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Summary 

In simulation studies the computer time can be much reduced by using censoring. Here a simple 

method based on quantiles (Q method) is compared with the Maximum Likelihood (ML) method 

when estimating the parameters in censored two-parameter Weibull distributions. The ML 

estimates being obtained using the SAS procedure NLMIXED. It is demonstrated that the 

estimators obtained by the Q method are less efficient than the ML estimators, but this can be 

compensated for by increasing the sample size which nevertheless requires much less computer 

time than the ML method. The ML estimates can only be obtained by an iterative process and this 

opens the possibility for failures in the sense that reasonable estimates are presented as unreliable, 

or anomalous estimates are presented as reliable. Such anomalies were never obtained with the Q 

method. 
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1. Introduction 

Simulation studies with long realizations require computers of high capacity. A typical example 

is when one is estimating the expectation of ‘times-between-false alarms’ in a surveillance 

situation. The means of the latter times may vary substantially from one realization to another (cf. 

p. 14 in Jonsson, 2010) and it is apparent that extremely long realizations are needed in order to 

get stable results from the simulations. Alternatively one may estimate the expectation of ‘times 

to first false alarm’ (measured from an arbitrary time point) in a large number of realizations. In 

this way stable results are achieved with much fewer simulations. However, also in this case 

computer space may be insufficient. A radical way of reducing the computer time further is to 

simply cut off the distribution of times, so only observed times to first alarm below a certain limit 

are observed, while the rest of the observations are counted but not observed. Such data are called 

censored (Kruskal and Tanur, 1978). 

     This article was motivated by the author’s hardships when simulating ‘times to first false 

alarm’ for a modified CUSUM method that is presented in Jonsson, 2010. Due to limited 

computer resources it was decided that censoring should be used. In the present case it luckily 

turned out that the distribution could be well approximated by a two-parameter Weibull 

distribution. There is an extensive literature about how to estimate parameters in this case. The 

problem is that the latter are intended for specific situations with a relative small sample size. 

When dealing with huge sets of simulated data it was found that these methods sometimes failed 

and a great deal of time was spent to monitoring the results. Therefore a new simpler method was 

used that only utilizes information about quantiles in the censored samples and about the 

proportion of missing observations due to censoring. The expectation, or other summarizing 

measures, of times to first false alarm can then be estimated by inserting parameter estimates into 

the theoretical expressions. This method will be termed the Quantile (Q) method.  

     The Q method should give less precise estimates than more sophisticated methods such as 

Maximum Likelihood (ML). Therefore this paper focuses on comparisons of the efficiency of Q 

and ML estimates. The approach is entirely pragmatic and aims to supply researchers with a 

simple method that never seems to fail, and which can be used when computer resources are 

limited. 



2. Quantile and Maximum Likelihood estimation of the parameters in the censored two-

parameter Weibull distribution 

The Weibull probability law has the following survival function )(yS , distribution function 

)(yF  and density )(yf  

{ } ( ) ( )1( ) ex p ( / ) ,  ( ) 1 ( ),  ( ) ( / ) / ex p ( / )S y y F y S y f y y yθθ θλ θ λ λ λ−= − = − = ⋅ −            (1) 

Here, the parameters 0 and 0 >> λθ determine slope and scale, respectively. When 1>θ  the 

density has one single peak, while for 10 ≤< θ  it is strictly decreasing. For 1=θ  one gets the 

exponential density with λ/1)0( =f . For 1<θ  the major part of the mass of the density becomes 

more concentrated close to the x and y axis as θ  decreases and it is also seen that 

0 as )( →∞→ yyf . The median 50.y  and expected value E are 

1/
.50 (ln 2)  and (1 1/ )y Eθλ λ θ= ⋅ = ⋅Γ +                                       (2) 

All these results presuppose that no observations are lost due to censoring. 

     Focus will be on the case 1≤θ  since the times to first false alarm suggested a strictly 

decreasing density with a value of θ  much less than 1. The case 1=θ  is considered merely for 

curiosity. 

