

Research Reports in Software Engineering and Management 2010:01 ISSN 1654-4870

Architectural Concerns in
Base Station Development

Lars Pareto Department of Computer Science and Engineering

Research Reports in Software Engineering and Management No. 2010:01

Architectural Concerns in
Base Station Development

Lars Pareto

Department of Computer Science and Engineering
CHALMERS | University of Gothenburg

Gothenburg, Sweden 2010

Architectural Concerns in Base Station Development

Lars Pareto

© Lars Pareto, 2010

Report no 2010:01

ISSN: 1651-4769

Department of Computer Science and Engineering

University of Gothenbgurg and Chalmers University of Technology

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden

Telephone + 46 (0)31-772 1000

Göteborg, Sweden 2010

Architectural Concerns in Base Station
Development

Abstract

This report presents a catalogue of architectural concerns found to
be important to stakeholders within Ericsson’s Base Station
development. The catalogue is based on interviews with software
architects, designers, testers, and team leaders within the software
development organization of Ericsson’s W-CDMA base station
development. It reflects concerns held by a representative sample
of engineers (~1% of all project members), but is not a complete
inventory of all concerns in base station development.

1 Introduction

The concerns catalogue presented in this document is an outcome
of a case study carried out within Ericsson’s division RBS SW
during 2008-2009. Please refer to our past presentation of this
study [1] for an introduction to the concerns catalogue and the
methods and data sources on which it relies.

1.1 Reader Guidelines

The catalogue consists of a list of architectural concerns found in
the study, along with definitions of these. Our definition of concern
is that defined by IEEE1471:

 “Concerns are those interests which pertain to the
system’s development, its operation or any other aspects
that are critical or otherwise important to one or more
stakeholders. Concerns include system considerations
such as performance, reliability, security, distribution, and
evolvability.”

Since its inception in 2009 [1], the catalogue has evolved, thus
readers comparing this catalogue with our 2009 paper will find
inconsistemcies. These are matters of presentation and of concern
granularity: the underlying data sources, and the interests the
concerns represent have remained the same. An extended version
of the 2009 conference paper, consistent with the this document,
has been accepted for publication in an in an upcoming issue of
the Journal of Software and Systems Modeling.

1.2 Purpose and Scope

The intended audiences for this document are software architects,
designers, managers and other stakeholders in software
architecture documentation for telecommunication infrastructure
components.

Concern names and concern definitions have been formulated to
be readable both to Ericsson outsiders by the use of common
software engineering vocabulary, and to insiders by also providing
Ericsson internal terminology in brackets. Some telecom domain
vocabulary, such as base station and cell, are inevitable in the
concern definitions. Readers not familiar with the telecom domain
may want to refer to an introduction to telecommunications
systems, such as [2].

The list of concerns below consists of the concern’s names (given
in the section headings) and the concerns definitions (given in the
body text).

1.3 Concern: actors and use cases

Requirements- and system engineers are concerned with the
system's use cases, i.e., what actors interact with the system, what
their goals are, and the system's black box behaviour in achieving
these goals.

1.4 Concern: allocation independent client-server
interaction

System engineers want views that emphasize the interaction
between computational processes, and that abstract from where in
the system (i.e., between which concrete components) the
interaction occurs. Ultimate placement of client- and server
processes in the system, may not be known at specification time
but is done later (in the design phase or at run-time). System
engineers want to specify allocation independent protocols, and
then have all allocation specific protocol in the design model
checked against the allocation independent protocols in the
system model.

1.5 Concern: allocation protocols

Interfaces between clients and servers involve a functional
protocol for interaction with the actual service and an allocation
protocol, for establishing the actual service. These are separate
concerns.

1.6 Concern: alternatives, conditions, and iterations in
scenarios

Sequence diagrams not only express behaviour for a scenario, but
also variations of the behaviour. For instance variation in hardware
may call for alternate course of actions, as may backwards
compatibility with software components. Engineers need to
express these variations. (This concern is covered by the UML2
interaction operators alt, if, etc.)

1.7 Concern: annotating system model with links to project
internal artefacts

While working with the system model, system engineers have a
need to annotate the system model with links to project internal
documents (such as planning documents). These temporary
annotations are internal matters, and should neither be visible to
other users of the system model, nor become part of the product
documentation.

1.8 Concern: application decomposition

The base station considered provides two layered views of its
resources that are externally visible for remote applications: the
Operation and Maintenance (O&M) view; the Traffic Control view.

1.9 Concern: approval status

Team leaders want better integration of information, in the system
model, of what components have been approved to which degree.

1.10 Concern: bandwidth

A base station is a data intensive computing system and the
bandwidths on the many buses inside a base station are important
for reasoning about performance and for allocating functionality to
boards.

1.11 Concern: baseband use

A base station is a digital radio transceiver with algorithms to
manage transmission and reception of packets in physical radio
channels occupying slices of frequency spaces (basebands), at
run-time.

1.12 Concern: baselines

There are many generations and variations of a base station
product, thus a multitude of development branches (baselines) are
needed. Which such branches exist is a concern for all roles.

