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Mesoscopic phenomena in the electromechanics of suspended nanowires
GUSTAV SONNE
Condensed Matter Theory
Department of Physics
University of Gothenburg

ABSTRACT

Over the last two decades nanotechnology has been a very active field of
scientific research, both from fundamental perspectives as well as for appli-
cations in technology and consumer goods. In this thesis, theoretical work
on quantum mechanical effects on charge transport in nanoelectromechanical
systems is presented. In particular, the effects of electron-vibron interactions
in suspended nanowire structures are analysed and discussed.

The thesis is structured around the appended scientific publications by the
author. Also included is an introductory section where the underlying theory
and motivation is presented. This introduction forms the basis on which the
subsequent material and appended papers is based.

The work presented in the appended papers considers systems comprising
suspended oscillating nanowires, primarily in the form of carbon nanotubes.
Central to these studies is the interaction between the charge transport and the
mechanical motion of the nanowires. For the systems analysed in this thesis,
these interactions are mediated through transverse magnetic fields, the effect
of which is studied in various system setups. In particular, three topics of
mesoscopic phenomena are presented; i) a temperature-independent current
deficit due to interference effects between different electronic tunnelling paths
over the nanowire-junction, ii) pumping of the mechanical vibrations in a low
transparency superconducting junction, and iii) cooling of the mechanical vi-
brations in both current- and voltage-biased superconducting junctions.

The outcome of the presentedwork is a number of interesting physical pre-
dictions for the electromechanics of suspended nanowires. These results are
shown to be experimentally observable in systems with high mechanical res-
onance frequencies and if sufficiently strong electromechanical coupling can
be achieved. Once these conditions are fulfilled, the predicted results are of
interest both from a fundamental perspective in that they probe the underly-
ing quantum nature of the systems, but also for sensing applications where
quantum limited resolution could be experimentally achievable.

Keywords: Nanoelectromechanical systems, ground-state cooling, supercon-
ducting weak links, carbon nanotubes, non-linear resonance,
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Preface

Since the autumn of 2006 I have been working as a graduate student in the
Condensed Matter Theory group at the Department of Physics at the Univer-
sity of Gothenburg. The material presented in this PhD thesis is a summary
of my work over these years, which has primarily focused on the effects of
electromechanical interactions in suspended nanowire structures.

The thesis consists of two parts. The most important part is the scientific
papers, referred to as Paper I-IV, which are appended at the end of the thesis.
The second part of the thesis consists of an introduction to the topics discussed
in the papers. In this section I aim to familiarise the reader with the field
in which I have been active during my PhD studies, as well as to include
some background material to the topics covered in the appended papers. It is
my intention and hope that this section should, at least in part, be accessible
to readers who may not have a background in physics. In particular I have
written this section with my family and friends in mind with the hope that
they will be able to appreciate and understand what I have been doing these
years.

It may so happen that the experienced physicist will find the introductory
discussion to this thesis somewhat trivial and prosaic. Should this be the case,
I would like to add that to me, doing research is not only about getting in-
teresting scientific results. Equally important is our ability to promote our
knowledge to a wider audience than the world of academia. Hopefully I have
been able to do so here.

The outline of the thesis is as follows. In Chapter 1, I give a short intro-
duction to the field of nanotechnology and nanoelectromechanical systems.
Chapter 2 presents a brief introduction to quantum mechanics where partic-
ular emphasis is put on the quantum harmonic oscillator, which forms an in-
tricate part of the work presented in this thesis. Also, cooling of mechanical
oscillators is discussed. In Chapter 3 the reader is introduced to some phe-
nomena related to superconductivity. Similarly, Chapter 4 gives a short in-
troduction to carbon nanotubes and some of their basic mechanical and elec-
tronic properties. In Chapter 5, the work of the appended papers is introduced
and summarised. This chapter is somewhat more technical in its presentation,
although I have tried to keep the mathematical formalism to a minimum. Fi-
nally, I conclude the thesis in Chapter 6 where I summarise themost important
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results of my research.
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CHAPTER 1

Introduction

“I would like to describe a field, in which little has been done, but in which an
enormous amount can be done in principle. [...] it would have an enormous
number of technical applications. What I want to talk about is the problem of
manipulating and controlling things on the small scale.” [1]

The above quote is taken from Richard Feynman’s lecture at the American
Physical Society meeting in 1959 where he coined the phrase "there’s plenty
of room at the bottom". In this seminal talk Feynman challenged his con-
temporaries to think outside (or perhaps inside) the box and ask themselves
what sets the physical limits to how small we can make things. Many of the
questions and challenges raised in this lecture, at the time seen as dubious,
are today at the front line of technological research thanks primarily to im-
provements in fabrication- and microscopy-techniques at the very small scale.
This emerging field, nanotechnology, has over the last two decades received a
tremendous amount of scientific and economic interest. So much so that it has
been coined "the next industrial revolution".

1.1 Nanotechnology

Nanotechnology is a term which incorporates a vast field of scientific and
technological applications. The word derives from the Greek word "nano"
(meaning dwarf) and is attributed to manipulations on the nano-to microme-
tre length scale (10−9 − 10−6m). At these scales physical objects behave very
differently from their macroscopic counterparts, something which nanotech-
nological manufacturers wish to utilise. Some examples of this is that ele-
ments may go from being metallic opaque to transparent (e.g. copper) or take
on catalytic properties (e.g. gold) as their dimensions are reduced. Further-
more, physical interactions between objects change as their size go down, re-
sulting in microscopic phenomena that are not seen on the larger scale. Many
of these effects can be attributed to the large surface to volume ratio at the
nanoscale. Put simply, when an object is very small, proportionally more of
its atoms will be on the surface as compared to a larger version of the same
object. As surface atoms are very important in many physical and chemical
reactions, having proportionally more surface atoms often means that new
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Chapter 1. Introduction

physical phenomena are to be expected.

Applications of nanotechnology are today becoming more andmore abun-
dant with the number of nanotechnological products on the market having
grown by an impressive 379% between 2006 and 2009 [2]. To date, most of
these products are what would be called passive applications, e.g. nanopar-
ticles used in cosmetics or for structural reinforcement purposes. However,
more complex systems, where nanometre-sized objects are of necessity for
the product to function properly, are emerging. A potentially very lucra-
tive field for nanotechnological applications is for example electronics where
nanometre-sized components could significantly decrease both energy con-
sumption and heat production [3].

In order for systems as small as a few tens of nanometres to work prop-
erly, control on the atomic scale is needed in their manufacturing. This is
doubtlessly the biggest challenge facing nanotechnology at the moment. In
essence it boils down to pin-pointing the position of only a few atoms or
molecules accurately enough that the object you are creating will be able to
perform the desired operation in a repeated fashion over a long period of
time. Nature has of course solved this problem long ago, as the molecules
and proteins that make up living life are found on the nanometre length scale.
Manipulation of objects this small is thus by no means impossible. The ques-
tion is only how to do it in a controlled way. Once such control is attainable
in a repeated and traceable fashion we may not be too far away from realising
Feynman’s 50-year old vision.

1.2 Physics at the nanoscale

Everyday objects are described through Newton’s laws of motion which de-
scribe the macroscopic world we inhabit. On the other hand microscopic ob-
jects, molecules, atoms and electrons are described through the laws of quan-
tum mechanics. Both descriptions work exceedingly well for the processes
they aim to describe and we believe both to be correct. However, Newtonian
mechanics fails to accurately describe the world of atoms; just as a quantum
description of a child on a swing would make little sense. Thus, we believe
both ways of describing the world to be correct, but that their region of valid-
ity is bound by the size of the objects being considered.

For length scales in-between the micro- and macroscopic regimes an over-
lap between these disparate laws of nature is needed. This regime, often called
the mesoscopic scale (the word "meso" being Greek for in intermediate), is ex-
actly the scale at which nanotechnological applications reside. Mesoscopic
systems typically consist of millions of atoms. Therefore, a complete quantum
mechanical description of the system becomes mathematically unwieldy and
scientists have to resort to sagacious approximations to reduce the complexity
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1.2. Physics at the nanoscale

of the problem. Such approximations often involve some averaging over for
example the discrete atomic structure, without losing sight of the underlying
physics governing the system. As an example, the suspended nanowire struc-
tures considered in the latter chapters of this thesis are often treated quantum
mechanically. Here, a wire a few hundred nanometres long is considered as
one single quantum object. This is of course a big generalisation as the wire
consists of thousands of atoms. However, from a macroscopic perspective we
know that we can describe the atoms in the wire as single object, and by ex-
tending this analysis to the quantumworld we can often substitute the motion
of each atom by the generalised motion of the wire without losing sight of the
underlying physical properties of the system (in this case the nanowire).

The present thesis primarily focuses on nanoelectromechanical systems.
These are systems where objects on the nanoscale are made to perform me-
chanical oscillations which are coupled to the motion of electrons through
them. Seeing that the mechanically compliant objects considered are very
small and that the frequency with which they oscillate is very high, we can
describe them in the language of quantum mechanics. Thus, we expect these
systems to react differently to external stimuli as compared to their macro-
scopic counterparts, something which one wishes to utilise for applicational
purposes.

1.2.1 Nanoelectromechanical systems

Physical phenomena are described through the degrees of freedom accessible
to the system, e.g. a ball thrown into the air hasmechanical degrees of freedom
and can be described through Newton’s laws of motion. By coupling different
degrees of freedom, systems can be made to respond to external stimuli in
novel ways.

Coupling between mechanical and electrical degrees of freedom was per-
haps first shown byWilliamGilbert in the late 16th century with his invention
of the electroscope. With his device — a pivoted needle which could deflect
due to the presence of charged objects — Gilbert was one of the first to study
the interaction between electronic (the charged objects) and mechanical (the
deflection of the needle) degrees of freedom. Since then, numerous applica-
tions utilising this type of coupling have seen the light of day.

Today, microelectromechanical systems, which build on the same prin-
ciples as Gilbert’s electroscope, are used for a plethora of applications, e.g.
micrometer-sized accelerometers for airbags and gyroscopes for various sta-
bilisation purposes. Common to these is that they use the mechanical proper-
ties of the system to influence the electronic read-out. As an example, the ac-
celerometer in an airbag has a mechanical component which reacts when the
car decelerates quickly, thus stimulating an electronic signal which releases
the airbag.

3



Chapter 1. Introduction

Nanoelectromechanical systems are the smaller cousin of micromechanical
systems. These nanometre-sized "machines" are envisaged not only to con-
tinue our strive for the smaller and faster components, but are also hoped to
offer unprecedented measurement sensitivity. Examples of this include ultra-
sensitive mass detection using nanoscale oscillators with the possibility of res-
olutions down to individual molecules or atoms [4–7]. Another promising ap-
plication is the magnetic resonance force microscope which enables mapping
of electronic and nuclear spins at a resolution which greatly surpasses that of
traditional magnetic resonance imaging. For a review on the operation, po-
tential applications and challenges facing nanoelectromechanical systems the
reader is referred to Refs. [8–10].

The reason why nanoscale systems are so sensitive to external stimuli de-
rives from their reduced size. Typically, the frequency ω at which amechanical
resonator oscillates scales inversely with its dimensions. Decreasing the size
of the oscillator thus implies increasing the mechanical frequency. Typical res-
onance frequencies for nanomechanical oscillators are in the radio frequency
range (100 kHz to 10 GHz) which allows for very fast responses to external
forces. Also, these systems often have high mechanical quality factors (a mea-
surement of the sensitivity of the oscillator to perturbations) which implies
that the weight of an extra atom should in principle be enough to sufficiently
change the vibrations of a high-quality nanoelectromechanical oscillator such
that the effect would be detectable.
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CHAPTER 2

Quantum mechanics

The material presented in this thesis is based on the effects of electromechan-
ical coupling in systems where an oscillating suspended nanowire forms the
mechanically compliant element. In much of the following analysis the sus-
pended nanowire is considered in the language of quantum mechanics. This
chapter thus aims to give a short introduction to the physics of the quantum
harmonic oscillator and the concept of ground-state cooling.

2.1 The quantum harmonic oscillator

The most simple and widely studied object in physics is the harmonic oscilla-
tor. Virtually any object which performs periodic motion around a central po-
sition can be described as a harmonic oscillator, e.g. a pendulum, a bridge res-
onating under the marching of soldiers over it or the relative motions of atoms
in molecules. Also, the transverse oscillations of the suspended nanowires
considered here can be described in this language. A diagram of a typical de-
vice geometry of the nanoelectromechanical systems considered in this thesis
is shown in Fig. 2.1 where the suspended nanowire is free to vibrate just like
a plucked guitar string.

Mathematically a classical harmonic oscillator, such as a mass on a spring,
is described by the equation,

mv2

2
+

kx2

2
= E . (2.1)

In the above,m is the mass of the object, v is its velocity, k the spring constant
which acts to pull the object back towards the centre and x is its coordinate of
deflection. The above equation simply tells us that when the oscillator moves
fast it has high kinetic energy and its potential energy is low. Similarly, close
to the turning points the potential energy is large (x is large) whereas the ki-
netic energy is low. Throughout this process the total energy E is conserved.
Also, the energy of classical harmonic oscillator may take any value as this is
simply determined by how far the oscillator deflects from the central position.
Similarly, if the oscillator performs no motion, its total energy is 0. Quantum
mechanically things are different.
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Chapter 2. Quantum mechanics

Figure 2.1: Schematic diagram of a nanowire oscillator considered in the thesis. A
wire of length L = 100 nm — 1µm is suspended between two leads. In the above
geometry, the actuation of the wire derives from the coupling between the current
through the nanowire and the transverse magnetic fieldH .

The motion of the quantum harmonic oscillator is described through the
Schrödinger equation,

Ĥ|n〉 =

(
p̂2

2m
+

1

2
mω2x̂2

)
|n〉 = En|n〉 , (2.2)

for the energy eigenstate |n〉. This equation is nothing but the quantum equiv-
alent of equation (2.1), i.e. it describes the same physical processes, but in the
language of quantum mechanics. In the above, ω =

√
k/m is the frequency

at which the oscillator vibrates, p̂ is the momentum operator and ~ is the re-
duced Planck constant. Solving equation (2.2) one finds that the energy of the
quantum harmonic oscillator is not free to take any value. Rather, the energy
of the oscillator can only take the values En = ~ω(n+1/2)where n = 0, 1, 2, ....
Thus, we say that the energy levels of the quantum harmonic oscillator are
quantised as they can only be found at multiples of the natural energy scale
of the oscillator ~ω. Furthermore, even at n = 0 the energy of the oscillator is
not 0 but ~ω/2. This is not surprising as things can never be perfectly still in
quantum mechanics. Even at zero temperature, things vibrate with an ampli-
tude which is known as the zero-point amplitude. It is these vibrations which
give the oscillator energy, even if it is in the ground state n = 0.

