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Abstract 

In many areas there is a need to monitor observations in order to detect changes in the 
underlying processes as quickly as possible. The theory of statistical surveillance provides the 
possibility of making optimal decisions about whether a change has occurred or not based on 
the data available at the time of the decision. Surveillance can be used in many different 
situations. It is important that the relevant characteristics of the change are identified and that 
the relevant optimality criterion is used. There is a need to further develop the theory of 
statistical surveillance. 

One area where surveillance is of special interest is the detection of outbreaks of epidemic 
diseases. New strains of influenza virus like avian flu and swine flu have drawn much 
attention, but it is also important to detect the varying onset of the seasonal influenza. 
Outbreaks are characterized by a change from a constant incidence to an increasing one. A 
quick and reliable detection of epidemic outbreaks can be beneficial to society as it has the 
potential to prevent loss of lives and severe economic consequences. The detection of a 
change from a constant level to a monotonically increasing (or decreasing) regression is of 
interest also in other areas, for example in finance. This thesis considers outbreak detection in 
a wide meaning. It deals with topics of statistical surveillance in general and with applications 
to warning systems for influenza in particular.  

When information on several variables is available it should be efficiently used in the 
surveillance system. The construction and evaluation of multivariate surveillance methods 
need to be developed, and one aim of the thesis is to contribute to this development. 

In Paper I, a nonparametric univariate method for surveillance was applied to Swedish data 
on seasonal influenza and tularemia. An experiment to compare the statistical method to 
subjective judgment was performed. A user-friendly program implementing the method is 
presented. 

As Swedish influenza data are collected from several different regions, a multivariate 
surveillance system could be superior to a univariate one. However, the evaluation of 
multivariate surveillance demands special care. Paper II deals with these problems. The 
suggested evaluation measures were subsequently used in Paper III and V. 

In Paper III it was demonstrated that in some cases there exists a sufficient statistic that can 
be used to reduce a multivariate surveillance problem to a univariate one.  

In Paper IV it was examined how the spreading pattern of influenza in Sweden could be 
characterized.  

In Paper V, the information from the other papers was used to construct a method for 
multivariate outbreak detection. Motivated by the findings on the spreading pattern of 
influenza in Paper IV, the univariate outbreak detection method of Paper I was generalized to 
a multivariate method for outbreak detection by the results on multivariate techniques found in 
Paper II and Paper III.  
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1. Introduction 
In many situations there is a need to repeatedly evaluate information as new observations of 
one or more variables become available. The methods of statistical surveillance can be used to 
decide as quickly and reliable as possible whether or not a change has occurred. One area of 
special importance, which will be explored in this thesis, is the surveillance of outbreaks of 
epidemic diseases. Early warnings of an outbreak may be vital for successful preventive action 
and may also aid in the planning of allocating resources to the primary care sector.  

Statistical surveillance is termed differently in different areas. Many of these terms are 
broad and do not necessarily include statistical surveillance in the sequential sense discussed 
here. In industrial statistics the term SPC (statistical process control), or more specifically 
control charts, is often used. In medicine and economics the terms monitoring and early 
warning systems are common. In probability theory the term optimal stopping rules is 
frequent. Overviews on statistical surveillance can be found for example in Basseville and 
Nikiforov (1993), Frisén (2003), and Frisén (2009). Sonesson and Bock (2003) gave an 
overview on surveillance in public health.  

As regards outbreaks, there are several definitions. One definition is a change in incidence 
from a constant level to an increasing one. This definition will be used in the thesis and is 
specified in the next section. Alternatively, an outbreak is commonly defined as an incidence 
higher than usual or as a spatial clustering but, as discussed in Paper I, these definitions were 
not found suitable for the applications in this thesis.  

The need for multivariate surveillance occurs in many areas, such as industrial production, 
bioterrorism detection, spatial surveillance, and financial transaction strategies. This thesis 
will focus on spatial surveillance, which is a special case of multivariate surveillance as 
several data sources are used. 

2. Models and specifications 
This thesis deals with the surveillance of discrete time points, as is most common in 
surveillance of epidemics. The process under surveillance will be denoted ( )Y t  for the 

univariate case and ( )tY  for the multivariate case, where ( )tY  denotes the p-variate vector 

observed at time t, i.e.  1 2( ) ( ), ( ),..., ( )pt Y t Y t Y tY . For a univariate process, as studied in 

Paper I, an outbreak will be defined as a change in expected values, m(t), from a constant level 
to a monotonically increasing one  

(1) ... ( ) for (2)

(1) ... ( 1) ( ) ... ( ) for s

µ µ s sµ

µ µ µ µ s


  

   
      

    (1) 

where τ is the unknown time of the onset of the outbreak and s is the time of the decision.  
In the multivariate case, as studied in Paper V, each of the p components of the process 

may change at different times. Hence, the definition of each outbreak is analog to the 
univariate case; for each of the p processes Yi there is a change in expected value at the 
unknown time τi. The processes are assumed to be independent given the values of τi. 

In statistical surveillance the aim is to repeatedly evaluate information and at each new 
time point s discriminate between different states of the process, for example the two states of 
an outbreak as defined in (1). In multivariate surveillance there are several change points. The 
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aim is to detect any change in the system. Thus,  the change in the process which changes first 
is of special interest.  

Surveillance systems based on likelihood ratios are optimal under many criteria. In order to 
use the likelihood ratio the distribution of the process under surveillance must be known. In 
Andersson et al. (2008) it was found that a simple stochastic model without serial correlation 
but with time dependent expectation is suitable for the surveillance of influenza in Sweden. 
The results also showed that the Gaussian distribution is suitable for observations near the 
peak while the Poisson distribution is suitable at the onset. Most of the theory in this thesis is 
derived for the one parameter exponential family and for the two parameter family with 
known dispersion parameter. Since the emphasis of the thesis is on the onset phase, the 
Poisson distribution will be used for specific results.  

In Paper IV, the spreading pattern of influenza in Sweden was shown to be characterized 
by a time lag in the onset in different regions. In Paper V, this time lag in the multivariate 
model was used to construct a system for monitoring influenza in Sweden. 

3. Methods for surveillance 
The earliest methods for surveillance were developed by Shewhart (1931) for the control of 
industrial processes. The full likelihood ratio method was derived in Shiryaev (1963). Other 
popular surveillance methods include the CUSUM method (Page 1954), the EWMA method 
(Roberts 1959) and the Shiryaev-Roberts method (Shiryaev 1963, Roberts 1966). Most 
methods can be expressed by different combinations of the partial likelihood ratios and 
correspond to different optimality criteria.  

In Paper I and V, the change situation was partially known and partially unknown. The 
distribution function of the process was known to belong to the exponential family. The 
change was one from a constant expected value to an increasing expected value, but there was 
no parametric assumption on the shape of the increase. A generalized likelihood ratio 
approach and ordered restricted inference were used to handle the unknown parameters for 
both the univariate situation in Paper I and the multivariate situation in Paper V. For the 
multivariate situation this was combined with a sufficient reduction derived by a modification 
of the sufficiency results of Paper III. 

4. Evaluation in statistical surveillance 
In surveillance there is always a trade-off between making a fast decision and avoiding 
making an incorrect one. There are several metrics used to measure both timeliness and 
correctness. A further discussion can be found for example in Frisén (1992) and Knoth (2006). 

The intricate issue of evaluation in multivariate surveillance is treated in Paper II. It is 
important to clearly specify the aim, since there are possibly multiple change points. 

4.1. False Alarms 
A commonly used measure of false alarms is the in-control average run length, ARL0, 
E[tA=] where tA is the time of alarm. A similar measure, which is more convenient to 
calculate and used here, is the median run length, MRL0. This measure is also less sensitive to 
skewed distributions of the alarm times. Both measures can be used also in a multivariate 
situation by specifying that no change occurs in any of the processes.  
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4.2. Delay 
One measure of the detection ability is E[tA| τ=1], the average run length given that the change 
occurs immediately. This is often named ARL1 or zero-state ARL and is widely used in 
univariate surveillance. It is commonly used as an evaluation measure also in the multivariate 
case. However, it is seldom explicitly defined. The definition implicit in most publications is 
E[tA| τ1= τ2= …  τp =1]. Thus, it is implied that all processes change at the same time. For this 
case a sufficient reduction to a univariate problem exists, as demonstrated in Paper III. Zero-
state ARL is thus questionable as a formal measure for comparing methods for handling 
genuinely multivariate problems. Instead, a measure which allows different change points was 
used, namely a multivariate version of the conditional expected delay. 
The conditional expected delay, ( ) [ | ]A ACED E t t    

,
 which was used for the univariate 

case of Paper I, can be generalized to CED(τ1, τ2... τp) = min min[ ]A AE t t    for multivariate 

surveillance, as in Paper II, III, and V. 

4.3. Predictive value 
If a method calls an alarm it is important to know whether this alarm is a strong or weak 
indication of a change. In epidemiology, the predictive value is a well-established measure. In 
surveillance, however, there is need for a variant that also incorporates time. The difference 
between surveillance and situations involving only one decision is that in surveillance there 
can be an alarm at any time point, and therefore a measure of the predictive value at each 
possible time point is needed. In order to judge to what degree an alarm at time tA can be 
trusted, it is necessary to consider the balance between the risk of false alarms, the detection 
ability, and the probability of a change. If there is one change point τ and this is regarded as a 
random variable, the predictive value is calculated as the probability of an outbreak 
conditional on an alarm, as suggested by Frisén (1992). In Paper II, this approach was 
extended to the multivariate case, and it was subsequently used in Paper V.  

5. Conclusions 
In recent years, there have been several events that highlight the importance of outbreak 
detection. The outbreaks of new kinds of influenza (SARS, avian flu and H1N1) are such 
recent examples.  

The choice of outbreak detection method and evaluation procedure depends on which 
definition of outbreak is used. Therefore, it is important to state the aim explicitly. Different 
methods may be optimal under different conditions, which means that the methods can often 
be seen as complements to each other. The methods developed and employed in this thesis 
treat outbreaks defined as a monotonic increase following the constant level before the onset 
of the outbreak. Such outbreaks are of interest in connection with several diseases and 
syndromes. Often, the information about the baseline is limited. Errors in the estimation of the 
baseline can have serious effect, as demonstrated for example by Frisén and Andersson 
(2009). Also, there may be seasonal effects with the same periodicity as the disease as well as 
large variation between years, thus making it hard to estimate the expected baseline incidence. 
Thus a semi parametric method was chosen, as it does not require information about the 
baseline.  

When data from different sources are available, multivariate surveillance should be 
applied. One such example is the detection of influenza outbreaks on the basis of data from 
different regions. The two simplest approaches of multivariate surveillance are the reduction 
to a suitable univariate statistic and the surveillance of the separate processes in parallel. In 
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multivariate surveillance the properties of a method depend heavily on the relation between 
the times of onset in the different processes. In this thesis, Swedish data from metropolitan 
regions and local regions (where the outbreaks occurred at different times) were combined in a 
system for influenza outbreak detection. The information on the delay in the outbreak between 
the two types of regions was the base for a new approach of multivariate surveillance, and the 
results of this method were compared to conventional approaches. The relation between the 
different processes is important in multivariate surveillance, as demonstrated in Paper II. A 
method that is optimal for simultaneous changes is not efficient when there is a time lag. The 
exact relation between the onsets at different locations is seldom exactly known. However, 
some information may be available, as demonstrated in Paper IV, where it was found that the 
influenza outbreak in Sweden generally started a week earlier in the major cities than in the 
rest of the country. In the application to Swedish influenza data in Paper V, it was 
demonstrated that the performance of the surveillance method was improved by utilizing this 
knowledge. A joint generalized likelihood ratio method, based on maximum likelihood under 
multivariate monotonicity restrictions and a sufficient combination of data, was suggested and 
utilized. In simulation studies and when applied to Swedish influenza data, the multivariate 
method performed better than other methods described in the paper. It was also demonstrated 
that if the true time lag is only approximately known, the results can be improved by using this 
information in the surveillance procedure. 

When evaluating methods for on-line monitoring it is important to use measures that 
incorporate the issue of time, i.e. the fact that there are repeated decisions, not just one 
decision as in hypothesis testing. This is even more important in the multivariate case where 
there are several possible change points. In Paper II, evaluation measures which are better 
suited for multivariate on-line surveillance than the conventional ones are suggested.  

The method of Paper I has recently been implemented in the open source JAVA package 
CASE, which is currently in use at the Swedish Institute for Infectious Disease Control, see 
Cakici et al. (2010) for further details. It has also been implemented in the R package 
Surveillance, which is described in Höhle (2010). 

6. Summaries of the papers 

6.1. Paper I: Robust outbreak surveillance of epidemics in Sweden 
A semi parametric method for outbreak detection was applied to Swedish data on tularemia 
and influenza. The method was constructed to detect a change from a constant level to a 
monotonically increasing incidence. The properties of the method were evaluated by the 
applications and by simulations. The suggested method was compared with subjective 
judgments as well as with other algorithms. The conclusion was that the method works well 
compared to both subjective judgment and other algorithms. The method was implemented in 
a user-friendly computer program, which is described.  
 

6.2. Paper II: Evaluation of Multivariate Surveillance 
There are many measures of the performance of univariate surveillance methods, for example 
expected delay. Special care is needed when using these measures in multivariate surveillance. 
In Paper II, some new measures are suggested, and their properties were investigated by 
applications to various situations. It was demonstrated that the delay is dependent on the time 
differences between the change points, and hence that measures such as zero-state ARL and 
steady state ARL should be used with care. 
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6.3. Paper III: Sufficient Reduction in Multivariate Surveillance 
The relation between change points in a multivariate process under surveillance is important 
but seldom considered. The sufficiency principle was used both to clarify the structure of 
some problems and to find efficient methods as well as to determine appropriate evaluation 
metrics. Processes where the changes occurred simultaneously or with known time lags were 
studied. A general version of a theorem for the sufficient reduction of processes that change 
with known time lags is given. A simulation study illustrated the benefits of the methods 
based on the sufficient statistics. 

6.4. Paper IV: Characterisation of influenza outbreaks in Sweden 
In Paper IV, spatial aspects of the seasonal Swedish influenza outbreak were investigated. In 
Paper I, a semi parametric surveillance method was applied to data on Sweden as a whole. 
Here, however, the aim was to study the data on individual regions to determine whether there 
was a spatial pattern that could make it feasible to employ a multivariate surveillance method. 
Quality problems were found for all types of available data. The results of the analyses 
showed that the outbreak usually starts about a week earlier in the major cities with large 
airports compared to the rest of the country. It was suggested that nonparametric methods be 
used for inference and surveillance. A bivariate parametric model was suggested for 
simulation purposes. 

6.5. Paper V: Multivariate outbreak detection 
In Paper V, the sufficient reduction derived in Paper III was extended to the case of an 
increasing level after the change point. The robust semi parametric surveillance method in 
Paper I was adopted to use the sufficient reduction. This new method was evaluated with 
respect to robustness and efficiency in a simulation study. The result showed that if an 
approximately known time lag exists, the method should be considered. The method was also 
applied to spatial data for detection of influenza outbreaks in Sweden, where the aggregation 
procedure suggested in Paper IV was used. In this application the new method performed 
better than the univariate one. 
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Robust outbreak surveillance of epidemics in Sweden
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SUMMARY

Outbreak detection is of interest in connection with several diseases and syndromes. The aim is to
detect the progressive increase in the incidence as soon as possible after the onset of the outbreak.
A semiparametric method is applied to Swedish data on tularaemia and influenza. The method is constructed
to detect a change from a constant level to a monotonically increasing incidence. If seasonal effects are
present, the residuals from a model incorporating these can be used. The properties of the method are
evaluated by application to Swedish data on tularaemia and influenza and by simulations. The suggested
method is compared with subjective judgments as well as with other algorithms. The conclusion is that
the method works well. A user-friendly computer program is described. Copyright � 2008 John Wiley
& Sons, Ltd.

KEY WORDS: exponential family; influenza; monitoring; ordered regression; subjective judgment;
tularaemia

1. INTRODUCTION

Epidemic diseases cause much suffering to individuals and also have negative consequences for
the society as a whole. Recently, there has been much interest in early warnings for outbreaks.
Preparedness for pandemics is important, as stressed in [1, 2]. New or recently introduced diseases,
such as SARS and avian flu, are of great concern. Acts of bioterrorism might cause (or look like)
epidemic diseases.

International, national, and local institutes (for example, the Swedish Institute for Infectious
Disease Control, SMI) collect data on several diseases and give timely information to the local
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society as well as to international organisations and networks (for example, the European Influenza
Surveillance Scheme, EISS). A description of the present Swedish system for collecting data on
influenza and influenza-like illness can be found for example in [3–5]. Much work is being done
all over the world to improve the collection of data, which will increase the capacity for early
detection of epidemics.

Predictions of future incidences at an epidemic outbreak play an important role for the planning
carried out by health authorities. Predictions of the height and time of the influenza peak based
on early observations were described in [4]. For several diseases and syndromes, however, it is
important to detect the outbreak of an epidemic and to detect it as soon as possible after the onset.
Outbreak detection is an inferentially different problem compared with prediction. In this paper,
we define outbreak detection as on-line detection: each week when we make a new observation
on the incidence series, we decide whether or not we have enough information to state that the
influenza epidemic has started, i.e. that the increase in incidence is larger than what could be
expected during the non-epidemic season.

There are three major approaches to outbreak detection: (i) the detection of an increasing
incidence, (ii) the detection of an incidence that is higher than expected, based on the information
available up to that point and (iii) the detection of spatial clustering of cases, which results in
an uneven incidence. In the latter approach, the outbreak is characterized by a large number of
individuals spatially close to each other getting ill approximately at the same time, while there is no
increase in the surrounding areas. If spatial information is available, for example, the proportion of
sick individuals in each municipality, the outbreak can be detected by a cluster detection method.
One example is the Satscan method by Kulldorff [6], which was evaluated in a CUSUM framework
in [7]. Many variants have been suggested. For example, Rosychuk et al. [8] included the case
where the population size may vary by using a compound Poisson distribution. If, however, the
outbreak is characterized by a general increase in incidence in large areas, cluster detection may
not work better than the detection of a general increase. The spatial pattern at an outbreak is not
always a circular spread, and other spatial approaches can thus be of interest, as discussed in [9].
No simple spread pattern could be found, such as a spread between neighbouring areas. The spatial
component was more complicated and the start of the influenza epidemic was nearly simultaneous
in the four major cities, which are far apart geographically. In this paper, we suggest a monitoring
method that is based on aggregated data for the whole of Sweden. Information about data for
different geographical areas could be of value and spatial surveillance is then important, [10]. Our
suggested surveillance method may be used together with spatial information in such a context.
However, we will not further discuss spatial issues here. In this paper, we use the first approach,
i.e. the detection of an increasing incidence.

The most commonly used approach to detect an increased incidence described in scientific
journals is based on a parametric model for the non-epidemic periods. A signal is given as soon
as one observation exceeds a threshold, usually a 95 per cent prediction interval (see e.g. [11]).
This is a variant of the Shewhart surveillance method, which is described in Section 2.2. This is
not always an efficient method, as only the last observation is utilized. In [12, 13] it is suggested
that there should be an alarm as soon as there are two consecutive observations beyond the limit.
A more fruitful approach could be the use of a surveillance method, which gives optimal weights
to the observations.

In [14] a hidden Markov model is suggested, which allows switching between states with
different statistical properties: the non-epidemic state, with a low-level on the incidence rates,
and the epidemic state, characterized by an increased incidence. The cyclical regression suggested

Copyright � 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:476–493
DOI: 10.1002/sim



478 M. FRISÉN, E. ANDERSSON AND L. SCHIÖLER

in [12] was used to model the seasonal effect. It was found that the seasonality had a period of 52
weeks.

In [3] it is concluded that parametric methods are not suitable when the parameters describing
the incidence curve vary much from year to year, as is the case in Sweden. Thus, we suggest
that a semiparametric approach by Frisén and Andersson [15] should be used. The suggested
method aims at detecting a change from a constant level to an increasing function, i.e. a change
in monotonicity. It is a likelihood-based surveillance method. The suggested method is applied to
Swedish data on tularaemia and common influenza.

In [16], several monitoring methods are described and compared: SPOTv2 (see [17]), the
England–Wales method (see [18–21]), and two versions of the CUSUM method originally
suggested by Page (see [22]). The suggested method is compared with these methods by conven-
tional measures like sensitivity and positive predictive value. The method is also evaluated for
detection of influenza outbreaks by other measures that take into account timeliness and the fact
that there are repeated decisions.

In Section 2, a short background on the statistical surveillance of outbreaks is given. First, in
Section 2.1, we describe models and specifications. In Section 2.2, we describe general likelihood-
based methods for surveillance and the suggested semiparametric method, which was derived
from an optimal likelihood ratio method. In Section 2.3 we give arguments for a semiparametric
approach. In Section 2.4, a newly developed user-friendly computer program for outbreak detection
is presented. Evaluation measures are given in Section 2.5. In Section 3, the suggested method
is applied to Swedish data on tularaemia, and the result is compared with those of several other
methods by conventional measures. In Section 4, the suggested method is applied to Swedish
influenza data. A Monte Carlo simulation and a comparison with subjective judgments are used
to evaluate the method. In Section 5 conclusions are given.

2. STATISTICAL SURVEILLANCE OF OUTBREAKS

2.1. Specifications of the outbreak problem

We monitor the process X and we observe x(t) in discrete time. X could be a measure of the
severity of a disease, for example an incidence. In general, frequent data contain more information
than sparse. However, for many diseases, weekly data are what is practically available. Also, with
weekly data the problem of influence of weekday is avoided. For the suggested method, it is not
necessary that the time intervals between the observations are the same. The only requirement
is that there is a natural ordering between the times of the observations. The values t=1,2, . . . ,
reflect the ordering of the times, but are not necessarily the time values that are natural in the
application.

Let � be the time of the start of the outbreak. The expected value of X (t) conditioned on �= i is
denoted by �i (t). The superscript is suppressed when obvious. The decision time is denoted by s.
At each decision time s we want to discriminate between the two events C and D, where C={��s}
‘the outbreak has occurred’, and D={�>s} ‘the outbreak has not occurred’. This discrimination is
made by using the available observations, xs ={x(1), . . . , x(s)}. In the current outbreak situation we
specify C and D in terms of a change in the expected value, so that for s<� we have �(t)=�D(t)
and for s��, �= j we have �(t)=�C j (t). At an outbreak at the unknown time �, the expected
value � changes from a constant (baseline) level to an increasing curve.
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If we know the parametric model for �, this should be used to make the surveillance more
efficient. The parametric model could be a change from a known baseline level (�0) to a (known)
exponentially increasing function, so that

for t<� �(t)=�0

for �= j, t� j �(t)=exp(�0+�1(t− j+1))
(1)

where �0, �0, and �1 are known constants.
However, if no certain information about the parametric shape of the curves is available, the

general characteristics of an outbreak can be used. We study outbreaks which, at the decision
time s (the latest observation point), are characterized by

for s<� �(1)=�(2)=·· ·=�(s)

for s��= j �(1)=�(2)=·· ·=�( j−1)<�( j)� · · ·��(s)
(2)

For s<� no outbreak has started yet, since the time of the change, �, is in the future (this is
state D). For �= j�s, an outbreak has started at time j (this is state C j ).

For the stochastic variable X , different distributions can be relevant for different diseases. As
regards influenza, the conclusion in [3] was that independent Poisson distributions were suitable for
the outbreak observations. The use of such distributions in outbreak detection is further discussed
in Section 4.1.

2.2. General likelihood-based surveillance methods

Some characteristics separate a surveillance situation from a hypothesis testing situation. In hypoth-
esis testing, we use the sample data to perform one test of whether a fixed null hypothesis can be
rejected or not. In on-line surveillance, an alarm statistic is calculated at each new time point, for
example, each week when new data become available. We make repeated decisions to determine
whether the process is in state D or if it has changed to state C , see (2). This differs from hypothesis
testing since the specification of both D and C changes as time progresses. In hypothesis testing,
we evaluate the performance of a test by the power for a fixed size. In on-line surveillance, we
often want to use measures that reflect the timeliness of the alarms (this is further discussed in
Section 2.5).

