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Abstract 

CUSUM procedures which are based on standardized statistics are often supposed to have 

expectation zero and being normally distributed. If these conditions are not satisfied it can 

have serious consequences on the determination of proper alarming bounds and on the 

frequency of false alarms. Here a CUSUM method for detecting outbreaks in health events is 

presented when the latter are Poisson distributed. It is based on a standardized statistic with a 

bias from zero that can be neglected. The alarming boundaries are determined from the actual 

distribution of the statistic rather than on normality assumptions. The boundaries are also 

determined from requirements on the probability of false alarms instead of the common 

practice to focus on average run lengths (ARLs). The new method is compared with other 

CUSUM methods in Monte Carlo simulations. It is found that the new method has about the 

same expected time to first motivated alarm and the same sensitivity. However, the new 

method has expected times to first false alarm that are 9 % – 90 % longer. The new method is 

applied to outbreaks of sick-listening and to outbreaks of Chlamydial infection. 

 

Key words: Reference value k, sampling- and calibration periods. 
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1. Introduction 

In health statistics it is important to detect outbreaks of diseases as early as possible. To 

this end a large number of statistical methods have been developed for continuous 

monitoring of the incidence of health events. A common characteristic of the methods is 

that the values of a statistic, being a function of the original observations, are calculated 

sequentially in time and if a value reaches above a certain alarm boundary an alarm is 

signaled. The mean level of the original observations before outbreak has been termed 

baseline, acceptable level or in-control level and the mean level after outbreak has been 

termed unacceptable or out-of-control. Since the pioneer work by Shewhart(25 many 

different statistics have been suggested. These have been based on averages, moving 

averages, cumulative sums and likelihood ratios(4,9,22, just to mention a few examples. A 

somewhat different approach for detecting deviations from a basic level has been to 

construct tolerance limits, with or without utilizing the longitudinal structure of 

data(12,26,28. 

     One popular sequential method for monitoring health events is the cumulative sum 

(CUSUM), originally proposed by Page(20. From the series of original data, ( )tZ , a new 

series ( )tS  is obtained from the relation 

0  ),,0max( 01 =+−= − SSkZS ttt                                        (1) 

Here k is a reference value that is used to balance the series ( )tS . An alarm is signaled as 

soon as hSt > , where h is a predetermined alarm boundary. Proper values of k and h has 

customary been found from requirements on average lengths of times to first false alarm 

(before outbreak) and to first motivated alarms (after outbreak). Tables for choosing k and 

h in this way have been published for the case when the tZ ’s have a normal distribution(8 

or a Poisson distribution(8,16. In this paper, where the focus is on health events rather than 

on industrial processes, other criteria for choosing k and h will be given. 

     A stumbling block when determining k and h is that the mean (acceptable) level before 

outbreak and the mean (unacceptable) level after outbreak have to be specified. CUSUM 

was originally designed for controlling industrial processes, in which case the definition of 

acceptable and unacceptable levels can be based on previous experience and economical 

considerations. When dealing with data of health events, such definitions may be harder to 
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make. Two examples of this are given in Section 5 of this paper, one concerns outbreak of 

sick-listening and another concerns outbreak of Chlamydia. Here it is obviously a delicate 

task to decide what levels are acceptable and unacceptable. Some guidelines on this topic 

are given in Section 4, despite of the difficulties involved. 

     Lorden proved that the CUSUM method is optimal for one-sided tests in all baseline 

distributions(15. The latter conclusion was reached by using a criterion that might be called 

‘worst average detection delay’ (cf. p. 281 in (10) for a formal definition). Later 

Moustakides proved that CUSUM is exactly optimal as judged by Lorden’s criterion(17. 

However, it is hard to apply these theoretical results since Lorden’s criterion refers to 

situations that rarely happen in practice.  

     A large number of Monte Carlo simulation studies with Poisson distributed health 

events have been published where the CUSUM method is compared with other methods, 

but these do not give any conclusive results. Barbujani and Calzolari compares CUSUM 

with a method called ‘the sets technique’ and finds that CUSUM is more sensitive to real 

increases and less likely to issue false alarms(1. Hutwagner et al. came to the same 

conclusion when CUSUM was compared with Shewart- and moving average charts(11. A 

bit more complex results can be found in other studies. Chen found that CUSUM is more 

efficient than ‘the sets technique’ for high frequencies, but not for low(3. Han et al. found 

that CUSUM was better than EWMA for large shifts, but not for small(10. Perry and 

Pignatiello concluded that, when CUSUM was compared with EWMA and a Maximum 

Likelihood estimate of the time change, neither of the methods performed uniformly best 

when the relative increase of the mean varied between 20 % and 75 %(21. The perhaps 

worst example of the performance of CUSUM can be found in a study by Choi et al.(4. 

Here CUSUM was compared with six other methods, using five evaluation measures, and 

it was found that the performance of CUSUM was poor and sometimes beaten by very 

simple methods such as ‘historical limits’. This mix-up of results in simulation studies 

calls for that more attention should be given to the conditions under which the simulations 

are performed. E.g. in some of the studies mentioned it is assumed that at least the mean 

of the baseline is a known constant, and sometimes even that the mean after outbreak is 

known. In practice parameters have to be estimated from data of health events and this 

give rise to a certain amount of uncertainty which ultimately affects the choices of proper 

values of k and h. Some studies use the original Poisson observations, while other use 

standardized variables, assumed to be normally distributed with mean zero and variance 1. 
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If the normality assumption does not hold, this can have a large effect on the choices of k 

and h. A further fact that seems to have been overlooked is that the series in Eq. (1) is not 

stationary from start. Instead, the mean of tS increases with t until the mean stabilizes, in 

the absence of any outbreak. This in turn increases the possibility of having false alarms.  

     In this paper a CUSUM procedure is suggested that is based on a standardized Poisson 

variable. Section 2 deals with the problems of making the latter variable unbiased for 0, to 

find proper lengths of the sampling period when estimating the baseline mean, to study the 

time until the CUSUM statistic has stabilized and to determine the values of k and h. In 

Section 3 some measures of the ability to detect outbreaks are discussed. The results from 

Monte Carlo simulations are presented in Section 4. Here also the performance of the 

proposed CUSUM statistic is compared with a similar statistic that was suggested earlier 

by Rossi et al.(24  

 

 

 

2. Proposed test procedure 

 

2.1 Choice of a proper standardized Z-statistic 

Let Y be a Poisson variate with constant mean 0α  before outbreak and mean 1α  after  

outbreak, where 1α ( 0α> ) is some increasing function in time. nY
n
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Here )1(Z  is an ordinary standardized Poisson variate but with 0α  replaced by its 

estimator. Due to this it will not have zero expectation. The bias of )1(Z  before outbreak is 

approximately ( ) 1
02

−
αn >0 (See Appendix A.). Thus, there is an increased risk of getting 

over-estimated values of )1(Z  and thereby false alarms if n and 0α  are small. )2(Z  is a 

further variate that has been proposed(14. Nor the latter has zero expectation and the bias 

before outbreak is approximately ( ) 1
04)/11(

−
−− αn <0 (Appendix A). By using )2(Z  the 

risk of getting false alarms would thus be smaller than for )1(Z , but the problem is that the 

negative bias persists after the outbreak (Appendix A) , so the chance of having motivated 

alarms is expected to be reduced. )3(Z  has been suggested by Rossi et al(24 (although the 

α -parameter was treated as a known constant). In the latter paper it was concluded from 

Monte Carlo simulations that this statistic performed better than )2()1(  and ZZ . By 

averaging two statistics, one with a positive bias and one with a negative bias, one might 

obtain an improvement. However, in Table 1 it is obvious that none of )3()2()1(   and  , ZZZ  

has a bias that can be ignored unless n and 0α is large. The statistic Z  in Eq. (2) is an 

attempt to reduce the bias of )1(Z by subtracting the estimated bias. As can be seen in 

Table 1, this trial proves successful and in the sequel the statistic Z will be used. 