     Let )( misspCy = be the point at which %100 missp⋅ of the observations are lost due to 

censoring (censoring point). When the value of missp  is obvious the notation Cy = will be used 

for simplicity. The relation between )(  and missmiss pCp is illustrated in Table 1 for 

9.0 ,...,1.0 =missp  1 ,3/2 ,5.0=θ  and 2050. =y . The censoring points that are obtained for 

different values of θ  reflect the differences in shape of the densities. E.g. for 1=θ  a censoring 

point at 66 gives a missing proportion of 0.1, but for 5.0=θ  one has to choose a censoring point 

at 221 to get the same missing proportion. 

     



Table 1 Relation between missp (proportion censored observations) and )( misspC  (censoring 

point) for three values ofθ . In all cases the median 50.y  is 20. 

 )( misspC  

missp  5.0=θ  3/2=θ  1=θ  

0.1 221 121 66 
0.2 108 71 46 
0.3 60 46 35 
0.4 35 30 26 
0.5 20 20 20 
0.6 11 13 15 
0.7 5.3 7.4 10 
0.8 2.1 3.7 6.4 
0.9 0.5 1.2 3.0 

 

 

2.1 Estimation from censored data based on quantiles (Q method) 

 The 100p % percentile when censoring at CpCy miss == )( is denoted )(Cy p . Then obviously 
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Eq. (3) is a linear relation between the independent variable x and the dependent variable z. In 

each sample p takes a number of predetermined fixed values, missp takes one fixed value that 

varies from sample to sample but with small variance, and z is a random response. This suggests 

that one may use ordinary least square  method for estimating α  and β , which in turn give 

estimates of θ  and λ . In Appendix A a computer program is presented that first simulates 5 

censored samples each with 2000 Weibull distributed random numbers, and then prints the results 

from the estimation when p takes the values 0.25, 0.50 and 0.75. The latter values of p and the 

small number of replicates are only chosen for illustration.  



     It is far from obvious how the values of p in Eq. (3) are to be chosen in order to get estimates 

that are optimal in terms of bias and variance. Intuitively one might suspect that a large number 

of spread values of p should be chosen, since then xSS  in the expression xSSV /)ˆ( 2σβ = is 

increased. But, in the latter case also the residual variance in the numerator is increased. To find a 

solution of the problem, simulations were performed using a large number of various sets of 

values of p. A typical result is illustrated in Table 2 which shows the standard deviations (stds) of 

the λθ  and estimates for various values of missp .  

 

Table 2 Standard deviations of quantile estimates of λθ  and obtained in various settings. Each 
reported figure is based on 4000 simulated samples each with 500=n . 

 Values of p that are used for obtaining quantile estimates 
)( misspC

 
missp  .25, .50, .75 .10, .50, .90 .10, .25, .50, .75, 

.90 
.01, .05, .10, .25, 
.50, .75, .90, .95, .99 

 Std( ĉ ) Std( λ̂ ) Std( ĉ ) Std( λ̂ ) Std( ĉ ) Std( λ̂ ) Std( ĉ ) Std( λ̂ ) 
220.7 0.1 .031 4.6 .027 4.3 .013 4.2 .034 4.1 
60.34 0.3 .037 6.3 .034 5.3 .016 5.5 .042 5.9 
20.0 0.5 .046 9.8 .042 8.5 .020 8.4 .051 11 
5.30 0.7 .062 22 .056 18 .026 17 .069 27 
0.46 0.9 .119 1018 .105 657 .049 232 .124 3752 

 

 

As expected the stds increased with increasing missp . Perhaps more interesting is that the stds 

decreased as the number of p-values in each set increased, but only up to a certain point. In fact, a 

set of p-values with just one or two components resulted in very large stds (not shown in the 

table). By gradually increasing the number of p-components up to five it was possible to reduce 

the stds, but for a larger number of p-components the stds started to increase again. The set 

consisting of five values of p (0.10, 0.25, 0.50, 0.75, 0.90) turned out empirically to give the 

smallest std among all sets that were considered.  

     Estimates of λθ  and obtained by the Q method are in the sequel denoted QQ λθ ˆ and ˆ , 

respectively. For each set of parameters, 2000 replicates were generated (this number turned out 



to be un-necessary large). For the largest sample size of 3000=n  the total run-time at the 

computer was about 20 minutes.  