1.13 Concern: basic and alternate flows

Use case based requirements engineering distinguishes the most
common path through a scenario (basic flow) and optional
behaviour outside the normally expected behaviour (alternate
flows).

1.14 Concern: board configuration

The architecture recognizes several kinds of boards (main
processor cluster, device boards, auxiliary units) holding various
kinds of processors (main processors, board processors, device
processors, peripheral processors, auxiliary processors, external
processors, and non-processing units). These boards must all be
configured at startup, and infrastructure for this, known as "device
board configuration", exists. Board configuration includes a range
of more specialized concerns.

1.15 Concern: board connections (wiring and buses)

Base station hardware consists of several boards connected by
various buses and wiring. This perspective is also present in
software development, because functions are distributed over
boards, and because software is written to handle variations in
board connectivity.

1.16 Concern: board interfaces

Hardware interfaces at the level of circuit boards are an essential
view of a base station product. It allows reasoning about reuse of
components across products.

1.17 Concern: board loading

System Engineers and designers are concerned with how
hardware boards are loaded with software modules.

1.18 Concern: boards and their relationships to features

The conception of the system as a set of interconnected boards,
some of which contribute to a certain feature is present, e.g. “delay
handling for radio synchronization involves board x, y, and z”

1.19 Concern: cable configuration

Software components are shared across many base station
products. These have different peripherals, and subsystems.
Software needs to know what particular wiring a certain system
has, or may have; this information is called a cable configuration.

1.20 Concern: call graph

To reason about what components call each other is important to
designers, when trying to understanding the system.

1.21 Concern: capabilities

Capabilities are collections of related services (e.g., setup cell) into
some area of functionality (e.g., network-controller-ordered cell
configuration).

1.22 Concern: capability anatomy

A capability anatomy shows dependencies between capability
groups (groups of groups of services), or between capabilities
within one group.

1.23 Concern: capability decomposition

A capability decomposition is the taxonomy tree consisting of
services, capabilities, and capability groups.

1.24 Concern: capability group filtering

Many views contain many components. Designers want projected
(or filtered with Ericsson terminology) versions of these views that
only contain components relevant to their specific subsystems.
Capability groups is one area where filtering is desirable.

1.25 Concern: capability realization anatomy

Capability realization anatomy shows the dependency
relationships between capability realizations. It is an abstraction of
the dependencies between service realizations.

1.26 Concern: channel deployment (internal logical channels
onto physical channels)

Telecom engineering distinguishes logical channels (that simply
carry information packets) from physical channels (that carry
information packets coded in ways suitable for radio signaling). A
telecom node typically contains hundreds of logical channels
multiplexed over the physical channels in intricate ways.

1.27 Concern: class and process instantiation (capsule
instantiation)

As in any programming paradigm, run-time instantiation of a
program is a concern to anyone reasoning about resource usage.

1.28 Concern: clean and precise visualization of
requirements and behaviour

System models should ideally be an abstraction of the software (to
be) built, yet precise enough to communicate how the system
works. This is a difficult balance, and implementation level details
(such as coding of messages and handshaking) tend to creep into
the system model, thereby polluting the views that the system
model is supposed to carry. System engineers are concerned with
keeping the system model clean, yet precise.

1.29 Concern: climate

Base stations are engineered to function in extreme environments
(e.g., deserts, tundra, mountains) and contain SW functionality to
handle various climates.

1.30 Concern: communication paths

Allowed connectivity of subsystems depends on underlying HW.
When realizing a new functionality on an existing system, or
specifying a new system, system engineers need to reason about
available or needed communication channels connecting the
system's major parts.

1.31 Concern: communication paths between abstract ports

In some cases it is neither necessary nor practical to graphically
show the connections between computational processes, as these
would only clutter the diagram. In such cases, an abstract port
(also known as unwired port) may be placed within the processes
terminating the protocol carried on the port, to obtain an invisible
connection. Designers are concerned with these “invisible”
communication paths.

1.32 Concern: communication principles

Architecture for telecommunications network components, involve
a range of architectural principles for communication, e.g.,
schemas for handshaking, link establishment, peer-to-peer
addressing, and error-indication. These principles are abstract,
and may take many forms depending on realization technology,
e.g., principles have different incarnations for MDD components,
for hardware blocks, and for CORBA-style objects.

1.33 Concern: complementary side perspectives

For understanding the system, it is essential that the system model
/ architecture documentation provides more than one perspective
(cf. Ossher and Tarr's tyranny of the dominating perspective). For
instance an engineer interested in how data is handled in the
subsystems, should be able to navigate the system from this
viewpoint (rather than searching through use case realization
sequence diagrams for cues on how data handling is done). Yet
side perspectives should preferably relate to the main perspective.

1.34 Concern: component behaviour

Component behaviour is what, in model driven development, is
normally specified using state machines or activity diagrams.

1.35 Concern: connection establishment

Many of the communication links inside a base station are
dynamic, and must be explicitly managed during runtime. On each
dynamic link, the client and the server must negotiate the protocol
revision to be used. System engineers are concerned with the
infrastructure and conventions for this.