     One purpose of standardizing is to construct a variate that can be considered normally 

distributed with mean 0 and variance 1 (N(0,1)). It is easily shown that all statistics in Eq. 

(2) converge in distribution to N(0,1) (cf. Ch. 20.2 and 20.6 in (7)). In such a case one 

may utilize the nomograms published by Ewan and Kempf(8 for determining optimal 

alarm bounds. The problem is that normality may not be achieved unless 0α and n are 

large. It is beyond the scope of this article to study the approach to normality in detail, but 

it may be pointed out that among the statistics in Eq. (2) it was )3(Z that turned out to 

converge most rapidly to N(0,1). With 10 and 50 == nα the 95 % and 99 % percentiles in 

the distribution of )3(Z were 1.73 and 2.56, respectively. These are however far from the 

corresponding values 1.64 and 2.33 in the N(0,1) distribution. The normality assumption 

will only be used for comparisons in this paper. 
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Table 1 Bias (from zero) of the four Z-statistics in (2) for various values on n and 0α . Each 
figure is the average from 100,000 simulations. The theoretical approximate biases (see 
Appendix A) are very close to the ones given in the table. 

 

n 0α  )1(Z  )2(Z  )3(Z  Z 

5 5 .048 -.107 -.030 .002 

 10 .035 -.066 -.015 .002 

 30 .019 -.036 -.008 .001 

 100 .010 -.021 -.005 -.000 

10 5 .016 -.126 -.055 -.002 

 10 .019 -.079 -.036 .002 

 30 .011 -.045 -.016 .001 

 100 .010 -.021 -.008 .000 

30 5 .013 -.121 -.054 .001 

 10 .010 -.077 -.035 .001 

 30 .004 -.045 -.019 .001 

 100 .001 -.027 -.012 -.000 

100 5 .001 -.133 -.065 -.001 

 10 .003 -.088 -.037 .001 

 30 -.001 -.053 -.023 -.001 

 100 .004 -.018 -.019 .000 

      

      

2.2 Choice of reference value k and sampling- and calibration periods 

Often one wants to start the surveillance as soon as possible, but there are two stumbling 

blocks to deal with. First, the sampling period should be long enough so that a reliable 

estimate of the baseline rate 0α  is obtained. Second, given a reliable estimate of 0α  one 
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has to consider the fact that the sequence ( )tS  defined in eq. (1) is not stationary from 

start, and needs some time to reach a stationary level. 

     Consider first the precision of the estimated rate before outbreak. Table 2 shows the 5 

% and 95 % percentiles in the distribution of 0α̂ , which may be used as a crude measure 

of the probability concentration of the estimates. Although the concentration around the 

true value steadily increases with increasing sample size, it is seen that little is gained by 

increasing n from e.g. 30 to 100 especially for larger values of 0α .  

 

Table 2 5 % - 95 % percentiles in the distribution of 0α̂  determined from 100,000 
simulations. 

   n   

   5 10 30 100 

 5 3.4 - 6.8 3.9 - 6.2 4.3 - 5.7 4.6 - 5.4 

0α  10 7.8 - 12.4 8.4 - 11.6 9.1 - 11.0 9.5 - 10.5 

 30 26 - 34 27 - 33 28 - 32 29 - 31 

 100 93 - 107 95 - 105 97 - 103 98 - 102 

 

     The standard rule for choosing the reference value  k using a normal variate is to put 

rara mmmmk  and   where,2/)( += are the expected levels that are acceptable (during base 

line) and out-of-control (after an outbreak), respectively (cf. p. 372 in (8)). In cases when 

no obvious out-of-control level can be specified one may study how k behaves as a 

function of the relative increase of the mean, 1/ 01 −= ααRI , that one is aiming to detect. 

The latter is a function of the time that elapsed from the outbreak. From the results in 

Appendix A it follows that k for the statistic )3(Z  is obtained as 

( ) ( )[ ] RICRZERZEk ⋅≈>+==
0

2/11 )3()3(
α . In the last expression 

0αC is a constant that 

depends on 0α , but the expression is roughly the same for all n between 5 and 100. A 

similar relation holds for determining the reference value for the statistic Z. Proper values 
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of k can be found from Table 3. To take an example, it is required to detect outbreaks 

corresponding to a value of RI of about 0.5 to 1.5 when 100 =α . Since RIk ⋅≈ 59.1 one 

should chose a reference value somewhere between 1 and 2. This thumb rule may seem to 

be a bit naïve and hard to use in practise, but it gives anyhow rough information about the 

magnitude of k.  Below it will be seen there are also other aspects that determine the 

choice of k. 

 

Table 3 Values of 
0αC in the relation RICk ⋅≈

0α for some values of 0α . For other values 

of 0α linear interpolation may be used. 

    0α =    

 5 10 20 30 40 50 100 

     k for )3(Z  0.98  1.38 1.95 2.39 2.76 3.08 4.35 

k for Z   1.13 1.59 2.24 2.74 3.17 3.54 5.00 

 

 

     Given that 0α has been estimated one can not start the surveillance process immediately 

because the sequence ( ) 1≥ttS is not stationary (up to 2nd order) from start, but reaches a 

stationary state after some time. During the non-stationary part the mean of tS  increases 

with t, as well as the variance. It is obvious that the risk of false alarms is higher if the 

surveillance process starts during the non-stationary part before outbreak since the 

increase in tS may be confused with a real change of the α -parameter. Figure 1 illustrates 

the dependency on the reference value k in order to reach stationarity. For k = 1.0 and 1.1 

stationarity seems never to be reached for t less than 20, although the increase of the mean 

is very small for large t. For 3.1=k stationarity is reached at about 13=t and for 5.1=k at 

about 6=t . 

     To study the approach to stationarity more in detail for various values of k and 0α , 

100,000 simulations were performed to calculate the mean of 20,...,1for  =tSt using a 

sampling period of 0 with and 10 α=n being varied from 1 to 200. It was found that 
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approximate stationarity was found within a calibration period of 20 time units if 

1.1 and 50 ≥≥ kα . For 0α less than 5, k has to be chosen larger. For 1,2,3,40 =α  k has to 

be at least 1.1, 1.5, 2.1, 3.1, respectively, in order to reach stationarity within the given 

calibration period. As a curiosity one can mention that for 1.0k and 10 ==α  stationarity 

was not reached within 100 time units. 

 

 

Figure 1 Expectation of tS  for t = 1…20. The uppermost to the lowest curve shows the 

expectation for k = 1.0, 1.1, 1.3, 1.5 and 100 =α  (n = 10). Each point in the figure is the mean 
calculated from 100,000 simulations. 

 

2.3 Determination of the alarm boundary h 

An alarm for an outbreak is given if hSt >  in (1). When studying a change from one (‘in 

control’) mean am to another (‘out of control’) mean rm , k and h have customary been 

chosen to achieve a specified average run length (ARL) (that is, average time until an 
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alarm is signaled) under normality assumptions for the Z- observations(8. In the case 

considered in this paper there is no well-defined value of rm and furthermore, the 

normality assumption seems unrealistic unless 0α  is large. Instead h is chosen so that the 

probability of a false alarm (FA) at a single time point, say FAP , is at most 5 %, 1 % or 0.5 

%. Table 4 shows the values of h determined from simulations that meet those 

requirements for some values of k and 0α . 