 

2.2 ML estimation from censored data 

Let m be the number of observations that are lost due to censoring and put mnn −=* , the 

‘efficient sample size’. The Likelihood is (cf. Cohen, 1965) 
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On differentiating Lln   with respect to λθ  and  and equating to zero one gets the estimating 

equations 
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Here the challange is to get a solution of θ  from the first equation in Eq. (5). For a specific data 

set the solution of θ  can be obtained by a variety of methods that use graphical tools (see e.g. 

Cohen, 1965), but in simulation studies where a large number of solutions are required one has to 

look for other alternatives. Mao and Li (2007) prove some properties of the structure in Eq. (5) 

that guaranties feasible solutions and propose some general algorithms, but at present these 

results seem not yet to have been implemented in available computer programs. 

     As an alternative one may try to maximize L directly by using standard procedures. One such 

is the SAS-procedure NLMIXED which can be used to find the ML solutions in a general class of 



distributions. An example of this procedure is given in Appendix B. In the example given in the 

Appendix the procedure succeeded to find the estimates iteratively. But sometimes the procedure 

may fail in the sense that in the print-out it is stated that either (a) a ML solution can not be 

reached although the solution is acceptable, or (b) a ML solution has been reached although it is 

far from correct. Examples of (a) and (b) are given in Appendix B. 

     ML estimates are denoted ML
ˆ and ˆ λθML . The latter were obtained by first running NLMIXED 

with 100 replicates and then calculating sequential averages of estimated means and stds until 

stability was reached. In a few occasions a further set of 100 replicates was needed to reach 

stability. Anomalous solutions such as (a) and (b) mentioned above were omitted. The run-time 

for generating the ML estimates from 100 replicates with n = 3000 was about 5 minutes. 

However, to this one has to add the time for editing in the print-out and checking for anomalies. 

The total run time was in fact longer than for the Q method. 

 

 

3. Results 

 

3.1 Bias of estimators 

The bias of the Q and ML estimators were roughly the same. It was largest for 90.0=missp , but 

for 60.0=missp  and smaller the bias fluctuated around zero. No substantial reduction in bias was 

noticed when n increased from 500 to 3000. The magnitude of the biases was constantly only 5-

10 % of the stds, so very little was changed by measuring precision by Mean Squared Error 

instead of variance of the estimators. For this reason only variances were considered when 

precision was compared. 

 

 



3.2 Checking that variances of estimators are proportional to 1−n  

The relative efficiency (RE) of an unbiased estimator 1T  based on the sample size 1n  relative to 

another 2T  based on the sample size 2n  is defined as )(/)(),( 2121 TVTVnnRE = . If both 

variances are proportional to 1−
in , )/(),( 1221 nnCnnRE ⋅= and the value of C  can be used to find 

the sample sizes needed to get )()( 21 TVTV = . For instance 2/1=RE  implies that 12 2nn =  will 

give equal variances. The ML estimators obtained from Eq. (5) are proportional to 1−n in large 

samples, but this only holds asymptotically (cf. e.g. p. 244 in Zacks, 1971). It is far from obvious 

that n in the range 500-3000 is large enough. Also the quantile estimators that are obtained from 

the regression estimators in Eq. (3) may have variances that are not proportional to 1−n . 

     To check the proportionality to 1−n of )(TV one may study whether )(TnV as a function of n 

remains constant, for example by fitting a straight line to the data points and estimating the slope. 

This was done for MLQMLQT λλθθ ˆ,ˆ,ˆ,ˆ= , θ  = 0.5, 2/3, 1,  2050. =q  and 9.0 ,...,1.0 ,0=missp . For 

each of the four estimators there were thus 30 fitted lines to the points )(TnV and 

3000,2000,1000,500=n .  

     The hypothesis of zero slope was on the average rejected in about 1 case out of 30 with p-

values being somewhat smaller than 0.05. Since so many hypotheses were tested simultaneously 

this is not enough to reject proportionality to 1−n (Wright, 1992). However, when looking closer 

at the slope estimates it was found that most slopes were negative. This was most striking for the 

Q estimators. For )ˆ( QknV  plotted against n there were 22 slopes out of 30 that were negative, 

while for )ˆ( QnV λ plotted against n there were 25 negative slopes. The probabilities of obtaining 

these outcomes and more extreme ones assuming a 50/50 chance (two-sided p-values) are 0.016 

and 0.0004, respectively. Since nTnV ⋅−= 10)( ββ  implies that 1
1

0)( ββ −⋅= −nTV  this 

indicates that a negative constant should be added to the variance of the Q estimators. However, 

the magnitude of 1β  was too small to have any practical impact (largest value being 0.00017). 