1.36 Concern: coupling and cohesion among service
realizations and capability realizations

A service realization is a model of how objects interact to
implement a specific service (typically in the form of a sequence
diagrams), whereas a capability realization is a grouping of service
realizations. Services typically depend on each other, and
managing these dependencies with attention to coupling and
cohesion among services as well as groups of such is a concern
important to system engineers.

1.37 Concern: corporate basic standard for information
assets (product structure with Ericsson terminology)

Ericsson has a corporate basic standard for information assets,
including product related information. This structure (which
recognizes entities such as systems, subsystems, blocks, interface
products, and load modules) must be adhered to regardless of
what other structures the architecture uses.

1.38 Concern: data - coding of parameters sent in signals

Testers and some designers are concerned with the precise
coding of information sent in messages between computational
processes.

1.39 Concern: data deployment (relationship between data
and their storage)

Data storage may be distributed or centralized, and system design
involves deciding where, on which subsystem parts, data is to be
stored.

1.40 Concern: data - formal parameters in signals

Designers are concerned with what signal parameters there are,
and what parameters mean.

1.41 Concern: data - what’s static, dynamic, or persistent.

Base stations contain data bases for storage of persistent data.
System engineers are concerned with specifying what data are
persistent, volatile, or static.

1.42 Concern: decomposition of functionality into technical
subsystems (functional parts with Ericsson terminology)

Any given functionality, defined by a use case, must be
decomposed into interacting technical subsystems. These may be
hardware entities, software entities, or combinations of both. (At
specification time, it is not always decided whether function will be
realized in hardware or software.) Technical subsystems are
related to, yet distinct from the organizational subsystems, which
are packages of function and responsibility used to pinpoint
responsibility in the line organization, allocate functionality to
design units, and to structure product documentation.

1.43 Concern: deliverables

RBS SW development ultimately results in load modules, i.e.,
binaries shipped with a product or a product upgrade. Load
modules are associated with the RBS subsystems, and have an
architecture of their own that associates several dozens of load
modules with the many boards and processors of an RBS.

1.44 Concern: differences w.r.t earlier versions

Designers and other roles need to se what, in a diagram, has
changed since an earlier version, and what has triggered the
change.

1.45 Concern: distribution

A base station is a multi processor system. Distribution is the
concern of what processors the various computational objects
reside on.

1.46 Concern: division of work

All roles are concerned with who is working on, and who is
responsible for, what. Software architecture serves as a backbone
for structuring, documenting, and communicating such knowledge.

1.47 Concern: document names (carrying essential concepts)

Base station design documentation involves several hundreds of
documents describing various aspects of the system (architecture
reference documentation, design rules, subsystem documentation,
function descriptions, functional specifications, interface products,
and so on). The names carried by these documents turn out to be
important to all stakeholders: in retrieving documents, in everyday
personal organizations of documents, and in document searches.
That documents are given regular and suggestive names (rather
than document numbers) turns out to be a navigational aid in
architecture work.

1.48 Concern: downtime

Downtime or outage duration is the period that an RBS fails to
perform its primary functions. Downtime is a requirements area,
and system engineers are concerned with the breakdown of
downtime requirements on the system as a whole into
requirements on individual system components.

1.49 Concern: error logging and logging (tracing with
Ericsson terminology)

Error logging functionality helps localizing faults in an executing
system. Detecting a malfunction is easy; the tricky part is the fault
localization: to find the part of the system that caused the
malfunction, and to understand why it occurred. This is supported
by logging functionality, which supports generation of trace
messages whenever something of interest occurs or to just
monitor the behavior of the different parts of the system as they
run. Special logging (tracing) infrastructure supports tracing per
process or interface, and keeps track of trace groups and whether
these are active. Logging is useful during debugging in the field, in
lab testing, and in validation, and is of concern to architects,
designers, testers, and operators.

1.50 Concern: external interface layering (protocol stack
layering as of OSI)

Interfaces in high level models often refer to a certain protocol
stack. To serve as specification, any interface must refer to a
specific layer of the protocol stack.

1.51 Concern: external triggers

External triggers trigger services. An external trigger is a
combination of messages and parameters on an external interface,
where that combination has its own semantic meaning. External
triggers are thus more abstract entities than messages (which can
bee seen as a particular coding of the external triggers). External
triggers appear as their own entities in system specifications.

1.52 Concern: fault handling

During startup, operation, or upgrade a number of run-time errors
may occur (such as faulty hardware, missing wiring, non-
responding connections, and so on). A base station has an
extensive architecture that supports detection, localization,
isolation, recovery, reporting, correction, verification, restoration,
fault filtering, fault coordination, alarm suppression, state
propagation, alarm subscription, alarm filtering, alarm distribution,
alarm logging, alarm list administration, and alarm manipulation.

1.53 Concern: function onto block deployment (part with
Ericsson terminology)

The process of adding a new feature to a base station involves
mapping the features onto available system blocks (known as
parts within Ericsson).