Here, the process under surveillance, X , is the incidence of a disease or syndrome during each
week (or some other period). One early method for the on-line surveillance is the Shewhart method,
[23], for which an alarm is called the first time s that

(x(s)−�D(s))>ks (3)

where �D(s)=E[X (s)|D] and ks is the alarm limit (often 3∗�). �D(s) is sometimes called the
baseline, but it need not be constant over time. For the Shewhart method, �D is assumed to be
known. The Shewhart method is optimal for the situation when we want to discriminate between
C={�=s} and D={�>s}. Here, however, we are interested in detecting whether the onset has
occurred at any time during our surveillance, i.e. we want to discriminate between C={��s} and
D={�>s}. Thus, the Shewhart method is not optimal here.
Shiryaev [24] showed that for discriminating between C={��s} and D={�>s}, the full like-

lihood ratio between C and D is optimal in the sense that the method gives a minimal expected
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delay for a fixed false alarm probability. The full likelihood ratio method is expressed as

f (xs |C)

f (xs |D)
=

s∑
j=1

w js
f (xs |�= j)

f (xs |�>s)
(4)

where f is the likelihood function, xs ={x(1), . . . , x(s)} and weights wjs= P(�= j)/P(��s).
If a parametric approach had been used, then � would be specified, conditional on C and D.

The alarm rule is

LR(s)=
s∑

j=1
w js

f (xs |�=�C j )

f (xs |�=�D)
>ks

where ks is proportional to P(�<s)/P(��s). In the Shiryaev–Roberts approach [24, 25] the
weights, wjs, are constant and so is the alarm limit.

2.3. The semiparametric approach

Many surveillance methods are based on the deviation between the observation and a baseline
value (for example, between the number of influenza cases and �0). If we want to detect a deviation
from a parametrically specified state D, this state must be well known. Also important, but not to
the same extent, is that the change (state C) should be specified. As regards influenza, however,
the characteristics of the outbreak vary from one year to the next. Thus, it is difficult to find a
parametric model that describes the baseline and the outbreak of every year correctly (here, to
find the correct parameter values for �0, �0, and �1 in (1)). It could be argued that the parameters
could be sequentially updated, but this will not solve the fundamental problem that the current
influenza season may differ substantially from the ‘average’ one, which is captured by the updated
parameter estimates. Thus, the main objection to using a parametric surveillance method is that it is
difficult to estimate the baseline model with any certainty. As was shown in [15, 26], a misspecified
in-control model will result in an alarm system with poor performance.

A surveillance method based on the maximum likelihood ratio was suggested in [27] for the
situation where we want to detect a turning point (peak or trough). The method was based on
non-parametric estimation under monotonicity restrictions [28] as well as the use of the maximum
likelihood ratio in the Shiryaev–Roberts approach. The maximum likelihood-based surveillance
method was used in [29] in connection with peak detection regarding influenza.

Another maximum likelihood-based surveillance method was suggested in [15]. This method is
based on the monotonicity restrictions in (2) and has been derived for both the normal and Poisson
distributions, see [15]. For the Poisson distribution this method, OutbreakP, calls an outbreak alarm
when

OutbreakP(s)=
s∏

t=1

(
�̂C1

(t)

�̂D
(t)

)x(t)

>k (5)

In (5), k is a constant alarm limit, and �̂C1
(t) and �̂D

(t) are the maximum likelihood estimates
under the restrictions in (2). These maximum likelihood estimates are derived in [30], where it is
shown that �̂D

(t) is the average of all the observations and that �̂C1
(t) is the isotonic regression

estimator, which can be calculated by the pool adjacent violator algorithm (PAVA) described by
e.g. [31]. The computation is illustrated by an example below. It is not possible to base the alarm
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Table I. An example of the computation at the first decision time.

t x(t) �̂D(t) �̂C1(t)

(
�̂C1(t)
�̂D(t)

)x(t)
1 11 10 10 1
2 9 10 10 1

Table II. An example of the computation at the second decision time.

t x(t) �̂D(t) �̂C1(t)

(
�̂C1(t)
�̂D(t)

)x(t)

1 11 20 10 0.511

2 9 20 10 0.59

3 40 20 40 240

statistic on a single observation, since the maximum likelihood method uses the ordering of the
data. Thus, the first decision is taken when we have two observations. To stress that this is at
time 2 we call this decision time s=2 (Table I).

The maximum likelihood estimate of the constant level, �̂D
(t), is calculated as the average of

the two observations. The two observations violate the monotonicity restriction and therefore, by
the PAVA, �̂C1

(t) is calculated as the average of these. The alarm statistic at the first decision time
has the value

OutbreakP(2)=
2∏

t=1

(
�̂C1

(t)

�̂D
(t)

)x(t)

=1 ·1=1

At the next decision time, we have the details given in Table II.
Again, �̂D

(t) is calculated as the average. Here x(1) and x(2) violate the monotonicity restriction
and are therefore pooled, whereas x(3) does not and is kept. Thus, we have

OutbreakP(3)=
3∏

t=1

(
�̂C1

(t)

�̂D
(t)

)x(t)

=0.511 ·0.59 ·240=1048576

For long series of data, the calculations are best made with a computer program as described in
the next section. The choice of the value of k (the alarm limit) depends on which properties are
desired for the specific application. Measures for evaluations are discussed in Section 2.5.

2.4. User-friendly computer programs

In order to make the new methodology easily accessible, user-friendly computer programs have
been developed. The programs, which are freely available from the authors, were developed using
‘Visual Basic for Applications’ in Microsoft Excel. The program basically looks like an ordinary
Excel workbook, but has an additional user interface and algorithms to calculate the alarm statistic
of OutbreakP. The user interface consists of a menu for running the program, dialogs for entering
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Figure 1. Left: number of laboratory confirmed cases of influenza in Sweden for the 07–08
season. The first observation is for week 40 2007. The warning and alarm signals of the method
are marked by the square and arrow, respectively. Right: the output from the computer program

corresponding to the data to the left.

limits, and a help screen. At each time point, the latest observation is added and the program
produces the value of the alarm statistic as well as a warning or an alarm signal if there is enough
evidence of an outbreak. All this output is displayed within the workbook. Graphs of the data
and the regression under the outbreak model (2) are given. Graphs are also produced of the alarm
statistic (as in Figure 1) in order to make it easy to compare with a warning or alarm limit after
each new entry of weekly data.

2.5. Evaluation measures

Some of the evaluation measures commonly used in epidemiological studies are sensitivity, speci-
ficity, and positive predictive value. These measures were originally developed for the retrospective
analysis of a data set where the outbreak has either occurred (state C) or not (state D). In such
a retrospective setting, there is only one possibility of making an alarm (A); we make only one
decision (as opposed to on-line monitoring with repeated decisions). There is also only one possible
time point at which to not make an alarm ( Ā). The measures are defined as

sensitivity= P(A|C) (6)

specificity= P( Ā|D) (7)

positive predictive value= PPV= P(C |A) (8)

In Section 3, we will compare the OutbreakP method with the results of a study where evaluations
were conducted by using the measures (6)–(8). In our comparison, we will use the same measures.
A drawback of these measures in on-line surveillance is that they do not incorporate the timeliness
of alarms. They were developed for the situation where only one decision is to be made, not for
the repeated decisions required in surveillance. For example, the specificity depends on how long
the surveillance has been in operation. It will tend to zero as the time progresses.
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For outbreak detection, we usually want evaluation measures that reflect timeliness. Thus, the
time of the alarm is very important. It is defined as

tA=min[t :h(xt )>g(t)]
where h(xt ) is the alarm statistic and g(t) is the possible time-dependent alarm limit. Measures
developed for the on-line surveillance situation are the average run length to the first false alarm
(ARL0), the conditional expected delay of an alarm when the onset of the outbreak occurs at time t
(CED(t)), and the predictive value of an alarm at time t (PV(t)).

ARL0 : E[tA|D] (9)

CED(t) : E[tA−�|tA��,�= t] (10)

PV(t) : P(C |tA= t) (11)

Note that the predictive value in (11) incorporates the time, since the predictive value is calculated
for each time of alarm and is not necessarily the same for different alarm times. Like PPV in (8),
the PV(t) is a positive predicted value, but we used different notations to distinguish them.

In a hypothesis testing situation, the risk of Type I error is controlled by the size of the test,
whereas in many on-line surveillance methods it is controlled by the ARL0. A major drawback
with a fixed size in on-line surveillance is that late changes are very difficult to detect, since the
alarm limit must tend to infinity in order to keep the false alarm probability below for example
5 per cent, as demonstrated in [32]. In the next two sections, the OutbreakP method is evaluated
for different situations. In Section 3, different outbreak detection methods are applied to Swedish
tularaemia data, and in Section 4, the OutbreakP method is applied to Swedish influenza data.

3. DETECTION OF TULARAEMIA INFECTION OUTBREAKS

3.1. Tularaemia infection

The condition tularaemia is caused by an infection with the bacterium Francisella tularensis.
According to the web site of the SMI, in Sweden the infection is mostly found among rodents, but
it can also be transmitted to humans, for example by mosquitoes, water, or dust contaminated by
urine or faeces from infected animals. In Sweden, tularaemia is a low-frequency disease. Large-
scale outbreaks occurred in 1970, 1981, 2000, and 2003. According to the web site of the CDC,
tularaemia is considered as a bioterrorism threat [33]. A weapon using airborne tularaemia would
result in the outbreak of an acute, undifferentiated febrile illness with incipient pneumonia among
other symptoms. Within an alert health system, an increased incidence should lead to the suspicion
of intentionally caused tularaemia.

Tularaemia is an example of the twofold need for surveillance. Surveillance is not only needed
for detecting natural outbreaks in order to allow health authorities to plan their actions, but also
for detecting possible bioterrorist threats.

3.2. Outbreak detection

Tularaemia outbreaks in Sweden were monitored for the period 1998–2003 (see Figure 2) in [16].
We monitored the same data using the OutbreakP method and compared the results. Observe that
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Figure 2. The number of tularaemia cases per week in Sweden for the period 1998–2003.

Table III. Evaluation of surveillance of tularaemia for the period 1998–2003.

Method Sensitivity (per cent) PPV (per cent) Swiftness

OutbreakP 100 100 4
SPOTv2 100 100 3
EW 80 100 2
CuSum2 43 100 2
CuSum1 43 60 1

for the EW method data from earlier years were used according to automatic algorithm where a
comparison with earlier years is made in order to detect unusual patterns.

In [16], several methods were evaluated. SPOTv2 is an earlier version of the method described
in [17]. This method, which is used on a national level in Australia for monitoring salmonella
infections, uses the Shewhart approach, see the alarm condition (3), with an advanced calculation
of the baseline (�D(t)). The EW method described in [19] is used routinely for many health-
related events in England and Wales. The CuSum1 and CuSum2 methods described in the paper
by Rolfhamre and Ekdahl are different variants of the CUSUM method by Page [22].

For the OutbreakP method, only data for the monitoring period 1998–2003 are used since that
is enough to detect an outbreak according to (2)—that is increasing values. For the other methods,
earlier data were also used according to the respective algorithms since the aim is to detect an
unusual (e.g. seasonal) pattern.

In Table III, we compare the OutbreakP method with the results of other methods reported
in [16]. The comparisons are made using the same measures as in [16]. These are retrospective
measures for a fixed period, see the definitions in (6) and (8). Observe that the PPV used here is a
measure for a fixed time (1998–2003) as opposed to PV defined in (11), which is used for on-line
surveillance in the rest of the paper. The swiftness measure is the number of outbreaks (out of 5)
for which each method was the first (by itself or simultaneously with another method) to give
a warning. The conclusion from Table III is that the OutbreakP method compares well with the
other methods. However, it must be kept in mind that the methods are designed to meet different
aims and should rather be seen as complements than as competitors.
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Our method gives an alarm when the incidence increases—without regard of the cause. If the
increase is due to the (almost) annual outbreak during summer, then the start of the seasonal
outbreak (that varies much in time) is signalled. This might be useful for planning purposes of the
medical authorities. The other methods are specifically constructed to detect an unusual seasonal
pattern by signalling for incidences above the normal annual outbreaks. This will give a warning
that something exceptional might have happened.

4. DETECTION OF INFLUENZA OUTBREAKS

The Swedish influenza incidence is measured by two weekly series, namely the number of labora-
tory diagnosed cases (LDI) and the percentage of patients showing influenza-like symptoms (%ILI)
among all patients (denoted by #PAT) seen by sentinel physicians. For influenza, as opposed
to tularaemia, we have no other study that can serve as a natural comparison with our method.
A difficulty in evaluating methods for outbreak detection is that no official date exists as to the
onset of the outbreak. Frisén and Andersson [15] evaluated the OutbreakP method in a simulation
study, generating observations from a model that mimicked LDI data. In the same paper, the
OutbreakP method was also applied to Swedish LDI data and was shown to have good properties.

In this paper we evaluate and apply the OutbreakP method to ILI data. In the simulation study
presented in Section 4.1, the alarm limit is set to give an acceptable predictive value curve for the
application to Swedish data. In Section 4.2, the OutbreakP method is applied to Swedish ILI data
for six seasons. In order to illustrate the difficulties with prospective judgments as compared with
retrospective ones, we present the results from an experiment with judgments by 26 medically
trained individuals. These results are presented in Section 4.3.

4.1. Model for Swedish data on ILI and Monte Carlo evaluation

The ILI data are reported by sentinel physicians. Andersson et al. [3] discussed these data and
their quality, and one conclusion was that ILI data should be interpreted with care, since they seem
to be influenced by time-dependent effects, for example, physicians’ inclination to send reports.

For the simulation study, we needed a model of how ILI data develop over time during the
outbreak of the yearly epidemic. Data on ILI are reported both as the number of cases (#ILI) and
as %ILI (the number of patients showing ILI in relation to the total number of patients). Swedish
ILI data were analysed in [3] where it was concluded that a very simple model with a constant
non-epidemic incidence and an exponential increase after the outbreak could be satisfactory as
a first approximation. Another conclusion was that the distribution of the observations could be
reasonably well described by a Poisson distribution. A Gaussian distribution is not appropriate
during the onset of an outbreak with low incidence (see [14, 34]). The question of independence
between observations close in time was also addressed in [3]. When modelling the autocorrelation
of a process it is important to be aware that the estimated autocorrelation parameters do depend
heavily on the assumptions made about the expected value of the process. In [3] it was concluded
that the assumption of independent observations does work satisfactorily as a first approximation.
The iid assumption is also used in [11, 12, 14, 34].

By using data for the first weeks of the latest 8 years, the incidence of the non-epidemic phase
was roughly estimated to be 20 cases per week. For those outbreak detection methods where the
observations are compared with a baseline (for example, Shewhart in (3)), the precision of this
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Figure 3. The �(t) curve for �=5 representing the model for the expected numbers of patients showing
influenza-like symptoms. Also an example of a simulated realization by the model is seen.

estimate is very important. However, here the estimate is used only to produce simulation results
for situations that are close enough to the real situation to be of interest.

The exponential slope was estimated by the least-squares estimate of the logarithms of %ILI
data for the season 2003/2004, which was a ‘typical’ season. Since we are using a surveillance
system based on the Poisson likelihood, we needed the value of the ‘number of ILI cases’. The
actual #ILI values are not as representative for the progression of influenza as the %ILI values are,
due to varying #PAT, as explained in the next section. In the model below we have transformed
the %ILI numbers to #ILI by multiplying them with a constant.

Observations are generated according to the following model, for different values of � (the time
of the onset of the outbreak):

X (t)∼
{
Poi(�0), t<�

Poi(�(t)), t��

where �(t)=exp(�0+�1(t−�+1)) and �0=20, �0=2.67, and �1=0.68. The Poisson distribution
is denoted by Poi. One example of the �(t) curve is given in Figure 3.

For each time � of the onset of the outbreak, 1 000 000 replicates were used. For each replicate
new observations were generated until the OutbreakP signalled an alarm. Two different limits were
used; one warning limit and one alarm limit. The limits were chosen to give the alarms a high
predicted value at different time points, as illustrated in Figure 4. The predictive value depends
on the distribution of the outbreak time. Here it was assumed as a geometric distribution with an
intensity �=0.1. This value was roughly estimated from Swedish data for 8 years by using the
average time of the onset of the influenza epidemic.

4.2. Application of the OutbreakP method to Swedish ILI data

The results of the OutbreakP method are given below for six influenza seasons in Sweden. The
ILI data of the present Swedish sentinel system are based on a varying total number of patients, as
mentioned in Section 4.1. The Swedish system (where sentinel physicians report the percentage of
patients with influenza-like illness during the past week) has the disadvantage of a low reporting

Copyright � 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:476–493
DOI: 10.1002/sim



ROBUST OUTBREAK SURVEILLANCE OF EPIDEMICS IN SWEDEN 487

Figure 4. Predictive value for the OutbreakP method for �=0.1 and for the limits corresponding
to the alarm limit and the warning limit, respectively. Results from a simulation study with a

model resembling Swedish ILI data.

tendency in the beginning and at the end of the influenza season as well as during holidays, see [3].
Thus, #ILI is not representative for the true incidence and %ILI better represents the slope of the
incidence. Great efforts are made to improve the reporting.

It is hard to base a stringent surveillance system on data with the selection bias described above.
Because of the varying number of patients included in the sentinel system, it is not reasonable to
use these incidences in surveillance. We demonstrate how the ILI data could be used if they were
all based on a constant number of patients each week. In the surveillance situation described below,
the OutbreakP method is applied to transformed values of %ILI, which represent values of #ILI
for the ideal situation where the number of patients is constant at 15 000 each week. Hopefully,
the current efforts will make this ideal situation a reality.

Figure 5 shows the OutbreakP method applied to the transformed %ILI values of six seasons.
The same limits as in Figure 4 were used; the lower limit for early warnings and the higher one
for more trustworthy alarms. Thus, the alarms had a predicted value of nearly one, unless the
alarm had appeared at alarm time 2 (week 41), which none did. Owing to the assumptions and
the quality of the data used these results must be interpreted with care, but they indicate a way to
work with surveillance systems in outbreak detection.

4.3. Outbreak detection by subjective judgment

The outbreak is often easy to identify when studying the data retrospectively. In practise, however,
the data become available sequentially, and the decisions have to be made in the same way (for
example, a new decision on ‘outbreak or not’ each week). In order to compare the OutbreakP
method with subjective judgments, we performed an experiment. We wanted to concentrate on the
issue of subjective judgment without the complications of %ILI data based on a varying number
of total patients. Therefore, this experiment was conducted using LDI data.

Twenty-six medically trained individuals participated in the experiment. The individuals
consisted of all students in two lecture groups attending a course in medical statistics. We thus
do not have a random sample from a well-defined population. However, the results will illustrate
how subjective judgments can be compared with an objective method.

Each individual was planned to be given four sets of outbreak graphs (each set consisting of 10
graphs). Two sets displayed the situation of �=5 and the other two displayed the situation �=9.
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Figure 5. The %ILI data from the influenza periods 01/02 to 06/07 are displayed. The arrow marks the
time of the alarm while the square marks the time of a warning when the OutbreakP method is used on
the transformed data. The scale is chosen in order to set focus on the onset period. Thus, for some of the

seasons, the peak is outside the graph.

Thus, two realizations of each value of � were used. The order of the four sets was randomized.
Owing to an administrative mistake, one individual only received three sets of graphs.

In order to be able to compare the results of the subjective judgments with those of the suggested
method, we needed to know the true outbreak time (�). Therefore, we produced the four outbreak
sets by simulations. In [15] a simulation study for LDI data was performed, and here we used the
same simulation model, namely

X (t)∼Poi(�(t))

where

�(t)=
{

�0, t<�

exp(�0+�1 ·(t−�+1)), t��

where �0=1, �0=0.26, �1=0.826, and �={5,9}. The parameters were chosen to resemble the
Swedish LDI data from the period 03 to 04.

The first six graphs of one situation are shown in Figure 6. Each subject looked at the graphs
sequentially, i.e. one graph at a time, and as soon as he/she judged (from one of the graphs) that
there had been an outbreak, this graph was marked.

The results of the experiment are presented in Figures 7 and 8. As can be seen in Figure 7,
the distance between the distribution curves for �=5 and �=9 is a little smaller than what can be
explained by the difference in the value of �. This indicates that the subjective judgments tend to
give an alarm too early for late outbreaks.
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Figure 6. A set of graphs displaying the situation where �=5 for a simulated realization
of LDI. The graph marked with X is the one where one of the subjects considered the

outbreak to be located, i.e. tA =7.

Figure 7. The distribution function for the alarm time by subjective judgment.

The subjects’ judgments varied considerably also when they were given the same information.
One alarm was given at time 2 and another at time 10 for �=5, for the same replicate. One
advantage of using an algorithm is that the same information would always result in the same
judgment. If we rely on subjective judgment, the result will depend heavily on which individual
is making the judgment. One subject of the 26 was among the first to give an alarm in three of
the cases and the second in the fourth.

The average delay times were 1.85 and 1.48 for �=5 and �=9, respectively. In the simulation
study, the corresponding average delay times for the OutbreakP method were 1.58 and 1.48. The
lower CED of the subjective judgment for �=9 can be due to random fluctuation or an expectation
that a change should not occur too late.

Copyright � 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:476–493
DOI: 10.1002/sim
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Figure 8. The false alarm probabilities P(tA�t |D) for the subjective judgment (experiment) and for the
OutbreakP method (simulation).

In Figure 8, the false alarm distribution from the experiment is compared with that of the
OutbreakP method. We can see that there is a higher cumulative probability of a false alarm in
the experiment, compared with the algorithm. Since the delay is almost the same (or worse) for
the subjective judgment as for the algorithm, we can conclude that the predicted values of the
subjective judgments are lower.

5. DISCUSSION

An important question is what kind of outbreak we want to detect. We have found several explicit
or implicit definitions of an outbreak. These different aims will correspond to different evaluations
and different optimal methods. The methods should be seen as complements to each others. For
each application, it is important to explicitly state the aim.

An important aim is to detect when the pattern (including seasonal variation) differs from that
of earlier years. The method by Farrington et al. [19] has successfully been used in England Wales
and other areas for this purpose.

Sometimes an identified set of related cases, such as a few cases arising from the same identified
cause, is called an outbreak. An outbreak of this kind cannot be efficiently detected by a method
for detecting a high incidence in the whole population but possibly by the detection of clustering
of cases.

Some methods (see, for example, [35]) use an advanced model for the baseline. If the model is
estimated from previous years’ data, the outbreak is thus defined as a week of an unusually high
incidence, compared with the incidence in the same week during earlier years’ epidemics. In such
a system we will get an early signal if the current year’s influenza epidemic appears unusually
early, but if it appears late, the signal will not be given until after the peak.

A general difficulty when estimating a baseline model that includes seasonality is that the
seasonal effect may be hard to separate from the epidemic itself, since both often have a cycle of
one year.

Some methods signal an outbreak when the incidence is high compared with a baseline estimated
for non-epidemic periods. Errors in the estimated value can have a great impact, as demonstrated
in [15].
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The semiparametric method used here detects outbreaks, which are defined by a monotonic
increase after the constant level before the onset of the outbreak. Such outbreaks are of interest
in connection with several diseases and syndromes. The method is based on the theory for
optimal surveillance. A user-friendly computer program is available. When seasonal effects or
other explaining variables are present, residuals from a model that incorporates seasonality can
be monitored. However, estimation of the seasonal component from the same data that are being
monitored does affect all surveillance methods and the effect should be studied.

When evaluating methods for on-line monitoring it is important to use measures that incorporate
the time issue, i.e. the fact that there are repeated decisions, not just one decision as in hypothesis
testing.

The semiparametric method was applied to Swedish data on tularaemia, which had previously
been analysed in [16]. We used the same data and the same (conventional) evaluation measures as
in this study. The OutbreakP method came out favourably.

The OutbreakP method was further evaluated in a simulation study, where data were generated
from a model mimicking the behaviour of Swedish data on influenza-like illness. In the construction
of the simulation model, we also discussed how to handle data quality problems. Here, we used
evaluation measures, which are better suited for on-line surveillance than the conventional ones.

We applied our method to Swedish ILI data from six seasons with good results. On-line
surveillance, where only a limited amount of information is at hand at each decision time, is much
more demanding the retrospective identification of the outbreaks. Thus, we made an experiment
with subjective judgments by medically trained individuals. The subjective method was less efficient
than the OutbreakP method. However, the main disadvantage turned out to be the large variation
between judges.

When data from different sources are available, multivariate surveillance should be applied. This
can be the case at detection of outbreaks of influenza based on data from different regions or at
detection of bioterrorism based on different kinds of data. The two simplest approaches of multi-
variate surveillance are a reduction to a suitable univariate statistic or a parallel surveillance with
due concern of the multiplicity. However, there are also other approaches [36]. The dependencies
play an important role for the choice of the optimal approach [37].

