modify extended applications Possible for some components In some situation permission is needed

Integrate native applications Possible for some components In some situation permission is needed

Extend native applications Not possible

Modify native applications Not possible

Integrate middleware Possible In some situation permission is needed

Extend middleware Not possible

Modify middleware Not possible

Integrate kernel Not possible

Extend kernel Not possible

Modify kernel Not possible

iPhone

Integrate extended applications Possible for some components Permission is always needed

Extend extended applications Possible for some components Permission is always needed

Modify extended applications Possible for some components Permission is always needed

Integrate native applications Possible for some components Permission is always needed

Extend native applications Not possible

Modify native applications Not possible

Integrate middleware Possible Permission is always needed

Extend middleware Possible Permission is always needed

Modify middleware Not possible

Integrate kernel Possible Permission is always needed

Extend kernel Possible for some components Permission is always needed

Modify kernel Not possible

 38

This study has also some implicit results which are achieved from the interviews with

developers. The interviews show that most of developers, which are typically commercial

developers, do not care about architectural openness of a platform. For developers the

tools and languages are supported to develop applications, guides and documentation for

developing and financial aspects of the platforms are more considerable. When they want

to consider the architectural openness of a platform they more care about higher layers of

the platform. The reason is that first of all they think even if the platform is mostly open,

the lower layers provided by the platform supplier work well and they do not need to

spend time to extend or modify it. The second reason is that if they modify lower layers

such as components of the middleware or kernel, the application users need also to

change the middleware or kernel of their devices which is not a practical work. So in

their point of view increasing the openness of a platform and releasing the source code of

lower layers make sense for device manufacturers who want to customize the platform

for their own devices. This result brings some limitation for this study which is argued in

the discussion section.

6. Discussion

As previous sections show, the main result of this thesis is the identification of openness

degree in the main mobile platforms based on the architectural aspects and licensing

situation of the platform. This results are gathered by looking through the lens of

architectural openness model at the architecture of the platforms, which is typically a

layered architecture, and accessibility of each layer in the architecture. Licensing

situation is another important factor to determine the openness strategy of a platform that

is studied in the literature and added to the architectural aspects of the platform. All of

these results are confirmed by some interviews with developers of the platforms.

The first limitation of this research is realized in the literature review stage. As discussed

in related work part, although there is some literature compares most of studied mobile

platforms of this research together, even regarding the openness of the platforms, but

none of them discuss the openness strategy of the platforms based on technical aspects

such as architecture of the platforms or software access points of the platform. Even

literature about general software platforms do not discuss the openness of platforms

based on the architectural aspects. The architectural openness model developed in this

study is a tool to aim identification of the openness strategy in mobile platforms based on

 39

their architectural aspects. Despite this model is based on typical layered architecture of

mobile platforms and is applicable to all main mobile platforms, but the efficiency of the

model to identify the openness strategy of the mobile platforms would be confirmed by

an empirical study which is not done here due to restricted time of the research. The

recommended way of confirming the model is conducting some qualitative interviews

with some experts in software architecture and software openness areas and applies their

feedback to enrich the model and increase its efficiency. Another boundary in literature

review part is incompleteness of documents of the mobile platforms to finding out the

openness strategy and access points of the platforms. It is not easy to contact technical

engineers and architects of the companies like Google, Microsoft, RIM, etc. but if they

accepted to be interviewed, the results of the study would be more reliable.

The second limitation of this study as shown in results of the interviews is that

architectural openness of the studied platform is not important for interviewees which are

commercial developers. Since they do not care about the openness especially in lower

layers of the platforms, they have not tried to extend or modify the components of the

lower layers. As a result they are not certain about accessibility of all layers of their

favorite platform and it could affect the reliability of the results. One possible solution for

this issue is to interview with more application developers for each platform. But as the

current interviewees claim, generally commercial developers care less about the openness

in a mobile platform and if they want to consider the openness of a platform, they will

focus on the higher layers of the platform. On the other hand, as interviews show, device

manufactures would benefit more from openness in mobile platforms since they can

customize even lower layers of open platforms like the Android and Symbian and to

some extend Windows Mobile for using the modified platform in their devices. So the

better improvement of performing the research method would be conducting interviews

with some technical engineers in device manufacturers if it is not difficult to contact

them.