 

Table 4 Values of h such that the probability of a false alarm (that is, the probability that 
hSt >  before outbreak) at a single time point is 5 %, 1 % and 0.5 %. For given k and 0α  the 

h values corresponding to the three false alarm probabilities were determined from 100,000 
simulations. In each simulation a sampling period of 10=n  and a calibration period of 20 
were used. 

  5 %   1 %   0.5 %  

0α  k = 1.1 k = 1.3 k = 1.5 k = 1.1 k = 1.3 k = 1.5 k = 1.1 k = 1.3 k = 1.5 

5 1.40 0.94 0.61 3.30 2.39 1.90 4.52 3.15 2.48 

10 1.28 0.84 0.53 2.98 2.12 1.63 3.94 2.75 1.16 

15 1.22 0.79 0.49 2.79 2.00 1.51 3.62 2.57 1.96 

20 1.18 0.78 0.47 2.75 1.91 1.46 3.57 2.48 1.87 

30 1.14 0.76 0.44 2.52 1.88 1.42 3.33 2.45 1.84 

40 1.12 0.74 0.43 2.49 1.81 1.40 3.25 2.35 1.79 

50 1.11 0.72 0.41 2.47 1.79 1.36 3.22 2.28 1.70 

75 1.09 0.69 0.39 2.44 1.75 1.30 3.20 2.21 1.67 

100 1.03 0.67 0.37 2.32 1.62 1.22 3.11 2.06 1.56 

150 1.02 0.63 0.36 2.28 1.61 1.20 2.92 2.05 1.55 

200 1.02 0.63 0.35 2.28 1.61 1.20 2.91 2.04 1.54 

 

 For given k, the h-values decrease somewhat irregularly with increasing 0α  and seem to 

stabilize at about 2000 =α . In practise 0α is estimated. The proper h-value corresponding 
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to the latter estimate can easily be found by linear interpolation. For estimates above 200 

the h-values at the bottom line can be used. The table does not show h-values for 0α less 

than 5. The reason for this is that the calibration period now has to be extended (cf. the 

preceding section) and this in turn leads to a substantial increase of the computer time for 

the simulations. 

 

2.4 An illustrative example 

To illustrate the procedures in Sections 2.2-2.3, consider the following example where a 

sequence ( )40
1=iiY of Poisson variates is simulated using the means 100 =α for 35<i and 

{ } 40,...,35for  )135(1.0exp01 =+−= iiαα , i.e. there is a weak exponential outbreak 

starting at 35=i . The first step is to estimate 0α  from the 10=n  first observations giving 

the estimate 3.9ˆ0 =α . The second step is to use the transformation Z in (2) to get a new 

sequence of standardized variates { }40
11=iiZ . The iZ ’s are plotted as dots in Figure 2. Next, 

the sequence of CUSUM statistics ),0max( 1−+−= iii SkZS  is calculated for 40,...,11=i , 

with 010 =S  and 1.1=k . The CUSUM statistics are plotted as circles in Figure 2. Finally 

one has to determine the boundary h which is the alarm limit for the CUSUM statistics. In 

this case it is decided to accept a probability of false alarm at a single time point of at most 

5 %. From Table 3 296.1=h , obtained from linear interpolation using 3.9ˆ0 =α . This 

limit is depicted in Figure 2. 

     In the figure a typical feature of CUSUM statistics can be seen, compared with the 

original iZ ’s.  The former are more conservative in the sense that they have less tendency 

to react on accidental changes. In Figure 2 one may notice that CUSUM did not alarm at 

35=i  (the time for the outbreak), but at 36=i  and later. 
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Figure 2 Illustration of the CUSUM statistic when used to detect an outbreak at t = 35 
(unfilled circles) together with the observed standardized Poisson variates (filled circles). 
The horizontal line is the alarm limit h = 1.296. 

 

 

 

3. Measures of ability to detect outbreaks 

A  large number of evaluation measures have been suggested to study the ability to detect 

outbreaks. These have mainly been used for comparing the performance of different methods, 

or in simulation studies to find optimal values of the parameters that are involved in a specific 

method, in this case k and the probability of a false alarm (FA) at a single time. Here the 

following aspects are considered: (1) Times-between-FAs, (2) =FAT Times to first FA with 

expectation FAE , (3) =MAT   Times to first motivated alarm, i.e. times to first alarm after 

outbreak, with expectation MAE , (4) Sensitivity (Sens) = Probability of an alarm given that an 

outbreak has occurred, (5) Specificity (Spec) = Probability of no alarm given that no outbreak 

has occurred, (6) Positive predictive value (PPV) = Probability of an outbreak given an alarm, 

(7) Negative predicted value (NPV) = Probability of no outbreak given no alarm.  
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3.1 Instability of measures based on Times-Between-False Alarms 

In a preparatory study the distribution of times-between-FAs was studied in 10 replicates with 

100 =α , each of length 610  time units. The probability of a FA at a single time point, FAP , 

was chosen as 5 % and the reference value was 1.1=k . Means, stds and coefficient of 

variations (CVs) from these simulations are found in Table 5. It is seen that there is a large 

variation of the means and stds in different replicates. The means varied between 19 and 205 

with this small number of replicates and it is evident that much longer simulation periods than 
610 are needed to get reliable estimates of means and other characteristics of interest.   

 

Table 5 Summary statistics for times-between-FAs in 10 replicates 

Replicate: 1 2 3 4 5 6 7 8 9 10 Overall 

Mean 44 41 35 103 43 41 87 19 205 32 43.3 

Std 56 55 48 122 5 55 109 27 238 47 66.4 

CV 1.7 1.8 1.8 1.4 1.7 1.8 1.5 2.0 1.4 2.1 1.91 

 

 

     The large instability is a result of a clustering phenomenon. This can be seen if the series 

of FAs is approximately treated as a stochastic point process in continuous time. Let tN

denote the number of FAs during time t, measured from an arbitrary time. Then the limiting 

index of dispersion ∞→= tNENVI ttt  as ),(/)( , is I = 2.1, indicating a high degree of 

clustering (cf. Ch. 4.4-4.6 in (6)). In clustered processes short intervals occur more often than 

longer intervals and the autocorrelation between intervals of lag j is positive and decreases 

with j. In the present data 20-40 % of all intervals-between-FAs occurred within 1 unit of time 

and about 2/3 of the intervals were shorter than the mean.  

     When FAP  was set to 0.5 % the clustering tendency was even more pronounced. The 

means in 10 replicates of length 610 now varied between 257 and 34855 and the limiting 

dispersion index was I = 2.5. 
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     As a comparison, consider the distribution of FAT = Times to first FA. This was studied in 

10 replicates with the same 0α  as above consisting of 1000 simulated series, each of length 

3000 time units. The latter length was enough to secure that at least one FA was obtained in 

each series. The result is summarized in Table 6. Comparing this table with Table 5 it is 

apparent that times to first FA is more suitable to use in simulation studies than times-

between-FAs.  

 

Table 6 Summary statistics for times to first FA in 10 replicates 

Replicate: 1 2 3 4 5 6 7 8 9 10 Overall 

Mean 92 92 94 99 91 94 102 92 100 98 95.4 

Std 163 178 202 192 190 146 216 151 206 195 185.3 

CV 3.1 3.7 4.6 3.8 4.4 2.4 4.5 2.7 4.2 4.0 3.77 

 

 

3.2 Times to first false alarm and connection with the Weibull distribution 

When studying the distribution of times to first FA by simulations it was found that series of 

length 3000 was enough to secure that at least one FA was observed, provided that FAP  was 5 

%. However, when the latter probability was smaller it frequently occurred that no FA was 

observed within the time range of 3000 time units. Due to limited computer resources it was 

not possible to extend the time range, so a problem with censored data arouse. Luckily it was 

found that the distribution of times to first FA was well approximated by the Weibull 

distribution and this facilitated the problem of handling censored data. 