1.54 Concern: function onto code deployment

Designers are concerned with how a system level functionality
(such as upgrade functionality, hardware restart functionality,
software loading) maps to specific code modules.

1.55 Concern: function onto platform allocation

The base station design process involves H/W S/W co design with
a hardware platform shared across many product lines. Only some
of the requirements on a base station are allocated to software
components developed by the S/W organization, whereas other
are mapped to the platform developed by the H/W organization.
This mapping is done by radio network systems engineers (which
belong to a third organization within Ericsson). System engineers
of the S/W organization are concerned with what functionality is
and what functionality is not allocated to the platform of the next
generation.

1.56 Concern: functional areas

Functional requirements on base stations are divided into
functional areas such as Traffic, Operation and Maintenance, Fault
Handling, Site Modifications, Node Preparations, and Factory
Procedures.

1.57 Concern: functional deployment (logical- onto physical
components)

The relationship between the logical components of the system
model and the physical hardware components is of concern to
system engineers, architects and designers.

1.58 Concern: hardware architecture

The hardware architecture is of concern to designers for at least
four reasons: 1) hardware is the means by which software is
executed, and software must be design with respect to hardware
capabilities (i.e., processing power, and available communication
channels); 2) software shall provide operation and maintenance
interface to the hardware, thus software shall provide a view of the
base station’s hardware; 3) software should support hardware fault
handling, and hardware maintenance operations; 4) software
should be configurable to various hardware configurations. In all
these areas, software engineers are deeply entrenched in details
of the hardware architecture.

1.59 Concern: hardware start/restart (equipment restart)

A base station has a requirement area concerned with start/restart
of the base station involving timing and synchronization setup,
radio equipment startup, infrastructure equipment setup, and setup
of signaling to neighbour nodes.

1.60 Concern: hardware variants

Base Stations are shipped in a number of variants, with varying
features and platform configurations. Designers and testers need
to reason about these variations.

1.61 Concern: how a board works

A base station includes a multitude of special purpose boards for
radio signaling, antenna control, power management, signaling to
neighbour nodes, and so on. To realized specified functionality (or
to correct errors), designers need to understand not only the
software interfaces, and general capabilities of the boards, but also
how the board operates.

1.62 Concern: how manipulation of managed objects affects
functional resource objects and things below.

Managed objects are equipment resource objects (functional
resource objects with Ericsson terminology) made visible to
telecom network management software through standardized
interfaces. The internal relationships between managed objects
and their underlying resource objects is an essential concern in the
design of a base station.

1.63 Concern: hyperlinking and tagging

Engineers frequently relate diagram elements (such as messages
in sequence diagrams) to other sources of information using
tagging or hyperlinking.

1.64 Concern: information flow routing between boards

Designers are concerned with how information flows through the
base station’s many boards, in particular what information flows
are interrupted if a specific board fails.

1.65 Concern: integration of descriptive texts in models

A view supports coding of information from a given perspective
using a given modeling notation. This is often not good enough:
engineers sometimes feel constrained by the view, and want to
elaborate on some aspect of the model in prose; engineers also
want that what they write will be clearly visible to anyone looking at
model—just as illustrative diagrams go hand in hand with the text
flow in a traditional sequential document, descriptive text in models
should go hand in hand with the model trees and diagrams of
model based documentation. With contemporary MDD tools, such
complementary "text views" are not as visible as text is in
traditional document based engineering: although text appears in
generated reports, text is often “hidden away” in the model.

1.66 Concern: interaction between technical subsystems
(functional parts with Ericsson terminology)

Interaction between technical subsystems is what is typically
defined by a sequence diagram.

1.67 Concern: internal interface layering

Interfaces between system components may be different in the
detailed design models than in the system models. What appears
as a plain data record in the system model may correspond to
streaming a series of bit frames, with retransmission signaling, in
the detailed design models. System engineers, designers, and
testers are all concerned with the correspondence between
signalling at these different levels of abstraction.

1.68 Concern: introduction- and context

Introduction and context is a crosscutting concern that recognizes
the role of architecture documentation in learning and
understanding the system. In the same way as security aspects
are important to some stakeholders and thus should be visible
across relevant views, introductory- and contextual information is
important to learners, and should be visible (or reachable) across
relevant views too.

1.69 Concern: layer-to-layer vs. peer-to-peer signaling

In a layered architecture, there is a distinction between messages
sent between components at the same system layer (peer-to-peer
signaling) and messages sent between layers (layer-to-layer)
signaling. Clear distinction between these two kinds of signaling,
is important to keep the architecture description clean and easy to
understand.

1.70 Concern: load module structure (program execution
handling decomposition)

Load modules are executable software entities (executable
machine code for the system's CPU:s, .jar files, database
schemas, .html files, fpga machine code, DSP machine code)
loaded into the system during startup or upgrade phases. Each
subsystem has a load module structure that relates load modules
for the systems various software components (equipment
handling, sector & cell handling, channel handling, node control,
databases, http servers, JVM configuration, device boards,
auxiliary units) to specific locations / destinations for these.