Hopefully, the suggested method will add to the toolbox for outbreak detection.
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Multivariate surveillance is of interest in many areas such as industrial production, bioterrorism detection,
spatial surveillance, and financial transaction strategies. Some of the suggested approaches to multivariate
surveillance havebeenmultivariate counterparts to the univariate Shewhart, EWMA,andCUSUMmethods.
Our emphasis is on the special challenges of evaluating multivariate surveillance methods. Some new
measures are suggested and the properties of several measures are demonstrated by applications to various
situations. It is demonstrated that zero-state and steady-state ARL, which are widely used in univariate
surveillance, should be used with care in multivariate surveillance.

Keywords: average run length; EWMA; false alarms; FDR; performance metrics; predictive value;
steady state; zero state

1. Introduction

In many situations, there are reasons to continuously observe a process in order to detect an
important change in the process as soon as possible after the change has occurred. Multivariate
surveillance typically concerns several variables. However, it is also of interest when there is only
one process, but several characteristics of that process may change. Examples are processes where
both the mean and the variance may change (treated in [19]) or changes in several aspects of one
autoregressive time series take place, as treated in [3].

The first suggestion of modern control charts [33] was widely utilized by industry. The
monitoring of several processes is often of interest. Multivariate problems for the assembly pro-
cess of the Saab automobile were described in [37]. In the food industry, different raw materials
and several process steps are used, and in [32] it is suggested that these be analyzed in order to
assure the quality of the final product. During the last years there have been an increased need
for, and interest in, continuous monitoring in many areas apart from industrial production. After
the 9/11 attack the interest in surveillance methodology increased notably in the US, and new
types of data are now being collected to get early signals of bioterrorism. By monitoring several
data series different aspects can be covered, and thus multivariate surveillance techniques are
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needed. Rolka et al. [28] contains an overview of the research needs for bioterrorism surveillance
using multiple data streams. Spatial surveillance is another example of multivariate surveillance,
since several locations are involved.A relatively new area for multivariate surveillance is financial
decision strategies in situations where a portfolio contains several assets [13,25].

General reviews on multivariate surveillance methods are made for example in
[4,6,9,21,31,36,37].

Multivariate surveillance can have different aims. Sometimes, the aim is to identify the param-
eters that have changed. However, this is naturally preceded by the detection of a change in any
of the parameters. Here, we concentrate on the detection of the first change.

2. Notations and specifications

We will denote the multivariate process under surveillance by a p-variate vector, Y(t) =
{Y1(t), Y2(t), . . . , Yp(t)}. The components of the vector may be, for example, a measurement
on p different processes. The distribution of the p-variate variable Y(t) might be characterized
by the mean vector μ and covariance matrix �Y. The aim is to detect the change from one state
– for example that the assembled product works well – to another – that some component is
defective so that the product does not work.We aim to detect the change as soon as possible after
it has occurred in order to give warning and take corrective action. At decision time s, we base
the decision on the available informationYs = {Y(1),Y(2), . . . , Y(s)} to form an alarm statistic.
This is used to define the alarm rule.

In the multivariate situation, we observe p processes that can change at different times
τ1, . . . , τp. Here the aim is to detect frequently the first time that the process is no longer in
control – that is, we want to make inference about τmin = min{τ1, . . . , τp}. If there is no change
at all, we denote this by “τmin = ∞”.

3. Surveillance methods

We will discuss different evaluation metrics for multivariate surveillance. The discussion
is supported by results where commonly used methods are evaluated by the metrics. The
evaluation measures will reveal the principal differences between the approaches for multivariate
surveillance.

3.1 General approaches

3.1.1 Dimension reduction

One approach for handling multivariate surveillance problems is to reduce the p-variate vector
at each time point into a single statistic and then use a system for univariate surveillance based
on this statistic. One may simply use the sum or another linear combination of the variables.
When we want to derive an optimal method, we must specify the type of change that we want
the method to detect. One way to focus attention is to consider some type of dimension reduction
transformation as in [14,15,29]. In [30], this is done with specific respect to the special and
common causes of variation. Sometimes a sufficient reduction can be found as in [38], where it is
proved that when the changes occur simultaneously, it is possible to find a sufficient reduction to
a univariate surveillance problem. For the exponential family with the same shift and dispersion
parameter and independence between the processes, conditional on change times, the sufficient
statistic for each time t is the sum of the observations Y1(t), . . . , Yp(t). For some situations where
the changes occur with known lags, it is also possible to find a sufficient reduction, see [17].When
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a sufficient reduction is found, optimal methods can be derived. In many situations, however, it
is not possible to find a sufficient reduction.

3.1.2 Parallel surveillance

The approachwith parallel systemsmeans that one starts with a univariate surveillancemethod for
each variable. The most common way to combine the information from the p univariate methods
is to signal an alarm if any of the univariate methods gives an alarm. This approach is called Q
combined univariate methods or parallel methods.

3.2 Specific methods and situations

3.2.1 Example

We will illustrate the suggested measures and their properties by applying them in a number of
different situations and for different methods. We will concentrate on the way in which the time
of the changes influences the properties, and therefore a very simple example with two processes
will be used. Our model contains two normally distributed variables, Y1 and Y2, which possibly
have shifts in the expected value at possibly different time points. In order to focus on the effect
of different change times we use equal shift sizes. The two processes, Y1 and Y2, are assumed to
be independent (conditional on the change times).

Y1(t) ∼
{

N(0, 1) t < τ1

N(1, 1) t ≥ τ1

Y2(t) ∼
{

N(0, 1) t < τ2

N(1, 1) t ≥ τ2.

The alarm times for different methods were determined by Monte Carlo simulations with at
least 10,000,000 replicates for each situation.

3.2.2 Specific methods

Multivariate methods are usually extensions of common univariate methods. The univariate tech-
nique used here is the EWMA method, since it is commonly used in multivariate situations also.
By this method we use exponential weights for the observations, giving more weight to recent
observations and less to old ones. The statistic at decision time s, of the EWMA method for
univariate surveillance of a variable Y with target value zero is

Zs = λ(1 − λ)s
s∑

t=1

(1 − λ)−t Y (t),

where 0< λ ≤ 1. Regarding the variance of the EWMA statistic there are two versions: the exact
and the asymptotic variance, and we will use the asymptotic version as recommended in [35].
This means that the statistic is compared with a constant alarm limit.

The optimal value of the parameter λ has drawn much attention. A formula for the optimal
value was derived in [9] and explicitly given in [11] as λ∗ = 1 − exp(−μ2/2)/(1 − ν), where
μ is the shift size (here μ = 1) and ν = P(τ = t |τ ≥ t) denote how often changes are prone to
occur. Here we choose the value λ = 0.35 that will give an approximately optimal method for a
wide range of ν.
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Wewill compare results from (i) theEWMAmethod applied to a reduction of data to a univariate
statistic at each time, (ii) a system based on two parallel EMWA methods, and (iii) the EWMA
method applied to the univariate process that changes first.

As an example of the reduction approach,we reduce the bivariate variable (Y1, Y2) to a univariate
statistic, here chosen to

R(t) = Y1(t) + Y2(t)

2
.

Then the EWMAmethod is applied to the variable R(t) (with the variance σ 2
R = 0.5). The time

of alarm for the reduction approach, tAR, is the first time when the EWMA statistic exceeds a
constant alarm limit.

The parallel approach means that the EWMA method is applied to Y1(t) and Y2(t) separately.
The time of alarm for Y1, tA1, is the first time when EWMAY1 exceeds a constant alarm limit
(correspondingly for Y2). The time of alarm for the parallel approach is the first of either of the
alarm times (tAP = min[tA1, tA2].

For comparison, we also have the results from the EWMAmethod applied to only one process.
This corresponds to the situation when there is prior knowledge about which process will change
first, and therefore it is efficient to monitor only this one.

The alarm limits are set in order to give each of the systems the same false alarm property.

4. Evaluation metrics

Timeliness in detection is of extreme interest in surveillance, and hence there is a need for other
evaluation measures than those traditionally used in hypothesis testing.

4.1 False alarms

In a univariate setting, the most commonly used measure is ARL0 = E[tA|τ = ∞] where tA
is the time of alarm. This is naturally generalized for multivariate surveillance as E[tA|τmin =
∞] = E[tA|τ1 = ∞, . . . , τp = ∞] where tA is the time of the general alarm for the multivariate
situation. The median run length, MRL0, can be used instead of the expected value with the same
generalization as for average run length, ARL0. In the simulations below, the alarm limits are set
so that each of the systems has an MRL0 equal to 100.

In univariate theoretical work the false alarm probability, PFA = P(tA < τ), is commonly used.
This is naturally generalized for multivariate surveillance as

PFA = P(tA < τmin) = ∑∞
i=1(P (tA < τmin |τmin = i )P (τmin = i)). It can also be expressed as

PFA = P(tA < τj )P (τmin = τj ).
Note that the distribution of τmin (through the distribution of the change point distributions of

all variables) is included in the suggested multivariate PFA expression.
In hypothesis testing with multiple comparisons, it is important to control the probability of

false rejection (an overview of important methods is given in [16]). For the situation when several
drugs are tested against one standard, the family-wise error rate is relevant. This is the probability
of any false rejection for the family of sub-hypotheses. For another situation, for example when
several aspects of a single drug are tested, the false discovery rate (FDR), suggested in [5] may
be more relevant. This is the proportion of rejections that are false. Recently, FDR has been
suggested for surveillance problems for example in [28]. Surveillance where we make more than
one decision, differs from hypothesis testing in that methods with high detection ability have a
false alarm rate that tends to one (as time tends to infinity), see for example [7]. If one tries to
avoid this, by letting the alarm limit tend to infinity, it will harm the ability to detect late changes.
Thus, false alarms are not regarded in the same way in surveillance as in hypothesis testing. In
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hypotheses testing, it is important to control the probability of a false alarm. Since false alarms are
unavoidable in surveillance, it is the frequency of false alarms in time which is important. Thus, in
surveillance, the FDR is not needed. On the other hand, theARL0 of the multivariate procedure, as
suggested above, might be easily interpreted as the expected time until a false alarm. In addition
to this, the FDR measure is difficult to use in surveillance, since it is based on a probability that
is not constant. There are different suggestions for solving this problem: In [23], a fairly short
period of time is monitored and only the properties of the early part of the run length is used.

4.2 Delay

4.2.1 Delay as a function of the time of the change

We start by recapturing the univariate case where the expected delay for a specific value of τ is

ED(τ ) = E{max(0, tA − τ)},
or, if τ is stochastic, the average delay over the distribution of τ

ED = E{ED(τ )}.
This average is the base for the ED optimality, which is closely related to the utility functions

suggested in [34], and sometimes called a Bayesianmeasure since it depends on the distribution of
τ , which for some applications is naturally regarded as a parameter, and for others, as a stochastic
variable.

Since ED(τ ) for most methods tends to zero (because of the false alarms when τ tends to
infinity), it is useful to study the delay conditional on no alarms before τ . For a specific value of
τ , the conditional expected delay, CED, is

CED(τ ) = E[tA − τ |tA ≥ τ ].
The first use of the term CED and a calculation for a specific value of τ different from 1 and ∞

seems to be in [41]. In [1,12], the CED was used as a function of τ , and in [9,11] it was strongly
advocated that the whole CED curve be studied. In [20], the dependency on τ is avoided by using
the least favorable value of τ . The asymptotic measure is another example of how the value of τ

can be avoided. The CED has been a component in many measures, but often in a way that avoids
the dependency on τ .

In the multivariate case, the ED(τ1, . . . , τp) and CED(τ1, . . . , τp) depend on the vector
{τ1, . . . , τp}, and ED depends on the multivariate distribution of (τ1, . . . , τp). In [2], the following
delay measure (for a situation where p = 2) was suggested and the dependency on τmin was
demonstrated

CED(τ1, τ2, . . . , τp) = E[tA − τmin |tA ≥ τmin ].
This delay measure depends on all the change points. However, there is often some relation
between the change times which simplifies the picture. In Figures 1 and 2, we will use the mul-
tivariate CED to demonstrate principal differences between methods for some typical situations
with special relations between the change times. The CED for different relations between the
change points is presented for the reduction approach in Figure 1 and for the parallel approach in
Figure 2.

By comparison between Figures 1 and 2, we can see that the general results in [38] mentioned
in Section 3.1.1 hold here: the reduction approach is superior (gives shorter delay) when all
processes change at the same time. The CED curves differ considerably for different relations
between the values of the change times. This supports the need for the generalized CEDmeasure.
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Figure 1. CED(τ1, τ2) vs. τmin for different relations between the τ values, presented for the reduction
approach.

Figure 2. CED(τ1, τ2) vs. τmin for different relations between the τ values, presented for the parallel approach.

Sometimes the time available for action is limited. In such situations, it is important to use a
surveillance systemwith high detection ability within the limited time available. This property can
be measured by the probability of successful detection, which was suggested by [8]. It measures
the probability that an alarm is called within d time points. In the multivariate case it can be
defined as

PSD(d, τ1 . . . , τp) = P(tA − τmin ≤ d|tA ≥ τmin),

as in [10].
The PSD measure is a function of both the change times (τ1, . . . , τp) and the length of the

interval in which the detection is defined as successful (d). In [39], it is suggested that the PSD be
calculated as a function of only d and τmin, by expressing PSD as an expected value for (stochastic)
change points (τ1, . . . , τp). The PSD can be used to describe the detection ability of a method
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and compare it with that of other methods. PSD can also be calculated and compared for different
values of d, as is done in [23] in connection with the use of the FDR. If we expect sudden,
major changes, we may want a method with high detection ability (a high PSD for a small d).
In a situation where we expect small changes, the long-term detection ability (a high PSD for a
large d) may be more important. Thus it is essential to consider what kind of change one wants
to detect at different time points. In Figure 3, we examine the PSD for the parallel approach, for
two different cases of relations between the change points. With the parallel approach, it is easier
to quickly detect simultaneous changes than changes quickly with a time lag. The PSD will tend
to one for both cases when d increases.

4.2.2 Zero-state ARL

One measure of detection ability is the ARL, given that the change occurs immediately (τ = 1).
This is widely used in univariate surveillance and often named zero-state ARL or ARL1. In
univariate surveillance, theARL1 has a simple relation to the delay, namelyARL1 = CED(1) + 1.
This demonstrates that only τ = 1 is considered. It may also be important to consider other change
times, since the delay and detection ability of many methods depend on when the change occurs
(i.e. depend on τ ). To consider only τ = 1 in the univariate case is a limitation, and the univariate
ARL1 is criticized as a formal optimality criterion, for example by [9].

Zero-state ARL is the most commonly used evaluation measure in the multivariate case also.
However, it is seldom explicitly defined. One possibility is to define the multivariate zero-state
ARL as E[tA|τmin = 1]. However, as seen in Figure 2, the values of CED for τmin = 1 vary a lot
for different relations between the values of τmin and the change times of the other processes.
Thus, there is no unique zero-state ARL with the definition E[tA|τmin = 1]. Another possibility
is to define the multivariate zero-state ARL as E[tA|τ1 = τ2 = · · · = τp = 1]. This is probably
the definition implicit in most publications. Here, it is assumed that all processes change at the
same time. It was demonstrated by [38] that a sufficient reduction to a univariate problem exists
when all processes change at the same time. Thus, when τ1 = · · · = τp = 1, a reduction to a
univariate surveillance statistic is the proper procedure by the sufficiency principle, which means

Figure 3. PSD(τ1, τ2) vs. d for different relations between the τ values (τ1 = τ2 and τ1 + 2 = τ2) presented
for the parallel approach when τmin = 3.
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that we have a univariate situation. Zero-state ARL is thus questionable as a formal measure for
comparing methods for genuinely multivariate problems.

4.2.3 Steady-state delay

Already Roberts [27] suggested the use of the limit of CED as τ tends to infinity (even though he
used τ=8 in the numerical comparisons). Here, this will be called the steady-state CED, CEDSS,
and be defined as

CEDSS = lim
τ→∞ CED(τ).

This steady-state delay is closely related to steady-state ARL (often denoted by SS ARL or
ARLSS) which is defined in [22] as “the time from the change to the signal. . . using the steady
state distribution” or more specifically in [18] as

lim
τ→∞ E[tA − τ + 1 |tA ≥ τ ].

Here we see thatARLSS = CEDSS + 1. This corresponds to the relationARL1 = CED(1) + 1.
Evaluations of multivariate methods by asymptotic measures are often made by the same

measures as are used for univariate methods. For example, Lu and Reynolds [22] used “the steady
state average delay time” and Reynolds and Kim [26] “the steady-state average time to signal.”
However, the correspondence to the univariate CEDSS is not without problems. The multivariate
CED depends on several τ values and so does the multivariate steady-state CED, as seen in
Figure 2. There is thus no unique steady-state CED (or steady-state ARL) that could characterize
a method. The example supports this general result. Often only the situation τ1 = τ2 = · · · = τp

is considered. In that case we have

CED(τ1 = τ2 = · · · = τp = t) as t → ∞.

For equal change points we have a unique delay value for each method. However, this is
another example of the situation where univariate surveillance can be used instead of multivariate
surveillance since there is a sufficient reduction to univariate surveillance. This is confirmed by
Figures 1 and 2, where we saw that the best method is based on the reduction to a univariate
statistic. For other situations than simultaneous changes there is no simple asymptotic CED, as is
seen in Figures 1 and 2. Even though all the τ values tend to infinity, it also matters how they do
this. There is no simple asymptotic measure for the multivariate case. Instead, one has to specify
how the times of the change points are related when they tend to infinity.

4.3 Predictive value

The predictive value suggested in [8] is defined as

PV(t) = P(C(t)|tA = t) = PMA(t)

PMA(t) + PFA(t)
,

where C(t) is the change to be detected at decision time t , PMA the probability of a motivated
alarm, and PFA the probability of a false alarm. Thus, PMA(t) = P(C(t)|tA = t) and PFA =
P(D(t)|tA = t), where D(t) is the in-control situation. The exact specification of C(t) depends
on the application. The most usual specification is C(t) = {τ ≤ t} but others also can be relevant
as seen below.
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In a univariate setting with C(t) = {τ ≤ t} and D(t) = {τ > t} this is

PV(t) = P(τ ≤ t |tA = t) =
∑t

i=1 (P (tA = t |τ = i)P (τ = i))∑t
i=1 (P (tA = t |τ = i)P (τ = i)) + P(tA = t |τ > t)P (τ > t)

.

In a multivariate setting, we generalize this with C(t) = {τmin ≤ t} and D(t) = {τmin > t} to
PV(t) = P(τmin ≤ t |tA = t)

=
∑t

i=1 (P (tA = t |τmin = i )P (τmin = i))∑t
i=1(P (tA = t |τmin = i )P (τmin = i)) + P(tA = t |τmin > t )P (τmin > t)

.

For the case of two variables, Y1 and Y2, we have that the probabilities of a motivated and a
false alarm, respectively, are

PMA(t) =
t∑

i=1

t∑
j=1

(P (tA = t |τ1 = i, τ2 = j)P (τ1 = i, τ2 = j))

+
t∑

i=1

(P (tA = t |τ1 = i, τ2 > t)P (τ1 = i, τ2 > t))

+
t∑

j=1

(P (tA = t |τ1 > t, τ2 = j)P (τ1 > t, τ2 = j))

and

PFA(t) = P(tA = t |τ1 > t, τ2 > t)P (τ1 > t, τ2 > t).

For independent geometrically distributed change processeswith the same intensity ν, the alarm
probabilities simplify. If also the distributions between which the changes appear are the same
for the two variables as in the example, we get

PMA(t) =
t∑

i=1

t∑
j=1

(P (tA = t |τ1 = i, τ2 = j)ν2(1 − ν)i+j−2)

+ 2
t∑

i=1

(P (tA = t |τ1 = i, τ2 > t)ν(1 − ν)i+t−1)

and

PFA(t) = P(tA = t |τ1 > t, τ2 > t )(1 − ν)2t .

In Figure 4, the predictive value is illustrated for the parallel and reduction approach, both
using EWMA.We can see that the parallel approach has a better PV than the reduction approach.
This can be expected since the change points are seldom simultaneous when we have independent
processes with low intensities.

For simultaneous changes with τ1 = τ2 = τ and τ geometrically distributed with ν = 0.01, we
have that the probabilities of a motivated and a false alarm, respectively, are

PMA =
t∑

i=1

(P (tA = t |τ = i)ν(1 − ν)i−1)

and

PFA(t) = P(tA = t |τ > t )(1 − ν)t .

As seen in Figure 5, the reduction approach has a better predictive value than the parallel
approach when both processes change at the same time. By comparing Figures 4 and 5, we see
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Figure 4. The predictive value (for C(t) = {τmin ≤ t}) at different alarm times tA, for the case where τ1 and
τ2 are independently geometrically distributed with parameter values ν1 = ν2 = 0.01.
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Figure 5. The predictive value at different alarm times tA, for the casewhere τ1 = τ2 = τ and τ geometrically
distributed with ν = 0.01.

that the method that has the best predictive value and thus the most trustworthy alarms depends
on the relation between the change points.

5. Discussion

Optimality is often hard to define in multivariate problems due to the several dimensions resulting
from the variables. A method could work well for detecting a change in one direction but not in
others. In surveillance (univariate aswell asmultivariate), evaluation is difficult due to the complex
time relations. Some methods work well for detecting gradual long-term changes and others for
detecting sudden large ones. Thus, it is a challenge to evaluate multivariate surveillance methods
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that involve difficulties with both several dimensions and complex time relations. The use of
multivariate surveillance methods is growing, and the evaluation challenge has to be approached.

Some newmeasures, which are generalizations of univariate counterparts, were suggested here
and the properties of several measures were demonstrated by applications to various situations.
The relation between the change times is very important for decidingwhichmethod is the best. For
example, the reduction approach gives the shortest delay and the highest predictive value when
all processes change at the same time but not when the changes occur separately. The parallel
approach has a higher predictive value when the changes are not prone to occur simultaneously.
The optimality of the reduction approach for simultaneous changes is a general result and here it
is illustrated for a simple example.

It was demonstrated that zero-state and steady-state ARL, which are widely used in univari-
ate surveillance, should be used with care in multivariate surveillance. Unfortunately, the more
elaborated CED measure is necessary for full information. This general statement is supported
by the example where it is demonstrated that the new suggested measures will reveal important
differences between situations which will not be revealed by the conventional measures.

The numerical values of the evaluation measures can be hard to obtain analytically for surveil-
lance methods. Thus, Monte Carlo simulations (as in this paper and many others) or numerical
approximations [18] are useful. Evaluation by application to a single case might be interesting but
has the drawback of being highly dependent on stochastic variation.Applications to several cases
diminish this drawback. An approach between the application to a single case and simulations is
the technique of using an observed data series as a start and inducing simulated disturbances to
this series [24].

For the measures PFA, ED, and PV, we need the distribution of τmin, which in turn depends
on the distributions of the change times for all processes. These measures are only suitable when
the change process is considered to be stochastic. The other measures are also suitable when the
change points are considered as unknown but fixed values.

Even if it is appropriate for the application to consider the change points as stochastic, the
exact distribution is seldom known. However, any indication about the predictive value is of great
importance for the interpretation of an alarm.An alarm does not give cause for extensive action if
the predictive value is low. In Figure 4, we can see that the predictive value can be low for early
alarms. This means that these should not call for the same actions as later alarms.
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The relation between change points in multivariate surveillance is important but seldom 

considered. The sufficiency principle is here used to clarify the structure of some problems, to 

find efficient methods, and to determine appropriate evaluation metrics. We study processes 

where the changes occur simultaneously or with known time lags. The surveillance of spatial 

data is one example where known time lags can be of interest. A general version of a theorem 

for the sufficient reduction of processes that change with known time lags is given. A 

simulation study illustrates the benefits or the methods based on the sufficient statistics.  

 

Keywords  change-points, exponential family, MEWMA, monitoring, inference principles 

1. Introduction 

In society there is a great need for continuous surveillance of processes with the aim of 

detecting an important change in the underlying process as soon as possible after the change 

has occurred. The inference is quite different in on-line surveillance as compared to 

hypothesis testing. In surveillance there are no fixed hypotheses. Even if the situation is stable 

at the current time, a change can happen later. Timeliness is important in surveillance. Since 

the probability of a false alarm increases with time and tends to one for most surveillance 

methods, evaluation by significance level, power, and other well-known metrics is not useful 

for ordinary surveillance problems. Some surveillance methods have been constructed to 

resemble methods for hypothesis testing, see for example Chu, Stinchcombe, & White, (1996). 