     Define the random variable FAT = ‘Time to first FA’, where 1≥FAT is measured from start 

of the surveillance and after the sampling and calibration periods. Although FAT is a discrete 

variable the distribution of 1−FAT agrees well with the continuous two parameter Weibull 

distribution. According to the latter model the survival function and density of FAT is 
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respectively, and with  

expectation 1)/11( ++Γ θλ  and population median ( ) 1)2ln( /1 +θλ .          (3b) 

A simple way to estimate the two parameters λθ  and is to use the fact that 

( ) )ln()1ln()(lnln λθθ −−⋅=− ttS                                        (4) 

So, by regressing the empirical logarithmic negative log-survival function on logarithmic time 

one gets the parameter estimates, e.g. by using ordinary least squares (OLS) technique. The 

agreement between the empirical and the Weibull distributions can be measured by 

calculating the coefficient of determination for the linear relation in Eq. (4). 

     To illustrate these procedures, consider 1000 simulated series with 100 =α , each of length 

3000. In each series a sampling period of 10 was used to estimate 0α  followed by a 

calibration period of 20 after which the surveillance started and the time to first FA was 

noticed in each series. An alarm was signalled if hSt > , where h was chosen from Table 3 

such that FAP  was at most 5 % and k = 1.1. Linear interpolation was used to determine the 

final value of h from the estimated 0α (cf. Section 2.3).  

     A standardized histogram of times to first FA is shown in Figure 3 together with a fitted 

Weibull density. The standardized histogram was obtained from the expression 

51000/))5,(    (1000 ⋅+⋅ ttinnsobservatioofNumber  and the fitted Weibull density was 

)(ˆ1000 tf⋅ , where the latter density is obtained from Eq. (3a) with estimates inserted for the 

parameters. The OLS estimates of the parameters in Eq. (4) were 

68.6ˆ i.e. 2.7263,)ˆln(ˆ and 645.0ˆ ==⋅= λλθθ . Coefficient of determination was % 6.982 =R . 

If the values of λθ ˆ and ˆ are inserted into the expressions for the expectation (E) and median 

)( 50.q one gets 9.39ˆ and 6.95ˆ
50. == qE , close to the observed mean 95.1 and observed 

median 39.0.  

     The Weibull distribution was only used as an approximation in order to simplify the 

analysis when data are censored. (Censoring occurred when FAP  was below 5 %.)  
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Figure 3 Frequency distribution of times to first FA together with fitted Weibull density.  

 

The assumption of a Weibull distribution was merely used to overcome the problem with 

censored observations. Although the agreement with the latter distribution turned out to be 

fairly good, it is far from perfect. The random variable FAT should in fact have the density (cf. 

p. 62 in (6)) 

0 as ),(/1)(/)()( →→= tXEXEtStf X  

where the random variable X is the times-between-FAs. The latter behaviour is not in 

agreement with the Weibull density since, for 1<θ  the density tends to infinity and not to a 

constant as t tends to zero. Despite this lack of agreement noticed for small times the Weibull 

model was used as an approximation. 

 

3.3 Times to first motivated alarm 

In order to study the distribution of times to first motivated alarm ( MAT ), 10 000 simulated 

outbreaks were generated after the sampling and calibration periods (cf. Sect. 2.2). After each 

outbreak an observed value of MAT was obtained. The constant mean of the Poisson 

distribution was changed at time τ  from 0α  to  
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{ })1(exp01 +−= τβαα i , τ≥i                                          (5) 

with usual. as 10  whereand 0.3 0.2, ,1.0 0 == αβ The distribution of MAT  is illustrated in 

Figure 4 where it is evident that the latter distribution is heavily dependent on the parameter 

β . The distribution of MAT is much more concentrated than that of FAT , suggesting that means 

and medians can be estimated from relatively short simulated series without having to worry 

about censored observations. 

     The ability to detect an outbreak is dependent on the relative increase of the mean, 

1/ 01 −= ααRI . Table 7 shows the values of RI that are obtained 1-5 time units after the 

outbreak for various β  in Eq. (5). Here RI varies between 0.11 and 3.48. This interval covers 

well the RIs that are obtained for the data that are studied in Section 5 of this paper (about 

0.45 to 0.7). The RIs also cover those used by Perry and Pignatiello(18 (0.25-0.75) and by Han 

et al.(9 (1.25-2.0). In the latter two cases only jump changes were considered. Example of 

outbreaks with much larger RIs can be found in (9). Here continuous changes were 

considered, and for 1-5 time units after the outbreak RI increased from 2 to 80 for a data set 

denoted LDI (laboratory diagnosed influenza cases) and from 28 to 432 for the data set ILI 

(patients with influenza-like symptoms). 

Figure 4 Relative frequencies of times to first motivated alarm ( MAT ) when β  in (5) takes the 
values 0.1, 0.2 and 0.3. 
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Table 7 Relative increase of the mean in Eq (5), 1/ 01 −= ααRI , for various β  and times 
after outbreak. 

Time after outbreak 

β : 0 1 2 3 4 

0.1 0.11 0.22 0.35 0.49 0.65 

0.2 0.22 0.49 0.82 1.23 1.73 

0.3 0.35 0.82 1.46 2.32 3.48 

 

 

3.4 Sensitivity, specificity and prediktive values 

Specificity (Spec) FAP−= 1  was fixed in advance to 95 %, 99 % and 99.5 % and  sensitivity 

(Sens) was calculated as 

( ) dtthSPSens t +==>= τττ ...for   at outbreak  

Here the alarm limit h is determined for given values of 1-Spec in Table 4, and in the tables in 

Appendix B for the statistic suggested by Rossi et al. The integer d was at most 4. 

     The measures PPV and NPV are more complex since they depend on the probability of 

having an outbreak, say OUTP . One way to deal with the problem is to express the two 

measures in terms of Sens and Spec. From Baye’s theorem one easily obtains the relations 
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For given values of Sens and Spec, PPV is a monotonously increasing function of OUTP while 

NPV is monotonously decreasing. It is also seen that if two methods have the same values of 

Sens and Spec, then they must have the same predictive values. In practice it may be useful to 

base the calculation of the predictive measures on earlier estimates of OUTP . 
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4. Results  

4.1 Parameter settings in the Monte Carlo simulations and estimation methods 

Time to first false alarm ( FAT ) before outbreak and time to first motivated alarm ( MAT ) after 

outbreak were studied for the reference values k = 1.1, 1.3, 1.5 and when FAP  was 0.5 %, 1 % 

and 5 %, thus nine combinations in total. As described earlier, histograms of FAT suggested a 

strictly decreasing distribution with large variance that was closely connected with the 

Weibull density. Histograms of MAT showed unimodal distributions with small variance.  

     For FAT the mean and median was estimated by using four methods. One method based on 

moments, called MOM, simply calculated the sample mean and sample median and from the 

latter estimates of the Weibull parameters were obtained from Eq. (3b). Another method, 

called OLS, used the relation in Eq. (4) to estimate the Weibull parameters and from these the 

expectation and median were obtained by inserting the parameter estimates into Eq. (3b). 