1.71 Concern: locality (of reference)

A base station is a multi processor systems situated in a
distributed telecommunication system. Storage involves
processors boards, device boards, auxiliary units, databases,
volatile memories, flash memories, and storage on external nodes.
Real time software design in this context is concerned with where
in the system data is stored, and what acess/uppdate times are
needed and achievable.

1.72 Concern: logical resources

A RBS provides two views: the operation and maintenance view;
the traffic control view. Each of these views is layered, in 9 distinct
layers. One of these layers is concerned with logical resources at
a level of abstraction below the actual services provided by the
RBS and above the actual devices used to realize the service.

1.73 Concern: managed object (MAO/FRO/RO) domain

The managed object model is the view of the base station seen by
telecom operators. Major entities in this view are Managed
Adaptation Objects (MAOs), used to raise the abstraction of the
system to a level suitable for administration, Facade Resource
Object (FROs) which are used for configuration, data
administration, parameter validation, storage/retrieval and
calculations of usage state, and Resource Objects (ROs) which
are device-driver-level components that provide the actual
services.

1.74 Concern: major subsystems

The major software subsystem components and their
interconnections (at the 1st whitebox level) are of particular
importance to project- and line managers, as this view is often a
basis for division of work, responsibility, and resource allocation.

1.75 Concern: memory capacity

New base station software oftens needs to be compatible with old
hardware, with the implication that designers must assert that
software components with added features will run on older boards
without running out of space.

1.76 Concern: memory utilization

Dynamic memory is allocated and freed during run-time. Thus the
amount dynamic memory in use varies during execution. The total
size of the dynamic memory (heap and pool) is defined at build
time and is fixed. The peak value of allocated dynamic memory
must not exceed the size limit. The peak allocation is dependent
on both static and dynamic load. The peak can occur when the
node is running at its maximum static capacity or dynamic
capacity or at some combination of dynamic and static capacity.

1.77 Concern: naming conventions

Naming conventions are important to make models, as well as
artefacts generated from models, readable and automatable.
Conventions cover assigned prefixes and number intervals for
services, subsystems, signals, message parameters, system
parameters, process names, data base tables, file names, alarms,
error messages, events, triggers, and logs.

1.78 Concern: overviews

One important role of design documentation is to provide
overviews of the system: the "big pictures" serving as background
for understanding the existence, design, precise behaviour, and
characteristics of some specific components.

1.79 Concern: performance

Performance is a central area of concern in any real time system:
it involves execution times, response times, background loads,
static capacity, static load, dynamic capacity, and dynamic load
characteristics during start, restart, or operation, and infrastructure
for performance management, i.e., measuring performance
through counters throughout the system.

1.80 Concern: planning

Project management is concerned with who is
realizing/updating/correcting/merging what components when.

1.81 Concern: platform-as-layer vs. platform-as-component

Two views of the role of a platform is exists in the system studied:
in the platform-as-layer view, a platform is as lower architectural
layer used to realize components in a higher layer using to layer-
to-layer communication; in the platform-as-component view a
platform provides certain functions useful across products, but
appears as peers to system components at arbitrary levels of
abstraction in the system model. (Both these views prevail in
telecom standards.) Architects are concerned with how the
platform appears in the architectural views, and how it should
appear in use case realization sequence diagrams and structural
diagrams.

1.82 Concern: power supply and distribution

A RBS has a sophisticated power supply system capable of
handling outages and handling of setup/release/supervision of the
power and power backup system, through built in-in algorithms as
well as through a management interface.

1.83 Concern: process deployment (relationships between
Processes, Threads, and CPUs)

MDD tools provide light weight processes that are mapped onto
OS-threads of some underlying real-time operating systems,
possibly running on different CPUs. This mapping is normally
specified using properties in the model, whereas the actual
mapping is automated. The mapping is a concern to designers.

1.84 Concern: process interface inheritance (capsule
interface inheritance)

Capsule is the term for concurrent processes used by the
modeling tool in use. System engineers and designers are
concerned with inheriting interfaces of capsules higher up in the
process hierarchy, when realizing sub capsules of these.

1.85 Concern: process priorities

Process priorities is a concern in reasoning about real-time
system properties, such as capacity, scheduling, performance, and
worst case execution time.

1.86 Concern: process/subprocess decomposition (capsule /
subcapsule decomposition)

Capsule is the term for concurrent processes used by the
modeling tool in use. Capsule / subcapsule decomposition is a
structural breakdown of the systems in terms of a hierarchical
network of processes communicating using protocols. This is the
dominating perspective of the system model.

1.87 Concern: processor load

Designers and testers are concerned with the computational load
of the base station's many processors (i.e., CPUs and DSPs) on
its many boards.

1.88 Concern: protocol abstraction (several messages at a
lower level becoming one message at a higher level)

More details are often desirable in design level protocols than in
system level protocols. For instance a system level protocol may
include a single transfer of a piece of information, whereas the
design level contains messages for resource allocation,
handshaking, error indication, etcetera. Engineers want to model
at several such levels, and have the protocols formally related, so
that inconsistencies may be detected, and so that degree of
realization of the system level protocols may be measured.

