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Preliminary testing in a class of simple non-linear mixed 

models to improve estimation accuracy 

by Max Petzold 

Department of Statistics, Goteborg University, GOteborg, Sweden. 

Summary 

In applied research hypothetical information about the parameters in a 

stochastic model sometimes can be generated from theory or previous studies. 

Replacing unknown parameters by constants might increase the estimation 

accuracy. This is especially apparent when replacing parameters in non-linear 

expressions. The problem is how to handle the uncertainty of the hypothetical 

information. Here, a pretest procedure will be examined for an unknown 

exponent of the explanatory variable in a simple non-linear mixed model. The 

optimal pretest sizes for some parameter settings are found for a minimax 

regret criterion based on Mean-Squared-Error. The optimal test sizes were 

found to be approximately valid also for the case where no subject specific 

components are present. The examined class of models is useful for modelling 

concentration-time data for drugs with rapid absorption, and a small-sample 

example is given to illustrate the potential gain in estimation accuracy of the 

pretest approach in pharmacokinetics. 

Keywords: HIV; Longitudinal; Monoexponential; Pharmacokinetics; 

Preliminary test; Random coefficient regression; Small sample. 



1. Introduction 

Repeated measurements on subjects over time are collected in many research 

areas, and the information is then summarized for different purposes. In e.g. 

bioequivalence studies of drugs, measurements such as area under curve 

(AVe) and concentration decline rate are estimated from repeated 

concentration-time data on individuals. I, 2 The proposed systematic relationship 

between the outcome and the explanatory variables might be non-linear due to 

unknown parameters.3
,4 A disadvantage when estimating in non-linear models 

is the need to use either analytical approximations or numeric techniques. The 

knowledge about the exact properties of these techniques is limited and they 

are associated with practical drawbacks such as convergence problems. 

Enabling the use of well-known and possibly more efficient estimators by 

restricting the model to a given linear relationship in its unknown parameters 

might be valuable. 

A linear model can be obtained if exact information about the parameters 

causing the non-linearity is incorporated. In reality only uncertain information 

about these parameters might be available, and the use of incorrect information 

can cause misleading results. However, if there is a large difference in 

efficiency of the estimators, the use of also slightly incorrect information can 

still be motivated to obtain larger estimation accuracy. The problem is then 

how to handle the uncertainty of the information. 

In this paper a pretest procedure which incorporates hypothetical information 

into the model estimation will be studied. Typically, a pretest procedure 

consists of a preliminary test on a specific parameter. The null-hypothesis can 

be generated from theory and an earlier research process, while the alternative 

hypothesis is based on the current sample. If the null-hypothesis is not rejected, 

the other parameters are estimated under the null-hypothesis. The pretest size 

can be optimised for certain criteria. 
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Pretesting has a long history5. 6 and has been extensively discussed in Judge and 

Bock7
. In regression, estimation of a conditional mean after a pretest for 

pooling two independent samples has been studied by Bhoj et al8 for example. 

If the poolability was rejected, the estimator of the mean was based on only one 

of the samples. In an example a large potential to improve the estimation 

accuracy in terms of reduced Mean-Squared-Error (MSE) was found for the 

pretest estimator compared to the one-sample estimator. 

Here, the aim is to improve the estimation accuracy of the population 

parameters in a simple mixed model setting with an unknown parameter in a 

non-linear expression. Uncertain hypothetical information about the parameter 

will be incorporated using a pretest procedure. To the author's knowledge this 

has not previously been done for non-linear mixed models. In a related work9 

the significance of the quadratic term in a polynomial model of order two was 

tested as a preliminary test for non-linearity. However, this is a different test 

situation and the generalisation to longitudinal models was not treated. 

In the next section, the model is described in detail and motivated by examples. 

The model is simple in the way that there is only one explanatory variable, and 

non-linear in the sense that the explanatory variable has an unknown exponent 

p. This model is chosen for simplicity to illustrate the potential of pretest 

procedures, but is useful for mono-exponential relationships between the 

measured response and the explanatory variable. In Section 3 the estimators of 

the linear model (p known) and the non-linear model (p unknown) are 

described. The variances of the corresponding estimators are compared over 

different values of p. Motivated by the differences in variance, a pretest 

procedure is introduced in Section 4 and the minimax regret optimal pretest 

sizes are found for some small-sample parameter settings. The relation to the 

case when no subject specific components are present is examined. A brief 
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example of pretesting in pharmacokinetics is given. Section 5 is a concluding 

discussion. The estimators are defined in Appendix I, and the asymptotic 

variances of the estimators are given in Appendix II. 