7. Conclusions

The overall aim of this research was identification of openness strategy in mobile

platforms based on the software architecture of the platforms. This section revisits the

specific objectives of this research, summarizes the findings of the research, offers

 40

conclusions based on the findings, and finally suggest some recommendations for future

works based on the limitations of the research work.

7.1 Research Objectives: Summary of Findings and Conclusions

Research Objective 1: Building a model to describe the architectural openness of

mobile platforms

Architectural openness model is built based on a typical layered architecture which is

applicable to all main mobile software platforms and compromises applications layer,

middleware layer and kernel layer. Applications layer itself includes two parts, extended

applications and native applications. Besides the layered architecture, the model shows

three way of accessibility to the platform for each layer. These ways are integrating,

extending or modifying a layer.

Research Objective 2: Defining architectural openness factors by considering the

licensing aspects of mobile platforms in the model

Although the model shows the platform access and extension methods in different levels,

but to demonstrate the openness strategy of a platform, licensing aspects of the platform

should also be considered. By considering licensing situation of mobile platforms, some

factors are defined to identify openness strategy of platforms and presented in table 2. For

example for kernel layer of a platform, the result of applying the openness factors can be:

Modifying the kernel layer is possible for some components of the layer but it always

needs permission from the platform supplier.

Research Objective 3: Looking at main mobile platforms by the lens of developed

model and factors to determine how open the platforms are

The openness strategy of main mobile platforms include Android, Symbian, iPhone,

Windows Mobile and Blackberry is discussed by applying the architectural openness

model and factors in the architecture and licensing aspect of the platforms which are

gained from the literature. The results are demonstrated by a figure for each platform.

Due to insufficiency of literature and documents of the platforms, some factors needs to

be confirmed by interviews.

Research Objective 4: Conducting some qualitative interviews with application

developers of the platforms to confirm the results of previous step

For each platform except the Android, one qualitative interview with an application

developer of the platform is conducted. The developers are asked to explain about the

 41

openness of their favorite platform based on the accessibility of each architectural layer

of the platform and also licensing situation of the platform. The results show that for

some layers especially lower ones, commercial developers are not sure about openness

degree of the platform because they do not care about the openness in the lower layers

and have not tried to extend or modify them. But about the higher layers and licensing

situation of the platform the results of the interviews are valuable. In some cases the

results confirmed the previous results gained from documents of the platforms, and in

some cases the experience of developers are different from results of literature. So they

believe that even for platforms like Android and Symbian, the openness degree in the

reality is fewer than what is claimed in the theory.

Finally a comparison of openness strategy in five main mobile platforms is presented in

this thesis which is based on the results of looking at the platforms by lens of

architectural openness model and factors and evaluation of results by conducting

interviews.

7.2 Recommendations for Future Works

As argued in the discussion section insufficiency of literature and documents, lack of

time to do more interviews with other application developers and interview with some

engineers from devices manufacturers, restrictions on access to technical engineers in

platform suppliers such as Google and Microsoft are the main limitations of this research

and affect the reliability of the results. The architectural openness model and factors are

valuable results of this research. It is recommended, for increasing the reliability of the

model and factors, that some expert people from software architecture and software

openness areas also be interviewed. For improving the validation of openness strategy of

mobile platforms, interview with technical engineers of mobile device manufactures is

also recommended.

Acknowledgements. The author would like to thank Slinger Jansen for his helpful advices. His

support has directed the research and positively influenced the quality of the results of this thesis

and was impossible without that contribution. Furthermore, the author would like to thank Alan

Carlson for his valuable comments during the research. Finally, the author would like to thank the

mobile application developers for their contribution in the qualitative interviews.

 42

8. References

Alexandrov, A.D., Ibel, M., Schauser, K.E. and Scheiman, C.J. (1997). Extending the

operating system at the user level: the ufo global file system, In 1997 Annual

Technical Conference On Unix and Advanced Computing Systems (USENIX’

97).

Android Market, (2008). [Online] Available at:

 http://market.android.com/publish, Last retrieved: 2010-04-13.

Android Power Management, (2010). In Android Platform Developer’s Guide. [Online]

Available at: http://pdk.android.com/online-pdk/guide/power_management.html,

Last retrieved: 2010-04-13.