1.89 Concern: protocol exemption (in behavioural
descriptions)

The design guidelines of the studied base station specify generic
protocols, i.e., communication patterns that system components
must follow. These are instantiated in sequence diagrams
(describing use case realizations), adding a lot of redundant detail
in system specification. What is far more important to designer is
where these generic protocols are not adhered to, but modified.
Such deviations are motivated in certain situations, but give a
more brittle design. Being able to search out where exemptions to
protocols have been made is important to designers.

1.90 Concern: protocols between technical subsystems
(functional protocols with Ericsson terminology)

The protocol concept in the project studied originates in the Room
methodology. Protocols define what signals may be sent and
received on ports (similarly to provided and required interfaces in
UML2.) Protocol definition for internal protocols is a major task for
system engineers, as well as designers. (External protocols are
given by telecom standards.)

1.91 Concern: RBS resource handling

The mechanisms for providing, allocating, and de-allocating
resources provided by the hardware layer are called resource
handling. Several domains of resource handling exist: dynamic
device resource handling, equipment resource handling, and
baseband resource handling.

1.92 Concern: RBS variables (parameters with Ericsson
terminology)

With Ericsson terminology, parameters are a changeable/readable
attributes of entities in a system. Changing the values of a
parameter will affect the characteristics/behaviour of the system.
Parameters may be updated/read through operation and
maintenance signaling as well as traffic control signaling.

1.93 Concern: redundancy

Base stations are fault tolerant systems that should maintain
operation also in the presence of hardware failure. Some
components are more critical than others, and six classes of
criticality (redundancy types) are identified. System engineers
map the base station’s boards and units onto these classes.

1.94 Concern: relationship between hardware-interfaces and
software interfaces

Interfaces in the base station's architectural view are sometimes
hardware interfaces, and sometimes software interfaces.
Architects are concerned with which are which, and how certain
SW interfaces in one view relate to a HW interfaces in another
view.

1.95 Concern: response time

Response time is the time from the reception of a request until the
response is sent. It is dependent on CPU load and the speed of
external units. Response time is a concern in many contexts, e.g.
auxiliary unit response, device board response, O&M message
response, and update response.

1.96 Concern: responsibility

Responsibilities in organizations often hinge onto architectural
views, e.g. a subsystem in the model is often seen as a packaging
of functionality and responsibility; subsystem responsible and
interface owner are established roles.

1.97 Concern: schedulability

For some time critical computations, designers are concerned with
whether real time tasks are schedulable within available time
frames.

1.98 Concern: service anatomy

A service anatomy shows dependencies between services within
one capability group.

1.99 Concern: service or use case realization (in terms of
functional parts)

A use case realization specifies how whitebox objects collaborate
to implement to a use case, whereas a service realizations
specifies how objects collaborate to implement a specific service.
Use case- and service realizations are normally specified using
sequence diagrams, but other behaviour diagrams are also used.
Service and use cases realizations are the same concern
appearing at different levels of system function granularity. (Use
cases are decomposed into services.)

1.100 Concern: signal grouping and bundling

At the design level, connected components typically communicate
through several connectors, ports, and protocols. Showing all
these entities in the system model easily makes it too cluttered.
Rather, system engineers prefer to reason about (and draw)
cohesive bundles of connectors---this is sometimes referred to a
signal bundling---or single connectors that represent such bundles.

1.101 Concern: startup

Designers, architects, and system engineers are concerned with
what is started when in which order during the base stations
startup phase.

1.102 Concern: synchronization

Synchronization denotes handling of delays and delay variances in
the transmission of data packets. Three domains of
synchronization, (each with their own detailed problems and
solutions): node synchronization concerned with transmission of
user data to and from antennas and neighbour nodes, frame
synchronization concerned with data packets sent internally within
the RBS, and network synchronization concerned with Ethernet
packets sent to and from neighbour nodes.

1.103 Concern: system services

A service is a black-box concept that describes a part of a use
case. A service can be seen as an operation provided by the
system and described by one or more black-box steps in the use
case flow. A service is triggered by a signal on an external
interface and may send signals on any external interface.
Instances of services are the messages found in the UML
sequence diagrams that realize the use case scenarios. Generally,
there is an n-to-m mapping between use use-cases and services.

1.104 Concern: system traces and system model consistency

System engineers and testers want to be able to reach, view, and
compare system traces relevant to the interaction specified in the
system model’s sequence diagrams from within the system model
itself.

1.105 Concern: system/subsystem decomposition (with
Ericsson specific meaning)

The main characteristics of an Ericsson subsystem are: 1) it is
used to pinpoint responsibility in the line organization; 2) it is used
to allocate derived requirements on; 3) it is a functional product in
Ericsson product information management system; 4) it is a
grouping of functionality. Subsystem decomposition thus carries
several concerns important to engineers as well as managers, and
is more than a matter subdividing a system into technical
subsystems.