2. The simple mixed model 

In order to keep the examination of the pretest as clear as possible, the study 

will be limited to a simple mixed model. The model allows for random 

intercepts over cross-sectional units but have a fixed slope: 

(1) 

where Yy is the response at ti for the j:th subject. The random intercept BOj 

reflects factors which are specific for the j:th subject, and the BOj 's and the 

eij 's are assumed to be independently and normally distributed. It then follows 

that the vector Yj = cr;r.~)' has a T-dimensional normal distribution. 

- - - I ' Further, let the expected value be ECYj I X)l'xI - XC Po I PI) and let the 

variance be where and 

- ( I ( ,) _ X = 1 i XI ••• Xi ••• xl' ) • The design is balanced in the sense that X is the 
1'x2 

same for all units. 

Longitudinal studies are common in research areas such as pharmacokinetics 

and pharmacodynamics. The expression expCYy) has a multiplicative structure 

according to (1) which is appropriate when the variability of the observed 

values increases with the size. This is a phenomenon frequently apparent in e.g. 

4 



human immunodeficiency virus (HIV) data10 and in concentration-time data4
• 

Examples of curve shapes for different values of p are given in Figure 1. 

a. h. 

P=3 

Figure 1. Examples of curve shapes for different values of p; a.) Po + PI . t{ and h.) 

exp(Po + PI . t{) . 

The exp(Yy) -model has been used in HIV -studies. ll
, 12 In such studies it is 

normally assumed that two infected cell compartments (productively infected 

cells and long-lived infected cells) can be identified based on plasma viral load 

data. Each of these two compartments is believed to produce a viral decay 

during treatment with potent antiviral therapies which can be modeled similar 

to exp(Yy). f31 is then the decay rate for the compartment, and it has been 

suggested that the decay rate reflects the potency (efficacy) of the antiviral 

therapies.13 Accurate estimation of the decay rates is thus important in 

bioequivalence studies of different regimens.14 

Further, in pharmacokinetics models similar to exp(Yy) have been suggested 

for concentration-time studies. In e.g. Davidian and Giltinan15 Chap 5.2.4 the 

model was used over each of the two apparent monoexponential phases of 

plasma concentrations following intravenous injection of indomethacin. The 

model has also been suggested for modelling the total concentration-time 
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relationships for drugs where instantaneous distribution between plasma and 

tissues takes place. In Gibaldi and Perrier16 Chap. 1 examples of modelling 

concentration in plasma after an intravenous dose of prednisolone, and in 

serum and heart tissue after an oral dose of dipyridamole are given. The 

population AVC can be found by integrating the expected value of exp(Yy) 

over time (cf. Gibaldi and Perrier16 p. 14). Since exp(Yy) has a lognormal 

distribution longitudinal models which separate the between-subject variance 

from the within-subject variance are required when estimating the AVC. 

In the referred studies above a strong assumption of linearity was imposed 

when the exponent p was put to unity, i.e. t1
• Even if this value is well­

founded, it may be incorrect in a new study where the circumstances might 

have changed slightly. The common more flexible non-linear alternative, i.e. 

the use of a general real-valued exponent p estimated from the current data, 

was discussed early by Box and Tidwell1
? for a monotonic model like (1). The 

latter model was recently motivated and further developed for applications in 

medicine and epidemiologyl8, 19. However, introducing an unknown p means 

that we have a model which is non-linear in its parameters, and that we have an 

extra parameter to estimate. The estimator of the latter model can thus be 

suspected to be less efficient. By introducing a pretest procedure for p we can 

combine the use of uncertain hypothetical information with a more data­

dependent flexible modeling when Ho is rejected. An example where the 

pretest procedure is used for accurate and reliable estimation in bioequivalence 

studies is given in Section 4.3. 