Arief, B. Gacek, C. and Lawrie, T. (2001). Software Architectures and Open Source

Software – Where can Research Leverage the Most?, In 1st Workshop on Open

Source Software Engineering:Making Sense of the Bazaar (part of the 23rd ICSE)

: 3–5.

Alspaugh, T.A., Asunction, H.U. and Scacchi, W. (2009). Analyzing Software Licenses in

Open Architecture Software Systems, In FLOSS ’09: Proceedings of the 2009

ICSE Workshop on Emerging Trends in Free/Libre/Open Source Software

Research and Development: 54–57.

Bass, L., Clements, P. and Kazman, R. (2003). Software Architecture in Practice, Second

Edition. Addison-Wesley, Boston: p 21.

Biggam, J. (2008). Succeeding with Your Master’s Dissertation: A Step-by-Step

Handbook, Open University Press, Berkshire, England: 138-143.

Bring Up, (2010). In Android Platform Developer’s Guide. [Online] Available at:

http://pdk.android.com/online-pdk/guide/bring_up.html, Last retrieved: 2010-04-

13.

Britten, N. (1995). Qualitative interviews in medical research. BMJ 311:251–3.

Brown, A.W. and Booch, G. (2002). Reusing Open-Source Software and Practices: The

Impact of Open-Source on Commercial Vendors, In Proceedings of 7th

International Conference on Software Reuse, LNCS, Vol. 2319. Springer: 123-

136.

Bryman, A. and Bell, E. (2007). Business Research Methods, Oxford: Oxford University

Press: p 104.

Burnard, P. (1991), A Method of Analysing Interview Transcripts in Qualitative

 43

Research, Nurse Education Today 11: 461-466.

Buschmann F., Meunier R., Rohnert H., Sommerlad, P., and Stal, M. (1996). Pattern-

Oriented Software Architecture: A System of Patterns, John Wiley & Sons: p 31.

Canalys research release 2010, (2010). [Online] Available at:

http://www.canalys.com/pr/2010/r2010021.html, Last retrieved: 2010-04-21.

Chen, J. (2008). An Introduction to Android, [Online] Available at:

http://sites.google.com/site/io/an-introduction-to-android, Last retrieved: 2010-04-

09.

Childers, B. (2009). Android Everywhere!, Linux Journal, 2009(186).

Cho, Y.C. and Jeon, J.W. (2007). Current Software Platforms on Mobile Phone,

International Conference on Control, Automation and Systems. Seoul: 1862-1867.

Constantinou, A. (2008). Mapping open source into mobile: who, where and how,

VisionMobile Ltd., available via:

http://www.visionmobile.com/blog/2008/12/mapping-open-source-into-mobile-

who-where-and-how/, Last retrieved: 2010-02-19.

Contribution Process, (2010). In Symbian Developer Community, [Online] Available at:

http://developer.symbian.org/wiki/index.php/Contribution_Process, Last

retrieved: 2010-04-23.

Dalvik, (2010). In Android Platform Developer’s Guide. [Online] Available at:

http://pdk.android.com/online-pdk/guide/dalvik.html, Last retrieved: 2010-04-13.

Fleming, R. (2010). Google Android Powered TV Coming in Fall, [Online] Available at:

http://www.digitaltrends.com/home-theater/google-android-powered-tv-coming-

in-fall/?news=123, Last retrieved: 2010-04-09.

Foundation Builds, (2010). In Symbian Developer Website, [Online] Available at:

http://developer.symbian.org/wiki/index.php/Developer_Guidelines:_Foundation_

Builds, Last retrieved: 2010-04-23.

Hall, S. P. Anderson, E. (2009). Operating Systems for Mobile Computing. Consortium

for Computing Sciences in Colleges, USA.

Hashimi, S.Y. and Komatineni, S. (2009). Introducing the Android Computing Platform,

In: Pro Android, Apress: 1-19.

iPhone Developer Program License Agreement, (2009). [Online] Available at:

http://www.eff.org/files/20100302_iphone_dev_agr.pdf, Last retrieved: 2010-04-

20.

 44

iPhone OS Overview, (2009). In iPhone OS Reference Library, [Online] Available at:

http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/URL_i

Phone_OS_Overview/index.html, Last retrieved: 2010-04-13.

iPhone OS Technology Overview, (2009). In iPhone OS Reference Library, [Online]

Available at:

http://developer.apple.com/iphone/library/documentation/Miscellaneous/Concept

ual/iPhoneOSTechOverview/Introduction/Introduction.html, Last retrieved: 2010-

04-15.