MOM and OLS could only be used when FAP  was 5 %. For lower values of FAP  a certain 

proportion of FAT  was never observed since no FA occurred during the simulated range of 

3000 time units. In this case the Weibull parameters were estimated by using the Maximum 

Likelihood method for censored data(5, here called ML, and also a method based on 

quantiles(13 which simply will be called Q. The relative efficiency of the latter Q-method is at 

least 50 % compared with ML, but it has the advantage that the method is more reliable 

(anomalous estimates were never obtained) and can be used with computers having less 

capacity. (See (13) for details.) 

 

4.2 Times to first false alarm  

Table 8 summarizes the estimates from the simulated series. Both median and mean of FAT  

decreased with increasing values of FAP , and also with increasing reference value k. As 

expected, the location parameter λ  was closely related to median and mean, but it is quite 

remarkable that the shape parameter θ remained almost constant. Although there is some 

variation between the estimates obtained with the different methods, it is hard to find any 

systematic deviations. 
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Table 8 Estimates of median FAT , mean FAT  and Weibull parameters λθ  and , obtained by up 

to four estimation methods. Results are only presented in cases where the methods gave 

reliable estimates. An average value has been added in the table to simplify conclusions from 

the study. 

FAP  k Method Median Mean θ  λ  
0.5 % 1.1 Q 3000 7440 0.64 5330 
 1.3 ML 1065 2421 0.67 1836 
  Q 

Average 
1146 
1106 

2913 
2667 

0.63 
0.65 

2053 
1945 

 1.5 ML 635 1320 0.71 1060 
  Q 

Average 
670 
653 

1465 
1393 

0.69 
0.70 

1140 
1100 

1.0 % 1.1 ML 765 1742 0.67 1320 
  Q 

Average 
755 
761 

2085 
1914 

0.61 
0.64 

1391 
1355 

 1.3 ML 339 746 0.68 577 
  Q 

Average 
360 
350 

774 
760 

0.69 
0.69 

609 
593 

 1.5 ML 228 488 0.69 384 
  Q 

Average 
230 
229 

498 
493 

0.69 
0.69 

390 
387 

5.0 % 1.1 MOM 37.0 92.0 0.64 66.1 
  OLS 39.3 87.5 0.67 65.9 
  ML 38.0 95.4 0.63 66.4 
  Q 

Average 
37.3 
37.9 

67.4 
85.6 

0.79 
0.68 

59.2 
64.4 

 1.3 MOM 29.0 66.6 0.67 50.0 
  OLS 30.3 59.0 0.73 48.1 
  ML 25.9 66.6 0.62 45.1 
  Q 

Average 
28.6 
28.5 

51.0 
60.8 

0.80 
0.70 

45.1 
47.1 

 1.5 MOM 23.0 49.4 0.69 38.8 
  OLS 21.5 54.3 0.62 37.0 
  ML 21.5 53.8 0.63 36.9 
  Q 

Average 
23.7 
22.4 

43.5 
50.3 

0.78 
0.68 

37.9 
37.7 

 

 

     The results from the simulations in Table 8 can be compressed further by finding a 

functional relation between the mean of FAT , say FAE , as a dependent variable (the averages 

in Table 8) and kPFA  and as independent variables. The following relation was obtained 

(notice that FAP is given in %) 

8504.3 ,6683.1 ,2471with 
  ,

−=−==
⋅⋅=

FAFAFA

cb
FAFAFA

cba
kPaE FAFA

                                (7) 
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The coefficient of determination ( 2R ) for the linearized relation in Eq. (7) was 98 %. The 

expression in Eq. (7) will be compared with the corresponding expression for the expectation 

of MAT . 

 

4.3 Times to first motivated alarm 

The mean times to first motivated alarm ( MAE ) was studied for the nine combinations of k 

and FAP mentioned before, but also for 0.3 0.2, ,1.0=β  in Eq. (5), where a large value of β

indicates a more distinct outbreak. The result is shown in Table 9. As might be expected MAE

decreased with increasing FAP and β , but also with increasing k. 

Table 9 Mean times to first motivated alarm after outbreak ( MAE ) for some values of the 
exponential change parameter β . kPFA  and is the false alarm probability and reference value, 
respectively. 

   Mean  

FAP  k 1.0=β  2.0=β  3.0=β  
0.5% 1.1 5.53 3.06 2.11 

 1.3 5.17 2.78 1.86 
 1.5 5.10 2.69 1.79 

1.0% 1.1 4.91 2.68 1.81 
 1.3 4.64 2.48 1.65 
 1.5 4.56 2.40 1.57 

5.0% 1.1 3.35 1.78 1.15 
 1.3 3.16 1.69 1.06 
 1.5 3.11 1.65 1.04 
     

 

A power model fitted to the 27 estimated mean times gave the following result 

912.0 ,443.0 ,236.0 ,62.0with 
 ,

−=−=−==
⋅⋅⋅=

MAMAMAMA

dcb
FAMAMA

dcba
kPaE MAMAMA β

                       (8) 

2R for the linearized relation in (8) was 99 %. 
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4.4 Conclusions about expected times 

The relations in Eq. (7) and Eq. (8) can be used in several ways. In practice, one wants 

MAFA EE  and large be  to to be small. However, it is seen that both MAFA EE  and decreases 

when kPFA  and increase, so the latter relations are of less value for finding optimal values of 

kPFA  and . Consider the ratio MAFA EE / , which should be large. From Eq. (7) and Eq. (8) it 

follows that 

614.3225.1912.03985/ −− ⋅⋅⋅= kPEE FAMAFA β                                                (9) 

In the last expression the ratio is large when: (i) β is large (being beyond our control), (ii) 

FAP is small and (iii) k is small. The fact that k should be chosen small makes the choice of a  

proper value of k a bit complicated since it was demonstrated in Sect.2 that a small value of k 

has as a consequence that series of tS  needs longer time to reach a stationary state. Some 

values of MAFA EE /  are seen in Table 10. From Eq. (9) or Table 10 it may be difficult in 

practice to determine proper values of FAP  and k because it may hard to find a reasonable 

value of the ratio. However, Table 10 may yet give some guide lines. E.g. it can be concluded 

that the ratio is roughly three times larger for k =1.1 than for k =1.3 for given values of 

β and FAP . 

     An alternative approach would be to first specify an acceptable value of MAE (e.g. 2 or 3 

time units), a value of k from the thumb rule in Section 2.2 and an assumed range of β . Then 

the effects of the chosen parameter values on FAFA PE  and  can be studied in the following 

relations that are obtained from Eq. (7) and Eq. (8) 

308.260.0447.67188.0069.7 108  ,72522 −−−− ⋅⋅=⋅⋅⋅= kEPkEE FAFAMAFA β                      (10) 

 Instead of the exponential parameter β one may consider the relative change of the mean 

process t time units after the outbreak that was introduced in Ch. 2.2, 1)exp()( −= ttRI β , or 

))(1ln(1 tRIt += −β . E.g. a relative increase of 10% one time unit after the outbreak 

corresponds to a value of β of about 0.1. In Eq. (10) it is clear that a small increase of MAE

will give rise to a much larger increase of FAE . E.g. an increase of MAE from 2 to 3 will give a 

value of FAE that is 6.17)2/3( 069.7 = times larger. 
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Table 10 Values of the ratio MAFA EE / for some parameters. 