For a more detailed characterization of viral decay rates or drug concentrations 

in body more detailed models are needed. In such case the parameters in (1) are 

regarded as functions of underlying differential equations.3
, IO For simplicity 

this kind of models is not treated here. 
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3. Relative efficiency of the estimators 

Different estimators of the unknown parameters in (1) have to be used for the 

linear and non-linear models, respectively. For the linear model (p known), 

the Maximum Likelihood (ML) estimators from Appendix IA can be used. 

These estimators are denoted with a single hat. For the non-linear model (p 

unknown) simultaneous ML estimators can be found by maximizing the 

likelihood directly.2o Having a balanced design it is easy to find the ML 

solution from the derivative of the likelihood function with respect to p, cf. 

Appendix IB. The estimators in the non-linear case are denoted with a double 

hat. 

It is the purpose of this section to examine the differences in variance of the 

corresponding estimators in the linear and non-linear cases, respectively. The 

size of the differences indicates the potential gain of using a pretest approach. 

The relative precision of the estimators of a parameter e is examined using the 

ratio R = V(B)/V(fJ). 

In the examples, the parameter settings were chosen by practical experience. 

The study was concentrated to the interval 0.5 ~ p ~ 3 which covers a wide 

range of curve shapes adequate for the applications in this paper, see Figure 1. 

The t; 's were chosen as equally spaced on the interval [1,10]. It should be 

noted that the sample design is important for the efficiency of the estimators. 

This has been studied specially for pretesting in linear regression21 and more 

generally also in non-linear regression22
, but is not treated here. 

3.1 Asymptotic variances of the ML estimators 

The asymptotic variances and covariances (n large) of the ML estimators can 

be obtained from the expectations of the second order derivatives of the 

Likelihood in (2), cf. Appendix II. It can easily be seen that the asymptotic 
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variances for the linear and non-linear model differ, except for the estimators of 

0-;0 and o-~ which have the same variance in both cases. It can further be seen 

that the R-ratio for the estimators of /31 does not depend on the variances, 

while the R-ratios for /30 and the mean function E[Y;j] = /30 + /31Xj do depend 

on the quotient 0-;0 / o-~ but not on the absolute magnitude of the variances. 

Finally, from Appendix II it can be seen that none of the three ratios depend on 

n. 

However, to get an idea about the losses in efficiency, the actual R-ratios over 

p have to be calculated in an example. Here, three quotients of the variances 

were chosen, 0-;0/0-; = 0.5, 1.0 and 2.0, which are of the same order as the 

estimated quotient 8;0/8; = 1.98 from the example in Section 4.3. 

When calculating the R-ratios they were found to be markedly below unity for 

the estimators of /30 and /31. Considering the former, it can be seen from 

Figure 2a that R is an increasing function of p which starts at a small value 

but ends at a fairly large value. For the estimators of /31' the value of R was 

found to be small with a local maximum of 1.1.10-2 at p = 0.90 (cf. Figure 

2b). The large difference in variances of the /31 -estimators is quite remarkable. 

However, it is important to remember that many common functions such as the 

mean curve and the tolerance limits do not involve /30 and /31 separately. From 

Figure 2c it can be seen that the R-ratio for E[r;j] is fairly large for all values 

of p, and always larger than the corresponding R-ratios for /30 and /31' 

respectively. This means that the relative increase in variance in the non-linear 

case is smaller for the combined estimator than for the single estimators. This 

result is due to the fact that the two estimators compensate each other which 

results in a relatively large R-ratio for the combined estimator. For simplicity 
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only results for the first time point XI are given here. From Figure 2a and 2c it 

can also be seen that R is positively related with the quotient of the variances, 

i.e. a relatively smaller a; tends to decrease the difference in variance of the 

estimators. 

a. b. 

1.0 0.012 

0.8 0.010 

0.008 
0.6 

Series order: 0:: 0:: 0.006 

0.4 - Quotient 2.0 
0.004 

- Quotient 1.0 
0.2 - Quotient 0.5 0.002 

0.0 0.000 

0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 

P P 

c. 

1.0 -
0.8 

_. -
0.6 

0:: Series order: 

0.4 - Quotient 2.0 

- Quotient 1.0 
0.2 

- Quotient 0.5 

0.0 

0.5 1.0 1.5 2.0 2.5 3.0 

P 

Figure 2. The R-ratio in (2) when estimating a.) Po, b.) PI and c.) E[I;j] for the three 

quotients of a~ / a; where n = T = 10 . 