These methods are constructed to have a false alarm probability less than one. This could be 

an advantage, since it allows statements like those in hypothesis testing to be made. However, 

Frisén, (2003), Aue & Horvath, (2004), and Bock, (2008) demonstrated that the detection 

ability of these methods declines rapidly for late changes. These methods are suitable only for 

applications where a possible change appears at or soon after the start. Sometimes methods 

like the CUSUM method by Page, (1954) or the Shiryaev-Roberts method by Shiryaev, 
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(1963), which were constructed to be optimal for on-line surveillance, are demonstrated to be 

useful also for retrospective hypothesis testing, as in Lee, Ha, Na, & Na, (2003) and Vexler & 

Wu, (2009). There are problems situated between hypothesis testing and surveillance, but in 

this paper we will deal only with inference suitable for on-line surveillance.  

The first versions of modern control charts (Shewhart, (1931)) were made for industrial 

use. Multivariate surveillance is of interest in industrial production, for example in order to 

monitor the multiple sources of variation in assembled products. Wärmefjord, (2004) 

described the multivariate problem for the assembly process of the Saab automobile. In recent 

years, there has been an increased interest in statistical surveillance also in other areas than 

industrial production. The increased interest in surveillance methodology in the US following 

the 9/11 terrorist attack is notable. In the US, as well as in other countries, several new types 

of data are now being collected. Since the collected data involve several related variables, this 

calls for multivariate surveillance techniques. The surveillance of several parameters of one 

distribution (such as the mean and the variance of a normal distribution), see for example 

Knoth & Schmid, (2002), can involve the same problems as the surveillance of a 

multidimensional distribution originating from the observation of different variables. Spatial 

surveillance is useful for the detection of a local change or a spread. One example is the spread 

of a disease such as influenza, as in Schiöler, (2008) and Frisén, Andersson, & Schiöler, 

(2009b). Another example is the spread of a harmful agent such as nuclear radiation, as in 

Järpe, (2001). Spatial surveillance is multivariate since several locations are involved. 

Recently, there have also been efforts to use multivariate surveillance for financial decision 

strategies (see for example Okhrin & Schmid, (2007) and Golosnoy, Schmid, & Okhrin, 

(2007)) with respect to various assets.  

Reviews on multivariate surveillance methods can be found for example in Basseville & 

Nikiforov, (1993), Ryan, (2000), Frisén, (2003), Sonesson & Frisén, (2005), Bersimis, 

Psarakis, & Panaretos, (2007), and Frisén, (2009). Optimality is hard to derive and sometimes 

even hard to define in multivariate problems. However, we will demonstrate how the structure 

of some multivariate surveillance problems can be simplified by the sufficiency principle and 

how this will lead to more efficient methods than those suggested earlier. 

At each time point, a new observation is made on the process. The p-variate process under 

surveillance is denoted by { ( ),  1,2,...}t t Y Y , where Y(t) = {Y1(t), Y2(t),..., Yp(t)}. We 

aim to detect the change from a stable state D to a harmful state C as soon as possible after the 

change has occurred, in order to give warnings and take corrective actions. At decision time s 
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we base the decision on the available information Ys = {Y(1), Y(2)... Y(s)} and use the 

observation vector Ys to form an alarm statistic. An alarm is called the first time that the 

statistic exceeds an alarm limit. In the univariate case, the change happens at the unknown 

time point . In both theoretical works and applications the change point, , is sometimes 

considered as an unknown constant and other times as a stochastic variable. Both views have 

their merits, thus we will first give the results for  considered as fixed and then demonstrate 

that the Theorem holds also for stochastic . In the multivariate case, we observe p processes 

which can change at different times τ1, .. τp. Here an important aim is to detect the first time 

that not all processes are in control, that is, we want to make inference about 

min 1min{ ,..., }p   . If no change ever occurs in process i, we denote this by “i =”. We 

consider models where the observations Yi(t) and Yi(t+j) are independent, given the values of 

the change points, and for each variable, i, there is one distribution, with density fi
0(t), for t< τi 

and another, with density fi
1(t), for t≥τi. In this paper we concentrate on the one-parameter 

exponential family.  

In Section 2 different approaches to the construction of multivariate surveillance methods 

are described and exemplified. Theoretical results on sufficient reduction are given in Section 

3. In Section 4 we discuss the challenges of evaluating multivariate surveillance methods with 

special focus on how the structure of the multivariate problem is clarified by the sufficiency 

principle. In Section 5 we illustrate the theory by a simulation study. Concluding remarks are 

made in Section 6. 

2. Approaches to multivariate surveillance 

Some commonly used general approaches for adapting univariate methods to multivariate 

surveillance will be described and exemplified. Principal differences between approaches for 

handling multivariate data in surveillance will be demonstrated. 

2.1. Dimension reduction 

In Statistical Process Control (SPC) it is practical to use only one control chart instead of 

several. Thus many suggestions have been made on reduction to one chart (see e.g. Cheng & 

Thaga, (2006)). A stepwise reduction of the multivariate surveillance problem is natural. An 

easy way to simplify the situation is to reduce the p-variate vector at each time point into one 
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statistic and then use a system for univariate surveillance on this statistic. One example is the 

suggestion by Crosier, (1988) to summarize data by the Hotelling T variable and then apply 

the univariate CUSUM method to the T variable, making it a scalar accumulation method. As 

we will describe in Section 3, a sufficient dimension reduction can be found for some 

situations. 

2.2. Parallel surveillance 

A stepwise solution of the multivariate surveillance problem can alternatively be 

accomplished by monitoring each variable separately. The approach with parallel systems is 

often called “combined univariate” methods or “parallel” methods. The most common way to 

combine the information from several univariate methods is to signal an alarm at the first time 

that any of the univariate methods gives an alarm. This is a special case of the union-

intersection technique suggested by Roy, (1953). 

2.3. Vector accumulation  

The accumulated information on each component is utilized by a transformation of the vector 

of component-wise alarm statistics into a scalar alarm statistic. Thus a surveillance method is 

applied to each of the p processes, resulting in p-variate alarm statistics at each decision time 

s. This p-variate statistic is then transformed into a scalar, which is the alarm statistic for the 

whole system at time s. An alarm is triggered if this statistic exceeds a limit. As an example, 

Lowry, Woodall, Champ, & Rigdon, (1992) proposed a multivariate extension, MEWMA, of 

the univariate EWMA. The MEWMA method uses a vector of univariate EWMA statistics. 

For each variable Yj and each time t, we have the EWMA statistic Z(t)=jYj(t)+(1-j)Zj(t-1) 

where Z(0)=0. At decision time s we have Z(s)={Z(y1
s), Z(y2

s),..., Z(yp
s)}. An alarm is 

triggered at 1
( )min{ ; ( ) ( ) }T

A st s s s L ZZ Σ Z . The properties of the method are  described in 

Section 5.2.2. Vector accumulation methods based on CUSUM have also been proposed, but 

there are several possibilities of how to handle the characteristic barrier of the CUSUM 

methods (see Sonesson & Frisén, (2005)). 
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2.4. Joint solution  

A joint solution of the original full problem, without stepwise solutions, is preferred when 

possible. In general, the set of likelihood ratios 1 0 0( ) / ( ),..., ( ) / ( )qf y f y f y f y  is sufficient for 

the problem (see for example  Cox & Hinkley, (1974, p. 21)). It follows that the set of partial 

likelihood ratios is sufficient for surveillance problems: 

L(s,m1,...mp)=
1 1 1

1 1

( ,... ,... )

( ,... ,... )

s s
p p p

s s
p p

f m m

f s s

 

 

 

 

Y Y

Y Y
 . 

The full likelihood ratio method for the multivariate problem (see for example Andersson, 

(2009)) requires knowledge of the distribution of the change times. When the full likelihood 

for Ys = {Y(1), Y(2)... Y(s)} is available, it provides a good basis for surveillance since 

optimal methods are mostly constructed based on the likelihood. However, the full likelihood 

can be complicated for some problems, and therefore a reduction may be considered. A 

sufficient reduction will not reduce the information, but other reductions will. A jointly 

optimal solution can be constructed by a sufficient reduction (where no information is lost in 

the reduction step), followed by an optimal surveillance method applied to the reduced 

statistic. Stepwise approaches which start with a reduction (either in time or in the variables) 

and then use a possibly optimal univariate method can be suspected to be suboptimal. Only 

reductions which are sufficient can be expected to result in jointly optimal solutions, since no 

information is lost.  

3. Sufficient reduction 

A statistic T is sufficient for a family of distributions if and only if fY|T(y|t) is the same for all 

distributions belonging to the family F of interest (see for example Cox & Hinkley, (1974)). A 

sequence T1(Y1), T
2(Y2),… is a sufficient sequence of statistics for the distributional families 

F 1, F 2 … if for all s, Ts(Ys) is a sufficient statistic for the family F s.  

For a shift at τ in a univariate distribution between two fully specified distributions, the 

set of likelihood ratios L(s,t) = fY
s(Ys |τ=t) /fY

s(Ys |D) is sufficient for the distributional family 

of Ys defined by the time of change τ.  

According to the sufficiency principle, all conclusions to be drawn should depend on one 

sufficient statistic only.  
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3.1. Simultaneous changes 

Consider the case where all processes have the same change point so that τ1 = τ2 =…τp = τ. An 

example could be when all variables are indicators of the same phenomena. In most 

evaluations of multivariate surveillance it is assumed that all changes are simultaneous. For a 

change at τ between the distributions f0 and f1 we have the distribution for the s observations 
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0 1 0
0

1 1

( ( ))
( | ) ( ( )) ( ( )) ( ( ))

( ( ))

m s s s
s

t t m t t m

f Y t
f m f Y t f Y t f Y t

f Y t




   

     Y . 

It now becomes possible to identify the separate factors: the part that depends on the data 

(but not the value of τ) as well as the part that depends on the s-dimentional vector 

Ls(Ys)={L(s,m), t=1,...s}, where m is the common change time. Thus Ls(Ys) is sufficient for 

the distributional family for each s. From this it follows that the sequence of s likelihood ratios 

is a sufficient sequence. This was proven by Wessman, (1998) both for a fixed unknown value 

of τ and for a stochastic time of change. When the aim is to detect a fully specified, 

simultaneous change in a multivariate process and the distributions before and after the change 

are fully specified, it is possible to construct a univariate surveillance procedure based on the 

sufficient sequence of likelihood ratios. Examples will be given in the next section as special 

cases of the general theorem in the next section. 

3.2. Changes with time lags 

We will now consider the case where there are known time lags between the changes of the p 

processes. We also discuss in which type of problems a known time lag and some knowledge 

on the size of this lag may be available. See Section 6 for a discussion on the effect of 

imperfect knowledge on the time lag. For each application the choice of distributional models 

must be carefully considered. 

There may in some cases be one source of information of good quality that is available 

after a delay and another source with worse quality that is available early. The multivariate 

utilization of these data sets might benefit from information on how large the time lag is. 

Another example is the spatial spread of a disease. In Schiöler, (2008) analyses are made 

of Swedish influenza data and it is shown that the influenza spreads from the larger cities (the 

Metropolitan areas) to the rest of the country (Local) with a lag of approximately 2 weeks.  



SUFFICIENT REDUCTION IN SURVEILLANCE 

7 

A third example of monitoring of a succession of events is a surveillance system for 

radioactivity emerging from a nuclear plant. The radioactivity reaches the measuring locations 

with a time lag which is proportional to the distance from the source. Järpe, (2000) studied 

measurements at different geographical locations in Sweden. Several models for the spread of 

radioactive material by the wind were studied. At each location, the radioactivity increased 

with a time lag which was assumed to be proportional to the distance from the nuclear plant. 

For the situation with a shift of equal size in the expected value of Gaussian processes, when 

the shifts occur with known lags and where we have independent (given the change points) 

normal distributions with the same variances, Järpe, (2000) demonstrated that a sufficient 

reduction to univariate surveillance exists. Here we will prove that a sufficient reduction to a 

univariate statistic exists as long as the processes belong to the one-parameter exponential 

family.  

 

 

Theorem 

Consider p processes Y1, Y2, ..., Yp which all belong to the one-parameter exponential family 

and which are independent conditional on the change points (independent over time as well as 

across coordinates). We consider both the situation when the time of change is fixed but 

unknown and also a stochastic time of change. There exists a sufficient reduction of the set of 

observation vectors {y1, y2, …yp}  to a univariate statistic for the detection of shifts in the 

parameter vector when the changes occur with known time lags (q2, q3,…,qp) where qi=τi–τi-1. 

A sufficient statistic for the detection of shifts of sizes 1 2, ,... s    is the set  

1 1 2 2 2( ) ( ) ... ( )p p py t y t q y t q       , for 1≤ t ≤s-q2 -q3 -...-qp 

1 1 2 2 2 1 1 1( ) ( ) ... ( )p p py t y t q y t q          , for s-q2 -q3 -...-qp< t ≤ s-q2 -q3 -...-qp-2, 

… 

1 1 2 2 2( ) ( )y t y t q   , for s-q2 -q3 <t ≤ s-q2, 

1( )y t , for s-q2 <t ≤ s.  
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Proof 

Since the observations are independent given the values of the change points, the distribution 

can be written as a product. We will first consider a fixed unknown value of τmin. The 

likelihood expressions for the exponential family can be written as  

 

1

2

1

min

1

1 1

1 1

1 2

( )

exp ( ) ( ) ( ( ))

exp ( )( ) ( ) ( ( )) ( ) ( ) ( ( ))

... exp ( )( ) ( ) ( ( ))

p

j j j j
t j

p

j j j j j j j j j j
t j j

j j j j j j

f Y s

y t g h y t

y t g h y t y t g h y t

y t g h y t









 

     

   



 



  

 

 
     

 
                  
   

     



  

1

1 1

1

1

( ) ( ) ( ( ))

exp ( )( ) ( ) ( ( ))

p

p

p

p p

j j j j
t j j p

ps

j j j j j j
t j

y t g h y t

y t g h y t







 

   



 

  

 

            
   

        
  

  


 

and 

 

min

1 1

( )

exp ( ) ( ) ( ( ))
ps

j j j j
t j

f Y s

y t g h y t



 
 

 

 
    

 


 

 

The likelihood ratio, conditional on τmin=m, equals min

min

( | )
( , )

( | )

f Y m s
L s m

f Y s



 




 and thus the 

log likelihood ratio is  
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2

1

1 1

1 1

1 2

2

1 3

( ) ( ) ( ( ))

( )( ) ( ) ( ( )) ( ) ( ) ( ( ))

( )( ) ( ) ( ( )) ( ) ( ) ( ( ))

pm

j j j j
t j

m q p

j j j j j j j j j j
t m j j

p

j j j j j j j j j j
j j

y t g h y t

y t g h y t y t g h y t

y t g h y t y t g h y t

 

     

     



 

 

  

 

    

 
              

 


            




  

 
2 3

2

2

2 1

2

1

... 1 1

... 1

... 1

...

( )( ) ( ) ( ( )) ( ) ( ) ( ( ))

( )( ) ( ) ( ( ))

( )

p

p

p

m q q

t m q

m q q p p

j j j j j j j j j j
t m q q j j p

ps

j j j j j j
t m q q j

j j

y t g h y t y t g h y t

y t g h y t

y t

     

   





  

 

    

     

    


 


 

 
               

 

       





  

 

1 1

( ) ( ( ))
ps

j j
t j

g h y t
 

   
 

This can be arranged into 

2 2 1 2

2 2 3 2

3 3 1

2 3 3

... ...

1 1 1 1 1 1 1 1
... 1 1 1

... ...

2 2 2 2 2 2
... 1 1

1

( ) ( ) ... ( ) ( )

( ) ( ) ... ( )

... (

p p

p

p p

p

s q q s q q s q s

t m t s q q t s q q t s q

s q q s q q s

t m q t s q q t s q

p

y t y t y t y t

y t y t y t

y

   

  





      

            

     

         



   

   

 

   

  

2 1

2

1 1 1
... 1

...

1 2 1 2

) ( )

( )

( , ,..., , , ,..., )

p

p p

p

s q s

p p p
t m q q t s q

s

p p
t m q q

p p

t y t

y t

z

 



     





  
      

   







 



 

where z(δ1, δ2,… δp, φ1, φ2,… φp) =  
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 

 

 

 

2

2 1

2

1 1 1

2 2 2

1 1 1
...

...

( ) ( )

( ) ( )

... ( ) ( )

( ) ( )

p

p

s

t m

s

t m q

s

p p p
t m q q

s

p p p
t m q q

g g

g g

g g

g g

  

  

  

  





 

  
   

   

 

  

   

  









 

is independent of the observations. The expression above can be rewritten as 

 

 

2

2 1

2

2 3

...

1 1 2 2 2 1 2 1 1 2

...

1 1 2 2 1 1 2 1 1
... 1

1 1 2 2 2
1

( ) ( ) ... ( ... ) ( ... )

( ) ( ) ... ( ... )

... ( ) ( )

p

p

p

s q q

p p p p p p
t m

s q q

p p p
t s q q

s q

t s q q

y t y t q y t q q y t q q

y t y t q y t q q

y t y t q

   

  

 



  

  


  

  
    



   

            

         

   




2

2

1 1
1

1 2 1 2

( )

( , ,..., , , ,..., )

s

t s q

p p

y t

z



     
  









 

Thus logL(s,m) is a one-one function of the statistic in the Theorem, and thus it is a sufficient 

statistic for L(s,m) and thus for the problem.  

If τmin is stochastic with some density g(t), then the density of Ys can be written: 

 
1

( ) ( ) ( | )
t

f g t f t




 Y Y . 

This is a simple function of ( | )f t Y  and hence the arguments above can be used to show 

that the statistic in the Theorem is sufficient for the problem also for this case.  

The Theorem is general and thus has many parameters. In order to illustrate the idea we 

will now look at some special cases. The performance for these special cases will be 

illustrated in Section 5.  
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Corollary 1  

A special case of the Theorem concerns two processes (p=2) when the changes occur at the 

same time (q=0). In this situation we have by the Theorem that 1 1 2 2( ) ( )Y t Y t   for 1≤ t ≤s is 

sufficient. If, for example, δ1=2δ2 we have that 2 1 2 22 ( ) ( )Y t Y t   is sufficient. From this it 

follows that the statistic 1 2

2 1
( ) ( )

3 3
Y t Y t  is sufficient. If we have equal shifts in the parameter 

vector (δ1=δ2=δ), then 1 2( ) ( )Y t Y t   is a sufficient statistic. From this it follows that the set 

of means of the observations 

SuffR0(t)= 1 2( ) ( )

2

Y t Y t
 

is sufficient.   

 

 

Corollary 2 

Another special case of the Theorem concerns two processes (p=2) which have equal shifts in 

the parameter vector (δ1=δ2=δ) and where the changes occur with a known time lag q. In this 

situation we have, by the Theorem, that a sufficient statistic is the set   

 1 2( ) ( )Y t Y t q    for t=1,…s-q, 

1( )Y t  for t=s-q+1, …s 

We need two arguments to specify the statistic when q>0, since the series changes when s 

increases. For q=1 a sufficient statistic is the set  

{SuffR1(s, t)}, for t=1, 2, … s.  

Thus, for s=1, the sufficient set is  

{SuffR1(1, 1)= 1(1)Y }.   
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For s=2, the sufficient set is  

{SuffR1(2, 1)=  1 2(1) (2)Y Y /2, SuffR1(2, 2)= 1(2)Y  }.  

 

For s=3, the sufficient set is  

{SuffR1(3, 1)=  1 2(1) (2)Y Y /2, SuffR1(3, 2)=  1 2(2) (3)Y Y /2, SuffR1(3, 3)= 1(3)Y }. 

 

For q=5, a sufficient statistic is the set  

{SuffR5(s, t)=    1 2 1 2 1 1{ ( ) ( 5) / 2,... ( 5) ( ) / 2, ( 4),... ( )}Y t Y t Y s Y s Y s Y s     ,  

for t=1, 2…s.  

 

The main theory of statistical surveillance is constructed for a change between two 

distributions – one for t<τi and another for t≥τi,. The SuffRq(s,t) statistic does not necessarily 

change between two distributions for q>0. For iid Gaussian distributions (conditional on τi) 

with expected values µ0 for t<τi and µ1 for t≥τi., and constant variance σ2, the distributions of 

the sufficient SuffRq(s,t) statistics have the expected value µ0 for t< τmin and µ1  for t≥ τmin.. 

However, the variance is not the same for t>q as for  t≤q. For example, for a lag of 1, the 

variance for SuffR1(2,1) equals σ2/2, whereas the variance for SuffR1(2,2) equals σ2. Other 

transformations, which are also sufficient, could be considered. One alternative is to divide the 

sums in the sufficient statistic SuffRq with √2 instead of 2. This results in a constant variance 

for all components but not constant expected values. For t≥ τmin the expected value shifts from 

12  for the first components of the series to µ1 (for the last components). This seems like a 

larger drawback, and we will thus study the SuffRq(s,t) statistic in the examples in Section 5.4. 

In spite of the fact that we cannot rely on theoretical optimality (since the SuffRq statistic does 

change between more than two distributions), we will see that the statistic works well. 
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4. Evaluation 

4.1. Optimality  

It can be difficult to find a definition of optimality that holds for all different aspects of 

multivariate problems in surveillance, see Frisén, (2003). In multivariate problems there are 

always many dimensions to consider. In surveillance there is the additional complexity of the 

different relations between the change points, ranging from simultaneous changes to 

independent changes. Nevertheless, sufficient reductions make it possible to find optimal 

solutions for at least one important situation. 

After sufficient reduction to a univariate statistic, we can use earlier optimality results of 

univariate surveillance. Different combinations of the partial likelihood ratios are known to 

have different optimality properties, as described by Frisén, (2003). In Frisén & de Maré, 

(1991) it is shown that the full likelihood ratio method, which is a weighted sum of L(s,t), with 

the weights proportional to P(τ=t), yields a minimal expected delay in univariate surveillance. 

This follows from the results by Shiryaev, (1963), where optimality is shown when the change 

point follows a geometric distribution. Another function of the partial likelihood ratios is the 

maximum likelihood ratio component L(s,t) with respect to t. This alarm statistic is mini-max 

optimal, as proved by Moustakides, (1986). The EWMA method was demonstrated by Frisén, 

(2003) and Frisén & Sonesson, (2006) to be an approximation of the full likelihood ratio 

method. Here we will use =0.35 as a reasonable value for all methods to make them more 

comparable but without any claim of optimality.   

For simultaneous changes, it was demonstrated in Section 3 that the multivariate problem 

can be reduced to a univariate problem of a change between two distributions: one for t<τ and 

another for t≥τ. Thus, the ordinary theory of optimal surveillance can be applied. Surveillance 

of the sufficient statistic by an optimal univariate method is thus optimal for the multivariate 

problem. 

In the multivariate setting with different change points, the full likelihood ratio equals the 

joint solution. We may be able to find the full likelihood ratio, weighted by the geometric 

distribution of τ, which in the univariate case guarantees a minimal delay. Sun & Basu, (1995) 

studied multivariate surveillance with p=2 and used the assumption that (1,2) follows a 

bivariate geometric distribution. This means that also min follows a geometric distribution. If 
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min is considered as the change point, then the requirement of a geometric distribution is 

satisfied. However, in proofs for optimality such as those of Shiryaev, (1963) and 

Moustakides, (1986), it is also required that Y(t) is independently and identically distributed 

before as well as after the change point. The requirement of identical distributions is not 

satisfied for Y(t) for all t after min, for the situation when there are several change points. 

Nevertheless, the different types of combinations of partial likelihood expressions (as 

described above) can be assumed to be suitable for different types of (approximate) 

optimality. In Section 5, examples will be used to demonstrate that the methods based on the 

sufficient statistic work well also for situations where optimality cannot be proven. 

4.2. Evaluation measures in multivariate surveillance  

The most commonly used measure of delay of the time, tA, of the alarm is ARL1= [ 1]AE t    

which is also called the zero state ARL since it is a measure of the delay when the change 

happens immediately. A measure for the opposite situation, when the change time tends to 

infinity, is the steady state ARL (see for example Lu & Reynolds Jr, (1999) and Reynolds & 

Kim, (2007)). In univariate surveillance this measure is unique for specified distributions and 

a specified method. In a multivariate setting, however, this measure is not unique but depends 

on the relation between the change points when they tend to infinity. It is common to calculate 

the measure for the situation of simultaneous changes even if the assumption of simultaneous 

changes is only implicit. However, as was pointed out in Section 3.1, the situation with 

simultaneous changes is not a genuine multivariate problem since it can be reduced to a 

univariate one. As was seen in Section 3.1, there are optimal methods for this situation. 

In Frisén, Andersson, & Schiöler, (2009a) the conditional expected delay was 

recommended for situations with different relations between the τ-values 

CED(τ1, τ2... τp) = min min[ ]A AE t t   . 