   
MAFA EE /   

(%)FAP  k 1.0=β  2.0=β  3.0=β  
0.5 1.1 808 1520 2200 

 1.3 442 832 1204 
 1.5 263 496 718 

1.0 1.1 346 651 942 
 1.3 189 356 515 
 1.5 113 212 307 

5.0 1.1 48 91 131 
 1.3 26 50 72 
 1.5 16 30 43 

 

 

4.5 Comparison with expected times for the CUSUM statistic suggested by Rossi et al 

The performance of the procedures based on the two statistics ZZ  and )3( in (2) was compared 

in simulations with .3.0 ,2.0 ,1.0 and 100 == βα . The h-values for the CUSUM method based 

on )3(Z in Eq. (2) were determined in two ways. From actual simulated distributions (cf. table 

in Appendix B) in the same way as the h-values for Z in Table 4 were obtained. The CUSUM 

statistic obtained in this way is denoted )()3( SSt . The corresponding statistic based on h-

values calculated under the assumption that )3(Z is a standard normal variate (cf. the table in 

Appendix B) is denoted )()3( NSt . The CUSUM statistic based on Z is denoted tS . 

     The expected times to first false alarm )( FAE and to first motivated alarm )( MAE are 

presented in Table 11a and Table 11b, respectively. In Table 11a it is seen that tS produces 

the longest expected times to first false alarm. The values for )( and )( )3()3( NSSS tt   are much 

shorter, especially if FAP and k are small. The expected times to first motivated alarm in Table 

11b are smallest for )()3( NSt  is to be expected since the statistic tends to trigger alarms more 

frequently. The statistic tS  has the longest expected times to first motivated alarm. However, 

the difference is small and should be put in relation to the huge differences that were noticed 

for expected times to first false alarms. 

     Due to the poor values of FAE for the statistic )()3( NSt the latter will not be considered in 

the sequel. 



25 
 

 

Table 11a Expected times to first false alarm ( FAE ) for CUSUMs based on the statistic tS  

and the two statistics )( and )( )3()3( NSSS tt . (See text.)  Relative differences from the results 

obtained for tS  are shown in parentheses. 

FAP  k 
tS  )()3( SSt  )()3( NSt  

0.5% 1.1 7440 695 (-91%) 405 (-95%) 
 1.3 2667 681 (-74%) 334 (-87%) 
 1.5 1393 570 (-59%) 281 (-80%) 

1.0% 1.1 1914 499 (-71%) 235 (-88%) 
 1.3 760 445 (-41%) 200 (-74%) 
 1.5 493 353 (-28%) 167 (-66%) 

5.0% 1.1 85.6 71.8 (-16%) 45.2 (-47%) 
 1.3 60.8 55.0 (-10%) 36.7 (-40%) 
 1.5 50.3 45.7 (-9%) 35.7 (-29%) 

 

 

Table 11b Expected times to first motivated alarm ( MAE ) for CUSUMs based on the same 
statistics as in Table 11a. 

tS  )()3( SSt  )()3( NSt  

FAP  k :β  0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 

0.5% 1.1  5.5 3.0 2.1 5.0 2.7 1.9 4.2 2.3 1.5 
 1.3  5.1 2.8 1.8 4.9 2.7 1.8 4.3 2.3 1.5 
 1.5  5.1 2.7 1.8 4.9 2.6 1.7 4.3 2.3 1.5 

1.0% 1.1  4.9 2.7 1.8 4.6 2.5 1.7 3.9 2.1 1.3 
 1.3  4.6 2.5 1.6 4.5 2.4 1.6 3.9 2.1 1.3 
 1.5  4.6 2.4 1.6 4.5 2.4 1.5 4.0 2.1 1.3 

5.0% 1.1  3.2 1.7 1.1 3.2 1.7 1.1 2.8 1.5 1.0 
 1.3  3.1 1.7 1.0 3.1 1.7 1.0 2.8 1.5 1.0 
 1.5  3.1 1.6 1.0 3.1 1.6 1.0 2.8 1.5 0.9 

 

 

4.6 Sensitivity and predictive values 

The sensitivity (Sens) of CUSUM based on )( and )3( SSS tt is shown in Table C in Appendix C. 

Notice that Sens in Section 3.4 was defined for a range of values of d, such that d = 0 gives 

the probability for an alarm at the time of the outbreak and d = 4 gives the probability for an 

alarm within 4 time units after the outbreak. 
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     In Table C it is striking that the two CUSUMs give roughly the same sensitivities. As 

expected, Sens increases with β and d and approaches 1.00 when 3.0=β  corresponding to a 

relative increase of the mean that is larger than 1.7 (cf. Table 7). It is also seen that Sens 

increases slightly with FAP but is rather unaffected by k. 

     From Table C the predictive values PPV and NPV can be calculated by using the relations 

in Eq. (7). To take some examples, consider the case when %5.0=FAP (i.e. Spec = 0.995), k = 

1.1 and 3.0=β . Using d = 0 will give Sens = 0.03 in Table C. Then, as the probability of an 

outbreak increases from 0.1 to 0.9, PPV increases from 0.40 to 0.98 and NPV decreases from 

0.90 to 0.10. By instead using d = 2 one obtains Sens = 0.85. As the probability of an outbreak 

increases from 0.1 to 0.9, PPV increases from 0.95 to 1.00 and NPV decreases from 0.98 to 

0.42. 

 

 

 

5. Two examples 

5.1 Outbreak of sick-listening among women in a Swedish municipality 

During the years 1995-2002 there was an unexpected large increase of the number of long-

termed (more than 60 days) sick-listed persons in Sweden. This was noticed in all 290 

municipalities of the country, but with various times of onsets and with various intensities. 

The increase was a result of an increased number of new cases (incidence rate) and in some 

regions also a result of prolonged durations of the sickness period. Further details about these 

issues can be found in a paper by Nilsson and Jonsson(19. In order to exemplify the procedures 

described in earlier sectionsr, data for women in the municipality of Sollefteå (roughly 20 000 

inhabitants, both sexes) will be used. 

     Figure 5 shows the development of the number of new cases of long-termed sick-listened 

women per month from January 2 1996 to December 31 2001.  It is seen that the development 

is quite stable up to about t = 45 (September 1999), but after this the number of cases per 

month increases from about 20 to more than 60.    
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Figure 5 Dots representing the number of new cases of long-termed sick-listed women in 

Sollefteå, per month January 2 1996 (t = 2) to December 31 2001 (t = 72). The number of 

cases is plotted together with a moving-average curve. 

 

 

 

     The average number of cases during the first 10 months was 20.6. By using the latter 

value, the alarming boundary h for the statistic tS can be found by linear interpolation in 

Table 4. The corresponding alarming boundaries for the statistics )( and )( )3()3( NSSS tt (cf. Ch. 

4.5), h(S) and h(N) respectively, are obtained similarly from the table in Appendix B. In the 

latter table )(Sh is determined from simulations and )(Nh  is determined from the assumption 

that )3(Z is a standard normal variate. The three types of alarming boundaries are compared in 

Table 12. It is seen that the h-values are smallest for the two approaches due to Rossi et al. On 

the other hand, the CUSUM statistics are somewhat lower for the Rossi approach, as can be 

seen in Figure 6 below. 
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FAP (%) k h h (S) h (N) 

5 1.1 1.18 0.98 0.74 
 1.3 0.78 0.64 0.45 
 1.5 0.47 0.35 0.21 

1 1.1 2.74 2.08 1.52 
 1.3 1.91 1.60 1.19 
 1.5 1.46 1.19 0.92 

0.5 1.1 3.56 2.59 1.85 
 1.3 2.48 2.02 1.49 
 1.5 1.87 1.53 1.19 

 

Table 12 Three different alarming boundaries (h) for some values of the probability of a false 

alarm at a single time point ( (%)FAP ) and k in Eq. (1). 