Quantum mechanics is a probabilistic theory. This means that we can only
talk about the probability P (n) of finding the oscillator in a given state |n〉with
energy En. For a harmonic oscillator in thermal equilibrium this probability is
dictated by the temperature T according to,

P (n) = e−n~ω/kBT
(
1 − e−~ω/kBT

)
, (2.3)

where kB is the Boltzmann constant. The above implies that at low temper-
atures (~ω ≫ kBT ) the probability of finding the oscillator in the ground
state n = 0 is high, whereas the probability of finding it in higher states is
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Figure 2.2: (a) Energy levels and the corresponding wave functions for the 5 lowest
eigenstates of the quantum harmonic oscillator. In the above, E is the energy in units
of ~ω and x is the deflection in arbitrary units. For the quantum oscillator the lowest
possible energy, the ground state energy, is ~ω/2. The equivalent classical oscillator,
e.g. a ball rolling in the potential shown by the solid line, can on the other hand be
found at any energy depending on how far it deflects from x = 0. (b) The average
energy of a quantum harmonic oscillator as a function of the temperature. In the
low temperature limit, the ground state energy ~ω/2 is achieved, whereas the energy
of the oscillator scales with the temperatures in the opposite limit. The insets show
the probability of finding the oscillator in the state n for three different temperatures,
kBT/~ω = 1/10, 1, 3. Here, the blue dots correspond to ground-state cooling P (n =
0) ≃ 1where the oscillator is found in the state n = 0 with close to unit probability.

much lower. In Fig. 2.2(a) the energy levels and wave functions for the 5 low-
est energy states of a quantum harmonic oscillator is shown. Also plotted is
the average energy of the oscillator as a function of the temperature and the
corresponding distribution of the population of the vibrational modes P (n),
Fig. 2.2(b).

Seeing that the state of the oscillator can only be found at discrete, equidis-
tant, quantised energy levels one may describe it in terms of creation b̂† and
annihilation b̂ operators. These are objects which induce changes in the distri-
bution of the population of the vibrational modes of the oscillator. In partic-
ular, their construction is such that when acting on the energy eigenstate |n〉
they move the system to the energy state above/below,

b̂†|n〉 =
√

n + 1|n + 1〉 , b̂|n〉 =
√

n|n − 1〉 . (2.4)

With this description, equation (2.2) could equally well be written as Ĥ =

~ω(b̂†b̂ + 1/2), which is the form most often used in the attached papers. Also,
the creation and annihilation operators are related to the position operator x̂

(see equation (2.2)) according to x̂ = x0(b̂ + b̂†) where x0 =
√

~/(2mω) is the
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Chapter 2. Quantum mechanics

zero-point amplitude.

As the operator b̂ always lowers the state of the system by one energy
quantum, applying it many times corresponds a successive reduction of the
number of the state (applying b̂† does the opposite). Thus, the operation b̂ cor-
responds to shifting the probability distribution P (n) to lower n. Considering
that the “effective” temperature of the oscillator is defined by its probability
distribution according to (2.3), the action of the operator b̂ thus corresponds
to a lowering of the “effective” temperature of the oscillator below that of the
surrounding medium. This is the underlying mechanism behind cooling as
discussed further in Section 2.3.

2.2 Classical physics meets quantum mechanics

High frequency nanometre-sized mechanical oscillators like those discussed
in Chapter 1 are not only attractive for their high sensitivity to external per-
turbations. They also open up the possibility to probe quantum mechanical
effects in a domain not previously accessible.

Crudely speaking, an object is considered to be in the quantum regime
(such that any measurement on it will have a probabilistic outcome governed
by quantum mechanics) if its associated frequency is higher than the tem-
perature at which the experiment is performed, ~ω ≫ kBT . Relating back
to the previous section, this limit corresponds to a distribution of the vibra-
tional modes of the oscillator P (n) with only the few lowest modes popu-
lated. Whenever this applies, thermal fluctuations from the surrounding ther-
mal bath are much smaller than the intrinsic quantum noise associated with
any measurement. Under such conditions, experimental observations of dis-
crete quantum transitions on the oscillator should be possible. Achieving this
in a controlled way would present an exciting new arena for technological
applications ultimately governed by the laws of quantum mechanics. Or, in
the words of Keith Schwab and Michael Roukes, achieving this limit means
that we are "approaching [...] an era when mechanical engineers will have to
include ~ among their list of standard engineering constants." [11].

Seeing that the frequency of an oscillator scales inversely with its size one
may question whether sub-micron-sized oscillators can be manufacturing so
that the quantum limit is achievable at low temperatures. Indeed this is the
case, as recently demonstrated by O’Connell and colleagues who succeeded
in putting a 6GHz macroscopic oscillator in its quantum mechanical ground
state by cooling it to 25mK in a dilution refrigerator [12].1

The mechanical frequencies of most oscillators considered to date are how-

1Note that the quoted frequency refers to the temporal frequency f and not the angular
frequency ω = 2πf mostly used in this thesis.
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2.3. Back-action cooling

ever substantially lower. As an example, a typical Si- or GaAs beam oscillator
a few hundred nanometres long will have a natural frequency of its funda-
mental mode of ω ∼ 100MHz. Reaching the quantum limit with these oscilla-
tors corresponds to lowering the temperature to only a few millikelvin, which
is not experimentally accessible with present day technology. To circumvent
this problem, while still using conventional beam oscillators as that shown
in Fig. 2.1, much scientific emphasis has recently focused on active cooling
mechanisms. This is also the topic of two of the appended papers, the basic
premises of which will be discussed in the following section.

2.3 Back-action cooling

A refrigerator works by removing heat from the interior and depositing it
outside, thus lowering the temperature inside the refrigerator. In doing so it
draws energy from an external source which is used to compress, expand and
pump the refrigerant liquid used for heat absorption. The lowest temperature
a refrigerator can achieve (the base temperature) is set by the refrigerant liq-
uid as this controls the amount of energy absorbed. In this way, liquid helium
dilution refrigerators are able to cool down to base temperatures of ∼ 25mK.
To make things yet cooler is however a problem as the base temperature can-
not be lowered indefinitely. Reaching the quantum limit of most mechanical
oscillators is thus a challenge; a temperature of T = 20mK corresponds to
ω = kBT/~ ≃ 2.6GHz. Furthermore, any measurement on the oscillator will
in practice always result in some heating, thus increasing the temperature of
the oscillator further.2

To eliminate this problem scientists have to resort to active cooling mecha-
nisms. In doing so one wishes to stimulate transitions in the system so that it
loses energy at a rate which is faster than the rate at which it comes to thermal
equilibrium (i.e. is heated to the temperature of the surrounding media). Here
cooling refers to removing energy from a given subsystem of the bigger sys-
tem so that its motion corresponds to an effective temperature which is lower
than the thermal background. This type of cooling can be achieved in many
ways, the most simple of which is active feedback cooling. In this method
the motion of the object to be cooled is continuously monitored and analysed.
Based on this information, the object is stimulated externally so that its mo-
tion is suppressed, thereby counteracting any forces which might perturb it.
Using this technique, near to ground-state cooling of a macroscopic kilogram-
scale oscillator was recently reported at the Laser Interferometer Gravitational
Wave Observatory (LIGO) [13] (the reported level of cooling corresponds to
an effective temperature of the mirror oscillator of 1.4µK which equates to a

2As an example, O’Connell et al. [12] used a base temperature of 25mK to reach the quan-
tum limit although this should in theory be possible for much higher temperatures; T ∼ 0.3K
for the reported mechanical frequency.
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Chapter 2. Quantum mechanics

population of the vibrational modes which is only a factor of 10 away from
the ground state).

Active feedback cooling is however only applicable for low frequency os-
cillators (up to 1 kHz range). For oscillators with higher mechanical frequen-
cies the method cannot be used with great accuracy as the mechanical motion
of the oscillator is too fast. This implies that the electronic monitoring of the
oscillator will often lag the actual motion, causing the drive pulse to be de-
layed. Active feedback cooling is thus not reliable for high frequency oscilla-
tors as it may lead to more, rather than less, energy being supplied to the sub-
system to be cooled. To get around this problem, methods which do not rely
on any electronic monitoring should be employed, which is often referred to
as back-action cooling. Suggestions for different back-action cooling schemes
come inmany different forms, see for example Refs. [14–20]. Common to these
is that the mechanical oscillator interacts with either an electromagnetic field,
e.g. light, or a flow of charge carriers, e.g. an electrical current, in a way that
it on average loses energy to the surrounding media. This is also the basic
premises behind Papers III-IV as discussed further in Chapter 5.

One method which easily describes the concept of back-action cooling is
cavity cooling as sketched in Fig. 2.3(a). In its simplest form, this method uses
an optical cavity where one of the two high-finesse mirrors has been replaced
by a mechanically compliant mirror, often in the form of a membrane.3 Con-
sider at first the situation when the oscillating mirror is not moving. Under
such conditions the optical cavity will have a natural frequency ωc at which
incident laser light will form a resonant pattern known as a standing wave
inside the cavity. Once one of the mirrors is replaced by a mechanically com-
pliant mirror this resonance pattern will be changed due to the motion of the
mirror. The effects of these changes on the system are two-fold:

i) Each time a photon is reflected it exerts a force on themirror in accordance
with Newton’s third law of motion. The combined effect of all photons in
the cavity is known as the radiation pressure force. Seeing that the posi-
tion of the membrane affects the resonance conditions in the cavity, this
implies that the average force on the membrane will depend on its posi-
tion. The overall effect of the radiation pressure force on the membrane
thus depends on the frequency of the input laser field ωd which implies
that the membrane may be either pumped or cooled. This is indicated in
Fig. 2.3(b) where ωd < ωc and the membrane is cooled (the area under the
blue curve is larger than the area under the red curve).

ii) Much like the example of active feedback cooling discussed above there
is also a delay-effect in the optical cavity. This comes about as the number

3An optical cavity consists of two parallel high-quality mirrors which bounce light back
and forth many times. For a cavity of a given length, only light at certain frequencies will
achieve resonant conditions to produce standing waves in the cavity.
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Figure 2.3: (a) Schematic diagram of an optical cavity with an oscillating mirror. The
mechanical motion of the mirror changes the resonant conditions in the cavity, which
modulates the phase and the amplitude of the laser field depending on the mirror’s
position. By analysing the detected laser light the motion of the oscillator can be in-
ferred. (b) By tuning the incident laser light to one of the optical sidebands, pumping
or cooling of the mechanical oscillator is possible. Here, the input laser frequency is
ωd = ωc − ω, under which conditions the oscillator loses energy to the optical cavity
(blue cooling peak is larger than red heating peak). (c) Corresponding energy level
diagram in the resolved sideband limit. Here, the optical cavity is considered as a
two-state system (0, 1) and the movable mirror is modelled as a quantum oscillator
with energy quanta labelled by n. In the above, the cooling channel |0, n〉 → |1, n− 1〉
is associated with the operator b̂ which lowers the state of the oscillator. The decay
|1, n−1〉 → |0, n−1〉 corresponds to the emission of an optical photon of frequency ωc

into the cavity. Transitions through the heating channel (associated with the operator
b̂†) are here suppressed due to the limited broadening of the energy levels, ω > Γ.
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Chapter 2. Quantum mechanics

of photons in the cavity does not immediately equilibrate to the position
of the membrane.

As both surfaces in the cavity are highly reflective mirrors, the optical
finesse F is high and the optical linewidth Γ is narrow.4 This implies that
the photons leak out of the cavity slowly such that changes in the position
of the membrane are not immediately reflected in the number of photons
in the cavity. This is the cause of the aforementioned cavity delay, which
in the case of red-detuning (ωd < ωc) may cause the resonator to lose
energy to the cavity.

The combination of these effects may cool the membrane depending on the
frequency of the input laser. The efficiency of the cooling depends both on the
power of the input laser, the optomechanical coupling as well as on the optical
linewidth Γ as discussed below, see also Refs. [21–24].

2.3.1 Reaching the ground state

In order to reach the quantum mechanical ground state of an oscillator as that
shown in Fig. 2.3(a) it is not only sufficient to promote cooling over heating
processes as discussed above. One must also ensure that the rate of cooling is
by far the fastest thermal transport rate in the system in order for the oscillator
to be sufficiently insulated from both the thermal environment and transitions
involving an increase in the number of mechanical energy quanta. The former
of these constraints corresponds to having a large mechanical quality factor
Q ≫ 1 (low thermal damping), which is often not a problem in optical cavities.
Satisfying the latter condition corresponds to reaching the so-called resolved
sideband limit, ω > Γ.

The underlying mechanics of this is sketched out in Fig. 2.3(c). Here, the
optical cavity is considered as a two-state system; any interaction with the
movable mirror will change the state of the cavity through the associated ab-
sorption/emission of photons by the oscillator. In other words, due to the
motion of the mirror an incoming photon at frequency ωd may be reflected as
a photon at the cavity frequency ωc = ωd + ω if it absorbs the corresponding
amount of energy from the mechanical oscillator. If this happens, the total en-
ergy of the oscillator is reduced by the amount ~ω, and its energy (and thus
motion) corresponds to a temperature which is lower than the thermal back-
ground, see equation (2.3).

As the coupling between the laser field in the cavity and the position of the
mirror is associated with the mechanical deflection operator x̂ = x0(b̂+b̂†), any

4The optical finesse F is a measure of the quality of a mirror, i.e. how much it reflects. The
optical linewidth Γ gives a measure of how sharp the resonance in the cavity is. The optical
finesse and the cavity linewidth are thus the optical analogues of the mechanical quality factor
Q and damping γ discussed later.
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interaction which changes the cavity from the state 0 to the state 1 will neces-
sarily either increase or decrease the number of mechanical energy quanta n in
the system. In order to reach the quantum mechanical ground state of the os-
cillator, it is thus necessary to ensure that the transitions which are associated
with b̂ (absorption of mechanical energy by the cavity) are greatly enhanced
compared to the process associated with b̂† (wherein the oscillator absorbs en-
ergy from the cavity). This is accomplished by operating the input laser at the
lower sideband ωd = ωc − ω in the so-called resolved sideband limit as shown
Fig. 2.3(c). Under such conditions, the allowed energy levels for the cavity
photons are narrow and transitions through the heating channel (red arrow)
are greatly suppressed as there are no available states at the corresponding
energy. At the same time, the laser drive is resonant with the cooling channel
(blue arrow) which will be the dominant mechanism for energy transport in
the system. Achieving these conditions, the average number of mechanical
energy quanta can theoretically be cooled down to,

〈n〉 ∼ Γ2

16ω2 + Γ2
≪ 1 , ω > Γ , (2.5)

which corresponds to reaching the quantum limit.