1.106 Concern: test coverage

Testers measure to which degree a component has been tested,
and managers are interested in this information.

1.107 Concern: test-system

Testing of base station software and hardware relies on extensive
product test infrastructure for integration, verification, and
validation of software as well as hardware. Many parts of the
system model and the design models play a role in this
infrastructure. Accurate use of models relies on these roles, i.e.,
test system is a concern.

1.108 Concern: tier dimensions and layers

The studied architecture has a multi dimensional layering, that
involves the follwing dimensions:1) requirement models layer |
system model layer |design model layer | implementation model
layer | code layer; 2) presentation layer | service layer | adaptation
layer | resource layer; 3) resources related layers; 4) board related
layers; 5) radio related layes; 6) interntet related layers; 7)
processor related layers.

Architects are concerned with what such dimensions are used,
how each dimension is segmented into layers; and what the
relationships between the components in all layers are.

1.109 Concern: traceability

Traceability, i.e., is which components that realize a specification
(forward traceability) and which specifications a component
originates in (backwards traceability) is important in many
situations. For instance, designers are concerned with where, in
the system model, a particular requirement is being realized.
Designers also want backward traceability from the design level
components (functional parts) to the places in the system model, in
system documents, or in the requirements models, that motivate
the existence of these components. This is to make the design
easier to relate to the system model and to the requirements.

1.110 Concern: traffic control

Traffic control is a major area of functionality defined by telecom
standards, such as UTRAN Iub interface Node B Application Part
(NBAP) signaling. Functional areas of traffic control are cell
configuration management, common transport channel
management, system information management, resource event
management, configuration alignment, measurements on common
resources, radio link management, radio link supervision,
compressed mode control , measurements on dedicated
resources, downlink power drifting correction , reporting of general
error situations, physical shared channel management, downlink
power timeslot correction, cell synchronization , information
exchange, bearer re-arrangement, multimedia broadcast multicast
service notification, user equipment status notification, and
exchanging information about the secondary uplink frequency.

Although many concerns related to traffic control are covered by
external standards, it is sometimes advantageous to cover them
also in the system model.

1.111 Concern: transaction handling

The transaction is well known concept in databases and distributed
systems research. A transaction is a collection of operations
representing a unit of consistency and recovery. A transaction
starts by initializing things, then reading and modifying objects,
then at the end either committing or saving any changes made or
aborting any modifications (leaving the system in the state before
initialization). Transactions appear in the management and
operation interface; transaction handling is supported by the RBS
platform.

1.112 Concern: upgrade

New versions of base station software are released frequently and
remote upgrades common. Upgrades must be done with as little
interference as possible (as downtime is very expensive for
operators) and with support for rollback (should the upgrade go
wrong). To support this, base stations have extensive upgrade
architecture involving upgrade packages that bundle new software-
firmware- and description-modules for a node with an update
script, and an upgrade engine that executes upgrade packages
and monitors the upgrade process.

1.113 Concern: usage scenarios

Usage scenarios are constituents of a use case specification. One
usage scenario describes the main flow, whereas other describe
alternate paths through a use case.

1.114 Concern: verifiabilty

System engineers are concerned with requirement verifiability, i.e.,
that it is possible to write test cases for the requirements.

1.115 Concern: virtual hardware

Virtual hardware is an approach to software and documentation
reuse. All Ericsson products are associated with a product
structure, which is used to organize end user documentation, to
order spare parts, to report errors, and for long-time archiving of
product information. This product structure is board oriented.
When evolving a system, it is highly beneficial to maintain this
structure, even though underlying hardware may have changed,
e.g., four boards being replaced by one. By the use of virtual
boards in the architecture, surrounding software as well as
documentation structure may be kept.

1.116 Concern: what is automated

The model considered involves extensive automation, e.g.,
consistency checking, propagation of information, code generation.
Engineers are concerned with what automation is built into the
modeling infrastructure, and what relationships between modeling
artefacts that the automation brings.

2 References
[1] L. Pareto, P. Ericsson, S. Ehnebom, Concern Visibility in

Base Station Development – an Empirical Investigation, in
Model Driven Engineering Languages and Systems,
Lecture Notes in Computer Science, 2009, Volume
5795/2009, 196-210, Springer Verlag

[2] Heikki Kaaranen, UMTS networks: architecture, mobility,
and services, John Wiley and Sons, 2005