This measure will be used in the next section to evaluate methods for different situations. The 

CED is rather constant in the examples below. However, the effect of early or late changes 

would be more pronounced for a smaller value of λ (and less pronounced for larger values of 

λ).  
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5. Examples  

In order to illustrate the performance of different multivariate methods, especially those based 

on reduction, we apply them to a number of different situations. We will concentrate on the 

way in which the relations between the change times, τ1, τ2, ..., τp, influence the properties of 

different surveillance methods. In Section 5.1 we give a simple model which will be used in 

the simulation study, in Section 5.2 we describe the methods which are compared, and in 

Sections 5.3 and 5.4, respectively, we report the results for simultaneous changes and changes 

with different change points. 

5.1. Simple model 

A very simple example with two processes will be used. The two processes, Y1 and Y2, are 

assumed to be independent (conditional on the change times) 

1
1

1

(0,1)
( ) ~

(2,1)

N t
Y t

N t





 

 

2
2

2

(0,1)
( ) ~

(2,1)

N t
Y t

N t





 

  

5.2. Methods 

In Section 2 we described how univariate techniques can be generalized to handle multivariate 

situations. We have chosen the EWMA method as the method for accumulating the 

information over time, since it is commonly used also in multivariate situations. The EWMA 

method was introduced in the quality control literature by Roberts, (1959) and has received 

much attention. As regards the variance of the EWMA statistic there are two versions: the 

exact and the asymptotic variance. We will use the asymptotic variance, both for simplicity 

and on the basis of the arguments given in Frisén & Sonesson, (2006) concerning properties. 

At time s the statistic of the EWMA method for the univariate surveillance of Y is  

s
s -t

t=1

Z(s)=λ(1-λ) (1-λ) Y(t) , 
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where 0<≤1 and Z0 is the target value, which is zero in the examples. The EWMA statistic is 

a weighted sum of all observations available at the decision time s. Here we choose the value 

=0.35. For the comparisons we set alarm limits to ensure the same median run length to a 

false alarm (MRL0=100). We will compare the results of several approaches to multivariate 

surveillance: i) the EWMA method applied to a sufficient reduction of data, ii) the MEWMA 

method, iii) a system based on two parallel EMWA methods, and iv) the EWMA method 

applied to the univariate process that changes first. These methods will now be described. 

5.2.1 EWMA based on reduction 

If the two processes in Section 5.1 have simultaneous change points (1=2), then the reduction 

to the statistic SuffR0(t)=(Y1(t)+Y2(t))/2 is sufficient. The EWMA method can then be applied 

to this statistic. This reduction method is labeled SuffR0 in the figures.  

We will also study the reduction SuffR5(s,t) for the case of a lag of 5 (2=1+5). In the 

surveillance process the EWMA is applied to the sufficient statistics, and the time of alarm for 

the reduction methods is the first time when the EWMA statistic exceeds a constant alarm 

limit. Note that the recursive formula Z(s) = (1-)Z(s-1)+Y(s), for s=1, 2,... , which can be 

used for a univariate statistic Y, is not always valid here. The whole SuffRq(t) series is revised 

at each decision time (except for q=0). Thus the original EWMA 

1

( ) (1 ) (1 ) ( )
s

s t q

t

Z s SuffR t   



    should be used. For lag 5 we have  

Z(s)=(1-)sZ0+(1-)s-1(Y1(1)+Y2(6))/2+ (1-)s-2(Y1(2)+Y2(7))/2 +... 

 + (1-)2(Y1(s-5)+Y2(s))/2 +...+ (1-)1Y1(s-1) + Y1(s). 

5.2.2 MEWMA 

MEWMA can be described as a Hotelling T2 control chart applied to univariate EWMA 

statistics instead of to the original data and is thus a vector accumulation method. For our 

simple example and with the value of λ equal for both processes it is 

2 2
1 2( ) ( )

( )
/ (2 )

Z s Z s
EWMA s

 




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5.2.3 Parallel EWMA  

The parallel approach means that the EWMA method is applied to Y1(t) and Y2(t) separately. 

The time of alarm for the Parallel method is the first of either of the alarm times. 

5.2.4 Univariate 

For comparison we also have the results from the EWMA method applied to only one process. 

This corresponds to the situation when there is prior knowledge about which process will 

change first and therefore efficient to monitor only this one. This method is labeled 

“Univariate” in the diagrams. 

5.3. Results for simultaneous changes 

Below we present the results of the delay curve for the methods described above and the 

model in Section 5.1. First we study the situation when 1=2=min, for min=1, 2, .., 15. By 

Corollary 1, a method based on the sufficient reduction to the SuffR0 statistic should be used. 

We compare the EWMA method based on SuffR0 with the MEWMA method and the Parallel 

method. 

In Figure 1 we see that for simultaneous changes, the EWMA method based on reduction 

to the statistic SuffR0(t)= (Y1(t)+Y2(t))/2 gives the shortest delay. This is in accordance with 

theory, as described in Section 3.1. It may be surprising that the popular MEWMA method 

gives the worst result. In this simple example, however, the flexibility of the MEWMA 

method does not constitute an advantage. When using the other methods it is advantageous to 

know the direction of the change. By contrast, the MEWMA method based on Hotelling T2 is 

directionally invariant. There are suggestions of one-sided versions of MEWMA, but they 

were not used here. 
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Figure 1. CED(τ1, τ2) vs τmin for EWMA based on SuffR0, EWMA Parallel, and MEWMA, for 

simultaneous changes, i.e. 1=2=min. 

5.4. Results for changes with a time lag 

We now study the two variables Y1 and Y2 in the situation when they change with a known 

time lag. For the time lag of 1 unit, we find from Corollary 2 that the reduction SuffR1 should 

be used. Correspondingly, for a known lag of 5 time units, the SuffR5 should be used. In 

Figure 2 we examine the situation when 2=1+1, for 1 =min = 1, 2, ..., 15 and in Figure 3 we 

examine 2=1+5, for 1 =min = 1, 2, ..., 15. We compare the EWMA method based on the 

sufficient statistic for the specific situation (lag 1 or lag 5) with MEWMA, a parallel EWMA 

system, and EWMA based on SuffR0.  

In Figure 2, we can see that EWMA based on the SuffR1 reduction gives a shorter CED 

than the other methods for the case when 2=(1+1). 
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Figure 2. CED(τ1, τ2) vs 1=τmin, for 2=(1+1). Results shown for MEWMA, EWMA Parallel, EWMA 

based on SuffR0, and EWMA based on SuffR1. 
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Figure 3. CED(τ1, τ2) vs 1= τmin, for 2=(1+5). Results shown for EWMA based on SuffR0, MEWMA, 

EWMA Parallel, and EWMA based on SuffR5.  
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In Figure 3 we can see that EWMA based on the SuffR5 reduction has the shortest 

expected delay.  

If we know that only the Y1 variable can change (τ2=∞), then it makes sense to base the 

surveillance on this variable only, i.e. monitor Y1 by univariate surveillance. In Figure 4 we 

see that for τ2=∞ the univariate EWMA based on Y1 is clearly the best alternative. Thus, 

knowledge considerably improves the CED of the surveillance. 
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Figure 4. CED(τ1) vs 1=τmin  for τ2=∞. Results shown for EWMA Parallel, EWMA Univariate, and 

EWMA based on SuffR0.  

 

 

The conclusion is that for simultaneous changes (1=2), EWMA based on the SuffR0 

reduction gives the shortest delay. This is in accordance with theory, see Wessman, (1998). 

However, if there is a long time interval between the changes as in Figure 3, or if only one 

process changes as in Figure 4, the reduction to SuffR0 is not favorable. 
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6. Discussion 

Since many important problems involve several data sources, multivariate surveillance has 

attracted much interest. It is challenging in many ways. Multivariate surveillance involves 

statistical theory, practical issues concerning the collection of new types of data, and 

computational issues such as the implementation of automated methods in large scale 

surveillance data bases. In this paper the focus has been on the statistical inference aspects and 

especially the effect of a sufficient reduction of the multivariate surveillance problem. The 

impact of the relation between the change points is seldom considered. However, here it was 

demonstrated that the relations between the change points do have a great impact and can be 

utilized to find efficient methods.  

An advantage of the sufficient reduction is that univariate monitoring methods can be 

used. Properties are often known and optimality is less complicated for univariate methods. 

Evaluations are often made by the ARL1 or the steady state ARL, together with an 

implicit assumption that all processes change simultaneously. However, if the processes do 

change simultaneously, there exists a sufficient reduction to a univariate statistic which should 

be the base for optimal surveillance. Genuinely multivariate problems with different change 

points should be evaluated by generalized metrics, as suggested in this paper. 

According to the sufficiency principle, all conclusions to be drawn should depend only on 

a sufficient statistic. For simultaneous changes, a univariate optimal accumulation of the 

information by SuffR0 will result in a jointly optimal surveillance method. We have 

demonstrated that a considerable improvement can be made by basing the surveillance on the 

suggested SuffR0 statistic instead of using the Parallel method or the MEWMA.  

In the Theorem it is demonstrated, for the exponential family, that a known time lag 

allows a sufficient reduction. In this situation (i.e. with different change times), the sufficient 

statistic does not change between two distributions only, and therefore previous optimality 

results on how to aggregate the information over time cannot be used directly. However, we 

have demonstrated that for some situations, the method based on a sufficient reduction for the 

known lag gives the shortest delay to detection compared to a parallel approach or the 

MEWMA method.  

The Theorem shows that there exists a sufficient reduction if the time lag is known. Much 

statistical inference is derived for a situation with specific assumptions (t-test for 1=2 
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assumes equal variances, OLS assumes a constant variance over X) and to determine if these 

assumptions are fulfilled can be challenging. However, if the assumptions are approximately 

fulfilled, the method will in most cases have good properties. Thus if the time lag is estimated 

to be approximately 3, the surveillance based on SuffR3 will probably work better than 

surveillance based on SuffR0. A comparison between Figure 2 and Figure 3 demonstrates that 

the results are worse for a larger error in the delay than for a smaller. Thus, a close 

approximation of the true time lag can be assumed to give good results. However, a large error 

in the assumption on the time lag might result in a less efficient method. 

It was also demonstrated – as expected – that in a situation where only one process 

changes, the performance is considerably improved if this knowledge is utilized in the 

surveillance procedure.  
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Abstract 

Aims: The spatial aspect of Swedish seasonal influenza data was investigated and modelled 

with the main aim of finding patterns that could be useful for outbreak detection, i.e. for 

detecting an increase in incidence as soon as possible. Methods: Quality problems with data 

on laboratory diagnosed cases (LDI) collected by a number of laboratories and other data were 

studied. Parametric and nonparametric regression methods were used for estimation of the 

excepted incidence. Multivariate analysis was used to determine the impact of different spatial 

components. Results: Quality problems were found for all types of data. LDI was found useful 

for the present aim. No evidence for a geographical pattern was found. It was found that the 

influenza outbreak started at about the same time in the metropolitan areas and about one 

week later in the rest of the country. Both parametric and nonparametric regression models are 

suggested. Conclusion: There was a time difference between the outbreaks in the 

metropolitan areas and the rest of the country. This can be utilised to improve outbreak 

detection. 

 

Key Words: Influenza, Sweden, onset of outbreak, statistical models, spatial, monitoring 
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Background 

Influenza is an epidemic disease which causes a significant number of deaths, especially 

among elderly people and infants, as well as a considerable amount of absenteeism (see for 

example [1]). Yearly and weekly influenza reports are available from the Swedish Institute for 

Infectious Disease Control (SMI) at www.smittskyddsinstitutet.se. Statistical models are 

useful for understanding how the incidence varies. In [2] the problem of modelling influenza 

data was investigated. A method for predicting the time and height of the peak of the influenza 

season was proposed in [3].  

It is important to detect the onset of the outbreak as soon as possible, in order to be able to 

allocate the proper resources to the primary care sector and take preventive action. Statistical 

methods for surveillance increase the chances of early and correct detection. Automatic 

surveillance systems are now implemented in Sweden [4] and other countries. The three 

methods implemented in Sweden so far are based on [5-8]. In [7-8] the application of one of 

the methods to influenza in Sweden is described. This method is applied to the country as a 

whole. Further development of the methods by incorporating spatial patterns can be beneficial. 

A known pattern in the spread of the influenza epidemic between regions can be utilised for 

quicker and more accurate outbreak detection.  

Aims 

The aim of this paper is to suggest statistical models for incidence at the outbreak of the 

seasonal influenza. Special emphasis will be put on spatial patterns that could be useful for a 

surveillance system. There may be a time lag between the outbreaks in different regions of the 

country, and hence it may be possible to detect an outbreak earlier by considering spatial 

differences. At a regional level the number of reported influenza cases is small in Sweden, 

hence some aggregation of data is beneficial. A spatial pattern can be the base for such 

aggregation. 

The modelling of the influenza incidence is important for effective statistical surveillance. 

Since the variation between years is large, a robust nonparametric or semiparametric model is 

suitable. A parametric model is needed for simulating data for evaluation purposes. We 

consider both parametric and semiparametric models. 
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Material and methods 

Swedish data on influenza 

In Sweden, several types of data are collected by the SMI during the influenza season. The 

most established ones are rates of laboratory diagnosed influenza (LDI) and reports by 

selected physicians on the number of patients with influenza-like illness (ILI). The official 

reporting from the SMI starts at week 40. Information on the data on influenza in Sweden can 

be found for example in [9] and at the website of the SMI (www.smittskyddsinstitutet.se). The 

possibility of collecting data by telephone surveys and self-reporting has also been 

investigated by the SMI [10-12]. 

It has been suggested that data on influenza related Internet searches could be used as a 

proxy for traditional types of data. In [13] a method for using Google’s search data is 

described, and such data on Sweden are available at www.google.org/flutrends/. In [14] search 

data from a website offering medical advice is used. The website is owned by the Stockholm 

County Council and is aimed primarily at the residents of Stockholm. Neither of these sources 

offers spatial information. 

The percentage of patients with ILI is a commonly used measure of influenza incidence. 

However, most regions lack such data for several weeks each year, both on the number of 

visiting patients and on the number of patients with influenza symptoms. The problem is most 

evident at the beginning and end of the influenza season. A possible explanation is that 

medical staff may be less inclined to report cases or perform laboratory testing if there is an 

expectation that the influenza season has not started or is already over. In [3] it was concluded 

that the available data on ILI could not be regarded as a good indicator of the incidence. 

Furthermore, data on the number of patients in each region were not available after the season 

04/05. Thus, %ILI for the different regions could not be aggregated in a meaningful way for 

the later years. The ILI data could therefore not be used for spatial surveillance. 

Laboratory diagnosed cases are reported by five viral laboratories and a number of 

microbiology laboratories. The number of reporting laboratories has increased but varies 

slightly between the years, as shown in Table I. Although many laboratories have some years 

missing from their reporting, there are complete data on the period 99/00 to 08/09 for more 

than half of the regions, including the largest cities (Table II). In [3] it was concluded that LDI 

is a useful indicator of influenza in Sweden. We will use the sum of the cases with influenza 

type A and B in our analysis.  
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The surveillance of spatial clusters of adverse health events has been analysed for example 

by [15] and [16]. However, in Sweden data are available only for large regions which are not 

suitable for cluster analysis. 

 

 

Table I. The number of laboratories having reported confirmed cases to the SMI. 
 99-00 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 

Number of 
laboratories 

17 18 20 21 24 24 25 23 25 25 

 

 

Statistical methods 

Spearman’s rank correlation was used to investigate the relationship between the time of onset 

and the coordinates. Linear models were used to further investigate this relationship by 

incorporating more variables in the analysis.  

Data was aggregated to groups and the effect of introducing a time lag between the groups 

was investigated. We used the root mean square deviation (RMSD), i.e. 
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  , where X1(t) and X2(t) denote the observation t of the first and 

second group, respectively and k is the time lag. Hence a low value of RMSD is an indicator 

that the incidences in the two groups agree. 

The Swedish influenza incidence will be modelled by a Poisson process with the intensity 

following an exponential curve, as suggested in [2]. The parametric model is useful to study 

characteristics of the outbreak pattern and for simulation studies of the properties of 

surveillance systems. 

Since the variation between years is large, a parametric model of the influenza outbreak is 

of limited use for detecting the outbreak. The major pattern all years is that there is an increase 

from the onset until a peak is reached, and then a decrease follows. We used nonparametric 

unimodal regression [17] for the estimation of the expected incidence. This reduces some of 

the random variation in the available data without any assumption of a parametric model. 

Statistical analyses were performed using SAS for Windows version 9.2. 
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Results 

Details of our results are given in the technical report [18]. Here the results are briefly 

described to support the discussion and the conclusions. 

 

Table II. The total number of laboratory diagnosed influenza cases. Laboratories with data for all years are placed at 
the top of the table and sorted by median. Laboratories with consistent reporting in later years are placed in the middle 

and laboratories with inconsistent reporting at the bottom. 
 99_00 00_01 01_02 02_03 03_04 04_05 05_06 06_07 07_08 08_09 Median 

KS 350 143 215 111 249 282 110 120 247 247 231 
Malmö 196 36 149 73 201 359 209 263 158 460 198,5 
HS 293 109 178 95 189 252 121 155 185 180 179 
Umeå 210 115 195 62 139 165 67 148 98 88 127 
Skövde 102 52 140 39 107 184 34 88 15 98 93 
Örebro 170 32 83 19 101 76 28 73 55 93 74,5 
Göteborg 71 38 47 32 66 41 96 116 146 294 68,5 
Falun 65 31 114 20 144 93 44 67 43 101 66 
Uppsala 117 47 77 18 34 116 24 36 27 61 41,5 
Halmstad 90 18 37 11 42 62 38 52 38 69 40 
Karlstad 131 6 40 10 29 73 18 42 13 36 32,5 
Kalmar 51 5 36 5 41 91 15 7 25 50 30,5 
Linköping 31 5 32 24 23 17 9 16 14 24 20 
Uddevalla 66 13 25 9 27 44 12 21 15 18 19,5 
Västerås 10 1 9 2 28 29 10 26 4 13 10 
            
Sundsvall  5 51 5 60 46 5 45 51 31 45 
Gävle   5 4 15 14 14 20 11 16 14 
Karlskrona  9 4 4 15 5 12 2 27 7  
Eskilstuna    2 15 10 2 5 18 15 10 
Borås     24 14 7 8 11 21 12,5 
Jönköping    12 6 10 24 8 26 11  
Kristianstad      7 27 16 54 21,5  
Lund         26 61 43,5 
Helsingborg        15 25 20  
            
Luleå 22   2 15 14 16  5 6 14 
Växjö 32 12 46 7 7 1 1    7 
Östersund  9  1 15  1   5  
Kungshamn 5         5  
Trollhättan      2    2  

 

 

Spatial pattern 

The total number of cases each year is shown in Table II. Laboratories in larger cities tend to 

report more cases. A large variation between years as well as inconsistent reporting by some 

laboratories can be noted. 

Table III shows the number of weeks to the first laboratory diagnosed influenza case. 

There is considerable variation between years and also between laboratories. One reason for 

the latter could be differences in population size. There may also be differences in incidence 

depending on population characteristics, such as the age distribution, as well as differences in 

testing policies. The largest cities, Stockholm, Göteborg and Malmö, have generally been 
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among the first to report cases. Umeå is also generally found among the cities with the earliest 

reports. Table III also shows the median number of weeks until the cumulative number of LDI 

cases exceeded 5. 

 

Table III. The number of weeks (from week 40 onwards) to the first laboratory diagnosed influenza case. The regions 
are sorted with respect to the median week for the first case. The median number of weeks until the cumulative 

number of LDI cases exceeded 5 is shown in the last column. 
 99_00 00_01 01_02 02_03 03_04 04_05 05_06 06_07 07_08 08_09 Median Median #>5 
Göteborg 9 14 14 6 6 6 6 1 0 2 6 14.0 
KS 3 14 7 8 5 7 11 10 4 0 7 12.0 
HS 3 17 8 13 3 7 8 8 2 6 7.5 12.5 
Umeå 3 17 15 12 7 10 5 3 8 7 7.5 14.0 
Malmö 3 12 10 15 8 8 13 12 4 5 9 14.0 
Borås     6 13 17 14 6 6 9.5 21.0 
Skövde 8 14 15 4 5 13 16 8 14 8 10.5 16.5 
Lund         11 11 11 15.0 
Uppsala 4 14 14 15 8 3 18 11 7 11 11 15.5 
Halmstad 9 18 14 17 7 9 14 16 2 2 11.5 18.5 
Örebro 10 12 16 18 6 10 20 13 13 8 12.5 18.0 
Helsingborg         14 12 13 16.0 
Karlstad 6 19 14 15 8 11 17 12 17 3 13 17.0 
Luleå 11   12 10 16 17  23 13 13 18.0 
Falun 10 17 17 13 8 14 14 12 14 5 13.5 17.0 
Jönköping     11 24 14 19 9 13 13.5 20.5 
Kristianstad       15 12 18 6 13.5 20.5 
Uddevalla 11 16 16 19 7 9 17 16 11 10 13.5 19.0 
Sundsvall  21 14 20 8 16 16 11 13 11 14 17.5 
Linköping 9 18 18 19 5 10 10 16 16 13 14.5 18.0 
Eskilstuna    15 7 18 24 22 15 14 15 18.0 
Västerås 12 23 22 20 9 11 18 8 19 3 15 17.0 
Kalmar 9 20 16 23 5 16 14 19 15 13 15.5 19.0 
Karlskrona   16 16 7 19 13 15 17 11 15.5 22.0 
Gävle   18 17 3 16 17 18 10 10 16.5 19.0 
Växjö 12 18 16 18 7 25 17    17 21.0 
Östersund   19  20 14  18   18.5 23.5 

 

 

Since the catchment areas of the laboratories differ, the reason that the larger cities reach a 

larger cumulative sum than the smaller cities could be either that the outbreak occurs earlier in 

the larger cities or that the probability of a large number is greater for a large population, or a 

combination of the two. This question will be further studied below. 

Spatial analysis often concerns clusters. However, regional data on influenza in Sweden 

are available only for 25 large regions, which we found unsuitable for standard cluster 

analysis. Thus, we studied the possible spread to neighbouring areas by analysing how the 

geographical position indicated by latitude and longitude is associated with the time of the 

outbreak. Table IV shows the correlations between the coordinates and the number of weeks 

until the number of LDI cases exceeded 5. None of these correlations differed significantly 

from zero. 
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Table IV. Spearman correlation between coordinates and the number of weeks until the number of LDI cases 
exceeded 5. 

 99-00 00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 Median 
Latitude -0.035 0.177 -0.126 -0.261 0.217 -0.129 -0.144 -0.348 0.007 0.134 -0.090 

Longitude -0.021 -0.046 -0.290 -0.431 0.291 -0.200 -0.003 -0.146 -0.133 0.149 -0.177 

 

As the outbreak in general occurred earlier in large cities, we examined classification into 

two groups: a metropolitan group consisting of Stockholm including Uppsala, Göteborg, 

Malmö and Umeå, and a locality group consisting of the rest of Sweden. Stockholm, Göteborg 

and Malmö all have considerably larger populations than the other cities, and they are part of 

the metropolitan areas as defined in [19]. Uppsala, on the other hand, is more similar in 

population size to the cities in the locality group. However, the proximity and transport 

connections to Stockholm make Uppsala suitable to include in the metropolitan group. 

Moreover, the international airport of Arlanda is situated about halfway between Stockholm 

and Uppsala. We also included Umeå in the metropolitan group, although the city has a 

smaller population than the other cities in the group. Umeå is the largest city in the region of 

Norrland, which comprises about 59 % of the total area and 16% of the population of Sweden. 

The region’s largest hospital is found here. Figure 1 shows the number of LDI cases for each 

group. 

Using Spearman’s rank correlation, we found that the pairwise correlations of weekly 

numbers of LDI cases in Stockholm, Göteborg, Malmö and Umeå were high (correlation 

coefficient >0.7 for most years). The correlation between Uppsala and the rest of the group 

was slightly lower but still high enough for it to be reasonable to include Uppsala in the group. 

It could be argued that Lund and Borås should also be included in the metropolitan group, 

due to their proximity to Malmö and Göteborg, respectively. However, the reporting from 

Borås and Lund was inconsistent. There were also other quality problems associated with the 

reports from these cities. We chose to exclude them from the metropolitan group. 

A multivariate analysis was performed to determine which of the variables year, 

coordinates and group (metropolitan/locality) had the strongest influence on the time of the 

onset. To avoid interaction with missing data, only data from laboratories with data for all 

years were used. Different linear models with the time of the onset as dependent variable were 

analysed. Year and group were used as qualitative factors and coordinates (latitude and 

longitude) as continuous variables. We found that the group factor gave the highest partial 

coefficient of determination apart from year. The latitude and longitude coordinates were not 
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significant in any of the models. Our conclusion was that there was no strong relation between 

the coordinates and the time of outbreak. 
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Figure 1. The number of laboratory diagnosed cases for the metropolitan group, 

Stockholm/Uppsala, Göteborg, Malmö and Umeå (solid line), and the locality group, the rest 

of Sweden (dotted line).  
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Time differences in the start of the onset 

Table V shows the number of weeks until the cumulative number of LDI cases exceeded 10. 