Presently, cooling of mechanical oscillators is a very active research topic
both experimentally and theoretically. Around the world, several research
groups are working hard to optimise their experimental setups to achieve
this holy grail of quantum nanoelectromechanics. Recent reports suggest that
this should by no means be impossible. For example, experimental realisa-
tion of the resolved sideband limit has been reported [21], although complete
ground-state cooling using active cooling is yet to be realised, primarily due
to limitations in the input laser power.

In Papers III-IV two different mechanisms to achieve this kind of cooling in
suspended nanowire structures is discussed. The underlying theory of these
papers is similar to the material discussed in the present chapter, with the
main difference that we consider interactions between the mechanical motion
and charge carriers rather than optical photons. The suggested mechanisms,
although experimentally challenging in their own, thus avoid the complica-
tion of incorporating optical fields into dilution refrigerators. Also, optical
cavities are less suited when working with nanowires as the optomechanical
coupling scales with the cross-sectional area available to the photon field.

2.3.2 Quantum limited measurements

What new phenomena do we expect to observe if we manage to put a sys-
tem like the suspended nanowire structures discussed in this thesis into their
quantum mechanical ground state?
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First of all, any quantum system will be very sensitive to external pertur-
bations. This implies that even the slightest change in the mass of the object
or the forces on it will be enough to change the quantum state of the system.
Thus, a sufficiently cooled suspended nanowire or membrane in an optical
cavity will in principle have a sensitivity where the extra weight of one atom
or a minute change in the displacement of the oscillator will be enough to
change its quantum state. A further challenge is to ensure that also the detec-
tion mechanism which couples to the mechanical element is sensitive enough
to register these quantum transitions. In the field of quantum nanoelectrome-
chanics, detection and transduction are equally important as the possibility to
prepare the mechanical system in its motional ground state. Achieving only
one without the other means that you gain nothing as you will not be able to
verify and detect your system. Over the last decade there have been an in-
creasing number of reports on detection at or close to the quantum limit, see
e.g. Refs. [17, 25–28].

Secondly, achieving the quantum limit means that one can couple the me-
chanical system to some other quantum system, e.g. a quantum dot. In this
way, the mechanical system can be used to transmit information on the quan-
tum state of the dot to an electronic readout with minimal losses. These kinds
of systems have been proposed as model setups for hybrid quantum informa-
tion applications.

Finally, the possibility to put an object like a suspended nanowire in its
motional ground state opens up the possibility to observe exotic phenomena
(superposition, entanglement etc.) in macroscopic samples. Achieving this
means that one could for example probe if the oscillator is in two places at
once, which is the underlying principle behind quantum superposition. Thus,
reaching the quantum limit will allow for quantum experiments on objects
that we can see and manipulate under a microscope, something which is
hardly possible with objects that we normally consider to behave quantum
mechanically, i.e. atoms. Achieving the quantum limit in nanoelectromechan-
ical systems will thus test our understanding of quantum theory at a scale not
previously accessible.

For a more detailed discussion on the possibilities presented by reaching
the quantum limit the reader is referred to the focus issue of New Journal of
Physics and references therein [29].
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CHAPTER 3

Superconductivity

In 1962 Brian D. Josephson discovered what was later to be called the Joseph-
son effect [30]. In this chapter I briefly discuss this effect, as well as some
properties of the superconducting state. The chapter also introduces Andreev
reflection and Andreev bound states, concepts which are important for the
following discussion.

3.1 The Josephson effect

The Josephson effect is the name given to the physical phenomenon of a cur-
rent flow across two superconductors separated by a thin insulating layer
(see Fig. 3.1). In particular the theory predicts that if no battery connects
the two superconducting leads (the voltage bias is zero), a finite direct cur-
rent will nevertheless flow between them. Applying instead a steady bias
voltage V , the resulting current over the junction will oscillate with the fre-
quency 2eV/~. These results are very counter-intuitive. Normally, we would
expect no current through a junction if we supply no power, i.e. no battery
is connected. Similarly, if we apply power through a battery which delivers a
constant amount of energy per unit time to the junction we expect the current
through it to be constant.

The origin of the Josephson effect derives from the general physical prop-
erties of superconductors. If one performs an experiment where one measures
the resistivity of a metal as a function of its temperature one expects to see the
former go down as the temperature is reduced. This is a well-known physical
result which derives from the fact that the atoms in the metal vibrate less as
you lower the temperature, thus reducing the amount of electronic scattering
and promoting charge transport. However, for some metals one finds that the
resistivity abruptly falls to zero at temperatures below approximately 1K. Be-
low this temperature, called the critical temperature, the metal is said to be
superconducting as it can sustain electrical currents without any losses.

To understand these effects one has to enter the world of quantummechan-
ics as superconductivity is intrinsically a quantum phenomenon. In short,
the superconducting state can be characterised by spatially separated elec-
trons forming bound pairs which condense into a single quantum state which
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Figure 3.1: Schematic diagram of a Josephson junction. Two superconducting leads
are connected by an insulator. If the insulating region is short (compared to the su-
perconducting coherence length), the wave function for the electronic state in the lead
(ψ1 and ψ2 respectively) can tunnel through the insulating region and overlap with
the wave function in the opposite lead. This creates an interference phenomenon be-
tween the wave functions, the outcome of which is a flow of charge particles through
the insulating region (see equation (3.1)). Applying a bias voltage V over the junc-
tion, the phase difference φ = φ2 − φ1 varies linearly in time and the current over the
junction oscillates at the frequency 2eV/~.

dictates the properties of the superconductor. In other words, two electrons,
which may be far apart, have linked together to form what is known as a
Cooper pair [31]. What holds the electrons in the Cooper pair together is a
very weak attractive force which derives from the vibrations of the atoms in
the metal. Due to the limited strength of this force, only a slight increase in
temperature (increased relative motion of the atoms in the metallic lattice) is
sufficient to break up the pair. This explains why superconductivity is only
seen at low temperatures.

Once a metal turns superconducting, the majority of the electrons in the
system will combine in Cooper pairs. These new “particles” behave differ-
ently from the normal electrons. In particular, the Cooper pairs all collapse
into a single quantum state called the condensate which is protected from
other (dissipative) states by an energy known as the superconducting gap (see
Section 3.2). The superconducting state is thus characterised by a pairing be-
tween the electrons in the sample into Cooper pairs, which can all be described
through a common wave function associated with the condensate.1

To formalise this one can describe the state of the electron pairs in the con-
densate through a macroscopic wave function with a phase φ common to all
Cooper pairs in the sample. What Josephson showed was that if two super-
conducting metals are separated by a thin insulating barrier, Cooper pairs can
tunnel between the two superconducting regions. Furthermore, the overlap

1In a normal metal the opposite is true, i.e. two electrons cannot be found in the same
quantum state due to a quantummechanical exclusion principle known as the Pauli principle.
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of the wave functions in the leads (see Fig. 3.1) will correlate the evolution of
their respective phases, which will in turn depend on the voltage bias over the
junction. This is the Josephson effect which is normally described through the
equations (for a detailed derivation see e.g. Refs. [32–34]),

I =Ic sin (φ + φ0) , (3.1a)
∂φ

∂t
=

2eV

~
. (3.1b)

Here, the current I through the junction is proportional to the sine of the
phase-difference φ between the two superconductors with φ0 a constant phase
offset. The phase-difference φ is in turn related to the applied bias voltage V
according to equation (3.1b). These equations are the central result of Joseph-
son’s analysis. As can be seen, they predict a non-zero dc current at zero bias
voltage due to the phase difference φ0, such that a maximum current of Ic (the
critical current) can flow through the junction with zero potential drop. Sim-
ilarly, a finite bias voltage V will continuously change the phase-difference,
resulting in a current which oscillates in time at a frequency 2eV/~.

3.2 BCS theory

Having outlined the basic mechanism behind the Josephson effect, the fol-
lowing section will briefly discuss the BCS theory of superconductivity. This
theory was introduced in 1957 by Bardeen, Cooper and Schrieffer in order to
explainmany of the peculiar phenomena observed in superconductors [35,36].
In short, the BCS theory explains how an attractive potential, however weak,
is sufficient to form bound electron pairs in a metal at low temperatures.

To describe the formation of a Cooper pair one can think of an electron in
the metal which is interacting with the positively charged atoms in the lattice.
As the electron is negatively charged it will attract nearby positive charges,
thus creating a deformation in the atomic lattice. This deformation will be felt
by the other electrons in the sample. In particular, the BCS theory predicts
that the deformation of the atomic lattice will cause a second electron (with
opposite spin) to move into a region with higher positive charge density such
that the two electrons become correlated. Under these conditions, the two
electrons form a pair which is held together by the motion of the atoms in the
lattice. Pairs like this will be formed by many of the electrons in the sample
creating a large number of Cooper pairs which interact amongst each other
(due to distortions in the lattice). The outcome of this is that the electron pairs
can be described as a collective state, the condensate, due to their correlated
motion.

If one were to break up one electron pair, one necessarily also change
all other pairs in the sample as the overall electron-lattice interaction would
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(a) (b)

Figure 3.2: (a) The superconducting state. The superconductive condensate (shaded
region) is formed by the Cooper pairs (2e) in the system. The condensate is separated
from the continuum by the energy gap 2∆0, which means that a minimum of this
energy is required to create two electronic (e) excitations by breaking up a Cooper
pair. (b) Normal (left) and Andreev (right) reflection between a normal metal and a
superconductor. In normal reflection the electron is reflected as an electron, whereas
Andreev reflection converts the electron to a hole (h) in the normal metal, thereby
avoiding forbidden single-particle transmission within the superconducting gap. To
uphold charge conservation, Andreev reflection is associated with the creation of a
Cooper pair in the superconducting condensate.

change. If the energy needed for this to happen is smaller than the energy
provided by the motion of the atoms in the lattice, the Cooper pairs will not
be sensitive to this motion and the resistivity will be zero.2 This is the case at
low temperature where the lattice phonons (collective motion of the atoms)
are not very energetic.

In order to break up a Cooper pair one thus has to change not only the pair
to be dissolved, but also all other pairs in the sample. This requires an amount
of energy which is substantially larger than the energy required to dissolve
just the one pair. Often one speaks of an “energy gap” for the creation of
single-particle electrons from the superconducting condensate. This gap gives
a measure on the minimum energy required to create two normal, dissipative
electrons in the sample. This is shown pictorially in Fig. 3.2(a) where the su-
perconducting condensate is indicated by the lower shaded regions. To create
an excitation (free conducting electrons) in themetal, an amount of energy 2∆0

is required in order to break up one Cooper pair. Here, ∆0 is often referred to
as the superconducting gap (energy separation from the chemical potential).
In a homogeneous superconductor no electronic quantum state are available

2Resistivity can be thought of as a measure of how much lattice vibrations influence the
motion of the electrons in the sample. If these vibrations are not sufficient to break up the
Cooper pairs, these will be unaffected by the motion of the atoms and the Cooper pairs can
conduct electric current without any losses.
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inside the superconducting gap as shown in Fig. 3.2(a).

Not all electrons in the sample will be found as pairs in the superconduct-
ing condensate, some will remain unpaired at finite temperature. These elec-
trons can be thought of as excitations from the superconducting condensate,
i.e. they are found in the region above the superconductive gap in Fig. 3.2(a)
which can accommodate free electron states. The proportion of such electrons
depends on the external temperature as this controls the energy of the lattice
vibrations and thus the number of formed Cooper pairs. Alternatively, this
can be interpreted as the superconductive gap being temperature-dependent,
i.e. it goes to zero at the critical temperature, in which instance the supercon-
ductive state disappears.

3.3 Andreev reflection

Next I discuss what happens if a region of normal metal, rather than an in-
sulator, is sandwiched between the two superconducting leads. This is the
scenario considered in Papers II-IV, where the normal metal region is substi-
tuted by a suspended metallic nanowire.

Unlike insulators, metals conduct electricity very well since the conduc-
tion electrons are only loosely bound to the atoms in the material. As such, the
metallic region can sustain electrons which are free to move through the sam-
ple. When electrons in a normal metal (N) region impinge on a boundary to
a superconducting (S) region they can be reflected back into the metallic body
either as electrons or holes. The latter of these two mechanisms, known as An-
dreev reflection after A. F. Andreevwho first analysed the phenomenon [37], is
unique to superconductor - normal metal junctions, the origins of which will
be discussed below. Note that Andreev reflection is not seen at the bound-
ary between an insulator and a superconductor region as no free electrons are
found in the former.

In order to explain Andreev reflection we consider the interface between a
normal metal and a superconductor, an N-S boundary. In his work, Andreev
showed that an electron impinging from the normal metal with an energy E
which is inside the superconducting energy gap∆0 in the superconductor can
be reflected back into the normal metal as a hole.3 Ordinarily, one would only
expect the electron to be reflected as an electron. However, through the pro-
cess introduced by Andreev, the electron-like excitation could alternatively be
reflected as a hole-like excitation with the same energy E but opposite mo-
mentum (see e.g. Ref. [38]). This comes about as there are no available elec-
tronic states in the superconductor for energies |E| < ∆0. The electron will

3A hole is not a real particle but rather an electron vacancy. As an analogy, a hole can be
thought of as the little air bubble left if one were to be able to remove a drop of water from
the bottom of a jar otherwise full of water.
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Figure 3.3: Andreev bound states. (a) Two superconducting leads are connected by
a normal metal region. An electron (e) in the normal metal impinging on the right
superconductor is Andreev reflected back into the normal metal as a hole (h). Due to
conservation of charge, this process is associatedwith the creation of a second electron
in the right superconductor and a Cooper pair (2e) is formed. At the left interface,
the hole is reflected into the normal metal as an electron, a process which involves
the destruction of a Cooper pair in the left lead. In this way, charge is transferred
through the junction at a rate which depends on the phase difference φ = φ2 − φ1.
(b) Energy dependence of the Andreev bound states, equation (3.2), shown for two
junction transparenciesD1 (solid) and D2 (dashed) whereD2 > D1.

thus not be able to pass into the superconductor. If however, the electron can
be reflected as a hole, charge conservation implies that the process has to be
accompanied by the transfer of two electrons into the superconducting region.
The two transferred electrons now form a Cooper pair which can readily join
the quasiparticle continuum in the superconductor. A schematic diagram of
normal and Andreev reflection is shown in Fig. 3.2(b).