 

     To demonstrate the performance of the three approaches, consider the case were it is 

required that % 1=FAP  and one wants to detect a relative increase of about 50 %, i.e. RI = 

0.50. Since 6.20ˆ0 =α one gets from Table 3 1.150.027.2 ≈⋅≈k  and from this the value of h 

is determined from Table 12.  The result is seen in Figure 6. Here the CUSUM statistics based 

on Z in (2) are equal or somewhat larger than those based on )3(Z . Also the alarming 

boundaries are larger, h = 2.74, compared with h(S) = 2.08 and h(N) = 1.52. Already at t = 13  

CUSUM(N) gives an alarm, while CUSUM(S) is very close to 2.08 but does not alarm. At t 

=22 both of the latter CUSUMs give alarm and at t = 27, 28 and 40 all three CUSUMs alarm. 

The next times that alarms are given from all three CUSUMS are from t = 47 and onwards.  

     RI = 0.50 corresponds to a value of the exponential parameter β that is 0.40 1 time unit 

after outbreak and 0.20 2 time units after outbreak (Cf. Ch. 4.4.). From Eq. (8) the expected 

time to first motivated alarm ( MAE ) is 1.4 for 4.0=β and 2.6 for 2.0=β . 

     It is interesting to compare the alarms given by the three CUSUMs with the actual 

development plotted in Figure 6. There is a great variability in the number of cases from 

month to month, so just a few high values may not be an indication of a trend. In Figure 6 it is 

obvious that clear signs of an outbreak can be seen from about t = 46 and this would not have 

been possible to detect from a moving average curve at that time. The fact that all three 

CUSUMs alarmed after this time point (with some exceptions) is to be expected, but perhaps 

more interesting is to study what happened before the outbreak. CUSUM(N) was very keen on 

alarming before the outbreak (6 times), and to less extent also CUSUM(S). These results are 
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in agreement with the simulation studies in Ch. 4. Moore difficult to explain is that the 

CUSUM presented in this paper alarmed three times before the outbreak. Here only the case 

% 1=FAP was considered. With 5.0(%) =FAP   alarm was given only once before the 

outbreak .      

 

Figure 6 CUSUM statistics plotted against time. Circles represent the statistics suggested in 

the present paper while dots are the statistics suggested by Rossi et. al. The three horizontal 

lines are (from upper to lower) the alarming bounds given by h, h(S) and h(N). 

 

5.2 Detection of trends and seasonal variability in outbreaks of Chlamydial infection  

Chlamydia infection is a common sexually transmitted infection in humans. In Sweden 

Chlamydia is classified as a disease that is dangerous to the public and all cases are obliged to 

be reported to the authority (Swedish Institute for Disease Control, SMI).  After the 

millennium an increase of the incidence in Chlamydia was noticed in all Swedish counties(27. 

The increase was most pronounced in counties where tourists are crowded during the summer 

vacations. A typical example is the county of Halland at the Swedish west coast, where 

several popular beaches and dancing places are situated. 
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     The number of reported cases of Chlamydia per month in Halland during the period 

January 1 2000 (t = 1) to December 31 2007 (t = 96) is shown in Figure 7. The development 

seems to be quite stable up to about t = 44 (August 2004), even if smaller clusters of 

outbreaks can be distinguished earlier. After this there is an increase from roughly 50 cases 

per month to about 130. The moving average curve in Figure 7 reveals a weak seasonal 

variability with 8 peaks occurring during the 8-year period, although earlier peaks are less 

pronounced.  

 

Figure 7 Dots represent the number of new cases of Chlamydia in Halland per month January 

1 2000 (t = 1) to December 31 2007 (t = 96). Cases are plotted together with a moving 

average curve. 

 

     Average value during the first 10 months was 47.0. From this estimate the alarming 

boundaries can be obtained by linear interpolation in Table 3 and the tables in Appendix B. 

With % 5.0=FAP  and RI = 0.4 one gets 3.1≈k  and the boundaries h = 2.30, h(S) = 1.96 and 

h(N) = 1.49. The CUSUM statistics are plotted in Figure 8. The first alarm appears at t = 32 

for CUSUM(N) and at t = 34 for CUSUM and CUSUM(S). Further alarms are given 

repeatedly, especially close to the peaks of the periodic outbreaks. 
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Figure 8 CUSUM statistics plotted against time where circles represent the statistic suggested 

in the present paper and dots are the statistics suggested by Rossi et al. Alarming boundaries 

are not shown in the figure. 

 

     It may be of some interest to study the peaks in Figure 8. Table 13 gives the locally (within 

one year) largest peak heights per year and the times at which the peaks were reached. If one 

compares Figure 7 with Figure 8 one can notice that the peaks of the CUSUM statistics 

appear constantly earlier than those of the 5-point moving average curve. E.g. the latter curve 

has a local peak at t = 85, whereas the CUSUM statistic has a peak three months earlier at t = 

82. This illustrates again that although moving average curves may be a rough way of finding 

trends in data, it is less suitable for detecting outbreaks. 

 

Table 13 Largest local peak heights for the CUSUM statistic presented in this paper during 

the years 2001-2007, and time at which the peaks were reached. 

Year 2001 2002 2003 2004 2005 2006 2007 
Peak height 1.47 3.95 6.78 19.3 15.0 18.4 28.0 
t (month) 22 (Oct) 34 (Oct) 46 (Oct) 59 (Nov) 70 (Oct) 82 (Oct) 93 (Sept) 
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     The discovery of a seasonal variation of Chlamydia cases seems not to have been reported 

earlier. In a paper by Rolfhamre(23 Chlamydia is mentioned as an example of a disease 

without outbreaks, in contrast to diseases with periodic outbreaks. This seems no longer to be 

true. 

 

 

 

6. Concluding discussion 

When determining the alarming boundary h it has become a common practice to first focuse 

on the relation between the expected times to first false and motivated alarms, MAFA EE  and , 

respectively. The latter times have also being denoted average run lengths (ARLs). This 

seems not to be particularly useful for predicting outbreaks of medical health events for at 

least two reasons. One is that expected values as a measure in this case give a distorted picture 

of reality. In fact, the simulations carried out in Section 4 showed that 70 % - 80 % of all first 

false alarms occurred before the expected value. Similar criticism has been given in other 

papers (see e.g. Section 4 in (18)). A second reason is that it may be hard in practice to 

determine a desirable balance between MAFA EE  and .  

     In this paper the focus instead has been primarily on FAP , the probability of a false alarm at 

an arbitrary time point. The latter was set to 5 %, 1 % and 0.5 %, corresponding to a 

specificity of 95 %, 99 % and 99.5 %, respectively. Compared with other studies, values of 

the specificity of 95 % or more might be considered as extremely large. E.g. Choi et al use 

values of about 74 % - 95 %(4. The reason for demanding high specificity is to avoid an ‘the 

boy who cried wolf on’- effect, i.e. the fact that repeated false alarms may undermine trust in 

warnings issued. In this case there is a difference between what levels of specificity to choose 

when CUSUM is used in public medicine or in other areas such as industrial process control.  

     A stumbling block in this type of studies is determination of the reference value k and of 

the alarm boundary h. Here various ways of doing this have been outlined. One approach 

starts with a given FAP and assessing a relative increase of the mean, RI, that one is aiming to 

detect. The reference value k is then determined from Table 3 by using an estimate of 0α , the 
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mean before outbreak. The alarm boundary is finally obtained from Table 4. Alternatively, as 

mentioned in Section 4.7, one can focus on the relation between expected time to first false 

alarm and motivated alarm, MAFA EE  and , respectively. The latter approach seems to be less 

useful in practice since it may be hard to set up a proper balance between MAFA EE  and . In any 

case one should be aware of the danger of choosing k too small since in that case the CUSUM 

procedure may need a longer time to reach stationarity, as was described in Section 2.2. 