For the two ML estimators 18 slopes out of 30 were negative giving the two-sided p-values 0.36, 

so in this case there seems to be less reason to reject the proportionality of the variance to 1−n . 



3.3 Relative efficiency for estimators of θ  

Let )ˆ(/)ˆ(ˆ QML VVRE θθθ =  be the relative efficiency for the two estimators ofθ  based on the 

same sample sizes. This is presented in the table in Appendix C when 2050. =q . Here some 

interesting features can be noticed. First, for given θ  and missp  there is no trend in θ̂RE with 

increasing n. In fact, when θ̂RE  was considered as a function of n the 30 estimated linear slopes 

were obtained within the range 00003.0±  and none of the slopes differed significantly from zero. 

Therefore the means in the last column may be used to represent the REs. Furthermore, for given 

θ  and n θ̂RE  remains constant with increasing missp  and this also holds for given missp  and n 

with increasingθ . The results are summarized in Figure 1. 

    Figure 2 illustrates the same relations as Figure 2, but now when 20050. =q  (i.e. 416=λ ). The 

patterns in the two figures are hard to separate. Attempts to study the relative efficiency for larger 

values of 50.q were made but in this case the iterations in NLMIXED often failed to converge and 

in fact, for 200050. ≥q a ML solution could never be obtained. The conclusion from this section 

is that θ̂RE is somewhere between 0.5 and 0.6 irrespective of the values of missp and n, provided 

that λθ  and are in the ranges 0.5-1 and 20-200, respectively. 

  



 

Figure 1 Relative efficiency, )ˆ(/)ˆ( QML VV θθ , when 2050. =q  plotted against the censoring 

proportion (pmiss) for  and (circles) 3/2 circles), (filled 5.0 == θθ  (stars) 1=θ . Each point 
represents the mean over n in the table in Appendix C. 

 

 

Figure 2 The same relations as in Figure 1, but now with 20050. =q  

 



3.4 Relative efficiency for estimators of λ  

Now, consider )ˆ(/)ˆ(ˆ QML VVRE λλλ = . Values of the latter are presented in the table in Appendix 

D when 2050. =q . Also here the relative efficiency remains constant over n, so the means in the 

final column can be used to represent the relative efficiency. Furthermore, for given missp  the 

relative efficiencies do not vary much withθ . However, in contrast to the pattern in Figures 1 and 

2 the efficiency now decreases with increasing censoring proportion. These findings are 

summarized in Figure 3.  

 

Figure 3 Relative efficiency )ˆ(/)ˆ( QML VV λλ  when 2050. =q  plotted against the censoring 

proportion for  (stars). 1 and (circles) 3/2 circles), (filled 5.0 === θθθ Each  point represent the 

mean over n in the table in Appendix D. 

 

     Since λ is a location parameter the variance of single measurements will increase with 

increasingλ . This will in turn lead to that the precision of the Q and ML methods are lowered. 

But which method is most capable to resist against higher variability in data?  Figure 4 illustrates 

the relation between relative efficiency and censoring proportion when 20050. =q ( )416=λ . A 

comparison with Figure 3 suggests that no method is better in this respect, possibly with 



exception for large values of the censoring proportion where the Q method seems to loose 

relatively less in precision. From figures 3 and 4 it is concluded that λ̂RE is above 0.5 for missp

smaller than 0.6. 

 

Figure 4 The same relations as in Figure 3, but now with 20050. =q . 

 

4. Discussion and concluding remarks 

 

A simple procedure based on quantiles (Q method) has been suggested for estimating the two 

parameters in censored Weibull distributions. From simulations using a large number of 

alternative quantiles it was found empirically that the quantiles corresponding to the set p = 0.10, 

0.25, 0.50, 0.75, 0.90 gave estimates with smallest variance. There may be other sets of quantiles 

that give estimates with smaller variance, but to find the latter a theoretical study is required that 

is beyond the scope of this paper, which is entirely pragmatic. 