3.3.1 Andreev bound states

Consider now an S-N-S junction. In this situation Andreev reflection can occur
at both interfaces i.e. the reflected hole at the right interface gets reflected into
an electron at the left interface (the opposite process is also present which ac-
counts for the formation of two Andreev states). As these processes are elastic
(energy conserving) the reflected particles can interfere and form bound elec-
tronic states in the junction as shown in Fig. 3.3(a). The energy dependence
of these bound states is found by matching the wave functions in the differ-
ent regions [39–41]. The resulting bound states split into two Andreev levels,
one above and one below the chemical potential, with their phase-dependent
energies given by,

E± = ±∆0

√
1 − D sin2(φ/2) . (3.2)
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Here, φ is again the superconducting phase-difference and D is the normal
state transparency. In the above, the branch E+ is composed of electrons and
holes travelling in opposite longitudinal direction of the junction. By symme-
try the branch E− has the opposite composition.

A plot of these bound Andreev states as a function of the phase-difference
is shown in Fig. 3.3(b). Considering that electrons and holes are charged parti-
cles one can conclude that the Andreev states carry current through the junc-
tion. This can again be understood by considering the simple example of a
right moving electron in the normal region. As it is Andreev reflected at the
right superconductor a left moving hole (opposite charge) is created in the
normal region. For bound states these reflected paths interfere hence each in-
stance of reflection transmits charged particle through the junction. The cur-
rent carried by a populated Andreev state is given by,

I(φ) =
2e

~

∂E(φ)

∂φ
. (3.3)

The Josephson relation for the current (3.1a) is recovered from the above in
the limit of low junction transparency D ≪ 1which is the condition originally
considered by Josephson. The critical current in this limit is Ic = e∆0D/(2~).

In Papers II-IV the normal metal region of the S-N-S junction is replaced
by a short suspended nanowire in the form of a carbon nanotube. Normally,
carbon nanotubes are not superconducting. If however a short (L .1µm) tube
connects two superconductors, coherent charge transport through the junction
is possible and the superconductors become correlated. These phenomena
have been studied experimentally by several groups (see e.g. Refs. [42–46])
and it was recently shown that bound Andreev states are indeed formed in
these types of junctions [47,48]. This is discussed further in Papers III, where a
transverse magnetic field is used to couple the current carried by the electronic
Andreev states to the mechanical motion of the suspended nanowire.
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CHAPTER 4

Carbon nanotubes

As discussed in previous chapters, nanoelectromechanical systems are based
on mechanical oscillators which can trigger an electronic or mechanical re-
sponse to external stimuli. Such oscillators come in different forms and shapes
with various pros and cons attributed to them. For example, metallic or semi-
conducting beam oscillators are often used in nanoelectromechanical systems.
These typically have high mechanical frequencies and high quality factors,
which would make them ideal for sensing applications. However, due to the
relatively large mass their zero-point amplitude is small, which means that
the electromechanical coupling in these systems is typically not very good.

Ultimately, the goal of nanoelectromechanical systems is to use them for
quantum limited sensing applications. To achieve this, the systems must not
only have a high enough mechanical frequency in order for it to be possi-
ble to cooled them to the quantum regime. Equally important is that suffi-
ciently strong electromechanical coupling can be achieved in order to detect
and analyse changes to the system. A very promising candidate for this is
carbon nanotube-based systems as these combine high mechanical frequen-
cies with a large zero-point amplitude making them, in principle, ideal for
practical applications.

4.1 A cylinder of carbon

Carbon nanotubes are hollow cylinders of carbon atoms with diameters on
the nanometre-scale. These can be either single-walled or multi-walled (many
tubes inside one another) and have varying electronic properties depending
on their wrapping. Furthermore, carbon nanotubes are one of the strongest
materials known to man with Young’s moduli in the TPa range [49, 50], mak-
ing them 100 times stronger than steel while being six times as light. To put
this into perspective; it has been calculated that a chain of carbon nanotubes
would be sufficiently strong to be used as a self-supporting lift to the moon.

Carbon nanotubes have since the early 1990’s been heralded as one of the
most exciting materials for novel nanotechnological applications, primarily
due to their small size and unique one-dimensional electronic properties. To
date, real applications are however few. One notable exception is perhaps
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recently developed bolometers which use forests of vertically aligned carbon
nanotube as nearly perfect absorbers of light [51]. Other proposed carbon
nanotube based applications which have yet to reach the market include con-
ductive papers and textiles [52, 53], adhesives which behave like the feet of
a gecko [54], high-capacity lithium ion batteries [55] and high impact bullet-
proof vests [56]. Focusing instead on applications where the characteristics of
the individual tubes are of importance (which are much harder to manufac-
ture) even more exotic devices can be found in the literature. For example,
suspended carbon nanotubes have been made to operator like nanoscale mo-
tors which can shuttle cargoes back and forth along their length [57, 58] or be
used as linear bearings [59]. Also, a nanotube radio based on a single carbon
nanotube cantilever has been reported [60].

Carbon nanotubes thus offer great potential both for macroscopic and mi-
croscopic applications. The big challenge in realising their potential lies in
the growth of the tubes. To date, proposed devices which are envisaged to
reach the market do not utilise the full potential offered by carbon nanotubes.
The reason for this is that their growth cannot yet be controlled to satisfy pre-
defined properties. Once this level of control can be achieved, of which ten-
tative progress has recently been made [61, 62], applications utilising the full
potential of carbon nanotubes, e.g. single molecule components for electronics
applications, could see the light of day.

The present thesis focuses on electronic transport through suspended, vi-
brating nanowires and the effects of electromechanical interactions in these
systems. Below a brief discussion of some characteristic properties of carbon
nanotubes important for this thesis are discussed. For a more detailed dis-
cussion the reader is referred one of the many reviews on carbon nanotubes
available in the literature.

4.1.1 Mechanics of suspended carbon nanotubes

What makes carbon nanotubes ideal nanomechanical oscillators is not only
that they are very stiff, but also that they are hollow. This implies that they are
many times lighter than their solid counter-parts. Considering that both the
mechanical frequency ω and the zero-point amplitude x0 scale inversely with
the mass, this implies high resonance frequencies and comparatively large
zero-point amplitudes. The fact that the carbon nanotubes are hollow also
implies that although they are very stiff in the longitudinal direction they are
quite susceptible to deformations perpendicular to their axis. For example, a
suspended carbon nanotube can easily be made to oscillate if a periodic force
is applied to it, see Fig. 2.1.

Another important property for nanoelectromechanical applications is that
the mechanical subsystem does not dissipate energy too quickly and that it is
sensitive to external perturbations. Both these properties are related to the
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L

(a) (b)

Figure 4.1: Vibrational profile of a suspended beam oscillator. (a) The theoretical
profile of the three lowest modes of vibration of a doubly clamped suspend beam
of length L. (b) The equivalent experimental plot for a 770 nm suspended carbon
nanotube. The first image shows the profile of the stationary tube whereas the pro-
file of the 3 lowest vibrational modes with the corresponding measured frequency
fi = ωi/(2π) is shown in image two-four. The images were obtained by an atomic
force microscope in close proximity above the resonating nanotube. Adapted from
Ref. [65].

mechanical quality factor Q, which is a measurement of the resonance profile
of the system. Until recently, low mechanical quality factor was one of the
biggest problem facing carbon nanotube-based nanoelectromechanical sys-
tems. As an example, the reported mechanical quality factor in the seminal
paper by Sazonova et al. [63] was only Q ∼ 100, which made the device very
limited. Seeing that carbon nanotubes are (at least in theory) impurity free,
all-carbon structures with a very well-ordered atomic composition these low
quality factors was for a long time seen as somewhat mysterious as they did
not correspond to the theoretical predictions. This matter was however re-
cently resolved, primarily through changes in the growth mechanism of the
tubes, with quality factors as high as 105 being reported [64]. With these im-
provements in fabrication technology, carbon nanotube oscillators are finally
at the stage where the systems can be manufactured to such high standards
that they can be used to probe the quantum limit.

As mentioned earlier a suspended carbon nanotube can in many respects
be thought of as a beam free to vibrate between its clamping points. This is of
course a crude generalisation as the motion of the tube is ultimately governed
by the motion of the atoms from which it is constructed. Seeing that a car-
bon nanotube is a hollow cylinder typically only a few hundred nanometres
long it is reasonable to question whether it is viable to describe it in the above
language of a continuous solid beam rather than from an individual atomistic
perspective. For the flexural (bending) vibrations considered here however,
numerical results based on the motion of the individual atoms is comparable
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Chapter 4. Carbon nanotubes

to the results from a continuum analysis where the nanotube is considered
as a mechanical beam with known physical properties. The difference be-
tween these methods of analysis is of course that the atomistic perspective not
only gives the frequencies of the bending modes of the tube but also the other
so-called phonon branches, i.e. radial breathing mode (RBM), longitudinal
(stretching) mode etc. These are however not considered in this thesis.

Wemay thus describe the bendingmotion of a suspended carbon nanotube
in the language of continuum mechanics with the frequency of the resonance
modes given by,

ωi = k2
i

√
EI

ρS
. (4.1)

Here, E is the Young’s modulus, I is the area moment of inertia which de-
pends on the tube radius, ρ is the mass density of the tube and S is the area.
In equation (4.1), ωi is the resonance frequency where i = 1, 2, 3, ... labels the
resonance mode. Finally, the coefficients ki are inversely proportional to the
length of the tube and are determined from the boundary conditions of the
doubly-clamped beam. For a carbon nanotube the mechanical frequency is
typically very high (ω1 ∼1GHz) due to the high mechanical stiffness (E), low
mass (ρ) and small area (S). In Fig. 4.1(a) a schematic diagram of the three low-
est modes of vibration is shown. Similarly, Fig. 4.1(b) shows an experimental
visualisation of these three modes for a suspended carbon nanotube.

Experimentally, the mechanical frequencies of carbon nanotubes are typ-
ically lower than the theoretical predictions (4.1), which makes reaching the
quantum limit challenging. The reason for this is unclear, but is probably re-
lated to impurities which attach to the tubes during the fabrication process.
If instead the higher resonance modes are considered, greater mechanical fre-
quencies can be realised (see Fig. 4.1(b)) at the cost of a lower zero-point am-
plitude x0 ∝ ω−1/2 and thus weaker electromechanical coupling. Also other
phonon branches, which have much higher mechanical frequencies, can and
have been used [66]. These are however, typically much harder to access and
manipulate experimentally. In the present thesis only the lowest, fundamen-
tal, bending mode is considered.

4.1.2 Electronic properties of carbon nanotubes

To conclude a short discussion about the electronic properties, which are per-
haps even more spectacular than the mechanical properties, of carbon nan-
otubes is presented. Since the focus of the appended papers is the electrome-
chanical interactions in the systems only the most important aspects will be
mentioned. For a more thorough discussion the reader is referred to one of
the many review articles on the subject, e.g. Refs. [67, 68].
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Figure 4.2: Phonon modes of a suspended carbon nanotube. (a) Schematic diagram
of a typical gated suspended carbon nanotube (CNT) structure. (b) Scanning elec-
tron micrograph of the corresponding system. (c) Schematic diagram of 3 different
families of phonon modes in the nanotube. In this thesis only the low-energy bend-
ing modes is considered. (d) Theoretical (lines) and experimental (squares) energy of
oscillation as a function of the nanotube length (E =0.01meV is equivalent to a fre-
quency ω ∼15GHz). The dashed horizontal line indicates the equivalent temperature
of 0.1K. All images adapted from Ref. [66].

As mentioned above, a carbon nanotube is in principle an all-carbon cylin-
drical structure with a regular atomic configuration. To understand its elec-
tronic structure one has to take one step back and consider graphene, which is
the 2-dimensional equivalent of the virtually 1-dimensional carbon nanotube.
Without going into too much detail, graphene is a zero bandgap semiconduc-
tor or a semi-metal. In other words, graphene is just about a semiconductor
in that it has a valence and a conduction band separated by a bandgap.1 The
special thing about graphene is however that the bandgap is zero; the mate-
rial is at the same time almost a metal. Furthermore, the electronic dispersion
relation in graphene is linear close to the Fermi point, which implies that low-
energy electrons in graphene behave just like relativistic particles with zero
effective mass. These properties make graphene very unique in that it is a sta-
ble, truly 2-dimensional material whose electronic properties differ verymuch
from those of normal 3-dimensional objects.

A carbon nanotube can be thought of as a rolled up cylinder of graphene.
Indeed, many of the electronic properties that make grapheme so special also
hold true for carbon nanotubes. However, there are also differences between
the two carbon allotropes. The most striking of these is that the electronic

1The bandgap is the amount of energy one has to supply to an electron in a semiconductor
to lift if the non-conducting valence band to the conduction band where the electron is free to
move through the material
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properties of a carbon nanotube depend on the way it is wrapped, i.e. how
the underlying hexagonal lattice of carbon atoms which forms graphene is put
together. When a sheet of graphene is rolled up to form a carbon nanotube the
allowed electronic wave functions must be periodic in the circumference of the
tube. This condition quantises the allowed electronic levels on the tube and
the underlying graphene band structure splits into a series of 1-dimensional
sub-bands. The outcome of this is that the tubes are either semiconducting
(with a bandgap that depends on the diameter of the tube) or metallic (with-
out a bandgap). Much of the research into nanotube growth has over the last
decade focused on exactly this aspect; how to control the production of only
metallic or semiconducting tubes of a given chirality (wrapping). To date little
progress has been made from the perspective of actual growth, however post-
production treatment has recently been shown to efficiently separate semicon-
ducting from metallic tubes [61, 62].

For the material presented in this thesis, only metallic carbon nanotubes
are considered. Seeing that these are virtually 1-dimensional conductors, elec-
tronic reflection is greatly suppressed due to the confined geometry. This im-
plies that an electron in a clean carbon nanotube can travel coherently over
distances up to a few microns without being scattered (ballistic transport),
thus making metallic carbon nanotubes very good conductors at the same
time as being mechanical oscillators of very high quality [69].
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CHAPTER 5

Summary of the appended papers

In this chapter a summary of the appended papers is presented. Extensive
information about the motivation, calculations, physical parameters, results
and analysis of the results is found in the publications whereas this chapter
serves to give an overview and complement to these. Below I present some of
the most interesting results from the publications and try to motivate these in
terms of the underlying physical processes. For a more detailed analysis the
interested reader is referred to the appended papers and the appendices of this
thesis where additional analytical results are presented (see also Refs. [70,71]).