This happened first in the metropolitan group in all years except 2002-2003. 

 

Table V. The number of weeks until the cumulative number of LDI cases exceeded 10. 
 99_00 00_01 01_02 02_03 03_04 04_05 05_06 06_07 07_08 08_09 

Locality 17 16 16 6 13 15 11 12 8 9 
Metropolitan 16 14 13 6 10 13 7 6 7 6 

Difference 1 2 3 0 3 2 4 6 1 3 

 

Table V suggests that there is a time lag between the two groups. Additional analyses on 

each influenza season were performed to see which shift in time would make the incidences in 

the metropolitan and locality areas more alike. We calculated the total root mean square 

deviation, including all influenza seasons in the calculation. Different time lags between the 

two groups were examined. In the presence of a time lag we would expect the lowest RMSD 

for the correct value of the lag. Since our primary interest is the outbreak, we used only the 

observations from the start and until the number of observed cases in the metropolitan group 

had exceeded 15. The results are shown in Table VI. The total RMSD was lowest for a lag of 

one week. 

 

Table VI. Root mean square deviation between the metropolitan and locality groups. 
Lag RMSD 

0 5.75 
1 5.15 
2 6.95 

 

The uptake area of each laboratory is not known and therefore population size cannot be 

used in the analysis. A larger population means that a fixed number of cases will be exceeded 

earlier, even if the incidences are the same. The number of cases was larger for the 

metropolitan group. The median number of cases at the peak of the incidence was 123.5 for 

the metropolitan group and 105.5 for the locality group, a ratio of 1.17. To study the effect of 

the difference in size, we adjusted the size of the groups in the parametric model defined 

below and compared the time it took for the cumulative sum to exceed 5. The resulting time 

difference after the adjustment was about one day. Thus, a difference in population size of this 

magnitude could not be seen as the full explanation for the observed difference in the time of 

outbreak. 
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Parametric models of the expected incidence 

A parametric model is useful to describe details of the outbreak. In order to make a simulation 

study of the properties of a surveillance method, some sort of parametric model is also needed. 

In [7] the model 

0

0 1
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where τ denotes the time of the onset, is used for a typical curve of the total number of LDI 

cases in the whole of Sweden. The constant phase, 0, was roughly estimated to 0 = 1 from 

Swedish LDI data for eight years. The model was estimated from the incidence in the season 

03/04, when the outbreak was neither particularly severe nor particularly mild. The estimates 

of the parameters were 0 = -0.26 and 1 = 0.826. 

By the results above we have that the locality and metropolitan groups each had about half 

the number of cases in Sweden as a whole and an approximate time lag between them of about 

one week. Thus, the relation between the incidences of the total (T), metropolitan (M) and 

locality (L) areas can be expressed by 
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where 1L M    and 0µ =1. The parameters *
0  = -0.62 and *

1  = 0.826 give a good 

approximation of the model for the total incidence above. This curve fitted well to the data for 

the same season (03/04) for some values of the starting time. It also fitted rather well for some 

other seasons, while a good fit for all seasons could not be expected due to the marked 

differences between the seasons.  

Nonparametric and semiparametric models of the expected incidence 

Due to the limited quality and the variation between years, the parametric model is unsuitable 

for inference. The interaction between the estimates of the start and slope of the outbreak is 

another weakness of parametric models. The use of order restrictions for modelling outbreaks 

is suggested in [20], where it is assumed that the incidence is constant up to some starting 

point and then non-decreasing. A similar assumption is used in [3], where the time of onset 

and the slope are used for predicting the time and height of the peak in influenza incidence. 

The time difference between the (interpolated) time points when the total number of LDI cases 
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in Sweden exceeds 30 and 10, respectively, is used as an indicator of the slope. We applied 

these techniques to the aggregated data but used the time difference between 15 and 5, since 

each of the groups accounts for about half of the total number of cases in Sweden. We found 

no significant difference between the slopes of the metropolitan and locality groups. 

The nonparametric model by order restriction can be combined with the Poisson 

distribution to a semiparametric model. In [8] a semiparametric method of surveillance is 

applied to Swedish LDI data for the country as a whole. Figure 2 shows the alarm statistic of 

the method applied to the metropolitan and locality groups. The metropolitan group had a 

tendency to an earlier increase than the locality group. Thus, an earlier alarm or first warning 

can be expected here. 
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Figure 2. OutP alarm statistics for the metropolitan group (dots) and the locality group 

(crosses). 
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Discussion 

The surveillance of infectious diseases such as influenza has drawn much attention recently. 

We analysed the spatial aspect of Swedish influenza data with the main aim of finding patterns 

that could be useful for statistical surveillance of the outbreak, i.e. for detecting an increase in 

incidence as soon as possible. 

In Sweden, several types of data are collected during the influenza season. The most 

established ones are data on laboratory diagnosed cases (LDI), collected by a number of 

laboratories, and cases of influenza-like illness (ILI), collected by a number of selected 

physicians. Quality problems were found for both types of data but were most severe for ILI. 

A potential problem with LDI data is that policies regarding testing may differ between 

administrative areas. Hospitals conducting research on influenza may also be more inclined to 

perform testing. The differences in population size between the catchment areas of the 

laboratories may also constitute a problem. The number of cases can be expected to be greater 

for laboratories serving large populations. Thus, one has to be careful with drawing 

conclusions regarding the incidence from the number of confirmed cases, since a higher 

number of cases can be the result of both a higher incidence and a larger population. The 

varying number of reporting laboratories may also be a problem, particularly when using a 

surveillance method that relies on a baseline to distinguish between the epidemic and non-

epidemic phases. However, the fact that primarily smaller laboratories are inconsistent in their 

reporting lessens this effect.  

In [7-8] it has been shown that Swedish influenza data can be useful for surveillance. By 

combining results from different parts of the country in an efficient way, inference regarding 

the outbreak in the country as a whole might be performed more efficiently. We found that 

there was a time lag between the metropolitan and locality areas. This can be potentially 

useful for faster and more reliable detection of the outbreak.  

Spatial patterns such as those based on geographical coordinates were examined. We 

found no evidence for a relation between the time of the onset of the outbreak and a location 

to the north/south or east/west. We found that in the major cities, Stockholm (including 

Uppsala), Göteborg, Malmö and Umeå, the onset of the influenza outbreak seemed to occur 

earlier than in the rest of the country. Analysis with respect to the variables coordinates, group 

(metropolitan/locality) and year revealed that year and group was the most important as 

concerns the time of the onset of the outbreak. These metropolitan regions all have major 

airports nearby, and commuting is common.  
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The properties of the metropolitan and the locality groups were analysed by studying the 

time at which a certain incidence was reached, the similarity between lagged variables, and 

graphs of the incidence and alarm statistic at the onset. Although the variation between years 

was quite large, a difference of one week between the metropolitan and locality groups was a 

good approximation for most years. There are a number of factors that could contribute to the 

difference in influenza incidence between regions. Temperature and humidity affect the 

transmission of influenza virus [21]. This may be a factor in Sweden due to its diverse climate. 

However, we found no influence of the geographical coordinates, which are of course 

correlated with climate variables. Air travel has been found to have significant effect on the 

spread of influenza in the USA [22]. It is thus probable that major cities with well-developed 

means of transport may have an earlier outbreak than smaller cities.  

Stochastic models for influenza incidence are needed for many purposes. An earlier study 

[2] has found that the Poisson distribution fits well to data at the onset of the outbreak. In this 

paper, parametric exponential regression models were suggested for the metropolitan and 

locality groups separately. As for the incidence slope at the onset, no evidence was found for a 

difference between the two groups. These parametric models are useful to generate data for 

simulation and for enhancing understanding. The variation in incidence between the years is 

large. Therefore, a nonparametric or semiparametric approach would be more suitable. For 

surveillance purposes, we suggest using a robust nonparametric regression model with order 

restriction. 

Conclusion 

Geographical coordinates such as the location to the north/south or east/west had little 

influence on the time of the onset of the influenza outbreak. The dominating spatial pattern 

was that for the major cities, Stockholm (including Uppsala), Göteborg, Malmö and Umeå, the 

onsets of the outbreak occurred earlier than in the rest of the country. A time difference of 

about one week between the metropolitan and locality groups was observed. 

An exponential regression, with the same slope for the metropolitan and locality groups, 

fitted well to the data at the onset of the outbreak. However, the parameters differed much 

between years, and for surveillance purposes we therefore recommend a nonparametric 

regression with a constant phase before the onset and a monotonically increasing phase from 

the onset onwards. 

 



14 

Acknowledgements 

The author is grateful to Marianne Frisén, Eva Andersson and Kjell Pettersson for constructive 

comments on the statistical analysis. The data were made available to us by the Swedish 

Institute for Infectious Disease Control, and we are grateful for discussions about the aims and 

the data quality. The research was supported by the Swedish Civil Contingencies Agency 

(grant 0314/206). 

 



15 

References 

1. Molinari N-AM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, 

Weintraub E, et al. The annual impact of seasonal influenza in the US: Measuring disease 

burden and costs. Vaccine. 2007;25(27):5086-96. 

2. Andersson E, Bock D, Frisén M. Modeling influenza incidence for the purpose of on-line 

monitoring. Stat Methods Med Res. 2008;17:421-38. 

3. Andersson E, Kuhlmann-Berenzon S, Linde A, Schiöler L, Rubinova S, Frisén M. 

Predictions by early indicators of the time and height of yearly influenza outbreaks in 

Sweden. Scand J Public Health. 2008;36:475-82. 

4. Cakici B, Hebing K, Grünewald M, Saretok P, Hulth A. CASE –a framework for computer 

supported outbreak detection.  . BMC Med Inform Decis Mak. 2010;10(14). 

5. Farrington CP, Andrews NJ, Beal AD, Catchpole MA. A statistical algorithm for the early 

detection of outbreaks of infectious disease. J R Statist Soc A. 1996;159:547-63. 

6. Kulldorff M. A spatial scan statistic. Comm Stat Theor Meth. 1997;26(6):1481-96. 

7. Frisén M, Andersson E. Semiparametric surveillance of monotonic changes. Sequential 

Analysis. 2009;28(4):434-54. 

8. Frisén M, Andersson E, Schiöler L. Robust outbreak surveillance of epidemics in Sweden. 

Stat Med. 2009;28(3):476-93. 

9. Brytting M, Stivers M, Dahl H, Serifler F, Linde A, Rubinova S. Annual Report july 2007- 

june 2008 : The National Influenza Reference Center. Solna: Swedish Institute for 

Infectious Disease Control; 2006. 

10. Payne L, Kühlmann-Berenzon S, Ekdahl K, Giesecke J, Högberg L, Penttinen P. 'Did you 

have flu last week?' A telephone survey to estimate a point prevalence of influenza in the 

Swedish population. Eurosurveillance. 2005;10(12):241-4. 

11. Brytting M, Stivers M, Dahl H, Serifler F, Linde A, Rubinova S. Annual Report July 2006 

- June 2007: The National Influenza Reference Center. Solna: Swedish Institute for 

Infectious Disease Control; 2006. 

12. Bexelius C, Merk H, Sandin S, Ekman A, Nyrén O, Kühlmann-Berenzon S, et al. SMS 

versus telephone interviews for epidemiological data collection: feasibility study 

estimating influenza vaccination coverage in the Swedish population. Eur J Epidemiol. 

[10.1007/s10654-008-9306-7]. 2009;24(2):73-81. 



16 

13. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting 

influenza epidemics using search engine query data. Nature. [10.1038/nature07634]. 

2009;457(7232):1012-4. 

14. Hulth A, Rydevik G, Linde A. Web Queries as a Source for Syndromic Surveillance. PLoS 

ONE. 2009;4(2):e4378. 

15. Kulldorff M. Prospective time periodic geographical disease surveillance using a scan 

statistic. J R Statist Soc A. 2001;164(1):61-72. 

16. Sonesson C. A CUSUM framework for detection of space-time disease clusters using scan 

statistics. Stat Med. 2007;26:4770-89. 

17. Frisén M. Unimodal regression. The Statistician. 1986;35(4):479-85. 

18. Schiöler L. Modelling the spatial patterns of influenza incidence in Sweden. Gothenburg: 

Statistical Research Unit, Department of Economics, University of Gothenburg, Sweden; 

2010. Report No.: 2010:1. 

19. Statistiska centralbyrån. Geografin i statistiken - regionala indelningar i Sverige Statistiska 

centralbyrån; 2005. Report No.: 2005:2. 

20. Frisén M, Andersson E, Pettersson K. Semiparametric estimation of outbreak regression. 

Statistics. 2010;44(2):107-17. 

21. Lowen AC, Mubareka S, Steel J, Palese P. Influenza Virus Transmission Is Dependent on 

Relative Humidity and Temperature. PLoS Pathogens. 2007;3(10):e151. 

22. Brownstein JS, Wolfe CJ, Mandl KD. Empirical Evidence for the Effect of Airline Travel 

on Inter-Regional Influenza Spread in the United States. PLoS Medicine. 2006;3(10):e401. 

   

 



Paper V





1 

Multivariate outbreak detection 
 

BY LINUS SCHIÖLER1 and MARIANNE FRISÉN1 
University of Gothenburg 

On-line monitoring is needed to detect outbreaks of diseases like influenza. Surveillance is 
also needed for other kinds of outbreaks, in the sense of an increasing expected value after a 
constant period. Information on spatial location or other variables might be available and may 
be utilized. We adapted a robust method for outbreak detection to a multivariate case. The 
relation between the times of the onsets of the outbreaks at different locations (or some other 
variable) was used to determine the sufficient statistic for surveillance. The derived maximum 
likelihood estimator of the outbreak regression was semi-parametric in the sense that the 
baseline and the slope were non-parametric while the distribution belonged to the exponential 
family. The estimator was used in a generalized likelihood ratio surveillance method. The 
method was evaluated with respect to robustness and efficiency in a simulation study and 
applied to spatial data for detection of influenza outbreaks in Sweden. 

1. Introduction 

On-line surveillance is used to give an alert signal as soon as possible after an important 
change has occurred. Overviews of the inferential issues in surveillance are given by 
Lai (1995), Woodall and Montgomery (1999), Ryan (2000), Frisén (2003), Frisén (2009) and 
others.  

Here we will consider the detection of an outbreak, defined as a change from a (possibly 
unknown) baseline to a monotonically increasing (or decreasing) regression. Other definitions 
of outbreaks are discussed in Section 0. 

The motive for this study was the spatial surveillance of influenza outbreaks. The detection 
of outbreaks of epidemiological diseases is an important area of on-line surveillance. 
Surveillance in public health is reviewed by for example Sonesson and Bock (2003), Lawson 
and Kleinman (2005), Woodall (2006), Shmueli and Burkom (2010), and Kass-Hout and 
Zhang (2010). By monitoring incidences, outbreaks of reoccurring diseases may be detected, 
for example the yearly influenza epidemic. Such monitoring is also useful to detect new 
diseases, such as SARS, avian flu and swine influenza, as well as effects of bioterrorism. Early 
detection of the onset of an outbreak is useful in order for health authorities to act timely and 
also for the planning of health care. Epidemics, such as influenza, are for several reasons very 
costly to society and it is therefore of great value to monitor the epidemic period in order to 
properly allocate medical resources (Andersson et al. (2008b)). A semi-parametric method for 
detecting the onset of a monotonic increase was suggested for univariate surveillance by 
Frisén and Andersson (2009). It was successfully applied to the incidence of influenza in 
Sweden as a whole by Frisén et al. (2009).  

As information on the incidence in different regions of the country is available, we will 
here generalize the univariate method to utilize this information. Spatial surveillance is a 
special case of multivariate surveillance, as pointed out for example by Sonesson and Frisén 
(2005) and Joner Jr. et al. (2008). The relation between different variables (here locations) is 
important in the monitoring of the onset of the outbreak. We will use information from a study 
by Schiöler (2010) on the spread of influenza in Sweden. The spreading pattern is described in 
Section 6.1. We will investigate how information on time lags in the onset at different 
locations should be used in an outbreak surveillance system. Another case there a time lag 
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might be relevant is when you have an early but rough indicator which might be combined 
with a later and more accurate one,. In Hulth et al. (2009) and Ginsberg et al. (2009) it was 
shown that data of search patterns on the Internet could be used as a proxy for influenza 
incidence. Ginsberg, et al. (2009) found that the lag in reporting was about one day compared 
to between one and two weeks for traditional CDC-data. The method suggested in this article 
may possibly be useful also for situations like that one, where the lag is in the reporting rather 
than in the onset of the outbreak at the various locations. 

In Section 2, we will specify univariate and multivariate models for outbreaks. In Section 
3, we will derive a sufficient reduction of the data for multivariate outbreak situations. 
Sufficient reduction for detection of step changes was earlier derived by Frisén et al. (2010c) 
but here it is derived for detection of gradual outbreaks. In Section 4, we will discuss general 
approaches of how multivariate surveillance can be constructed from univariate surveillance, 
and construct a simple multivariate outbreak detection method, based on the univariate method 
by Frisén and Andersson (2009). In this section, we will also derive the recommended method. 
This is done by deriving the maximum likelihood estimators based on the multivariate 
monotonicity restrictions and using these in a generalized likelihood ratio method. In Section 
5, we evaluate the suggested method by a simulation study, where properties like predictive 
value and robustness are examined. The robustness is important since you never can expect 
assumptions to be exactly fulfilled. In the comparison with other methods we will use the 
evaluation metrics suggested by Frisén et al. (2010b) for multivariate surveillance. In Section 
6, the method is applied to data for several influenza seasons in Sweden, and the efficiency of 
the suggested multivariate outbreak detection method is demonstrated. Concluding remarks 
are given in the final section.   

  

2. Specification of the outbreak model 

At each time point, t, a new observation is made on a process Y. We want to detect the change 
from one state to another as soon as possible after it has occurred, in order to give warnings 
and to take corrective actions. 

2.1. Univariate outbreak 

In Andersson et al. (2008a) Swedish influenza data from six seasons (2001–2007) were 
analyzed, and it was suggested that a non-parametric approach based on monotonicity 
restrictions (the outbreak regression) should be used. It was also suggested that the outbreak 
could be modeled using a Poisson distribution for the incidence. The parameter λ(t) of the 
distribution at time t has a constant value λ0 before the outbreak but depends on time after the 
onset of the outbreak. We will use τ to denote the unknown time of the onset. Thus 
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with λ0  λ1  λ2  ...  λs. The aim at decision time s is to determine whether or not the 
outbreak has started yet, thus if τ≤s or τ>s. The state at the outbreak is characterized by a 
monotonically increasing expected incidence.  

The situation where the regression is constant at first and then monotonically increasing 
will be called “outbreak regression”.  
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2.2. Multivariate outbreak 

In multivariate surveillance the process under surveillance is a p-variate vector, denoted by 
{ ( ), 1, 2,...}t t Y Y , where Y(t) = {Y1(t), Y2(t),..., Yp(t)}. The components of the vector 

represent, for example, the incidence of a disease at p  different locations. Each component 

has the same properties as λ(t) described in Section 2.1. The time of the onset may differ for 
the components and will be denoted τi for component i. At decision time s, we base the 
decision whether an outbreak has occurred or not on the available information, Ys = {Y(1), 
Y(2)... Y(s)}. 

When several processes are observed, knowledge about the relation between the times of 
the onsets of the outbreaks is essential. Different methods are suitable for different relations. 
The aim is to detect an outbreak in any of the processes, which means that we aim at detecting 
the first one. The time τi of the onset of the outbreak of process Yi may not be the same for all 
i=1,...p. The relation between the times is important. We will concentrate on the case of  a 
known time lag. This can be the case for spatial data and data from several sources (possibly 
including proxy data). The case where the lag is misspecified is examined in Section 5.5. For 
notational convenience we order the processes according to which changes first, so that 

1 ... p   , and denote the time lag for process Yi by qi, where q1=0 and qi= 1–  i   for 

i=2,...,p. The case where the onsets are simultaneous, that is τi = τ for i=1,...p, is of special 
interest. In this case qi=0 i=1,...p. We denote this by lag=0. In numerical examples and 
applications we will also use the special cases of two processes with q2=1 or q2=2. We denote 
this by lag=1 and lag=2, respectively. 

We assume that the distributions of the processes all belong to the one-parameter 
exponential family. In the application to influenza data in Section 6, the Poisson distribution is 
relevant. 

If a parametric shape of the outbreak pattern is known, this should be used to increase 
efficiency. However, we do not assume a parametric outbreak pattern here. Instead, we 
assume that the different processes are identically distributed except for the time of the onset. 

3. Sufficient reduction at multivariate outbreaks 

In Frisén, et al. (2010b) it was demonstrated that the relation between the change points of the 
different processes is very important, since it affects the properties of different surveillance 
methods in different ways. In simple examples, it was demonstrated that a method which is 
optimal for simultaneous changes is inefficient in other cases. Thus, any knowledge on the 
change points should be utilized. A sufficient reduction will not reduce the information and 
still allows a joint solution to the full surveillance problem. It is of special interest to study a 
simultaneous outbreak at all locations and also a time lag in the onset of the outbreaks. 
Robustness when the time lag is only approximately known is studied in Section 5.5. 

3.1. Simultaneous change at all locations 

Many evaluations of multivariate surveillance methods are made by the zero-state ARL (see 
Section 5.3) where the change occurs at the start.  When all processes change at the start it 
follows that they change simultaneously. 

Wessman (1998) and Frisén, et al. (2010c) demonstrated that if all processes have the same 
change points, i.e. τ1= τ2=...τp=τ, then the univariate vector of partial likelihood ratios, {L(s,t), 
t=1,...s} where ( , ) ( ; ) / ( ; )L s t f Y t s f Y s    

,
 is sufficient for the sequence of 

distributional families. Thus, in order to monitor a simultaneous fully specified change in 
distribution, it is possible to construct a univariate surveillance procedure based on the 
sufficient sequence of likelihood ratios. Zhou et al. (2010) used this result for the simultaneous 
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shifts of mean and variance in a normal distribution. For the case with no lag between the 
change points of two processes (lag=0), the sufficient statistic is denoted by SuffR0. We will 
use this notation in the application of spatial surveillance of Swedish influenza outbreaks. In 
this case, SuffR0 corresponds to the total incidence in the country as a whole. The statistic 
OutbreakPSuffR0 of the method in the application is hence equivalent to the statistic of the 
univariate surveillance of influenza in Sweden reported in Frisén and Andersson (2009) and 
Frisén, et al. (2009). 

3.2. Changes with a time lag between locations 

Järpe (2000) studied the case of a known time lag for independent normal distributions with 
equally sized shifts in the expected value at the change points and demonstrated that a 
sufficient reduction to univariate surveillance exists. Frisén, et al. (2010c) studied the case of 
changes in the general one-parameter exponential family (including the Poisson distribution) 
but also only for step changes. Different levels of the parameter before the change as well as 
differences in shift size were considered.  

The earlier results on sufficiency for the detection of a step change cannot be used directly 
for outbreak detection, since we are interested in detecting a change from a constant level to a 
monotonically increasing one rather than a sudden shift. Here, we study the case where each 
process Yi increases monotonically from the onset of the outbreak τi and onwards and there is a 
known time lag between the onsets of each process. The indices of the observation vectors 
{y1, y2, …yp} are ordered according to ascending time lag, i.e. the change occurs first in Y1.  
Theorem 1 shows that a sufficient reduction to a univariate statistic exists for the situation 
with different outbreak times, and in Example 1 (after Theorem 1 and its proof) the theorem is 
illustrated for a simple case. A numerical illustration is given in Example 2 in Section 4.6. 

 
Theorem 1: For p processes Y1, Y2, ..., Yp which all belong to the one-parameter exponential 
family and which are independent and identically distributed, conditional on the change points 
and time lags (independent over time as well as across processes), there exists a sufficient 
reduction of the set of observation vectors to a univariate statistic for the detection of 
outbreaks with equal (but possibly unknown) parameter values from the onset of the outbreak 
when the changes occur with known time lags (q1=0,q2, q3,… qp) where qi=τi - τ1. A sufficient 
statistic for inference on the first onset τ1 is the sequence  

 ( )
t

i i
i I

Y t q


 t=1,...s, where { : ,1 }t iI i q s t i p     . 