     The Q method was found to have less precision than the ML method, with relative efficiencies 

for both parameters being at least 50 % when less than 60 % of the observations were censored. 



However, the Q method has the advantage that it is not based on iterative solutions and always 

works, in contrast to the ML method which may fail, especially for large values of the scale 

parameter. It should be pointed out that this drawback has been observed when the SAS-

procedure NLMIXED is used and it might be the case that other procedures works better in this 

respect. 

      The Q method requires much less computer time than NLMIXED. E.g. with 1000 replicates, 

each with n = 3000, the ML solutions were found after about 21 minutes. To this one should add 

time for working through the print-outs and checking for anomalies. For the Q method the 

distribution of estimates together with basic statistics was printed out after 3 minutes, using the 

same number of replicates and n. Since the relative efficiency of the Q method is at least 50 %, 

samples with n =6000 should give at least the same precision for the Q method as for the ML 

method. The computer time for the Q method was in the latter case 6 minutes. 
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APPENDIX 

A. SAS code for quantile estimation in the censored two-parameter Weibull 

distribution.  

The parameter θ  in Eq. (1) is denoted c (=0.5) and λ  in Eq. (1) is denoted lambda  (=41.6) 

options ps=12000;                                                                                                                        
data a;                                                                                                                                  
/* chose the censoring point tup=0.46, giving 90 % censored observations */                                                              
tup=0.46;                                                                                                                                
/* chose the parameters c=0.5 and a lambda giving the median 20 */                                                                       
c=0.5; m=20; lamb=m/(log(2))**(1/c);                                                                                                     
/* generate 5 simulations, each with 2000 Weibull distributed random numbers */                                                          
do rep=1 to 5;                                                                                                                           
do i=1 to 2000;                                                                                                                          
u=uniform(0);                                                                                                                            
x=lamb*(-log(1-u))**(1/c); if x>=tup then x='.';                                                                                         
output; end; end;                                                                                                                        
/* calculate yp (=25 %, 50 % and 75 % percentiles), and pmiss (=proportion missing                                                       
observations) */                                                                                                                          
proc sort; by rep;                                                                                                                       
proc univariate noprint; var x;                                                                                                          
output out=sas1 n=n nmiss=nmiss q1=m25 median=m50 q3=m75;                                                                                
by rep;                                                                                                                                  
data b; set sas1;                                                                                                                        
pmiss=nmiss/(n+nmiss);                                                                                                                   
p=.25; yp=m25; output; p=.50; yp=m50; output; p=.75; yp=m75; output;                                                                     
/* print the result */                                                                                                                   
data c; set b;                                                                                                                           
proc print; var rep yp pmiss p; 
/* calculate the least squares estimates of the parameters in equation (3) */                                                                                                         
data d; set b;                                                                                                                           
if yp>0 then lyp=log(yp);                                                                                                                
if yp=0 then lyp='.';                                                                                                                    
z=log(-log(1-(1-pmiss)*p));                                                                                                              
z2=z*z; zlyp=z*lyp; lyp2=lyp*lyp;                                                                                                        
proc sort; by rep;                                                                                                                       
proc means noprint n sum; var z lyp z2 zlyp lyp2;                                                                                        
output out=sas1 sum=sz slyp sz2 szlyp slyp2 n=n; by rep;                                                                                 
data b; set sas1;                                                                                                                        
beta=(n*szlyp-sz*slyp)/(n*sz2-sz*sz);                                                                                                    
alfa=slyp/n-beta*sz/n;                                                                                                                   
c=1/beta; lamb=exp(alfa);  
/* average over the 5 samples */                                                                                                               
proc means n mean std; var c lamb;                                                                                                       
run; 

  



The program gives the following print-outs. (When thousands of replicates are made the proc 

print procedure should be omitted.) 