     Throughout the paper the mean level before outbreak, 0α , was estimated by using values 

from just 10 time points, which may seem a bit paltry. This was done merely for convenience 

when comparing difference methods. In practice estimates of 0α  can be computed 

sequentially during much longer periods, provided that you can be sure that the base line level 

is unchanged. 

     It has been shown that the CUSUM procedure based on Z in Eq. (2) has about the same 

expected times to motivated alarm and the same sensitivity as the procedure suggested by 

Rossi et al. The difference is that the former increases the expected time to first false alarm by 

up to 90 % (cf. Table 11a) compared with the method of Rossi et al. . So, the procedure based 

on Z in Eq.(2) that has been presented in this paper should be used if it is important to keep 

the frequency of false alarms at a low level. 
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Appendix 

A. Approximate expectations of Z and Z ,Z ,Z (3)(2)(1)  

Consider the approximation ( )  )(  where,2/)('')()( 2 XEggXgE =⋅+≈ µσµµ and 

)(2 XV=σ , that follows from a Taylor series approximation (cf. p. 328 in (2)). Let 

10  and αα be the expectations of Y before and after the outbreak, respectively, and put

01 /αα=R . The mean and variance of the estimator 0α̂ based on n independent observations 

before the outbreak is 0α  and n/0α , respectively. 

2
1

0
2
1

0
0

0)1( ˆˆ
ˆ
ˆ

αα
α
α

−=
−

=
−

Y
Y

Z . Here ( )nE 8/31)ˆ( 1
0

2/1
0

2/1
0

−−− +≈ ααα  and  

( )nE 8/1)ˆ( 1
0

2/1
0

2/1
0

−−≈ ααα , so ≈)( )1(ZE ( )
0

0
1

8
13)1

α
α ⋅

+
+−

n
RR , which reduces to 

02
1
αn

 when 1=R , i.e. before the outbreak. 

( )0
)2( ˆ2 α−= YZ  has ( )


























−−














−≈

−−
2
1

0
2
1

0
2
1

1
2
1

1
)2(

8
1

8
12 αααα

n
ZE = 

= ( )
0

0 4
11112
α

α ⋅







−−−

nR
R , which reduces to 

04
111
α

⋅





 −−

n
 when 1=R . In 

the last case bias does not vanish as ∞→n . 
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The estimator Z in (2) is simply 
0

)1(
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Z − , i.e. an attempt to reduce the bias. From 

the expressions above it follows that the expected value of Z when R = 1 is roughly 

n8/3 2/3
0
−− α . 
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B. Alarm boundaries h for CUSUM based on (3)Z  

For given FAP , k and 0α , values of h were determined for CUSUM based on the exact 

distribution of )3(Z in the same way as for CUSUM based on Z described in Section 2.3. 

These are presented in Table B1. Table B2 shows the corresponding values of h under the 

assumption that )3(Z has a standard normal distribution. 

 

Table B1 Values of h for CUSUM based on the statistic )3(Z in Eq. (2) such that the 
probability of a false alarm at a single time point is 5 %, 1 % and 0.5 %. Each figure is 
determined from 100’000 simulations. 

 

   5%   1%   0.5%  

0α  k=1.1 k=1.3 k=1.5 k=1.1 k=1.3 k=1.5 k=1.1 k=1.3 k=1.5 

5 1.02 0.69 0.40 2.27 1.74 1.37 2.85 2.19 1.75 

10 1.01 0.67 0.38 2.17 1.66 1.28 2.69 2.12 1.67 

15 1.00 0.66 0.37 2.12 1.63 1.24 2.64 2.06 1.60 

20 0.99 0.65 0.36 2.09 1.62 1.20 2.60 2.04 1.54 

30 0.98 0.64 0.35 2.08 1.59 1.19 2.59 2.00 1.53 

40 0.97 0.64 0.35 2.07 1.58 1.18 2.58 1.98 1.50 

50 0.96 0.63 0.34 2.06 1.57 1.18 2.56 1.95 1.49 

75 0.95 0.62 0.34 2.05 1.52 1.17 2.54 1.92 1.47 

100 0.93 0.60 0.31 1.97 1.47 1.11 2.43 1.85 1.44 

150 0.93 0.60 0.30 1.96 1.46 1.10 2.43 1.85 1.43 

200 0.93 0.60 0.30 1.96 1.46 1.10 2.43 1.85 1.43 

 

Table B2 Values of h as in Table B1, but where )3(Z is assumed to have a standard normal 
distribution. 

 5%   1%   0.5%  

k=1.1 k=1.3 k=1.5 k=1.1 k=1.3 k=1.5 k=1.1 k=1.3 k=1.5 

0.736 0.453 0.207 1.523 1.191 0.920 1.853 1.486 1.189 
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C. Sensitivity of CUSUM based on (S)S and S (3)
tt  

Table C  

     tS    )()3( SSt   

FAP  k d :β  0.1 0.2 0.3 0.1 0.2 0.3 

0.5% 1.1 0  .01 .02 .03 .01 .01 .03 

  1  .02 .08 .26 .02 .08 .27 

  2  .07 .37 .85 .07 .37 .85 

  3  .17 .81 1.00 .16 .81 1.00 

  4  .35 .99 1.00 .35 .99 1.00 

 1.3 0  .01 .02 .03 .01 .02 .03 

  1  .02 .10 .31 .02 .10 .31 

  2  .07 .40 .86 .07 .40 .87 

  3  .18 .83 1.00 .18 .82 1.00 

  4  .36 .99 1.00 .36 .99 1.00 

 1.5 0  .01 .02 .05 .01 .02 .04 

  1  .03 .12 .36 .03 .12 .34 

  2  .08 .43 .89 .08 .43 .89 

  3  .19 .83 1.00 .19 .83 1.00 

  4  .38 .99 1.00 .37 .99 1.00 

1% 1.1 0  .01 .02 .03 .01 .02 .03 

  1  .03 .10 .28 .03 .09 .28 

  2  .07 .39 .87 .08 .39 .87 

  3  .18 .82 1.00 .18 .82 1.00 

  4  .37 .99 1.00 .37 .99 1.00 

 1.3 0  .02 .03 .05 .02 .04 .07 

  1  .04 .15 .38 .05 .18 .43 

  2  .11 .48 .91 .12 .53 .93 

  3  .24 .87 1.00 .26 .89 1.00 

  4  .44 .99 1.00 .46 .99 1.00 
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 1.5 0  .02 .04 .08 .02 .04 .08 

  1  .06 .19 .47 .06 .18 .46 

  2  .14 .53 .93 .14 .53 .93 

  3  .28 .89 1.00 .28 .89 1.00 

  4  .49 .99 1.00 .48 .99 1.00 

5% 1.1 0  .08 .12 .19 .08 .13 .22 

  1  .17 .37 .66 .18 .41 .70 

  2  .32 .75 .98 .34 .78 .98 

  3  .52 .96 1.00 .55 .97 1.00 

  4  .73 1.00 1.00 .75 1.00 1.00 

 1.3 0  .08 .14 .23 .08 .14 .24 

  1  .19 .42 .71 .20 .43 .72 

  2  .36 .78 .98 .36 .79 .99 

  3  .56 .97 1.00 .57 .97 1.00 

  4  .76 1.00 1.00 .77 1.00 1.00 

 1.5 0  .09 .15 .24 .09 .15 .24 

  1  .21 .43 .73 .21 .45 .73 

  2  .37 .79 .99 .38 .80 .99 

  3  .57 .97 1.00 .59 .97 1.00 

  4  .77 1.00 1.00 .79 1.00 1.00 
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