This is true both for the situation when the time of change is fixed but unknown and for a 
stochastic time of change. 
 
Proof: Since the observations are independent given the values of the change points, the 
distribution can be written as a product. We will first consider a fixed but unknown value of τ1. 
The likelihood expressions for the one-parameter exponential family can be written as  

 

 

1

min( 1, )

0 0 1 1
1 1 1

( ; )

exp ( )( ) ( ) ( ( )) ( )( ) ( ) ( ( ))
i

i i

i

sp p s

i i i t t i
i t i t

f Y s

y t g h y t y t g h y t


 




   


   
   

 

           
  

 

and 
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 1 0 0
1 1

( ; ) exp ( )( ) ( ) ( ( )) .
ps

j j
t j

f Y s y t g h y t  
 

 
      

 
  

Thus, we have the log likelihood ratio  

 

 

 

min( 1, )
1

0 0
1 11

1 1 0 0
1 1 1

1 0 1 0

( ; )
log ( )( ) ( ) ( ( ))

( ; )

( )( ) ( ) ( ( )) ( )( ) ( ) ( ( ))

( )( ) ( )( ) ( ) ( )

i

i i

i

i i

sp

i i
i t

p ps s

i t t i i i
i t t i

i t i t
t

f Y s
y t g h y t

f Y s

y t g h y t y t g h y t

y t y t g g



 


 



 



   

   



 

   
   

   



  



       

     

 

 

 

1 1

1

1 1

1

1 1

1

1

1

( ) 1 0 0 1
1

1 0 0 1
1

1 0 0 1

1 0

( )( ) ( ,..., )

( )( ) ( ,..., )

( )( ) ( ,..., )

( ) ( )

i

i

i

i

t

p s

i

p s

i t q s
i t q

s qp

i i t s
i t

s

i i t s
t i I

t i i
i

y t z

y t q z

y t q z

y t q

 


 


 




   

   

   

 
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   
 

 

    

     

     

  



 





1

1

0 1( ,..., ),
t

s

s
t I

z 


   
 

 
 

which depends on the observations only through the statistic in the theorem. The likelihood 
ratio is sufficient for the problem, and hence the statistic is sufficient. This completes the proof 
when τ1 is fixed but unknown.  

If τ1 is stochastic with some distribution g(t), then the density of Y can be written: 

 1
1

( ) ( ) ( | )
t

f Y g t f Y t




  , 

which is a function of 1( | ),f Y t   and hence the arguments above can be used to show that 

the statistic in Theorem 1 is sufficient for the problem also in this case.■ 
 
Since any one-to-one function of a sufficient statistic is sufficient, the sequence 

  ( )/ | |: 1,..., ,
t

i i t
i I

Y t q I t s


 
 

where | |tI  denotes the cardinality of tI , is also sufficient. This transformed statistic is useful 

when dealing with the monotonicity restrictions of the outbreak regression, since this statistic 
preserves the monotonicity properties.  

When we have two processes we will use a simpler notation, 
SuffRq(s,t)= ( )/ | |: 1,...,

t

i i t
i I

Y t q I t s


  ,where q is the lag between the two processes.
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EXAMPLE 1   
For two processes Y1 and Y2 with time lag q=1, the index set  is { : ,1 }t iI i q s t i p     . 

For s=1 we have 1 { : 0,1 2} {1}iI i q i     .  

For s=2 we have 1 { : 1,1 2} {1, 2}iI i q i      and 2 { : 0,1 2} {1}iI i q i     .  

For s=3 we have 1 { : 2,1 2} {1, 2}iI i q i     , 2 { : 1,1 2} {1,2}iI i q i      and 

3 { : 0,1 2} {1}.iI i q i      Hence, the sufficient reduction is 
1

( ) : 1i
i

Y t t


  
 
 ={Y1(1) at 

s=1, ( ) : 1,2
t

i i
i I

Y t q t


    
  


{1,2} {1}

(1 ), (1 )i i i i
i i

Y q Y q
 

 
   
 
   1 2 2(1) (2), (2)Y Y Y   at s=2, 

{Y1(1)+Y2(2), Y1(2)+Y2(3), Y1(3)} at s=3 or more generally {Y1(1)+Y2(2), Y1(2) +Y2(3),...., 
Y1(s-1)+Y2(s), Y1(s) } at s. A numerical example is given in Section 4.6. ■ 

 
The sufficient statistic at decision time s is SuffRq(s,t) t=1,...s, where 

SuffRq(s,t)=  1 2( ) ( ) / 2Y t Y t q   for t≤s-q and SuffRq(s,t)= 1( )Y t  for t>s-q. In Example 1 we 

have {SuffR1(1,t)}= {{Y1(1)} at s=1.  
At s=2 we have {SuffR1(2,t)}=  1 2 2[ (1) (2)] / 2, (2)Y Y Y .  

At s=3 we have {SuffR1(3,t)}={{Y1(1)+Y2(2)]/2, [Y1(2)+Y2(3)]/2, Y1(3)}. More generally 
we have {SuffRp1(p,t)}={[Y1(1)+Y2(2)]/2, ...[Y1(2) +Y2(3)]/2,...., [Y1(s-1) +Y2(s) ]/2, Y1(s) }. 

4. Surveillance methods for multivariate outbreak detection 

In this section we will first describe the univariate outbreak detection method, OutbreakP, 
suggested by Frisén and Andersson (2009). Then, we will review common approaches to 
adapting univariate surveillance to multivariate surveillance and show how OutbreakP can be 
adapted by these approaches. After that, we will derive a joint multivariate method based on 
the sufficiency principle. Finally, we will give the maximum likelihood estimator of the 
parameters and a generalized likelihood ratio method for outbreak detection. 

4.1. Univariate outbreak detection 

For the outbreak detection situation, one way to specify the in-control state versus the 
outbreak is to use a parametric model of the outbreak curve. This requires extensive modeling 
as in for example Held et al. (2006). Here we will use a non-parametric univariate method as a 
base for the suggested adaption to a multivariate situation. When seasonal or other 
components are important, it might be useful to apply the non-parametric method to the 
residuals of a more complex model.  

For the case of unknown parameters, generalized likelihood ratios (GLR) can be used by 
substituting the parameters with the maximum likelihood estimates. Lai (1995) suggested that 
in the CUSUM method, GLR should be used to handle unknown parameters after the change. 
This approach was also used by Höhle and Paul (2008) for Poisson and negative binomial 
distribution at surveillance of infectious diseases. In Frisén and Andersson (2009) a method 
for outbreak detection was suggested. The method utilized the GLR approach by using the 
maximum likelihood estimators under the monotonicity restrictions in Section 2.1, as derived 
in Frisén et al. (2010a) for the exponential family. The method was derived for the normal and 
Poisson distributions and was named the OutbreakP method for the Poisson distribution. Here, 
we will only consider the Poisson distribution, which is suitable for the application in Section 
6. The method is semi-parametric since the distribution is parametric, but the regression is 
non-parametric since the only restriction on the regression is by monotonicity. A user-friendly 
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computer program can be downloaded at www.statistics.gu.se/surveillance. 
The method is also available in the R package Surveillance, described in Höhle 
(2010) and available on CRAN, and the open JAVA package CASE described in Cakici et 
al. (2010). 

For the univariate surveillance of the influenza incidence in Sweden as a whole, the 
OutbreakP method was evaluated by Frisén and Andersson (2009) and Frisén, et al. (2009). 
We will now adapt this method for a multivariate situation. 

4.2. General approaches to adapting univariate surveillance to multivariate surveillance 

There are several approaches to multivariate surveillance. The most commonly used approach 
is the reduction to one scalar statistic, such as the sum for each time. This will be described in 
Section 4.3. Another approach is to use several univariate systems in parallel, one for each 
process. An intermediate approach is vector accumulation, for example MEWMA suggested 
by Lowry et al. (1992). When the multivariate distribution is available, as in e.g. Paul (2008), 
this might be used as a base for a surveillance method. An important situation treated by e.g. 
Tartakovsky and Veeravalli (2008) is where change in only one location can be expected and 
the identification of the correct one is crucial. General reviews on multivariate surveillance 
methods can be found for example in Basseville and Nikiforov (1993), Sonesson and Frisén 
(2005), Bersimis et al. (2007) and Frisén (2010). 

4.3. Reduction to one scalar statistic for each time 

Dimension reduction is always a reasonable choice in multivariate problems provided that it 
does not reduce important information. The most far-going reduction is the reduction to a 
scalar for each time. This is the most common way to handle multivariate surveillance. The 
observations at each time point consist of a vector, and we can first transform the vector from 
the current time point into a scalar statistic, which we then accumulate over time. In Sullivan 
and Jones (2002) this is referred to as “scalar accumulation”. One natural reduction when 
dealing with multivariate normal variables is to use the Hotelling T2 statistic suggested by 
Hotelling (1947). The Hotelling T2 statistic is defined as 

2 1
0 ( ) 0( ) ( ( ) ( )) ( ( ) ( ))T

tT t t t t t  YY μ S Y μ , where ( )tYS  is the sample covariance matrix. 

Originally, the Hotelling T2 statistic was used in a Shewhart approach, and this is sometimes 
referred to as the Hotelling T2 control chart.  

One example of scalar accumulation is when, for each time point, a statistic representing 
the important aspects of the spatial pattern is constructed from a purely spatial analysis. This 
statistic is then used in a surveillance method. The reduction to a univariate variable can be 
followed by univariate monitoring of any kind. In Rogerson (1997) and Rogerson (2001), 
different statistics measuring clustering were used for each time, and the information was 
accumulated by the univariate CUSUM method. In Zhou and Lawson (2008), the spatial 
pattern was characterized by a Bayesian model for each time, and the statistic was then 
monitored by the EWMA method.  

For the influenza incidence, a natural reduction is the sum, even though information on 
different parts of the country is available. Using the sum means that no regional information is 
used. Instead, the surveillance is based on total data for the country as a whole, as in Frisén 
and Andersson (2009). However, other reductions may be more efficient, as is seen in Section 
3. In our evaluations in Section 5, the reduction to a scalar is included. 
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4.4. Parallel outbreak detection 

To illustrate a frequently used approach to multivariate surveillance, we will include a parallel 
system in our evaluations. By the parallel approach, each process is monitored separately and 
an overall alarm is called if some condition is fulfilled. The most common condition is that 
one of the systems calls an alarm. We will use this condition when the univariate OutbreakP 
method is applied to each process. An overall alarm is called the first time that any of the 
processes gives an alarm. The method is called OutbreakPParallel. Results for this method, as 
compared to others, are given in Section 5.3. 

4.5. Outbreak surveillance based on sufficient reduction and known parameters 

The likelihood ratio of an outbreak versus no outbreak with onsets of the outbreaks at τ1, τ2,... 
τp , is 

 1 1
1

1

( ,..., )
( , ,..., )

( ,..., )

s
p p

p s
p

f t t
L s t t

f s s

 

 

 


 

Y

Y
 

For known time lags (q1=0,q2, q3,… qp), this can be written  

 L(s,t1)= 1 1

1

( | )

( )

s

s

f t

f s







Y

Y
 

For detection of an outbreak as defined in Section 2 L(s,1) is the relevant statistic, see 
Frisén and Andersson (2009). For the Poisson distribution and known values of the parameters 
of the regressions, we have that  

L(s,1)= 0

( ) ( )

| |( )
0

1 1 10 0

exp( ) e
i i i

i Iti t t

i

i

Y t Y t qp s s
t q I t

t q
i t q t

  
 

 



 


   

   
    

  
   ,  

where { : ,1 }t iI i q s t i p     . 

For two processes we have 

L(s,1)=

( ) ( ) ( )1 2 1

0 02( )

1 10 0

Y t Y t q Y t

t t

s q s
t t

t t s q

e e    
 

 


 

   

   
   
   

  . 

In Section 4.7 we will use the generalized maximum likelihood and substitute the unknown 
parameters with their maximum likelihood estimators derived in Section 4.6.   

4.6. Maximum likelihood estimation of the multivariate outbreak regression 

If the distribution of the processes is not fully specified, the approach of the generalized 
likelihood ratio can be used. Hence, we need estimates for the likelihood ratio in Section 4.5, 
both for the situation with an outbreak and for the situation with no outbreak. When we have 
no outbreak, and thus all observations are independent and identically distributed, the 
maximum likelihood estimator of λ0 is the average of all observations. We have 

 0
1 1

ˆ ( ) /
ps

i
t i

y t sp
 

  . 
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In the outbreak situation, we have the monotonicity restriction described in Section 2. A useful 
technique to find least squares estimates, which here are maximum likelihood estimates, is the 
Pool Adjacent Violator Algorithm, PAVA, described for example by Robertson et al. (1988). 
 
Theorem 2: For the multivariate outbreak regression in Section 2.2 with processes which all 
belong to the one-parameter exponential family and which are independent and identically 
distributed, conditional on the change points and time lags (independent over time as well as 
across processes), the maximum likelihood estimators of λt, for the increasing phase are

 obtained by the PAVA algorithm with weights proportional to the number, |It|, of processes 
used for the specific component of the sufficient statistic. 
 
Proof: In order to obtain the maximum likelihood estimators of the expected values λt for 
τ1=1, we utilize the assumption λ0 ≤λ1 ...≤λs. Frisén, et al. (2010a) demonstrated that in the 
univariate case, the maximum likelihood estimators of the expected values λt of the outbreak 
regression can be obtained by the PAVA algorithm. For p processes, with known lags 
(q1=0,q2, q3,… qp), any observation of Yi(t) such that t<τi is an observation with the expected 
value λ0. In the same way, any observation of Yi(t) such that τi =t has the expected value λ1 
and so on until the last observations of Y1(s) and any other Yi(s) such that τi = τ1, which are 
observations with the expected value

 
λs. Thus, the number of observations, |It|, with expectation 

λt depends on t and (q2, q3,… qp). It follows from results on isotonic regression, with different 
numbers of observations for different values of the independent variable (see for example 
Theorem 1.5.2 in Robertson, et al. (1988)), that the maximum likelihood estimators are 
obtained by the PAVA on the average of the observations of λt with weights proportional to 
the number of observations, |It|. ■ 
 
EXAMPLE 2 
To illustrate how the sufficient reduction and PAVA are used, we give a simple example for 
two processes with lag q=1. SuffRq(s,t) is the sufficient reduction described in Section 3.2, 
where q indicates the lag between the two processes and s is the decision time. In Table 1, we 
illustrate how the sufficient statistic and the maximum likelihood estimators are calculated for 
a numerical example. 

 
 

Table 1. For an example of observations on two processes we give the sufficient statistic SuffR1 for s=1, 

2, 3, 4, 5 and the maximum likelihood estimate t̂ at s=5.  

t y1 y2 SuffR1(1,t) SuffR1(2,t) SuffR1(3,t) SuffR1(4,t) SuffR1(5,t) 
t̂  

1 4 2 4 2.5 2.5 2.5 2.5 2.25 

2 3 1 3 2 2 2 2.25 

3 3 1 3 3 3 2.25 

4 1 3 1 1.5 2.25 

5 6 2 6 6 

 

The estimate of 0̂  is the average of all observations. At s=5 we have 0̂ =2.6. To estimate 

t̂  at time s=5, we apply the PAVA to the sequence SuffR1(5,t), t=1,...5. We see that the first 

violation of the order restriction occurs at t=2, and hence we replace the observations by the 
weighted average, (2.5·2+2·2)/4=2.25. This does not violate the first observation, Y2(1), since 
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2≤2.25. The observation at t=4 constitutes a violation, and hence we use (3·2+1.5·2)/4=2.25, 
which does not violate the order restriction of the previous observations. ■ 

4.7. Generalized likelihood ratio surveillance of multivariate outbreaks 

We will use the generalized likelihood ratio, i.e. substitute parameter values by their 
maximum likelihood estimators, in our semi-parametric multivariate method. 

By substituting the parameters of the outbreak regression in L(s,1) in Section 4.5 with the 
maximum likelihood estimators in Section 4.6, we get the alarm statistic of the multivariate 
OutbreakPSuffR method. Here P stands for the Poisson distribution while SuffR stands for the 
sufficient reduction in the multivariate case. The general method depends on the set of lags 
(q1=0,q2, q3,… qp) and has the alarm statistic  

 0

( ) ( )

ˆ ˆ| |( )
0

1 1 10 0

ˆ ˆ
ˆ ˆexp( ) e

ˆ ˆ

i i i
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i
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p s s

t q I t
t q

i t q t

  
 

 





 


   

   
         

    

where { : ,1 }t iI i q s t i p     . For two processes with time lag q, we use the notation 

OutbreakPSuffRq for the method and OutbreakP SuffRq(s) for the alarm statistic. For this 
case we have 

 

( ) ( ) ( )1 2 1
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ˆ ˆ ˆ ˆ2( )

1 10 0

ˆ ˆ

ˆ ˆ

Y t Y t q Y t

t t

s q s
t t

t t s q

e e    
 

 


 

   

   
      
   

   

In the case q=0 this simplifies to the univariate OutbreakP statistic described in Frisén and 
Andersson (2009) and Frisén, et al. (2009). 
 
 
EXAMPLE 3. For the situation of Example 1 and 2, we have for s=5 the alarm statistic 

 OutbreakPSuffR1(5)=

( ) ( ) ( )1 2 1

0 0

4 5
ˆ ˆ ˆ ˆ2( )

1 50 0

ˆ ˆ
6.14

ˆ ˆ

Y t Y t q Y t

t tt t

t t

e e    
 

 

 

 

   
      

   
  .■ 

 

5.  Simulation study to determine the properties of the multivariate OutbreakP method  

In a multivariate situation, some reduction of the dimensionality of data is often useful, but it 
is important that no information is lost. This could be achieved by the use of a sufficient 
statistic. If the outbreaks appear simultaneously for the different processes, then we have a 
univariate sufficient statistic with one change point. However, when the outbreaks appear at 
different times, the sufficient statistic has more than one change point in the distribution. Even 
though each component has one change point, the distribution of the sufficient statistic is not 
constant either for t< τi or for t≥τi. The proofs commonly used for minimax or expected delay 
optimality require that there is only one change between two distributions.  

Since exact optimality cannot be expected, the properties of the OutbreakP method are 
presented by the results from a simulation study. In Section 6 the method will be evaluated by 
the application of the method to observed Swedish influenza data.  
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5.1. Model for simulations 

We used a model that is relevant for the application to the influenza data described in Section 
6. The model is based on the study by Andersson, et al. (2008a) on the seasonal influenza in 
Sweden. The Poisson distribution was used for the incidences. The suggested method is non-
parametric with respect to the shape. However, to examine the properties of the method by a 
simulation study, we used a parametric model to generate data. For the total influenza 
incidence in Sweden, the level at the constant phase, λ0, is set to λ0 = 1, and the parameter λ(t) 
of the Poisson distribution follows an exponential curve λ(t) = exp(0 + 1(t-+1) for the 
increasing phase. The parameters were estimated to 0 = -0.26 and 1 = 0.826 from Swedish 
influenza data from the season 03-04, which was not extreme in any sense but “typical”. 

For the multivariate case, we use a model with two processes resembling those of the 
influenza data in Section 6. We use the results by Schiöler (2010) on how the incidence 
develops for the Metropolitan, M, and Local, L, areas, respectively. We use E[M(t)]=0.5 for 
t<τ and E[M(t)]= exp{0+1(t-τ+1)}, and E(L(t)= 0.5 for t<τ and E(L(t))= exp{0+1 (t-
τ+1+q)}). With parameters, 0 = -0.622 and 1 = 0.826.  

 
 

5.2. False alarms 

The most commonly used measure for false alarms is the in-control average run length, ARL0, 
E[tA=]. This can be used also in a multivariate situation. A similar measure, which is more 
convenient to calculate, is the median run length, MRL0. We used the same MRL0 (780) in all 
comparisons in this paper. It was used also for the univariate OutbreakP method in Frisén and 
Andersson (2009). The technique chosen by Frisén and Sonesson (2006) was used to ensure 
that the alarm limit was determined with enough accuracy to make the error in the curves of 
delay less than the line width. 
 

5.3. Delay 

One measure of the detection ability is the average run length, given that the change occurs 
immediately (τ=1). This is widely used in univariate surveillance and often named zero-state 
ARL or ARL1. Zero-state ARL is the most commonly used evaluation measure also in the 
multivariate case. However, it is seldom explicitly defined. The definition implicit in most 
publications is E[tA| τ1= τ2= …  τp =1]. Here, it is assumed that all processes change at the same 
time. As seen in Section 3.1, a sufficient reduction to a univariate problem exists when all 
processes change at the same time. Zero-state ARL is thus questionable as a formal measure 
for comparing methods for genuinely multivariate problems. Instead, we will here use a 
measure which allows different change points. 

The conditional expected delay ( ) [ | ]A ACED E t t      can be generalized for 

multivariate surveillance to CED(τ1, τ2... τp) = min min[ | ]A AE t t   , see Frisén, et al. (2010b). 

For a given lag this depends on only one of the change points. Thus we can write 

min min min( ) [ | ]A ACED E t t     . When we have lag=0, i.e. simultaneous outbreaks, this 

reduces to the univariate CED. In Figure 1, we can see that the OutbreakPParallel method has 
a worse delay than the OutbreakPSuffR0 method for simultaneous outbreaks. 
OutbreakPSuffR0 is based on SuffR0, which corresponds to the total incidence. In Figure 2 
we can see that the delay for the parallel method is worse than that for the OutbreakPSuffR1 
method based on SuffR1 when lag=1.  
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Fig. 1 The conditional expected delay for the OutbreakPParallel and OutbreakPSuffR0 methods for two processes 
with simultaneous onset of the outbreak (lag=0) as a function of τmin=t. 
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Fig. 2 The delay in detection of the outbreak for the OutbreakPParallel and OutbreakPSuffR1 methods for two 
processes with lag=1 as a function of τmin=t.  
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5.4. Predictive value 

If a method calls an alarm, it is important to know whether this alarm is a strong or weak 
indication of a change. The predictive value is a well-established measure in epidemiology. In 
surveillance, however, we need a variant that also incorporates time. The difference in 
surveillance, as compared to situations involving only one decision, is that we can get an 
alarm at any time point, and therefore we need a measure of the predictive value at each of 
them. In order to judge to what degree an alarm at time tA can be trusted, it is necessary to 
consider the balance between the risk of false alarms, the detection ability and the probability 
of a change. If we have one change point τ and this is regarded as a random variable, this can 
be done by the probability of an outbreak, at an alarm, as suggested by Frisén (1992):  

1

1

( ) ( )
( ) ( | )

( ) ( ) ( ) ( )

t

A
i

A t

A A
i

P t t i P i
PV t P t t t

P t t i P i P t t t P t

 


   





  
   

      




.  

In a multivariate setting this was generalized by Frisén, et al. (2010b) to 

 

 

min min
1

min

min min min min
1

( ) ( )
( ) ( | )

( ) ( ) ( ) ( )

t

A
i

A t

A A
i

P t t i P i
PV t P t t t

P t t i P i P t t t P t

 


   





  
   

      




. 

The predictive value depends on whether outbreaks appear frequently or rarely. Knowledge of 
the exact distribution of min is seldom available, but we will nevertheless try to give a rough 
indicator. In the simulation study, min was assumed to be geometrically distributed, i.e. 

1
min( ) (1 )iP i     . This may not give the closest fit of the onset times in Sweden, but in 

order to detect outbreaks which occur at unexpected times we did not want to include 
information on which week is the most common one for the onset. The level of intensity was 
roughly estimated from all available historical data on seasonal influenza to be ν = 0.1. With 
this intensity the PV is above 0.99, and for a lower intensity, ν = 0.01, which weakens the PV, 
it is above 0.95. The method and alarm limit used in the simulation study were considered 
potentially useful for practical application since the predictive value was high. 

5.5. Robustness 

Some models and assumptions are needed in order to efficiently make inferences from data. 
Hence, it is important to chose assumptions which are suitable for the application. Here we 
will concentrate on robustness related to a possible time lag. First we will describe the effect 
of using the method but with a wrong lag, then we will describe the consequences of different 
population sizes of different regions. 

The lag between the outbreaks is seldom exactly known. We examined the effect of using 
the sufficient statistic for lag=1 when in fact lag=2, and vice versa. In Figure 3, we have 
simulated influenza outbreaks where the true lag is 1. We can see that when we used the 
method 
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Fig. 3 The delay, as a function of τmin=t, for outbreak detection by OutbreakPSuffR0, OutbreakPSuffR1 and 
OutbreakPSuffR2 when the true lag is 1. 