5.1 Paper I - Electromechanically induced current
deficit

In Paper I we analyse how the coupling between the motion of the nanowire
and the flow of electrons through it affects the charge transport through the
voltage-biased suspended nanowire junction depicted in Fig. 5.1. From this
analysis we find that the magnitude of the magnetic flux Φ swept out by the
vibrating nanowire controls the number of allowed electronic tunnelling chan-
nels. This effect is shown to result in a suppression of the flow of electrons at
low temperatures, in which case the current through the junction is reduced
by a factor ∝ Φ2 compared to the case of no magnetic field.1

5.1.1 System and electromechanical coupling

Fig. 5.1 shows a schematic diagram of the system considered in Paper I where
a suspended nanowire of length L is free to oscillate in the transverse magnetic
fieldH . Expanding on the original work of Shekhter et al. [78], we analyse the
system under conditions of strong spatial quantisation of the electronic energy
levels on the nanowire and evaluate the flow of electrons over the junction in
the presence of the magnetic field. Here, the significance of the energy level

1Electronic transport coupled to the vibrational motion of single molecules or quantum
dots like the system under consideration has been a very active field of research over the
decade, see e.g. Refs. [72–77].
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Figure 5.1: Schematic diagram of the system discussed in the appended papers. A
nanowire of length L is suspended over two leads (normal metal or superconduct-
ing). By either voltage- or current-biasing the junction we analyse the system when
the mechanical degrees of freedom (vibrations of the nanowire) are coupled to the
electronic degrees of freedom (flow of charge carriers between the leads) by the trans-
verse magnetic fieldH .

quantisation is that it implies that no real electronic states on the nanowire
are allowed if the bias voltage is smaller than the energy level spacing ∆E ≃
~vF/2L ∼ 0.25meV where vF is the Fermi velocity. Under such conditions,
electronic tunnelling between the two leads occurs only through virtual states
on the oscillating wire.

In Paper I, the motion of the nanowire is treated quantum mechanically
such that its frequency ω dictates the spacing between the quantised mechan-
ical energy levels ~ω (see Section 2.1 and the discussion therein). By treating
the nanowire quantum mechanically one necessarily has to take into account
quantum fluctuations in its bending modes. Because of this, the electronic
tunnelling paths are not localised to the one-dimensional nanowire, but will
have a finite delocalisation in the direction transverse to the axis of it. This
implies that electrons may tunnel through any path defined by the area swept
out by the oscillating nanowire as illustrated in Fig. 5.2.

In the present analysis themagnetic field serves to alter the quantum phase
acquired by tunnelling electrons, the effect of which depends on the path
taken. Under such conditions, quantum interference effects in the electronic
tunnelling become important for the overall charge transport. In Ref. [78]
it was shown that the magnetic field couples the tunnelling electrons to the
deflection operator x̂ = x0(b̂ + b̂†), which implies that the coupling strength
Φ ∝ LHx0 is proportional to the area swept out by the oscillating nanowire.
The coupling to the deflection operator further implies that the tunnelling
electronsmay change the quantum state of the oscillator, the outcome of which
is analysed in Paper I. In other words, the energy of the tunnelling electrons
may change due to interactions with the mechanical subsystem, such that not
only the elastic (no change in energy) but also the inelastic absorption and
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(a) (b) (c)

Figure 5.2: Illustration of electronic tunnelling paths due to quantum fluctuations
of the nanowire. In (a) and (b) the quasiclassical analogue is presented where elec-
trons pass through one or two holes in a screen before hitting the detector. In (b), the
two holes result in quantum interference between the amplitudes of the two electron
paths (solid arrows). In (c) the electrons pass through a “quantum hole”, the position
of which is determined by the fluctuations of the nanowire. The size of the hole effec-
tively determines the magnitude of Φ. The tunnelling probability is high (solid) and
low (dashed) depending on the path taken, which in turn depends on the probability
of finding the nanowire at a given position (dashed profile).

emission channels (associated with b̂ and b̂† respectively) are open.

In Paper I we analyse the effects of the electromechanical coupling on the
charge transport through the junction. In doing so, we take into account not
only the change in the tunnelling electrons due to the electromechanical cou-
pling, but also consider the back-action on the system from the vibronic sub-
system. These effects are relevant if the thermal damping of the nanowire is
slow on the time scale of the electronic tunnelling rate, i.e. the vibronic sub-
space is driven into a non-equilibrium configuration due to the interactions
with the electronic subsystem. Taking into account these effects we show that
although inelastic electronic tunnelling may change the distribution of the vi-
brational modes, the high-voltage limit of the current follows that predicted
below. These effects are discussed in some detail in Paper I and Appendix A
and will not be discussed further here.

5.1.2 Pauli principle restrictions

As discussed above, each tunnelling electron will acquire a phase depending
on the path taken. Due to the quantum fluctuations of the displacement of the
nanowire, this results in a reduction of the elastic tunnelling current due to de-
structive quantum interference between the many electron tunnelling paths,
see Fig. 5.2. In Paper I we show that the magnitude of this reduction implies
that the current through the elastic channel Iel

0 scales with the coupling con-
stant Φ as Iel

0 ∝ G0V exp(−Φ2). Here, G0 is the conductance at zero magnetic
field (the subscript 0 indicates that we do not consider back-action effects from
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Figure 5.3: Allowed electronic tunnelling channels through the oscillating nanowire.
Electrons with energy ǫ may tunnel from the source to the drain electrode through
any of the open tunnelling channels ǫ + ℓ~ω; ℓ = 0,±1,±2, ... (top image). At low
voltage-bias V , some of the inelastic channels are blocked at low temperature due
to Pauli-principle restrictions which are set by the electronic population in the drain
electrode (lower image). This, together with the suppression of the elastic ℓ = 0
tunnelling channel, results in a reduction of the current through the system compared
to the scenario of no electromechanical coupling.

the nanowire on the tunnelling current). Thus, the current over the wire from
the elastic tunnelling channel is reduced from the current at zero magnetic
field (no inelastic channels open) due to quantum interference effects between
the tunnelling paths.

Not only the elastic, but also the inelastic tunnelling channels are however
available in the present system. From our analysis we find that the inelastic
channels will (if the electron distributions in the leads are neglected) exactly
compensate the suppression of the elastic tunnelling current. Thus, the total
current through the junction is given by the ohmic expression I0 = G0V if the
quantum nature of the electron distributions in the leads are neglected.

In Paper I the effect of the quantum nature of the distribution of electrons
in the leads on the overall charge transport is considered. This effect arises
from the Pauli principle which states that no two electrons may occupy the
same quantum state. These considerations are particularly important at low
temperature when the electrons in the leads fill up all low-lying energy states
in accordance with the so-called Fermi distribution.2 Under such conditions,
an electron which tunnels from one electrode may be blocked from entering
the other electrode if it loses an amount of energy to the nanowire in the tun-
nelling process corresponding to the energy separation between two electrode
as shown schematically in Fig. 5.3.

2The Fermi distribution gives the population of the electronic quantum states of a system
as a function of temperature, equivalent to equation (2.3) for the vibrations of the quantum
oscillator.
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Figure 5.4: Current I0/G0 in arbitrary units for two coupling strengthsΦ1 (black) and
Φ2 (blue), Φ1 > Φ2, and two temperatures T1 (solid) and T2 (dashed), T1 > T2. The
current deficit is given by the offset from the current at zero magnetic field V (cyan).
Also shown is the constant voltage offset V − ∆V (Φ1) (red).

5.1.3 Current deficit

As discussed above, the quantum nature of the electronic distribution in the
leads will introduce restrictions on the allowed inelastic electronic tunnelling
channels. In particular we find that in the limit of large bias voltage V ≫ V0

the inelastic current (which compensates the suppression of the elastic chan-
nel) is reduced due to the Pauli principle restrictions on the low energy elec-
trons. Here, eV0 ∝ max(kBT, ~ωℓ̄) is the voltage equivalent of the characteristic
energy scale of the thermal energy kBT (which dictates the electronic distribu-
tions in the leads) and the energy of the average number of inelastic tunnelling
channels ~ωℓ̄which need to be considered where ℓ̄ ∝ Φ.

These effects are illustrated in Fig. 5.3 where some of the inelastic channels
are blocked for electrons with low energy. As the bias voltage is increased,
proportionally more electrons can tunnel through any of the allowed inelastic
channels thus compensating for the reduction of the elastic tunnelling chan-
nel. The number of forbidden low energy tunnelling channels is however
fixed by the electromechanical coupling and the total current through the junc-
tion is reduced from the current at zero magnetic field by the corresponding
number of blocked electronic tunnelling channels,

I0(Φ, V ) = G0

(
V − ~ω

e
Φ2

)
= I0(0, V − ∆V (Φ)) , V ≫ V0 . (5.1)

In the above the voltage offset∆V (Φ) = ~ωΦ2/e gives the equivalent bias volt-
age necessary to recover the conductance through the system at zero magnetic
field.

The analysis of Paper I predicts that the current I0 is reduced from the cur-
rent at zero magnetic field by an amount which depends on the number of
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forbidden inelastic tunnelling channels according to equation (5.1). Alterna-
tively, this corresponds to a voltage offset such that at potential bias ∆V (Φ)
is necessary in order to recover the ohmic transport regime. These effects are
shown in Fig. 5.4 for two coupling strengths Φi and two temperatures. Note
that in the high bias limit the current I0 (black lines) follows that predicted by
equation (5.1) (red line).

5.2 Paper II - Pumping the mechanical vibrations

In Paper II we consider the possibility to induce pumping of the vibrations of
the suspended nanowire by connecting it to two voltage-biased superconduct-
ing leads in a low transparency junction. The presented analysis is primarily
classical in that we analyse the equation of motion of the driven damped os-
cillator and discuss the resulting stability of the coupled electromechanical
system. In particular we find that the motion of the nanowire in the magnetic
field alters the time-evolution of the phase-difference, and show that this leads
to the possibility to pump the vibrations of the nanowire under conditions of
resonant bias voltage.3

5.2.1 Equation of motion

The dynamics of the nanowire (which is here treated as a damped classical
harmonic oscillator) is described through its equation of motion. By consid-
ering a low transparency junction D ≪ 1 the bound Andreev states which
describe the electronic degrees of freedom in the system are widely separated
and the current through the wire is to a good approximation given by the
Josephson relation j = jc sin ϕwhere ϕ is the phase-difference and jc is the crit-
ical current (see Chapter 3 and the discussion therein). This relation implies
the current j through the wire will oscillate in time as the phase-difference
changes due to the applied bias voltage V (see equation (3.1b)). The trans-
verse magnetic field now serves two purposes. First, it will induce a force on
the wire due to the current through it, the Lorentz force, which is proportional
to the product LjH . Secondly, the motion of the wire in the magnetic field will
induce an electromotive force which tries to oppose the motion causing it.4 In
Paper II we show that the expression for the electromotive force can be for-
mally derived from the Bogoliubov-de Gennes equation which describes the
electronic degrees of freedom of the superconducting junction (see Ref. [70]
for details of this derivation). The outcome of this analysis is that the phase
difference over the junction depends on the motion of the nanowire in the

3The inductive coupling between flexural wire vibrations and the supercurrent flow in a
SQUID loop has been considered in Refs. [27, 79–81].
4This is Lenz’s law which states that the induced current (or in this case phase) is always

in a direction which is opposite to the change causing it.
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Figure 5.5: Numerical simulation of equation (5.2) for the time-averaged vibrational
amplitude A =

√
〈Y (t)2〉 as a function of the bias voltage Ṽ for two different driving

strengths ǫ.

magnetic field ϕ̇ ∝ −LHȧ where a is the vibrational amplitude of the wire.
Alternatively this can be seen as the back-action on the electronic system from
the motion of the nanowire in the magnetic field. Thus, the magnetic field de-
termines both the force on the wire due to the flow of charge through it and
the evolution of the phase difference due the motion of the wire. Formally
this is described by the dimensionless equations of motion for the deflection
coordinate Y and phase ϕ (for full definition of all parameters see Paper II),

Ÿ + γ̃Ẏ + Y = ǫ sin(ϕ) , ϕ̇ = Ṽ − Ẏ . (5.2)

Here, γ̃ is the damping of the nanowire, ǫ ∝ H2L2jc is the driving strength and
Ṽ ∝ V/ω where ω is the mechanical resonance frequency of the fundamental
mode of the suspended nanowire.

5.2.2 Stability

The dynamics of the vibrating nanowire is governed by equation (5.2). Per-
forming detailed numerical and analytical analysis we find that the effect of
the electromechanical coupling is that the vibrations of the nanowire can be
pumped to finite amplitude under resonant conditions. Furthermore, we find
that this pumping not only occurs at the resonance frequency Ṽ = 1 but also
that the parametric resonance Ṽ = 2 can be excited at higher driving force
as displayed in Fig. 5.5(b). In Paper II we show that this behaviour is well
explained through the two stability equations,

İn = −γ̃In − 2ǫnJn(
√

In) sin χn , χ̇n = −δ − 2ǫnJ ′
n(
√

In) cos χn , (5.3)
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Figure 5.6: (a) Numerical simulation of the vibrational amplitude, equation (5.2), at
the second resonance as a function of the driving strength. (b) Plot of the solution
İ2 = 0 in (5.3) for χ2 = 3π/2 for three different driving strengths, ǫ < ǫI (dashed
green), ǫI < ǫ < ǫII (dashed black) and ǫ > ǫII (solid red). (c)-(d) Corresponding
stability diagram for the amplitude and phase as a function of the driving strength.

where the amplitude In and phase χn are slow functions of time at resonance
(see Appendix B for a derivation of the stability equations). In (5.3), Jn are
Bessel functions of order n = 1, 2, ... with J

′

n being the derivative with respect
to In and δ = Ṽ − nmeasures the voltage offset from resonance.