	Cover
	Lars Pareto

	Blank
	Titlepage
	Tryckkortssida
	ConcernsCatalogueTR
	1 Introduction
	1.1 Reader Guidelines
	1.2 Purpose and Scope
	1.3 Concern: actors and use cases
	1.4 Concern: allocation independent client-server interaction
	1.5 Concern: allocation protocols
	1.6 Concern: alternatives, conditions, and iterations in scenarios
	1.7 Concern: annotating system model with links to project internal artefacts
	1.8 Concern: application decomposition
	1.9 Concern: approval status
	1.10 Concern: bandwidth
	1.11 Concern: baseband use
	1.12 Concern: baselines
	1.13 Concern: basic and alternate flows
	1.14 Concern: board configuration
	1.15 Concern: board connections (wiring and buses)
	1.16 Concern: board interfaces
	1.17 Concern: board loading
	1.18 Concern: boards and their relationships to features
	1.19 Concern: cable configuration
	1.20 Concern: call graph
	1.21 Concern: capabilities
	1.22 Concern: capability anatomy
	1.23 Concern: capability decomposition
	1.24 Concern: capability group filtering
	1.25 Concern: capability realization anatomy
	1.26 Concern: channel deployment (internal logical channels onto physical channels)
	1.27 Concern: class and process instantiation (capsule instantiation)
	1.28 Concern: clean and precise visualization of requirements and behaviour
	1.29 Concern: climate
	1.30 Concern: communication paths
	1.31 Concern: communication paths between abstract ports
	1.32 Concern: communication principles
	1.33 Concern: complementary side perspectives
	1.34 Concern: component behaviour
	1.35 Concern: connection establishment
	1.36 Concern: coupling and cohesion among service realizations and capability realizations
	1.37 Concern: corporate basic standard for information assets (product structure with Ericsson terminology)
	1.38 Concern: data - coding of parameters sent in signals
	1.39 Concern: data deployment (relationship between data and their storage)
	1.40 Concern: data - formal parameters in signals
	1.41 Concern: data - what’s static, dynamic, or persistent.
	1.42 Concern: decomposition of functionality into technical subsystems (functional parts with Ericsson terminology)
	1.43 Concern: deliverables
	1.44 Concern: differences w.r.t earlier versions
	1.45 Concern: distribution
	1.46 Concern: division of work
	1.47 Concern: document names (carrying essential concepts)
	1.48 Concern: downtime
	1.49 Concern: error logging and logging (tracing with Ericsson terminology)
	1.50 Concern: external interface layering (protocol stack layering as of OSI)
	1.51 Concern: external triggers
	1.52 Concern: fault handling
	1.53 Concern: function onto block deployment (part with Ericsson terminology)
	1.54 Concern: function onto code deployment
	1.55 Concern: function onto platform allocation
	1.56 Concern: functional areas
	1.57 Concern: functional deployment (logical- onto physical components)
	1.58 Concern: hardware architecture
	1.59 Concern: hardware start/restart (equipment restart)
	1.60 Concern: hardware variants
	1.61 Concern: how a board works
	1.62 Concern: how manipulation of managed objects affects functional resource objects and things below.
	1.63 Concern: hyperlinking and tagging
	1.64 Concern: information flow routing between boards
	1.65 Concern: integration of descriptive texts in models
	1.66 Concern: interaction between technical subsystems (functional parts with Ericsson terminology)
	1.67 Concern: internal interface layering
	1.68 Concern: introduction- and context
	1.69 Concern: layer-to-layer vs. peer-to-peer signaling
	1.70 Concern: load module structure (program execution handling decomposition)
	1.71 Concern: locality (of reference)
	1.72 Concern: logical resources
	1.73 Concern: managed object (MAO/FRO/RO) domain
	1.74 Concern: major subsystems
	1.75 Concern: memory capacity
	1.76 Concern: memory utilization
	1.77 Concern: naming conventions
	1.78 Concern: overviews
	1.79 Concern: performance
	1.80 Concern: planning
	1.81 Concern: platform-as-layer vs. platform-as-component
	1.82 Concern: power supply and distribution
	1.83 Concern: process deployment (relationships between Processes, Threads, and CPUs)
	1.84 Concern: process interface inheritance (capsule interface inheritance)
	1.85 Concern: process priorities
	1.86 Concern: process/subprocess decomposition (capsule / subcapsule decomposition)
	1.87 Concern: processor load
	1.88 Concern: protocol abstraction (several messages at a lower level becoming one message at a higher level)
	1.89 Concern: protocol exemption (in behavioural descriptions)
	1.90 Concern: protocols between technical subsystems (functional protocols with Ericsson terminology)
	1.91 Concern: RBS resource handling
	1.92 Concern: RBS variables (parameters with Ericsson terminology)
	1.93 Concern: redundancy
	1.94 Concern: relationship between hardware-interfaces and software interfaces
	1.95 Concern: response time
	1.96 Concern: responsibility
	1.97 Concern: schedulability
	1.98 Concern: service anatomy
	1.99 Concern: service or use case realization (in terms of functional parts)
	1.100 Concern: signal grouping and bundling
	1.101 Concern: startup
	1.102 Concern: synchronization
	1.103 Concern: system services
	1.104 Concern: system traces and system model consistency
	1.105 Concern: system/subsystem decomposition (with Ericsson specific meaning)
	1.106 Concern: test coverage
	1.107 Concern: test-system
	1.108 Concern: tier dimensions and layers
	1.109 Concern: traceability
	1.110 Concern: traffic control
	1.111 Concern: transaction handling
	1.112 Concern: upgrade
	1.113 Concern: usage scenarios
	1.114 Concern: verifiabilty
	1.115 Concern: virtual hardware
	1.116 Concern: what is automated

	2 References