                                                                                                                                         
                            Obs    rep       yp       pmiss      p                                                                       
                                                                                                                                        
                              1     1     0.02023    0.9005    0.25                                                                      
                              2     1     0.09622    0.9005    0.50                                                                      
                              3     1     0.25729    0.9005    0.75                                                                      
                              4     2     0.02369    0.8940    0.25                                                                      
                              5     2     0.12134    0.8940    0.50                                                                      
                              6     2     0.24112    0.8940    0.75                                                                      
                              7     3     0.01731    0.8935    0.25                                                                      
                              8     3     0.09657    0.8935    0.50                                                                      
                              9     3     0.22707    0.8935    0.75                                                                      
                             10     4     0.03729    0.8855    0.25                                                                      
                             11     4     0.11547    0.8855    0.50                                                                      
                             12     4     0.27298    0.8855    0.75                                                                      
                             13     5     0.02056    0.8905    0.25                                                                      
                             14     5     0.11938    0.8905    0.50                                                                      
                             15     5     0.29741    0.8905    0.75                                                                      
                                                                                                                                                                                                          
                                      The MEANS Procedure                                                                                
                                                                                                                                         
                         Variable    N            Mean         Std Dev                                                                   
                         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ                                                                   
                         c           5       0.4699702       0.0614640                                                                   
                         lamb        5      64.9270537      34.1831539                                                                   
                         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  



 

B. SAS code for ML estimation in the censored two-parameter Weibull distribution 

 

In the example below just 1 sample is generated. If e.g. 1000 samples are required, 

then the statement ‘do rep=1 to 1’ is changed to ‘do rep=1 to 1000’. 

 

data test;  
/* chose the censoring point tup=0.46, giving 90 % censored observations */ 
tup=0.46;  
/* chose the parameters c=0.5 and a lambda giving the median 20 */                                                                                                                             
c=0.5; m=20; lamb=m/(log(2))**(1/c);  
/* generate 1 sample with 2000 Weibull distributed random numbers */                                                                                                   
do rep=1 to 1;                                                                                                                           
do i=1 to 2000;                                                                                                                          
u=uniform(0);                                                                                                                            
y=lamb*((-log(u))**(1/c));                                                                                                               
if y>tup then do;                                                                                                                        
y=tup; cens=1;                                                                                                                           
end; else cens=0; output; end; end;                                                                                                      
keep rep y cens i;                                                                                                                       
run;                                                                                                                                     
data b; set test;                                                                                                                        
proc sort; by rep; 
/* invoke the procedure NLMIXED to estimate the parameters */                                                                                                                       
proc nlmixed; 
/* ensure that shape and scale parameters are positive */                                                                                                                            
c=exp(log_c); lamb=exp(log_lamb);                                                                                                        
if cens=0 then ll=log(c)-log(lamb)+(c-1)*(log(y)-log(lamb))-(y/lamb)**c;                                                                 
else ll=-(y/lamb)**c;                                                                                                                    
model y~general(ll); estimate "c" exp(log_c); estimate "lamb" exp(log_lamb);                                                             
by rep;                                              
run; 
 

 

 

The program gives the following print-out (Information criteria such as AIC and BIC and 

further details have been omitted since focus is on the estimates.) 

                
  



                                                                                                                                         
                                     The NLMIXED Procedure                                                                               
                                                                                                                   
-------------------------------------------- rep=1 -------------------------------------                                         
                                                                                                                                         
                                     The NLMIXED Procedure                                                                               
             Dimensions                                                                                    
                                                                                                                                        
                            Observations Used                   2000                                                                     
                            Observations Not Used                  0                                                                     
                            Total Observations                  2000                                                                     
                            Parameters                             2                                                                     
                                                                                                                                       
                                                                                                                                         
                                           Parameters                                                                                    
                                                                                                                                         
                                  log_c    log_lamb    NegLogLike                                                                        
                                                                                                                                         
                                      1           1    1259.92777                                                                        
                                                                                                                                        
                                                                                                                                         
                                        Iteration History                                                                                
                                                                                                                                        
                Iter     Calls    NegLogLike        Diff     MaxGrad       Slope                                                         
                                                                                                                                         
                   1         2    892.969302    366.9585    533.2836    -31564.1                                                         
                   2         3    548.922993    344.0463    491.9649    -634.126                                                         
                   3         4    405.232366    143.6906    201.7811     -359.52                                                         
                   4         5    389.933964     15.2984    37.35354      -38.23                                                         
                   5         7    386.317527    3.616437    45.48596    -2.90184                                                         
                   6         8    380.712102    5.605425    6.557471    -2.92069                                                         
                   7        10    379.868079    0.844024    16.67495    -1.19448                                                         
                   8        12    379.753913    0.114166    0.467872    -0.18927                                                         
                   9        14     379.75134    0.002572    0.117899    -0.00396                                                         
                  10        16    379.751329    0.000011     0.00024    -0.00002                                                         
                  11        18    379.751329     5.3E-10    7.298E-7    -1.04E-9                                                         
                          NOTE: GCONV convergence criterion satisfied.                                                                   
                                      Parameter Estimates                                                                                
                                                                                                                                         