The system considered will perform stable motion (vibrations with con-
stant amplitude) if neither the amplitude In nor phase χn change in time, i.e.
both equations (5.3) are simultaneously 0. At resonance, δ = 0, this is found
either at fixed phase cos χn = 0 or fixed amplitude J ′

n(
√

In) = 0. For the para-
metric resonance Ṽ = 2 such motion is only found once the driving force is
ǫ ≥ ǫI = 2γ̃, whereas the first resonance peak is always present at finite driv-
ing. Also, the vibrational amplitude is initially an increasing function of the
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driving force (for both peaks), which eventually saturates to finite vibrations
once the driving force is ǫ ≥ ǫII = γ̃I∗

n/(2nJn(
√

I∗
n)) where I∗

n corresponds to
the fixed amplitude solution J

′

n(
√

I∗
n) = 0 as shown in Fig. 5.6(a).5

These phenomena are explained through the solution of equations (5.3).
At δ = 0 there always exists a solution In = 0 (no periodic vibrations of the
wire). The stability of this solution is found by considering the expansion of
the Bessel functions for small arguments I , Jn(

√
I) ∼ In/2. With this one finds

that the solution In = 0 is always unstable for n = 1 and becomes unstable for
n = 2 at ǫ > ǫI = 2γ̃. Thus, the peak at Ṽ = 1 is always present for non-zero
driving, whereas the peak at Ṽ = 2 is only found once ǫ > ǫI as shown in
Figs. 5.6(a) and 5.6(c). At larger driving strengths ǫ > ǫI , the amplitude is an
increasing function of ǫ (fixed phase solution) corresponding to the crossing of
the two curves in Fig. 5.6(b). However, once the driving is large enough that
this crossing moves past I∗

n, the fixed phase stability point becomes a saddle
point and the system follows the trajectory of the fixed amplitude solution.
This is shown in Figs. 5.6(c) and 5.6(d), from which we infer that the nanowire
vibrates at the finite amplitude A∗

n for all ǫ > ǫII if driven at resonance.

A final check of the validity of the stability analysis is to analyse the nu-
merical solutions for the different resonance peaks (different n) at δ = 0 over
the type-I regimes. From (5.3) we expect the ratio In/(nǫJn(

√
In) to be constant

for all peaks at a given γ̃ in this regime. Comparing this with the numerical
simulations we find excellent agreement.

Moving off resonance one finds the width of the peaks by solving for δ in
equations (5.3),

(
γ̃In

2ǫnJn(
√

In)

)2

+

(
δ

2ǫnJ ′

n(
√

In)

)2

= 1 . (5.4)

For the parametric resonance n = 2 this implies that the total width of the
peak is 2|δ| = 2(ǫ2/4 − γ̃2)1/2. Furthermore, equation (5.4) has two stable so-
lutions for the vibrational amplitude within the interval (−δc, δc) at ǫ > ǫII .
These solutions correspond to a separation of the fixed amplitude solutions
in phase space with one solution being larger and the other smaller than the
amplitude I∗

n at small |δ|. This is shown in Fig. 5.7(b) for the second resonance
peak. As |δ| is increased the solution which is larger than I∗

n merges with the
saddle point (defined by the fixed phase solution) at |δc| and only one stable
point (corresponding to the low amplitude solution) remains at larger |δ|. The
width of this window of bistability 2δc scales as (ǫ − ǫII)

3/2 as discussed in
Appendix B.

5The notation I∗
n
and A∗

n
=

√
I∗
n
will be used interchangeably throughout this section. In

Paper II these are referred to as A0.
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Figure 5.7: Phase space diagram for the second resonance peak at ǫ > ǫII . In (a) δ = 0,
two solutions can be found at the same amplitude. In (b) 0 < δ < δc, the solutions are
separate in phase-space. The dashed line corresponds to the fixed amplitude solution.
(c) Current through the system at δ = 0 at the parametric resonance as a function of
the magnetic field. Here,HII is the magnetic field corresponding to ǫII .
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5.2.3 Current

The pumping of the mechanical vibrations draws energy from the battery con-
necting the junction. This implies a finite dc current jdc over the junction.
At resonance this current provides the energy necessary to compensate for
the mechanical dissipation associated with γ̃. Physically this implies that the
current scales with the time-average velocity squared (see Appendix B for de-
tails). As the velocity Ẏ and amplitude Y of the mechanical motion of the wire
behave phenomenologically equivalent this implies that the system analysed
in Paper II displays both positive and negative magnetoresistance.

To see this, consider at first the system when driven in the type-I regime,
ǫI < ǫ < ǫII . In this range, the amplitude is an increasing function of the mag-
netic field and the current correspondingly increases withH (negative magne-
toresistance). However, once ǫ > ǫII the vibrational amplitude saturates, and
the current scales asH−2 under which conditions the system displays positive
magnetoresistance. The transition between these two regimes is experimen-
tally observable as a cusp as seen in Fig. 5.7(c).

5.3 Paper III - Voltage-biased cooling

In Paper III, the possibility to cool the vibrations of the oscillating nanowire in
a voltage-biased superconducting junction (see Fig. 5.1) is considered. Unlike
the experimental setup considered in Section 5.2, we here treat the oscillat-
ing nanowire as a quantum harmonic oscillator and furthermore consider the
high-transparency limit of the nanowire junction. With these considerations
we show that the transverse magnetic field can in the present situation result
in magnetic-field induced transitions between the bound Andreev states de-
scribing the electronic degrees of freedom. These transitions are shown to be
accompanied by the absorption of mechanical vibrons, which can effectively
cool the nanowire below the ambient temperature.

5.3.1 Coupled electromechanical system

To describe the cooling process analysed in Paper III, consider at first the
scenario when no coupling mediated by the magnetic field is present. Un-
der such conditions, the nanowire will serve as a short metallic junction be-
tween the two superconducting leads. As discussed earlier, Section 3.3.1,
superconductor-metal-superconductor junctions can sustain both normal and
Andreev reflections at the metal-superconductor interface. This implies that
the electronic degrees of freedom over the junction can be described through
the formation of two bound Andreev states, the energy of which depend on
the phase-difference φ according to E±(φ) = ±

√
1 − D sin2(φ/2). The spatial
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Figure 5.8: Schematic diagram of the evolution of the coupled electromechanical sys-
tem. At the start of each period, two Andreev states are formed (empty and filled
circle) from the quasiparticle spectrum in the superconducting leads. Due to the fi-
nite bias voltage, these evolve in time with a period TV after which the Andreev levels
are reset. The electromechanical coupling can promote transitions from the lower |−〉
to the upper |+〉 Andreev level through the absorption of one mechanical vibron ~ω
(|−, n〉 → |+, n − 1〉). In this process the nanowire is effectively cooled. Through-
out the evolution of the system, the mechanical degrees of freedom are coupled to
the thermal environment, whereas the electronic and mechanical degrees of freedom
only interact during the short time t ∼ t0.

extent of these Andreev states will be of the order of the superconducting co-
herence length ξ which is here considered to be much larger than the length
of the nanowire L.

Applying a bias voltage V across the junction will cause the phase differ-
ence to evolve in time according to equation (3.1b) and the bound Andreev
states will follow the trajectories defined by E±(φ(t)). This is shown in Fig. 5.8
where the bound Andreev levels are indicated with the solid lines and the pe-
riod of their evolution TV depends on the bias voltage, TV = π~/(eV ). At the
start of the period the population of the upper/lower Andreev level is dictated
by the distribution of quasiparticle excitations in the superconducting leads.
Here, we assume the external temperature to be low (kBT ≪ 2∆0) which im-
plies that the upper Andreev level will be virtually empty (empty circle) at
the start the period as few quasiparticle excitations are found in the supercon-
ducting leads (cf. the discussion in Section 3.2). Similarly, the population of
the lower level is close to unity at the start of the period (full circle). After one
period, the bound Andreev states dissolve in the superconducting continuum
and new states, which are orthogonal to the old states, are formed. In Paper
III we assume that the electronic subsystem is reset at the start of each period.
This is true if the excess energy released into the superconducting leads at the
end of one period does not affect the formation of new Andreev levels at later
periods. This assumption is justified for the experimental parameters used in
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Paper III as discussed further in Appendix C.

As discussed in Chapter 3, the bound Andreev states carry current through
the junction, themagnitude and sign of which is given by 2e/~(∂E/∂φ). Under
conditions of adiabatic motion eV ≤ eVc = 4R∆0, when the electronic system
evolves slowly, the Andreev levels are superpositions of electronic states car-
rying current in opposite directions. In Paper III we show that the magnetic
field couples the deflection of the nanowire to the current carried by the An-
dreev levels. Furthermore, we find that this results in an effective pairing be-
tween the two Andreev levels such that the electronic system can change from
one level to the other through the absorption/emission of a mechanical vibron
at resonant conditions. Alternatively this coupling can be derived by consid-
ering the change of the phase-difference due to the motion of the nanowire in
the magnetic field, similar to the analysis of Paper II. This is discussed further
in Appendix C.

In the present analysis the magnetic field serves to couple the two An-
dreev levels through the mechanical deflection operator ∝ b̂+ b̂†. Here, transi-
tions from the lower to the upper Andreev level is considered only to proceed
through the absorption channel associated with the operator b̂, the so-called
rotating wave approximation (RWA).6 This type of transitions are greatly en-
hanced if the energy separation between the Andreev levels correspond to
the energy scale set by the harmonic oscillator, ~ω. Restricting our analysis
to the region of maximal electromechanical coupling (t ∼ t0 in Fig. 5.8) this
corresponds to the condition 2∆0

√
R = ~ω where R = 1 − D is the elec-

tronic reflection probability. By considering realistic experimental parame-
ters the mechanical energy is much smaller than the superconducting gap
(~ω ≪ ∆0), hence the predicted cooling phenomenon is only expected for
high transparency junctions.

5.3.2 Adiabatic evolution of the Andreev levels

Formally, the dynamics of the coupled electromechanical system is described
through its associated density matrix. In Paper III we analyse this evolution in
the limit of high mechanical quality factor Q. This conditions implies that the
mechanical subsystem only interacts weakly with the thermal environment.

To describe the evolution of the system the reader is referred to Fig. 5.8.
For times 0 < t < t0 the electronic and mechanical degrees of freedom are
decoupled. During this interval the electronic system (only the lower level is
assumed to be populated) follows the trajectory defined by E−(φ(t)), whereas
the mechanical subsystem interacts with the environment which brings it into
thermal equilibrium at the rate γ = ω/Q. At time t = t0 the electromechani-

6In Ref. [71] the influence of emission stimulated transitions, non-RWA, is also considered
and is shown to have little effect on the predicted level of cooling.
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Figure 5.9: The distribution of the population of the vibrational modes P (n) of the
nanowire. In the above, N labels the number of periods and the inset shows the
transition probability as a function of the number of the quantum state of the oscillator
n. Here, the nanowire oscillator is cooled to its motional ground state 〈n〉 . 0.1 after
approximately 3000 periods (see Fig. 2.2(b) for reference).

cal interaction becomes significant, and the electronic subsystem may change
(gain energy) through the absorption of a mechanical vibron. The probability
of such transitions is |ν2(n)|2 ≃ πnΓ2 ∝ nH2 where Γ is the electromechani-
cal coupling strength (see Paper III for full definitions). Note that the prob-
ability of transition depends on the quantum state of the oscillator n which
follows from the coupling to the operator b̂ (see also Appendix C). At times
t0 < t < TV , the influence of the magnetic field is again negligible and the
mechanical and electronic degrees of freedom are decoupled. Finally, the An-
dreev states are dissolved at the end of the period at t = TV and the electronic
subsystem is reset. The mechanical subsystem is however not affected by the
release of energy to the quasiparticle spectrum in the leads, and may be fur-
ther cooled during the next cycle.

5.3.3 Ground-state cooling

Through the mechanism described in the previous section and in Fig. 5.8 the
vibrations of the suspended nanowire may be cooled. The efficiency of this
process depends on the competition between the probability of transitions
between the Andreev levels and the thermal damping. Here, the magnetic
field induced transitions are dictated by the coupling strength ∝ H , such that
strong coupling promotes transitions through the absorption channel and thus
lowers the distribution of the vibrational modes P (n). Similarly, weak cou-
pling to the thermal bath, high Q, lowers the mechanical damping rate which
act to bring the distribution of the vibrational modes back to thermal equi-
librium. Finally, a slow evolution of the Andreev levels, low bias voltage V ,
implies a bigger resonance window and thus increased transition probability.
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By evaluating the evolution of the coupled electromechanical system we
calculate the average occupancy of vibrational modes 〈n〉 in the stationary
regime, i.e. when the population of the vibrational modes does not change
over one period. From this analysis we find that 〈n〉 is,

〈n〉 ∝ nB

QH2

∆0

~ω

(
V

Vc

)1/3

, (5.5)

to lowest order in the small parameter 1/Q. The corresponding evolution
of the distribution of the vibrational modes is shown in Fig. 5.9, where the
nanowire is cooled to its motional ground state 〈n〉 ∼ 0.1 (see Paper III for
physical parameters). In (5.5), nB = (e~ω/kBT − 1)−1 is the corresponding aver-
age population of the vibrational modes in thermal equilibrium. The station-
ary distribution in Fig. 5.5 thus corresponds to,

〈n〉
nB

≪ 1 , Teff < T , (5.6)

where Teff is the “effective” temperature of the nanowire oscillator in the sta-
tionary regime.

In Ref. [71] the analysis of Paper III is extended to consider also how the
transfer of energy from the mechanical to the electronic subsystem can be de-
tected experimentally. In this paper, we show that the energy released into
the superconducting leads should be experimentally observable through the
associated dc current over the junction Idc, which is proportional to the total
transition probability |ν2|2. Intrinsically this implies that the dc current scales
with the average population 〈n〉,

Idc = 〈n〉Γ24e∆0

~

(
1 −

√
R
)
∝
{

Q−1 Q ≫ 1
1 Q ∼ 1 .

(5.7)

In Fig. 5.10 the dependence of the current as a function of the mechanical qual-
ity factor is shown. Note, that in the limit of high quality factor, ground state
cooling is predicted and the current scales inversely with Q. In the oppo-
site limit, the mechanical subsystem equilibrates rapidly to the thermal back-
ground, hence the current is independent of Q.
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Figure 5.10: Lin-log plot of the current as a function of the inverse mechanical quality
factor in the stationary regime, equation (5.7). At low Q, the current scales with the
external temperature (independent of Q), whereas the high-Q limit scales with the
population of the mechanical subsystem (inversely proportional to Q).

5.4 Paper IV - Cooling the vibrations in a current-
biased junction

In Paper IV we study the current-biased equivalent of the system discussed in
the previous section and in Paper III. Similarly to the analysis above, we con-
sider the possibility to cool the mechanical vibrations of the nanowire through
the absorption of mechanical vibrons by the electronic subsystem. In order to
do so, we describe the electronic degrees of freedom through the so-called
RCSJ-model and analyse the possibility to cool the vibrations of the nanowire
through a phenomenon known as macroscopic quantum tunnelling.