 

OutbreakPSuffR1, which is based on the true lag, we got the best results. When we used the 
method for lag=2 or lag=0, the results were slightly worse. In Figure 4, we have simulated 
outbreaks with the true lag 2. When we used the outbreak detection method based on the true 
lag we got the best results, except for a very minor advantage for SuffR1 at τ=1 and 2. In this 
complex situation, the method based on the sufficient statistic is not always exactly optimal, 
but it usually works very well. When we used the statistic for lag=1 the results were similar to 
those for the true lag. However, when the lag was two steps away from the true one and we 
used the sufficient statistic for lag=0, while the true lag was 2, we got clearly worse results. 
The conclusion is that an approximate lag may work well, provided that it is not too far away 
from the true one. 

In the simulation model used above, we assumed equal distributions given the possibly 
different times of onset. In practice, however, the two processes may be based on different 
population sizes or otherwise have different parameters. If the difference is large, this should 
be handled by adjustment of the weights and the alarm limit. The ratio in size between the two 
areas analyzed in Section 6 is approximately 1.17, and a suitable simulation model for this 
case was derived in Schiöler (2010). We examined what would happen if no adjustments were 
made and the same weights and alarm limit were used, as if the population sizes were the 
same. The OutbreakPSuffR methods performed slightly worse if different population sizes 
were used. However, the predictive value of an alarm was still greater than 0.99 for the 
intensity 0.10. The conclusion is that the predictive value did not change much and that the 
interpretation of the results would not be dramatically changed. 
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Fig. 4 The delay, as a function of τmin=t, for outbreak detection by OutbreakPSuffR0, OutbreakPSuffR1 and 
OutbreakPSuffR2 when the true lag is 2.  

 

6. Application of the multivariate OutbreakP method to Swedish regional influenza 
data 

There are several national and international institutes that collect data on epidemic diseases, 
for example the European Centre for Disease Prevention and Control in Europe and the 
Centers for Disease Control and Prevention in the US. The monitoring of influenza in Sweden 
is mostly based on reports from all Swedish laboratories providing laboratory diagnoses of 
influenza (LDI). We will use these LDI data to illustrate the proposed method. In Sweden, 
data of infectious diseases are collected by the Swedish Institute for Infectious Disease 
Control, SMI. Andersson, et al. (2008a) and Andersson, et al. (2008b) give descriptions of the 
collection of these data. Here we use the laboratory-confirmed incidences of influenza type A 
or B. For some purposes, it may be of interest to monitor each location separately. However, 
the aim here is to get an alarm when the influenza epidemic has reached any part of Sweden. 
This means that the aim is to detect the first outbreak.  

6.1. The spreading pattern of influenza in Sweden 

The spatial pattern of how a disease spreads between regions is important. Spatial clustering of 
adverse health events is discussed for example by Kulldorff (2001), Rogerson (2001), Lawson 
and Rodeiro (2004), Marshall et al. (2007) and Sonesson (2007).  However, in some 
situations, such as in the case of influenza in Sweden, the outbreak pattern is not characterized 
by clustering.  

The spread of epidemic diseases, such as influenza, often follows geographical patterns. 
Schiöler (2010) searched for geographical patterns  in the spread of influenza in Sweden (for 
example a pattern from south to north or from west to east). No such pattern was found. 
Instead it was found that influenza epidemics tend to start in the larger cities and then spread 
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to the smaller ones. Data from areas classified as Metropolitan areas generally showed an 
earlier outbreak than those from the Locality areas. The Metropolitan areas have major 
international airports nearby (Arlanda, Landvetter, Umeå and Kastrup), and commuting to 
other countries is common. This is a plausible explanation for the early start of the influenza 
season in these areas. This is also in accordance with the results of Crepey and Barthelemy 
(2007), who investigated the relation between travelling and influenza in the US and in France 
and found a stable impact. 

The time difference in the onset of the influenza outbreak was about one week. This 
information will be used to increase the efficiency of our surveillance system.  

6.2. Outbreak detection of influenza in Sweden 

Based on the results on sufficiency in Section 3, the maximum likelihood estimation in 
Section 4.6, the generalized likelihood ratio in Section 4.7 and the choice of alarm limit in 
Section 5 to give MRL0=780 and a predictive value greater than 90 %, we applied the 
OutbreakPSuffR1 to 11 seasons of influenza. 

Figure 5 shows the results for the season 06-07. By accumulating the information by the 
OutbreakPSuffR1 alarm statistic, the outbreak is more clearly seen than when by the statistic 
based on the total number of cases in Sweden.  
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Fig. 5 The alarm statistic of the OutbreakPSuffR1method compared to that of OutbreakPSuffR0 up to the week of 
alarm during the season 06-07. 

 
The situation varies from year to year. In Table 2, the week of the alarm is given for 

OutbreakPSuffR0 and OutbreakPSuffR1 for all years with available data. The alarm limits 
were chosen by way of the simulation study in Section 5 to have the same false alarm property 
with MRL0=780. The OutbreakP based on SuffR1 gives an alarm the same week or earlier 
compared to OutbreakP based on the SuffR0, the total. As can be seen from the table, the 
alarm is given at the same time for eight seasons and earlier for three seasons for OutbreakP 
based on SuffR1 as compared to SuffR0. Note that the last season differs from the earlier ones 
due to the new H1N1 influenza. The incidences (of influenza type A or B) were very low this 
season and highly dominated by the metropolitan areas. This explains why there was an alarm 
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of an outbreak by the OutbreakSuffR1 method, which utilizes information on the metropolitan 
areas, but not by OutbreakSuffR0, which uses only the total for the country as a whole. 

 
 

Table 2. Results for 11 influenza seasons in Sweden. The week of alarm is given for the methods based 
on the SuffR0 and SuffR1, respectively. The last column shows which method gave the first indication 
of an outbreak. 

Season SuffR0 SuffR1 First 

99_00 49 49 Same 

00_01 52 52 Same 

01_02 2 2 Same 

02_03 1 1 Same 

03_04 46 46 Same 

04_05 50 48 SuffR1 

05_06 1 1 Same 

06_07 47 46 SuffR1 

07_08 51 51 Same 

08_09 48 48 Same 

09_10 No alarm 24 SuffR1 

 

7. Discussion 

In recent years, there have been several events that highlight the importance of outbreak 
detection. The outbreaks of new kinds of influenza (SARS, avian and H1N1) are such recent 
examples.  

Several different definitions of an outbreak are used, explicitly or implicitly, in literature. 
Three commonly used approaches to outbreak detection are: i) the detection of an increasing 
incidence, ii) the detection of an incidence that is higher than expected, based on the 
information available up to that point and iii) the detection of a spatial clustering of cases 
which results in a higher incidence in an area than in its surroundings. The choice of method 
and evaluation procedure depends on which definition is used. Therefore, it is important to 
state the aim explicitly. Different methods may be optimal under different conditions, which 
means that the methods can often be seen as complements to each other. 

The semi-parametric method used here detects outbreaks defined as a monotonic increase 
following the constant level before the onset of the outbreak. Such outbreaks are of interest in 
connection with several diseases and syndromes. Often, the information about the baseline is 
limited. Errors in the estimation of the baseline can have serious effect, as demonstrated for 
example by Frisén and Andersson (2009). Also, there may be seasonal effects with the same 
periodicity as the disease as well as large variation between years, thus making it hard to state 
the expected incidence. Therefore, it can be of value to have access to a method, which does 
not require knowledge about the baseline but is focused on the increasing incidence at an 
outbreak. A semi-parametric maximum likelihood ratio surveillance method was derived in 
Frisén and Andersson (2009) for the regular exponential family and applied and compared in 
Frisén, et al. (2009). The likelihood principle makes it possible to include knowledge on the 
probability of an outbreak depending on the season. However, here we chose a non-
informative approach, since it may be valuable to detect outbreaks that occur at unexpected 
times. 
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When data from different sources are available, multivariate surveillance should be 
applied. This is the case for detection of influenza outbreaks on the basis of data from different 
regions. The two simplest approaches of multivariate surveillance are the reduction to a 
suitable univariate statistic and parallel surveillance with due concern to the multiplicity. We 
included these approaches in our evaluations by simulations. We also suggested a joint 
generalized likelihood ratio method based on maximum likelihood under multivariate 
monotonicity restrictions. The properties depend heavily on the relation between the times of 
onset in the different processes.  

The relation between different processes is important in multivariate surveillance, as 
demonstrated by e.g. Frisén, et al. (2010b). The method that is optimal for simultaneous 
changes is not efficient at a time lag. The exact relation between the onset on different location 
is seldom exactly known. However, there can be some information as demonstrated in e.g. 
Schiöler (2010) where it was found that the influenza outbreak in Sweden in general started a 
week earlier in major cities than the rest of the country. In the application to the Swedish 
influenza data it was demonstrated that the performance of the surveillance was improved by 
utilizing this knowledge. The simulation study demonstrated that the even if the true time lag 
is only approximately known it can be an improvement to use it in the method. 

Most theory of statistical surveillance is based on a change between two distributions – one 
for the times before the change point and another for the times after it. For simultaneous 
changes, we demonstrated that the sufficient statistic has one change point and that the 
suggested method is optimal. However, when changes occur at different times we can have 
several changes in the multivariate distribution. Thus, we cannot expect optimality. Here, we 
demonstrated that the suggested method gave good results both in the simulation study and 
when applied to spatial information on influenza in Sweden. We used a simulation model 
mimicking the behavior of Swedish influenza data, based on the results of Andersson, et al. 
(2008a), where a discussion on data quality problems was included. When evaluating methods 
for on-line monitoring it is important to use measures that incorporate the time issue, i.e. the 
fact that there are repeated decisions, not just one decision as in hypothesis testing. Here, we 
used evaluation measures by Frisén, et al. (2010b), which are better suited for multivariate on-
line surveillance than the conventional ones.    

The primary motive for this paper was the need for spatial surveillance of influenza 
outbreaks in Sweden. The suggested method may also be useful for other applications. The 
case of proxy data for influenza was discussed in Section 2.2. The detection of a change from 
a constant level to a monotonic trend is of special interest in connection with outbreaks of 
epidemic diseases. However, it may be useful also in other areas. For example, Schiöler and 
Frisén (2008) discussed the application of the outbreak method for detecting a decline in the 
results of financial managers.  

 

Acknowledgements. Eva Andersson and Kjell Pettersson have given constructive comments. 
The data were made available to us by the Swedish Institute for Infectious Disease Control, 
and we are grateful for discussions about the aims and the data quality. The work was 
supported by the Swedish Civil Contingencies Agency (grant 0314/206). 



19 

References  

ANDERSSON, E., BOCK, D. and FRISÉN, M. (2008a). Modeling influenza incidence for the purpose of on-line 
monitoring. Statistical Methods in Medical Research, 17 421-438. 
ANDERSSON, E., KUHLMANN-BERENZON, S., LINDE, A., SCHIÖLER, L., RUBINOVA, S. and FRISÉN, M. 
(2008b). Predictions by early indicators of the time and height of yearly influenza outbreaks in Sweden. Scandinavian 
Journal of Public Health, 36 475-482. 
BASSEVILLE, M. and NIKIFOROV, I. (1993). Detection of abrupt changes- Theory and application. Prentice Hall, 
Englewood Cliffs. 
BERSIMIS, S., PSARAKIS, S. and PANARETOS, J. (2007). Multivariate Statistical Process Control Charts: An 
Overview. Quality and Reliability Engineering International, 23 517-543. 
CAKICI, B., HEBING, K., GRÜNEWALD, M., SARETOK, P. and HULTH, A. (2010). CASE –a framework for 
computer supported outbreak detection. BMC Medical Informatics and Decision Making, 10. 
CREPEY, P. and BARTHELEMY, M. (2007). Detecting Robust Patterns in the Spread of Epidemics: A Case Study 
of Influenza in the United States and France. American Journal of  Epidemiology, 166 1244-1251. 
FRISÉN, M. (1992). Evaluations of methods for statistical surveillance. Statistics in Medicine, 11 1489-1502. 
FRISÉN, M. (2003). Statistical surveillance. Optimality and methods. International Statistical Review, 71 403-434. 
FRISÉN, M. (2009). Optimal sequential surveillance for finance, public health and other areas. Editor's special invited 
paper. Sequential Analysis, 28 310-337, discussion 338-393. 
FRISÉN, M. (2010). Principles for Multivariate Surveillance. In  Frontiers in Statistical Quality Control 9 (H.-J. 
LENZ, P.-T. WILRICH and W. SCHMID, eds.) 133-144. Physica-Verlag, Heidelberg. 
FRISÉN, M. and ANDERSSON, E. (2009). Semiparametric surveillance of monotonic changes. Sequential Analysis, 
28 434-454. 
FRISÉN, M., ANDERSSON, E. and PETTERSSON, K. (2010a). Semiparametric estimation of outbreak regression. 
Statistics: A Journal of Theoretical and Applied Statistics, 44 107 - 117. 
FRISÉN, M., ANDERSSON, E. and SCHIÖLER, L. (2009). Robust outbreak surveillance of epidemics in Sweden. 
Statistics in Medicine, 28 476-493. 
FRISÉN, M., ANDERSSON, E. and SCHIÖLER, L. (2010b). Evaluation of Multivariate Surveillance. Journal of 
Applied Statistics to appear. 
FRISÉN, M., ANDERSSON, E. and SCHIÖLER, L. (2010c). Sufficient reduction in multivariate surveillance. 
Communications in Statistics-Theory and Methods to appear. 
FRISÉN, M. and SONESSON, C. (2006). Optimal surveillance based on exponentially weighted moving averages. 
Sequential Analysis, 25 379-403. 
GINSBERG, J., MOHEBBI, M. H., PATEL, R. S., BRAMMER, L., SMOLINSKI, M. S. and BRILLIANT, L. 
(2009). Detecting influenza epidemics using search engine query data. Nature, 457 1012-1014. 
HELD, L., HOFMAN, M., HÖHLE, M. and SCHMID, V. (2006). A two-component model for counts of infectious 
diseases. Biostatistics, 7 422-437. 
HOTELLING, H. (1947). Multivariate Quality Control. In  Techniques of statistical analysis (C. EISENHART, M. 
W. HASTAY and W. A. WALLIS, eds.) 111-184. McGraw-Hill, New York. 
HULTH, A., RYDEVIK, G. and LINDE, A. (2009). Web Queries as a Source for Syndromic Surveillance. PLoS 
ONE, 4 e4378. 
HÖHLE, M. (2010). Aberration Detection in R Illustrated by Danish Mortality Monitoring. In  Biosurveillance (T. 
KASS-HOUT and X. ZHANG, eds.) CRC Press. 
HÖHLE, M. and PAUL, M. (2008). Count data regression charts for the monitoring of surveillance time series. 
Computational Statistics & Data Analysis, 52 4357-4368. 
JONER JR., M. D., WOODALL, W. H., REYNOLDS JR., M. R. and FRICKER, R. D. (2008). A One-sided 
MEWMA Chart for Health Surveillance. Quality and Reliability Engineering International, 24 503-518. 
JÄRPE, E. (2000). On univariate and spatial surveillance. Ph.D Thesis. Göteborg University, Göteborg. 
KASS-HOUT, T. and ZHANG, X. (Eds.). (2010). Biosurveillance: A Health Protection Priority: CRC Press. 
KULLDORFF, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic. Journal 
of the Royal Statistical Society A, 164 61-72. 
LAI, T. L. (1995). Sequential Changepoint Detection in Quality-Control and Dynamical Systems. Journal of the 
Royal Statistical Society B, 57 613-658. 
LAWSON, A. and RODEIRO, C. (2004). Developements in general and syndromic surveillance for small area health 
data. Journal of Applied Statistics, 31 397-406. 
LAWSON, A. B. and KLEINMAN, K. (Eds.). (2005). Spatial and Syndromic Surveillance for Public Health. New 
York: Wiley. 
LOWRY, C. A., WOODALL, W. H., CHAMP, C. W. and RIGDON, S. E. (1992). A multivariate exponentially 
weighted moving average control chart. Technometrics, 34 46-53. 
MARSHALL, J. B., SPITZNER, D. J. and WOODALL, W. H. (2007). Use of the local Knox statistic for the 
prospective monitoring of disease occurrences in space and time. Statistics in Medicine, 26 1579-1593. 



20 

PAUL, M., L. HELD, AND A. M. TOSCHKE. (2008). Multivariate modelling of infectious disease surveillance data. 
Statistics in Medicine, 27 6250-6267. 
ROBERTSON, T., WRIGHT, F. T. and DYKSTRA, R. L. (1988). Order Restricted Statistical Inference. Wiley, 
Chichester. 
ROGERSON, P. A. (1997). Surveillance systems for monitoring the development of spatial patterns. Statistics in 
Medicine, 16 2081-2093. 
ROGERSON, P. A. (2001). Monitoring point patterns for the development of space-time clusters. Journal of the 
Royal Statistical Society A, 164 87-96. 
RYAN, T. P. (2000). Statistical methods for quality improvement. Wiley, New York. 
SCHIÖLER, L. (2010). Modelling the spatial patterns of influenza incidence in Sweden (No. 2010:1). Gothenburg: 
Statistical Research Unit, Department of Economics, University of Gothenburg, Sweden. 
SCHIÖLER, L. and FRISÉN, M. (2008). On statistical surveillance of the performance of fund managers (No. 
2008:4): Statistical Research Unit, Department of Economics, University of Gothenburg, Sweden. 
SHMUELI, G. and BURKOM, H. S. (2010). Statistical Challenges Facing Early Outbreak Detection in 
Biosurveillance. Technometrics, 52 39-51. 
SONESSON, C. (2007). A CUSUM framework for detection of space-time disease clusters using scan statistics. 
Statistics in Medicine, 26 4770-4789. 
SONESSON, C. and BOCK, D. (2003). A review and discussion of prospective statistical surveillance in public 
health. Journal of the Royal Statistical Society A, 166 5-21. 
SONESSON, C. and FRISÉN, M. (2005). Multivariate surveillance. In  Spatial surveillance for public health (A. 
LAWSON and K. KLEINMAN, eds.) 169-186. Wiley, New York. 
SULLIVAN, J. H. and JONES, L. A. (2002). A self-starting control chart for multivariate individual observations. 
Technometrics, 44 24-33. 
TARTAKOVSKY, A. G. and VEERAVALLI, V. V. (2008). Asymptotically Optimal Quickest Change Detection in 
Distributed Sensor Systems. Sequential Analysis, 27 441 - 475. 
WESSMAN, P. (1998). Some Principles for surveillance adopted for multivariate processes with a common change 
point. Communications in Statistics - Theory and Methods, 27 1143-1161. 
WOODALL, W. H. (2006). The Use of Control Charts in Health-Care Monitoring and Public-Health Surveillance. 
Journal of Quality Technology, 38 89-134. 
WOODALL, W. H. and MONTGOMERY, D. C. (1999). Research Issues and Ideas in Statistical Process Control. 
Journal of Quality Technology, 31 376-386. 
ZHOU, H. and LAWSON, A. B. (2008). EWMA smoothing and Bayesian spatial modeling for health surveillance. 
Statistics in Medicine, 27 5907-5928. 
ZHOU, Q., LUO, Y. and WANG, Z. (2010). A control chart based on likelihood ratio test for detecting patterned 
mean and variance shifts Computational Statistics & Data Analysis, 54 1634-1645. 
 
 
 
 
L. SCHIÖLER 
M. FRISÉN 
Statistical Research Unit 
University of Gothenburg 
SE 405 30 Gothenburg 
Sweden 
E-MAIL: linus.schioler@statistics.gu.se 
   marianne.frisen@statistics.gu.se 
 
 
 
 
 
 





STATISTICAL RESEARCH UNIT, UNIVERSITY OF GOTHENBURG 
Box 640, SE 405 30 Göteborg, Sweden 

 
 

 
 
1. Hyrenius, H.: Statistical studies in the structure and recruitment of the clergy of                       
  the Church of Sweden. In Swedish with an English summary. Stockholm 1954.  
  Pp. 63. (Out of print) 
 
2.  Hyrenius, H. & Zachrisson, U.: Studies of children in incomplete families I.  
 Illegitimate children in Gothenburg 1928-54. In Swedish with an English  
 summary. Stockholm 1955. Pp. 58. (Out of print) 
 
3. Zachrisson, U. & Kjessler, Å.: Variations in prenatal mortality with social and              
  economic factors and prenatal care. Göteborg 1956. Pp. 44. (Out of print) 
 
4. Weibull, C.: The distribution of reciprocal choices in sociometric tests.  
  Göteborg 1958.  Pp. 16. (Out of print) 
 
5. Hyrenius, H., Hugosson, K. & Gustafsson, SE.: Structure and changes of  
  economy and population in the Östersund region. In Swedish with an English  
  summary. Göteborg 1959. Pp. 142. (Out of print) 
 
6. Zachrisson, U.: The distribution of  “Student’s t” in samples from individual  
  non-normal populations. Göteborg 1959. Pp. 32. 
 
7. Weibull, C.: Some aspects of statistical inference with applications to sample  
  survey theory. Göteborg 1960. Pp. 87. (Out of print) 
 
8. Hyrenius, H.: Flerspråkig demografisk ordbok. svensk volym. 
  (Multilingual demographic dictionary. Swedish volume.) Göteborg 1961.  
  Pp. 136.  (See demographic Research Institute Reports No 1) 
 
9. Zachrisson, U.: A study of truncation and censoring with economic subsidiary  
  conditions. Göteborg 1962. Pp. 117. 
 
10. Hyrenius, H. & Gustafsson, R.: Tables of normal and log-normal random  
  deviates.  Part I. Göteborg 1962. Pp. 103. 
 
11. Hyrenius, H. & Gustafsson, R.: Tables of normal and log-normal random  
  deviates.  Part II. Göteborg 1962. Pp. 113. 
 
12. Hyrenius, H., Adolfsson, I. et al (editors). Selected bibliography of  
  non-normality. Göteborg 1964. Pp. 108. 
 
13.  Hyrenius, H.: Methods of valuating reindeer pastures – an economic study.  
  In Swedish with an English summary. Göteborg 1964. Pp. 69. 
 
14. Carlström, E. & Zachrisson, U.: On quality and costs in life testing.  
  Göteborg 1965. Pp. 57. 
 
 15. Norlén, U.: Simulation Model Building. A statistical approach to modelling in  
  the social sciences with the simulation method. Stockholm 1972. Pp. 172. 
 
 (cont.) 



  



STATISTICAL RESEARCH UNIT, UNIVERSITY OF GOTHENBURG 
Box 640, SE 405 30 Göteborg, Sweden 

ISBN 978-91-85169-54-2 
 

 
 

 
 (Continuation) 
 
 
16. Frisén, M.: Stochastic deviation from elliptical shape. Göteborg 1974. Pp. 63. 
 
17. Klevmarken, A.: Ålders-, kvalifikations- och befordringstillägg. Göteborg 1980.  
 Pp. 99. 
 
18. Jonsson, R.: A model for miniature end-plate potentials based on the hypothesis  
 of a release-regulating barrier. Göteborg 1981. Pp. 118. 
 
19. Tómasson, H.: Prediction and estimation in ARMA models. Göteborg 1986. 
 Pp. 118. 
 
20. Johnsson, T.: On stepwise procedures for some multiple inference problems. 
 Göteborg 1989. Pp. 145. 
 
21. Svensson, E.: Analysis of systematic and random differences between paired  
 ordinal categorical data. Göteborg 1993. Pp. 560. 
 
22. Palaszewski, B.: On multiple test procedures for finding deviating parameters. 
 Göteborg 1993. Pp. 120. 
 
23. Dahlbom, U.: Estimation of regression functions with certain monotonicity and  
 concavity/convexity restrictions. Göteborg 1994. Pp. 249. 
 
24. Hussain, S.: On cointegration and persistence. Göteborg 1995. Pp. 202. 
 
25. Wessman, P.: Studies on the surveillance of univariate and multivariate  
 processes. Göteborg 1999. Pp. 100. 
 
26. Järpe, E.: On Univariate and Spatial Surveillance. Göteborg 2000. Pp. 103. 
 
27. Andersson, E.: On Turning Point Detection in Cyclical Processes. With applications 
 to the monitoring of business cycles. Göteborg 2001. Pp. 171. 
 
28. Holgersson, T.: On Assessing Distributional Properties of Multidimensional Variables. 
 Göteborg 2003. Pp. 137. 
 
 
29. Petzold, M.: Evaluation of Information in Longitudinal Data. 
  Göteborg 2003. Pp. 112. 
 
30. Sonesson, C.: On Statistical Surveillance. Issues of Optimality and Medical Applications. 
 Göteborg 2003. Pp. 138. 
 
 
31. Bock, D: Statistical surveillance. Optimal decisions times in economics. 
 Göteborg 2004. Pp. 140. 
 
 