Jansen, S., Brinkkemper, S., Hunink, I., Demir, C. (2008). Pragmatic and Opportunistic

Reuse in Innovative Start-Up Companies, IEEE Software, 25(6): 42-49.

Jansen, S., Finkelstein, A., and Brinkkemper, S. (2009). Business network management

as a survival strategy: A tale of two software ecosystems. In Proceedings of the

First Workshop on Software Ecosystems. CEUR–WS, vol. 505.

Klatt, B. (2008). Software Extension Mechanisms, Fakultt fr Informatik,. Karlsruhe,

Germany, Interner Bericht 2008-08. [Online]. Available:

http://www.bar54.de/benjamin-klatt-software-extension-mechanism.pdf, Last

retrieved: 2010-04-23.

Koh, D. (2010), Microsoft integrates Xbox Live and Zune with Windows Phone 7

Series, [Online] Available at:

 http://asia.cnet.com/reviews/mobilephones/0,39050603,62061210,00.htm, Last

retrieved: 2010-04-26.

Kvale, S. (1996). InterViews: An Introduction to Qualitative Research Interviewing, Sage

 Publications: p 2.

Lamothe, A. (2006). Degrees of Openness, [Online] Available at:

http://linuxdevcenter.com/pub/a/linux/2006/11/09/degrees-of-openness.html, Last

retrieved: 2010-05-20.

Lin, F. and Ye, W. (2009). Operating System Battle in the Ecosystem of Smartphone

Industry, In Proc. of 2009 International Symposium on Information Engineering

and Electronic Commerce: 617-621.

Live from Google I/O – Android: Integrate, Replace and Extend, [Online] Available at:

http://mobilementalism.com/2008/05/28/live-from-google-io-android-integrate-

replace-and-extend/, Last retrieved: 2010-04-09.

Maxwell, E. (2006). Open Standards, Open Source,and Open Innovation: Harnessing the

 45

Benefits of Openness, Innovations: Technology, Governance, Globalization 1(3):

119-176.

Medford, C. (2008). Apple, Nokia Battle for Mobile Startups, [Online] Available at:

 http://www.redherring.com/Home/24459, Last retrieved: 2010-03-13.

Nakagawa, E. Y., Souza, E. P. M., Murata, K. B., Andery, G. F., Morelli, L. B.,

Maldonado, J. C. (2008). Software Architecture Relevance in Open Source

Software Evolution: A Case Study, In Proc. of Annual IEEE International

Computer Software and Applications Conference: 1234-1239.

Open Handset Alliance – Overview, (2007). [Online] Available at:

http://www.openhandsetalliance.com/oha_overview.html, Last retrieved: 2010-

04-09.

Oxford English dictionary – openness definition, (2010), [Online] Available at:

http://dictionary.oed.com/cgi/entry/00332458?single=1&query_type=word&quer

yword=openness&first=1&max_to_show=10, Last retrieved: 2010-04-07.

Patel, N. (2010). Confirmed: Marketplace will be the only way to get apps on Windows

Phone 7 Series, [Online] Available at:

http://www.engadget.com/2010/03/15/confirmed-marketplace-will-be-the-only-

way-to-get-apps-on-windo/, Last retrieved: 2010-04-26.

Platform Development, (2010). [Online] Available at:

http://msdn.microsoft.com/en-us/library/ms902061.aspx, Last retrieved: 2010-05-

22.

Platform Opening, Get Started, (2010). In Symbian Developer Community, [Online]

Available at:

http://developer.symbian.org/wiki/index.php/Platform_Opening/Get_Started, Last

retrieved: 2010-04-21.

Prehn, S. (2007). Open Source Software Development Process, Term Paper in AG

Software Engineering Seminar SS07.

Raymond, E.S. (2001). The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary, Revised Edition, O’Reilly and

Associates, Inc.

Sadun, E. (2008). Unpublished iPhone API Crackdown in Progress, [Online] Available

at: http://arstechnica.com/apple/news/2008/12/private-iphone-api-crackdown-in-

progress.ars, Last retrieved: 2010-04-20.

 46

Salipante, P., Notz, W. and Bigelow, J., (1982). A matrix approach to literature reviews,

In: Research in Organizational Behavior, Vol. 4. Jai Press, CT: 321-348.