5.4.1 The tilted washboard potential

In the RCSJ-model, the current-biased Josephson junction is modelled as a
circuit element connected in parallel to a capacitance C and a resistance R as
shown in Fig. 5.11(a). In this kind of junction the time-evolution of the phase-
difference φ is described through an equation which is equivalent to that of a
particle moving in a tilted cosine potential. This potential is usually referred
to as the tilted washboard potential (see e.g. Ref. [33]) an example of which is
shown in Fig. 5.11(b) where the tilting angle is proportional to the bias current
I and the height and width of the valleys is determined from the physical
parameters of the Josephson junction.

By changing the bias current the tilt of the washboard potential can be al-
tered. In particular this implies that the phase φ can be highly localised to
one of the minima of the potential if ~I/(2e) < EJ where EJ the Josephson
energy. If further 4Ec ≪ EJ where Ec = e2/(2C) is the charging energy, the

44



5.4. Paper IV - Cooling the vibrations in a current-biased junction

(a) (b)

Figure 5.11: (a) The current biased Josephson junction. In the RCSJ-model, the Joseph-
son junction (X) is modelled as being connected in parallel to a capacitance C and a
phenomenological resistance R. In Paper IV, we consider the suspended nanowire
to be part of the Josephson junction. (b) The tilted washboard potential for the elec-
tronic degrees of freedom. The equation of motion for the superconducting phase-
difference φ corresponds to a particle in the above potential. If the bias current is
small (I < 2eEJ/~) the phase is localised inside the minima l of the potential. If fur-
ther 4Ec/EJ ≪ 1, the phase effectively moves in a harmonic potential with quantised
energy levels similar to those of the quantum harmonic oscillator. Here, ωp is the
plasma frequency.

equation of the phase is equivalent to that of a particle trapped in a virtually
parabolic potential. Under such conditions, one expects quantised energy lev-
els for the phase inside the valleys of the potential as indicated in Fig. 5.11(b)
(see Ref. [82] for a more detailed discussion). Experimentally, this prediction
has been confirmed in association with tunnelling of the phase from bound
energy states within the potential minima of the washboard potential, a phe-
nomenon known as macroscopic quantum tunnelling, see e.g. Refs. [83–85].
This kind of under-barrier tunnelling is the underlying cooling mechanism
considered in this analysis.

In Paper IVwe analyse how the coupling between the electronic degrees of
freedom and the oscillating nanowire affects the dynamics of the system. The
magnetic field is here considered to provide the electromechanical coupling
in a similar way as in Papers II-III. Thus, we treat the motion of the short
(compared to the superconducting coherence length) nanowire in the mag-
netic field as resulting in amodulation of the evolution of the phase-difference,
φ̂ → φ̂ − Φ(b̂ + b̂†). Here, Φ ∝ LH is the coupling constant, which we consider
only to linear order in the analysis of Paper IV. In Appendix D the system
Hamiltonian (equation (1) in Paper IV) is derived starting from the analysis of
Paper II.
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5.4.2 Macroscopic quantum tunnelling

As discussed above, the quantum state of the electronic system (the phase)
may tunnel between consecutive valleys of the washboard potential. In Paper
IV we consider this process to be the mechanism of cooling of the mechanical
vibrations.

In order to analyse these tunnelling processes we perform a WKB calcu-
lation (see Ref. [82] for reference) for the overlap integrals for the elastic and
inelastic tunnelling channels. From this analysis we find that the inelastic tun-
nelling channels ∝ Φ(b̂ + b̂†) are proportional to the elastic tunnelling ampli-
tude T under conditions of strong quantisation, 4Ec/EJ ≪ 1. With this, we
find that we may express the inelastic tunnelling amplitudes as ΦT , where
the inelastic absorption [emission] channel is associated with the absorption
[emission] of one quantum of energy ~ω from the mechanical to the electronic
subsystem. This is shown in Fig. 5.12 where the absorption channel is as-
sumed to be in resonance, i.e. the two bound energy states are separated by
one quantum of mechanical energy ~ω.

In Paper IV we analyse how the energy separation between the two levels
involved in the tunnelling affects the overall level of cooling in the system.
From this analysis we find that maximal cooling of the mechanical subsys-
tem is achieved under conditions when the absorption channel is resonant as
shown in Fig. 5.12. This condition corresponds to tuning the external bias
current to I = I∗ − eω/π where ωp =

√
8EJEc is the plasma frequency and

I∗ = eωp/π is the current which ensures that the lowest level in a given valley
is resonant with the second level in the next valley. Here it should be noted
that the minima of the potential are only to first approximation parabolic. This
implies that the energy levels within each valley are not evenly distributed.
Because of this we neglect all but the two lowest energy levels in the present
analysis as the overlap between the higher energy levels will be small if the
energy separation between the two lowest levels is of the order of ~ω (for
experimental parameters ω ≪ ωp). Note also, that the anharmonicity of the
washboard potential slightly changes the conditions for the bias current to be
resonant as discussed in Appendix D

Interactions with the electronic quasiparticle environment in the leads in-
troduce damping to the electronic subsystem. In Paper IV, these effects are
included through the phenomenological resistance R, see Fig. 5.11(a), which
we treat as a perturbation to the evolution of the electronic system. In Fig. 5.12
the damping is modelled as the decay of the electronic system from the higher
to the lower level within a given valley. Here, Γ = 1/(RC) is the electronic
decay rate, see e.g. Ref. [86]. For the parameters considered in Paper IV, the
electronic damping rate is greater than the tunnelling rate, Γ > T /~. This im-
plies that the system, once it has tunnelled to the higher level in a given valley,
is more likely to decay to the lower level than it is to tunnel back to the previ-
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Figure 5.12: Macroscopic quantum tunnelling. The electronic subsystem may tunnel
from one bound state in the valley l to another bound state in l+1. Such tunnelling is
greatly promoted if the levels are resonant. Here, the system originally in the quan-
tum state |l, ↓〉 tunnels to the state |l + 1, ↑〉 through the absorption of a mechanical
vibron (absorption channel) with ΦT the inelastic tunnelling amplitude. Interactions
with the quasiparticle environment in the leads causes the electronic system to decay
from the upper to the lower level in a given valley at the rate Γ.

ous valley. Furthermore, the interactions with the quasiparticle environment
lead to broadening of the quantised energy, which implies that not only the
resonant channel is open. In Paper IV this is accounted for by considering all
(absorption, elastic and emission) tunnelling channels in the analysis of the
evolution of the system.

5.4.3 Ground state cooling

The mechanism of cooling discussed in Paper IV relies on the possibility to
promote tunnelling through the absorption channel over the emission chan-
nel. This can be achieved by tuning the current bias as discussed above. In our
analysis we show that this may result in ground-state cooling of the oscillating
nanowire if the equivalent of the resolved sideband limit ω > Γ can be realised
(cf. Section 2.3.1). To show this, we perform a perturbative calculation for the
stationary solution of the density matrix. From this analysis we find that the
level of cooling of the mechanical subsystem scales with the ratio between the
tunnelling rates of the emission (Γ+) and the absorption (Γ−) channel. Here,
the tunnelling rates are given by,

Γi =
4ΓT 2

i

4(∆Fi)2 + ~2Γ2
, (5.8)

Ti =

{
ΦT i = ±
T i = 0 ,

∆Fi =

{
Fl+1,↑ −Fl,↓ ± ~ω i = ±

Fl+1,↑ −Fl,↓ i = 0 ,
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Figure 5.13: Stationary average vibron population as a function of the current bias.
At I − I∗ = −eω/π, the absorption channel is resonant and maximal cooling of the
mechanical subsystem is achieved.

where the subscript 0 corresponds to the elastic channel andFl,↓↑ are the quan-
tised energy levels for the electronic degrees of freedom (see Paper IV and Ap-
pendix D for full definitions). Note that the expressions given in (5.8) corre-
sponds to the tunnelling rate between the lower levels in two adjacent valleys
through the intermediate upper state.

In Paper IV we include also effects of the external temperature in the anal-
ysis of the suggested cooling mechanism. Including these effects we find, as
expected, that the thermal damping rate reduces the level of cooling of the
mechanical subsystem. With these considerations we calculate the stationary
average vibron population of the mechanical subsystem,

〈n〉 =
nBγ + Γ+

Γ− + γ − Γ+
≪ nB , Γ− ≫ Γ+ . (5.9)

In Fig. 5.13, the stationary average occupancy of the mechanical subsystem
is shown as a function of the current bias. The level of cooling we suggest
to probe through the associated potential drop V over the junction. Here,
V is calculated from the evolution of the phase down the tilted washboard
potential through consecutive macroscopic tunnelling events (V ∝ φ̇),

V =
π~

e
(Γ0 + Γ−〈n〉 + Γ+(〈n〉 + 1)) . (5.10)

Note that the potential drop scales with the elastic tunnelling rate (indepen-
dent of the mechanical subsystem) and the average vibron occupancy.
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CHAPTER 6

Conclusion

The material presented in this thesis summarises my work as a PhD student
at the University of Gothenburg. In writing the thesis I have made a conscien-
tious effort to present my work at a level which is hopefully, at least in part,
accessible to an audience with only a limited background in physics. This is
aimed to serve as an introduction to the appended papers on which the thesis
is centred. In these, more details on the motivation, derivation and discussion
of the results is presented.

My work as a PhD student has focused on quantum mechanical effects on
charge transport in suspended nanowire structures. In particular, we have
analysed the effects of magnetic field-induced interactions between the trans-
port of charge carriers and the mechanical vibrations of the nanowire under
various experimental setups. Throughout, the focus of my work has centred
on phenomenological effects of the electromechanical interactions in these
systems in order to highlight possible new phenomena related to the charge
transport and the mechanical motion of the nanowires.

In particular, the presented material introduces three novel mesoscopic ef-
fects on charge transport in suspended nanowire systems. In the first work,
we study how the vibrations of a suspended nanowire alter the electronic tun-
nelling paths over it, and show that this results in an interference phenomenon
similar to the Aharanov-Bohm effect caused to the transverse magnetic field.
The outcome of this analysis is a temperature- and bias voltage-independent
current deficit (voltage offset) as compared to the current at zero magnetic
field.

The second phenomenon discussed presents an analysis of the possibility
to pump the vibrations of a suspended nanowire in a low-transparency su-
perconducting weak link. This effect is shown to derive from the modulation
of the phase-difference between the superconductors due to the motion of the
nanowire in the magnetic field. In our analysis we show that this may result in
pumping of the vibrations of the nanowire under resonant bias voltage con-
ditions. Furthermore, our analysis shows that the vibrational amplitude of
the nanowire may be driven into a region of bistability, which may be probed
experimentally through the associated current over the junction.

In the final section of the thesis two different mechanisms to cool the quan-
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tised vibrations of a suspended nanowire is considered. These are shown
to derive in the first place from magnetic field induced transitions between
bound Andreev levels in a voltage-biased high-transparency junction. In the
second case, the current-biased equivalent system is analysed where the ef-
fect of the electromagnetic coupling (mediated through the magnetic field) is
shown to promote inelastic macroscopic tunnelling of the superconducting
phase under resonant current-bias conditions. For both systems considered
ground-state cooling of the mechanical subsystem is predicted.

It is my hope that the presented work may inspire other groups, theoretical
and experimental, working within the field of nanoelectromechanics to pur-
sue the thoughts and concepts presented in this thesis. As with much of sci-
ence, making predictions about where your field will end up is tricky as new
hurdles are constantly encountered as old ones are eliminated. I do believe
that the field of ground-state cooling will continue to be very active, with the
hope that we will sooner or later find a stable, reproducible method to achieve
this with small, high-quality mechanical oscillators. If this can be achieved
we will perhaps one day be able to manipulate things small enough that “[...]
mechanical engineers will have to include ~ among their list of standard engi-
neering constants.” [11], however I believe that this day is still somewhere in
the not too near future.
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APPENDIX A

Supplement to Paper I

Evolution of the density matrix

The formal solution for the evolution of the total density matrix in the interac-
tion picture is ,

∂ ˆ̃σ(t)

∂t
= − i

~
[ ˆ̃HT (t), ˆ̃σ(0)] − 1

~2

∫ t

0

dt′[ ˆ̃HT (t), [ ˆ̃HT (t′), ˆ̃σ(t′)]] , (A.1)

see Ref. [87] for a more detailed discussion and Paper I for definitions. Tracing
out the leads with ˆ̃σ(t) = ˆ̃ρ(t)σ̂leads under the assumption that the distributions

in the leads σ̂leads is constant in time and Trleads(
ˆ̃HT (t)σ̂leads) = 0, we have

∂ ˆ̃ρ(t)

∂t
= − 1

~2
Trleads

(∫ t

0

dt′[ ˆ̃HT (t), [ ˆ̃HT (t′), ˆ̃σ(t′)]]

)
. (A.2)

From equation (A.2) it follows that the evolution of the reduced density matrix
in the Schrödinger picture is given by equation (6) in Paper I. The stationary
solution to this equation naturally gives the definitions of the operators Ĵ1,2.

Back-action current

As outlined in Paper I the current operator Î can be derived from,

Î = e
∂N̂l

∂t
=

ie

~
[Ĥ, N̂l] , (A.3)

where N̂l is the number operator in the left (high-bias) lead. Evaluating this we
find that the average mechanical deflection of the wire is proportional to the
average Lorentz force on it. This in turn may be compared to the equivalent
expression,

k〈x̂〉 = |Teff|2~χTr
[(

Ĵr − Ĵl

)
ρ̂
]

, (A.4)

which relates the mechanical deflection to the operators Ĵi. From this, the

current is found from I = 1
2
e|Teff|2Tr

[(
Ĵr − Ĵl

)
ρ̂
]
.
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To calculate the diagonal contributions to the current as given by equa-
tion (10) in Paper I, one may evaluate the above by tracing out all diagonal
parts. This analysis eliminates the time-dependence in the operators Ĵi and
the energy of the Fermi functions is shifted with respect to the energy trans-
fer between the electronic and mechanical subsystems. In particular one finds
that electronic tunnelling with the exchange of energy to/from the mechanical
subsystem is only possible if the corresponding energy state in the lead into
which the electron tunnels is not already occupied. This is indicated by the
combinations of Fermi functions, e.g. fl(ǫ)(1− fr(ǫ− ℓ~ω)), in equation (10) in
Paper I.