                       Standard                                                                                                          
  Parameter  Estimate     Error    DF  t Value  Pr > |t|   Alpha     Lower     Upper    log_c       
-0.8080   0.07414  2000   -10.90    <.0001    0.05   -0.9534   -0.6626     log_lamb     4.5489    
0.4326  2000    10.51    <.0001    0.05    3.7005    5.3974   
                                       Additional Estimates                                                                               
                                                                                                                                        
                      Standard                                                                                                           
 Label    Estimate       Error      DF    t Value    Pr > |t|     Alpha       Lower       Upper                                          
c          0.4457     0.03305    2000      13.49      <.0001      0.05      0.3809       
lamb      94.5297     40.8963    2000       2.31      0.0209      0.05     14.3259       



C. Examples of anomalies with the SAS-procedure NLMIXED 

 

a) An example where a correct ML solution is obtained although it is stated that the solution can 
not be reached                                                                                                                                       

                                                                                                                                         
                                         Iteration History                                                                               
                                                                                                                                         
                 Iter     Calls    NegLogLike        Diff     MaxGrad       Slope                                                        
                                                                                                                                         
                    1        12    17851.6582     2308928    52967.74    -3.89E12                                                        
                    2        15    11041.0457    6810.613    10837.43    -40440.1                                                        
                    3        16    3366.86774    7674.178    2864.557    -23151.3                                                        
                    4        18    3019.56554    347.3022    1851.341    -1571.62                                                        
                    5        19    3017.62873    1.936814    1831.711    -3.17491                                                        
                    6        21    3017.27656    0.352168    1822.819    -0.36901                                                        
                    7        25    2699.54193    317.7346    1383.342    -0.34861                                                        
                    8        27    1991.31525    708.2267    357.0605    -439.544                                                        
                    9        28    1910.08271    81.23254    177.3794    -23.1151                                                        
                   10        29    1774.83981    135.2429    109.4697    -46.1012                                                        
                   11        31    1738.88315    35.95667    208.6956    -36.2012                                                        
                   12        32    1725.77375     13.1094    115.5781    -103.136                                                        
                   13        33    1716.66791    9.105842    62.42045    -19.4089                                                        
                   14        35    1714.09113    2.576778    4.716303    -5.77166                                                        
                   15        37    1714.06761    0.023514    0.561202    -0.04209                                                        
                   16        39    1714.06543    0.002184    0.135825     -0.0017                                                        
                   17        41    1714.06542    0.000013    0.000096    -0.00003                                                        
                   17        70    1714.06542           0    0.000096    -1.05E-6                                                        
                                                                                                                                        
                                                                                                                                         
                            ERROR:  Optimization cannot be completed.                                                                    
                                                                                                                                        
                                                                                                                                         
                                       Parameter Estimates                                                                               
                                                                                                                                         
                                Parameter    Estimate    Gradient                                                                        
                                                                                                                                         
                                log_c         -0.7700     -0.0001                                                                        
                                log_lamb       6.0715    -0.00004    
                                                                     

 

The ’label parameters’ c and lamb (i.e. λθ  and ) are suppressed and can not be read from the 

printout. Notice however that c = exp(-0.7700) = 0.46 and lamb = exp(6.0715) = 433 are not far 

from the true values 0.50 and 416, respectively. 



b) An example where an incorrect ML solution is obtained although it is stated that it has been 

reached         

 

                                                                                                                               

                                        Iteration History                                                                                
                                                                                                                                         
                Iter     Calls    NegLogLike        Diff     MaxGrad       Slope                                                         
                                                                                                                                         
                   1        18     114573115    6.985E10    1.6925E9    -2.41E22                                                         
                   2        22    86092.5492    1.1449E8     84466.6    -1.17E12                                                         
                   3        26    13552.2532     72540.3    11443.88    -447.257                                                         
                   4        30    10839.0783    2713.175    12517.35    -9462.84                                                         
                   5        32    10825.3823    13.69595    11678.37    -89.0995                                                         
                   6        34    10825.2982    0.084119    11731.81    -0.15578                                                         
                   7        36    10825.2981    0.000115    11733.86    -0.00019                                                         
                   8        42    10822.4294    2.868657    12067.43    -0.00004                                                         
                                                                                                                                         