Scacchi, W. (2004). Free and Open Source Development Practices in the Game

Community, IEEE Software, 21(1): 59-67

Sim, N., Turnbull, R. and Walker, M.D. (2006). Open devices — their role in supporting

 converged services, BT Technology Journal, 24(2): 200-204.

Signing Your Application, (2010). In Android Developer’s Guide. [Online] Available at:

http://developer.android.com/guide/publishing/app-signing.html, Last retrieved:

2010-04-13.

Smith, C. and Evans, B. (2010). Apple Launches iPad, [Online] Available at:

http://www.apple.com/pr/library/2010/01/27ipad.html, Last retrieved: 2010-04-

13.

Sonera MediaLab, (2003). Symbian Application Development Wall Paper, Available at:

http://www.medialab.sonera.fi/workspace/SymbianAppDevelopmentWhitePa.pdf,

Last retrieved: 2010-04-21.

Sukanen, J. (2004). Extension framework for Symbian OS applications, Helsinki

University of Technology.

Symbian Foundation, (2010). Symbian Completes Biggest Open Source Migration

Project Ever, [Online] Available at: http://www.symbian.org/news-and-

media/2010/02/04/symbian-completes-biggest-open-source-migration-project-

ever, Last retrieved: 2010-04-20.

Symbian Foundation System Model, (2009). In Symbian Developer Community,

[Online] Available at:

http://developer.symbian.org/downloads/system_models/foundationpkg_22-05-

09.svg, Last retrieved: 2010-04-21.

Symbian is Open Source, (2010). [Online] Available at:

http://www.symbian.org/symbian-feature-set/symbian-is-open-source, Last

retrieved: 2010-04-20.

Symbian Power Management, (2010). In Symbian Developer Community, [Online]

Available at:

http://developer.symbian.org/main/documentation/reference/s^3/doc_source/guid

e/KernelandHardwareServices/kernelarch/Concepts/PowerManagementFramewor

k.html#powermgt%2emodel, Last retrieved: 2010-04-23.

 47

Symbian System Model, (2010). In Symbian Developer Community, [Online] Available

at: http://developer.symbian.org/wiki/index.php/Symbian_System_Model, Last

retrieved: 2010-04-21.

Tranfield, D., Denyer, D. and Smart, P. (2003) Towards a methodology for developing

evidence-informed management knowledge by means of systematic review, British

Journal of Management, Vol. 14, No.3, pp.207-222.

Verkasalo, H. (2009). Open Mobile Platforms, Modeling the Long-Tail of Application

Usage, In Proc. of Fourth International Conference on Internet and Web

Applications and Services: 112-118.

Webster, J. and Watson, R.T. (2002). Analyzing the Past to Prepare for the Future:

Writing a Literature Review, MIS Quarterly, 26(2): xiii-xxiii.

West, J. (2003). How open is open enough? Melding proprietary and open source

platform strategies, Research Policy 32: 1259-1285.

What is Android? (2010), In Android Developer’s Guide. [Online] Available at:

http://developer.android.com/guide/basics/what-is-android.html, Last retrieved:

2010-04-12.

Windows CE Architecture, (2010). [Online] Available at:

http://msdn.microsoft.com/en-us/library/ms905093.aspx, Last retrieved: 2010-05-

22.

Yamakami, T. (2009). Foundation-based Mobile Platform Software Engineering:

Implications to Convergence to Open Source Software, ACM International

Conference Proceeding Series; Vol. 403, In Proc. of the 2nd International

Conference on Interaction Sciences: Information Technology, Culture and

Human: 206-211.

 48

Appendix

A. Questionnaire for Qualitative Interviews

Aim of the interview: Validating the openness strategy of mobile platforms by finding

out the platform developers’ experiences.

A. General questions about openness in mobile platforms:

1. In your point of view, how much the openness degree of a platform depends on its

architectural aspects and licensing aspects?

2. What would make you consider a “platform architecture” fully open?

3. How closed must a platform be before you leave it?

B. Questions about your favorite platform:

4. Which parts of the architecture of your favorite platform are accessible? (Which

parts you can integrate, extend or modify?)

5. For extend or integrate or modify of which parts of your favorite platform do you

need permission from the platform supplier?

6. Which parts of the architecture of your favorite platform would you like to see

opened up?