To evaluate the off-diagonal parts we expand the expression for I1 (equa-
tion (11) in Paper I) in powers of Ĥ0τ . With this we find,

Ĵ1 = −ν2

~

∫
dǫ1dǫ2

∫ 0

−∞

dτf(ǫ1)(1 − f(ǫ2))e
iτ(ǫ1−ǫ2+eV )×

∞∑

q=0

(iτ)q

q!
eiχx̂Ŷ (Ĥ0, e

−iχx̂, q) , (A.5)

where ǫ1,2 = ǫr,l ± 1
2
eV and fr,l(ǫ) = f(ǫ ± 1

2
eV ). With the above, one can

evaluate the integrals over energy ǫi by closing the contours in the complex
plane (see Ref. [88] for details),

∫
dǫf(ǫ)e−iǫτ =

∫
dǫ(1 − f(ǫ))eiǫτ = π

(
δ(τ) + PV

(
i

β sinh(πτ/β)

))
. (A.6)

Equation (A.5) may thus be evaluated at all order τ . In particular one finds
that the first order corrections in τ scale with the average momentum 〈p〉,
which is zero according to equation (8b) in Paper I. The higher order correc-
tions are found by collecting contributions at the same order in τ from all four
components Ĵi. With this the current I1 reads,

I1 ∝
ν2π2

~β2

∫ 0

−∞

dτ
1

sinh2(πτ/β)

∞∑

q=2

q−2∑

k=0

(
q

k

)
1

q!

(
iτ~χ

2m

)q

(χ~)k2q−k〈p̂q−k〉×
{

sin(eV τ) q = odd
cos(eV τ) q = even .

(A.7)

Here, the moments of the momentum 〈p̂q〉 are polynomials in the bias volt-
age at all orders q. With this we find that the contributions from the back-
action current to the total current will decay exponentially as the above scale
as (exp(βeV ) − 1)−1 in the limit βeV ≫ 1.

54



APPENDIX B

Supplement to Paper II

Stability equations

Starting from equation (5.2), the stability equations (5.3) can be found by in-
troducing the anzats Y (t) =

√
In(t) sin Θ((t)) where Θ(t) = Ṽ t/n + χn(t)/n.

Close to resonance both the amplitude In and phase χn are slow functions of
time. Substituting the expression for Y (t) into (5.2) we find two equations
which govern In and χn when Ṽ ≃ n. Integrating these over the period Θ, we
arrive at the stability equations of the system (5.3),

İn = −γ̃In + 2n
∂Heff
∂χn

, χ̇n = n − Ṽ − 2n
∂Heff
∂In

,

Heff =
ǫ

2π

∫ π

−π

cos(nΘ − χn −
√

In sin(Θ))dΘ ,

Heff = ǫJn(
√

In) cos(χn) . (B.1)

Scaling of bifurcation with the magnetic field

To find the scaling of the bifurcation amplitude with the magnetic field we
expand the solutions of (5.3) close to the transition from the constant phase to
the constant amplitude solution, i.e. we consider ǫ = ǫII + ∆ǫwith ∆ǫ ≪ ǫII .

At ǫ = ǫII the stable solution is given by Jn(
√

I∗
n) = 0 and χ∗

n = (2n−1)π/2.
Expanding the solution about this point we find,

−γ̃∆In + 2n∆ǫJn(
√

I∗
n) =

Jn(
√

I∗
n)δ2

4nǫII |J ′′

n(
√

I∗
n)|2(∆In)2

, (B.2)

where ∆In = In − I∗
n. Note that in the above γ̃ is uniquely defined by ǫII

through γ̃ = 2ǫIInJn(
√

I∗
n)/I∗

n. From equation (B.2) we calculate the maximum
separation in the vibrational amplitude which is found from the zeros of the
cubic equation,

(
∆In − 2α

3

)2

(−∆In − α

3
) = 0 , α =

2n∆ǫJn(
√

I∗
n)

γ̃
. (B.3)
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With this, the maximum separation in amplitude between the two solutions
scale as I∗

n∆ǫ/ǫII . Furthermore, it can be shown that,

δ2Jn(
√

I∗
n)

4nǫII |J ′′

n(
√

I∗
n)|2γ̃

=
1

2

(
2α

3

)3

, (B.4)

which implies that we can solve for δ,

δ = (∆ǫ)3/2

(
2I∗

n

3ǫII

)3/2
(

2nǫII |J ′′

n(
√

I∗
n)|2

I∗
n

)1/3

, (B.5)

to find to find that the width of the window of bistability scales with the mag-
netic field as H3 close to the region of bifurcation.

Current

The dc current through the system is calculated by considering the energy dis-
sipation due to the damping of the mechanical vibrations. This can be shown
by multiplying (5.2) throughout by Ẏ and averaging over time. At resonance,
the total energy associated with the harmonic oscillator E ∝ Ẏ 2 + Y 2 does not
change in time. This implies that the total energy dissipated by themechanical
system γ̃〈Ẏ 2〉 is related to the current drawn from the battery according to,

γ̃〈Ẏ 2〉 =
ǫ

T

∫ T/2

−T/2

Ẏ sin(Ṽ τ − Y )dτ , τ = ωt . (B.6)

Evaluating the right hand side of (B.6) we eliminate the dependence of Ẏ and
find,

γ̃〈Ẏ 2〉 = ǫṼ
jdc

jc

. (B.7)

The corresponding expression for the dc current jdc is,

jdc =
γ̃〈Ẏ 2〉m~ω2

8eL2H2Ṽ
=

γ〈ȧ2(t)〉
V

. (B.8)
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Induced Andreev level transitions

An alternative derivation for the electromechanical coupling is presented be-
low. Starting from the electronic Hamiltonian Ĥ(φ) (see Paper III for defini-
tions),

Ĥ(φ) = ∆0 cos(φ/2)σ̂z + ∆0

√
R sin(φ/2) , (C.1)

we consider the effects of the motion of the nanowire in the magnetic field.
Similarly to the analysis of Paper II, this analysis shows that the motion of
the nanowire changes the phase difference φ over the leads according to φ →
φ − Φ̃ŷ. Here, Φ̃ = Φ/y0. In the following only linear terms in the small
parameter Φ̃ŷ are considered.

Next we performing a rotation to the basis of the Andreev states consid-
ered in the paper,

Ĥ = eiλσ̂y/2

(
Ĥ(φ − Φ̃ŷ) +

p̂2
y

2m
+

mωŷ2

2

)
e−iλσ̂y/2 , tan(λ) =

√
R tan(φ/2) ,

Ĥ = ∆0

√
1 − D sin2(φ/2)σ̂z + ∆0

√
RΦ̃ŷ√

1 − D sin2(φ/2)
σ̂x+

∆0
Φ̃ŷ(1 − R) sin(φ)

2
√

1 − D sin2(φ/2)
σ̂z +

p̂2
y

2m
+

mωŷ2

2
. (C.2)

In the above, the off-diagonal coupling ∝ σ̂x is small except when φ = π in
which instance maximal coupling ∆0Φ̃ŷ is achieved. Note, also that Ĥ con-
tains a term ∝ ŷσ̂z. This term is however ignored in the present analysis due
to the large separation in energy scales ~ω ≪ ∆0, which forbids inter-level
transitions outside of the resonance window φ ≃ π, at which point the diago-
nal dependence on ŷ is identically zero.

Transition probability

Starting from equation (4) in Paper III, the expression for |ν2(n)| can be derived
by considering the probability that the state initially in the lower branch at
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time τ = −δτ scatters into the upper state after passing through the resonance.
Formally this is done by solving equation (4) in Paper III with

c+,n−1(τ) = δc+,n−1(τ) , c−,n(τ) = c0
−,n(τ) + δc−,n(τ) , τ > −δτ , (C.3)

where |c0
−,n(−δτ)|2 = 1 is the unperturbed solution, i.e. the electronic subsys-

tem is found in the lower Andreev branch with unit probability. Substituting
(C.3) into equation (4) of Paper III we find the solution for |δc+,n−1(δτ)|2 which
corresponds to the transition probability |ν2(n)|2,

|ν2(n)|2 = |δc+,n−1(δτ)|2 =

∣∣∣∣Γ
√

ne−iδτ3/3

∫ δτ

−δτ

e2iΛ3/3dΛ

∣∣∣∣
2

. (C.4)

Energy release to the leads

As was discussed in some detail in Ref. [89], the state which dissolve at the
edge of the quasiparticle spectrum E = ±∆0 cannot evolve dynamically into
the new Andreev state, which moves away from the edge after it has formed.
This follows from the fact that the two state are orthogonal to each other, hence
the Andreev states are “reset” at the start of each period with unitary effi-
ciency. This condition only applies if the populations of the superconducting
leads remain unchanged, i.e. the bound Andreev states are formed from the
same quasiparticle spectrum at each period. In order for this to be true, any ex-
cess energy released from the Andreev states into the superconducting leads
at the end of the period must be removed from the junction during the period
of the evolution of the Andreev levels, TV .

To show this, we consider the characteristic energy of the quasiparticles
created in the superconducting continuum close to the edge of the Andreev
period,

δE = E(t = 2π) − E(t = 2π − Tesc) ≃
∆0

2

(
2eV Tesc

~

)2

= 2∆0

(
eV

∆0

)2/3

. (C.5)

Here, Tesc = ~(∆0(eV )2)−1/3 is the characteristic dissolution time of the An-
dreev states [89]. With this we define the characteristic velocity of the quasi-
particle excitations vqp ≃ vF (δE/∆0)

1/2 (vF is the Fermi velocity) and the su-
perconducting coherence length ξ = ~vF /∆0 ≫ L. Having defined these
quantities, we evaluate the characteristic distance δx travelled by the quasi-
particle excitations during the period TV and find δx ∼ ξ(∆0/(eV ))2/3 ≫ ξ.
This implies that the excess energy released into the quasiparticle continuum
is removed far from the nanowire junction during the period of the evolution
of the Andreev states. Thus, no local heating of the junction is expected and
the Andreev states are formed from the same quasiparticle distribution at the
start of each period.
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Derivation of the system Hamiltonian

The Hamiltonian (equation (1) in Paper IV) can be derived starting from the
classical equations of motion of the system. Referring to Fig.1 in Paper IV,
these can be expressed as,

∂φ

∂t
=

2eQ

~C
− 4eLH

~
u̇ , (D.1)

∂Q

∂t
= I − 2eEJ

~
sin φ , (D.2)

mü = −ku + 2LH

(
2eEJ

~
sin φ

)
. (D.3)

In the above, Q is the charge on the capacitor C such that the bias voltage
over the junction is V = Q/C. In (D.1), the evolution of the phase-difference φ
depends on the motion of the nanowire in the magnetic field (u̇ is the velocity
of the nanowire) which follows from the analysis of Paper II. Equation (D.2)
gives the time rate of charge on the capacitor (note that the resistance R is not
included here as it is treated as a perturbation to the evolution of the density
matrix). Finally, equation (D.3) gives the equation of motion of the nanowire
subject to the periodic driving force due to the alternating Josephson current
over the junction. The corresponding system Hamiltonian reads,

H = 4Ecn
2 − 4eLH

m
pun+

8e2L2H2

m
n2 +

p2
u

2m
+

ku2

2
−

4eLHj0u − j~φ − EJ cos φ , (D.4)

where n = Q/(2e) is the number of Cooper pairs, j = I/(2e) is the Cooper pair
current and pu is the momentum of the nanowire. Quantisation is achieved
by regarding the variables u, pu, φ and n as Hermitian operators satisfying the
following commutation relations [û, p̂u]/~ = [φ̂, n̂] = i and [û, φ̂] = [û, n̂] =

[p̂u, φ̂] = [p̂u, n̂] = 0. With this we perform the unitary transformation,

Ĥ = e−iΦûn̂
ĤeiΦûn̂ , (D.5)

after which the Hamiltonian reads,

Ĥ = 4Ecn̂
2 − j~φ̂ − EJ cos(φ̂ − Φ(b̂ + b̂†)) + ~ωb̂†b̂ . (D.6)

Note that in Paper IV, the notation û = b̂+ b̂† is used for the deflection operator.
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Resonance condition for the external bias current

By tuning the bias current the absorption channel, tunnelling through the ab-
sorption of a mechanical vibron, can be brought into resonance, which greatly
promotes the cooling process. The condition under which this can be achieved
can be found following the analysis outlined in Ref. [82].

Mathematically, the motion of the phase in the tilted washboard potential
U(φ̂) is described by the Hamiltonian,

ĤTW = 4Ecn̂
2 + U(φ̂) , U(φ̂) = −EJ cos φ̂ − j~φ̂ . (D.7)

In (D.7), the charging energy Ec can be thought of as the inverse mass of
the classical particle moving in the equivalent potential. Under the condition
4Ec/EJ ≪ 1, equation (D.7) corresponds to that of a classical particle which is
highly localised to the minima of the potential U(φ̂).

Rewriting (D.7) in units of ~ωp/2, and separating out the harmonic and an-
harmonic parts one finds the full set of unperturbed energy levels (harmonic
part of the Hamiltonian),

Fl,m = E0
m − 2πslν , (D.8)

E0
m = −ν + 2m + 1 , ν =

√
EJ

2Ec
> 1 , s =

~I

2eEJ
.

To derive the above equation we have used n̂ = −i∂φ̂ which follows from the

commutation relation [φ̂, n̂] = i. Equation (D.8) gives unperturbed (parabolic)
quantised energy levels for the electronic degrees of freedom inside each val-
ley lwherem = 0, 1, 2, .... In Paper IV, we consider only the two lowest energy
levels m = 0, 1 and furthermore restrict our analysis to neglect with correc-
tions to Fl,m from the anharmonic parts of the Hamiltonian. With these consid-
erations, the eigenvalues for the electronic degrees of freedom (in real units)
in the basis |l, σ〉 are Fl,σ = ~ωpmσ − lπ~I/e as stated in Paper IV. With these
assumptions the absorption channel is resonant, Fl,0 = Fl+1,1 − 2ω/ωp, when
the junction is biased at the current s0 = 1

πν
(1 − ω/ωp). The corresponding

expression in real units is then,

I0 =
eωp

π

(
1 − ω

ωp

)
, (D.9)

as stated in Paper IV.

To extend the analysis to account also for the anharmonic parts of the tilted
washboard Hamiltonian, we perform a perturbation calculation to order ν−2

to find the corrections ∆Em(s0) to the unperturbed energy levels, E0
m = Em −

∆Em(s0). Substituting Em for the unperturbed energy levels in (D.8) we find
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the conditions for the bias current under which the system is resonant through
the absorption channel,

s =
1

πν



(

1 − ω

ωp

)
− 1

4ν
−

(
1 − ω

ωp

)2

4π2ν2
− 1

16ν2


 ≃ 1

πν

(
1 − ω

ωp

)
. (D.10)

Including the corrections from the anharmonic parts of the potential, we find
that the inter-level energy spacing within a valley is not constant. This condi-
tions ensures that wemay neglect with the higherm ≥ 2 states as these will be
far (on the energy scale of ~ω) from resonance under bias current conditions
I ≃ I∗.
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