                                                                                                                                         
                          NOTE: GCONV convergence criterion satisfied.                                                                   
                                                                                                                                     
                                                                                                                                        
                                                                                                                                 
  Parameter  Estimate      
                                                                                                                                         
  log_c        1.5578   
  log_lamb     8.3752                                                                                                                                        
                                                                                                                                      
                                       
                                                                                                                                         
                                                                                                                                
 Label    Estimate                                                
                                                                                                                                         
 c          4.7482      
 lamb      4338.20    

 

 

c and  lamb being very far from the true values 0.50 and 416, respectively.  

  



D. Relative efficiency of estimators for θ  
n 

k Pmiss (%) 500 1000 2000 3000 Mean 
0.5 0 .58 .65 .56 .56 .588 
” 10 .55 .60 .56 .64 .587 
” 20 .54 .54 .57 .58 .556 
” 30 .50 .56 .58 .60 .563 
” 40 .57 .56 .53 .60 .563 
” 50 .54 .57 .55 .59 .563 
” 60 .59 .56 .54 .58 .568 
” 70 .50 .50 .54 .58 .532 
” 80 .62 .59 .56 .57 .586 
” 90 .54 .57 .53 .54 .545 

2/3 0 .58 .57 .56 .59 .574 
” 10 .57 .59 .58 .58 .581 
” 20 .57 .52 .54 .57 .550 
” 30 .55 .60 .58 .58 .576 
” 40 .62 .57 .50 .56 .563 
” 50 .56 .57 .55 .53 .551 
” 60 .56 .56 .54 .56 .555 
” 70 .55 .54 .55 .58 .554 
” 80 .56 .56 .56 .52 .552 
” 90 .53 .53 .52 .57 .535 
1 0 .55 .56 .53 .57 .551 
” 10 .58 .53 .58 .62 .579 
” 20 .57 .57 .62 .57 .583 
” 30 .60 .56 .57 .60 .582 
” 40 .57 .58 .53 .58 .567 
” 50 .53 .56 .58 .55 .553 
” 60 .58 .59 .55 .54 .563 
” 70 .53 .56 .55 .56 .548 
” 80 .53 .54 .53 .56 .539 
” 90 .50 .53 .57 .54 .533 

 

  



E. Relative efficiency for estimators of λ  

 

n 
k Pmiss (%) 500 1000 2000 3000 Mean 

0.5 0 .87 .95 .90 .90 .900 
” 10 .86 .93 .93 .90 .904 
” 20 .88 .78 .84 .84 .833 
” 30 .72 .75 .72 .68 .719 
” 40 .61 .64 .58 .62 .612 
” 50 .58 .59 .53 .53 .557 
” 60 .46 .50 .47 .56 .498 
” 70 .40 .41 .41 .41 .409 
” 80 .17 .39 .47 .39 .356 
” 90 .02 .11 .29 .46 .221 

2/3 0 .94 .92 .90 .92 .920 
” 10 .86 .84 .86 .91 .867 
” 20 .82 .78 .83 .84 .818 
” 30 .73 .70 .76 .76 .737 
” 40 .62 .60 .65 .66 .632 
” 50 .53 .59 .50 .54 .538 
” 60 .44 .54 .53 .53 .507 
” 70 .53 .46 .51 .47 .491 
” 80 .23 .42 .44 .44 .383 
” 90 .13 .52 .37 .38 .351 
1 0 .93 .94  .89 .87 .907 
” 10 .88 .91 .89 .90 .896 
” 20 .83 .80 .83 .88 .835 
” 30 .73 .73 .75 .69 .726 
” 40 .60 .67 .59 .63 .623 
” 50 .52 .54 .56 .59 .553 
” 60 .45 .49 .52 .52 .493 
” 70 .37 .44 .48 .49 .444 
” 80 .38 .46 .50 .41 .437 
” 90 .25 .51 .40 .37 .381 
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