3.2 Small sample results 

The small-sample situation is important in many research areas such as 

pharmacokinetics where the sample sizes and the number of observations per 

subject often are limited in early phases due to practical and ethical 

considerations To verifY that the results for the asymptotic variances in Section 

3.1 are relevant also in the given small sample situation, a simulation study 
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(100.000 replicates) was perfonned for p=0.5,0.6, ... ,3.0. The numeric 

estimation procedure introduced in Appendix IB was confinned to give 

unbiased estimators, with estimated variances close to the asymptotic variances 

from Appendix II. In the non-linear case, the maximal relative differences in 

variance were found to be about 2% for the estimators of flo, fll and E[1';j]' 

respectively. The corresponding differences in the linear case were found to be 

less than O.l %. Thus, the results in Section 3.1 are assumed to be applicable in 

the given small sample situation. 

4. Incorporating uncertain hypothetical information in the estimation 

procedure 

In Section 3 it was found that the estimators ofthe non-linear model can have a 

considerably larger variance than the corresponding estimators of the linear 

model. The loss in efficiency was also found to depend on the value of p. In 

many situations no infonnation about p is available, and the less efficient 

estimators of the non-linear model have to be used. Methods for improving the 

estimation accuracy in such situations include shrinkage and penalized 

likelihoods which were covered in a recent review.23 However, in this paper 

situations where hypothetical infonnation about p is available are treated. The 

results in Section 3 then point out that it can be valuable to incorporate such 

infonnation facilitating the use of the efficient estimators ofthe linear model. 

A common way to incorporate hypothetical infonnation in general is to use 

Bayesian methods, and different aspects of this have been studied extensively 

in phannacokinetics24
, 25. In the Bayesian approach we have prior beliefs about 

the distributions of the popUlation parameters, and we incorporate the new 

sample still using estimators of the non-linear model to obtain our posterior 

distributions. An example of the latter can be seen when modelling the viral 
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decay in a HIV studyl2, 26, but this is not the situation studied in this paper. 

Here, our aim is to find a more accurate estimation approach by using the 

estimators of the linear model when appropriate. When the beliefs about P is 

based on a previous sample the empirical Bayes approach can be used as an 

alternative where the estimates of the linear and the non-linear models are 

weighted.27 However, in this paper our hypothetical information is considered 

as generated from theory and a previous research process, and not from a single 

sample. 

Here, a frequentistic pretest approach will be used to incorporate the 

hypothetical information about p. First, a pretest estimator is introduced which 

is based on both the estimators of the linear model calculated given a 

hypothetical Po' and the estimators of the non-linear model. Second, since Po 

is not necessary equal to p an optimal test size is discussed in terms of the 

MSE of the estimator. This is a combined measure of variance and bias which 

captures the accuracy, or closeness, ofthe estimator. Last, the pretest estimator 

is examined using the suggested optimal test size in a concentration-time data 

example. 

4.1 The pretest approach 

Having a hypothetically value Po the null-hypothesis Ho: P = Po can be 

tested. A pretest estimator of a parameter e in model (1) can be defined as: 

ir ={~ if Ho is not rejected at test size a E [0,1] 

e otherwise 

11 



where the linear model under Ho is estimated given Po. Estimating e.g. Po the 

pretest estimator will be P; = Po when Ho is not rejected, and P; = Po 

otherwise. 

Let the mean squared error of ea be MSE(a) = E[ (ea 
- 8)2 J. Further, let the 

hypothesis error be d = Po / P which is equal to unity if Ho is true. Some 

general properties of MSE(a) then follows from Judge et al28 Chap. 3.3.1a-c 

which to some extent explain the results in the sequel: 

1. a = 0 and a = 1 correspond to estimating under Ho and HI' 

respectively. 

2. MSE(O) < MSE( a) when a > 0 and d = 1. 

3. MSE(a) ~ MSE(1) when a> 0 and d ~ ±oo, i.e. for large deviations 

from Ho. 

4. For 0 < a < 1 the MSE(a) first increases and obtains a maximum 

larger than MSE(l) and then monotonically decreases to MSE(1) as d 

diverges from unity. 

5. MSE(a) ~ min{MSE(O),MSE(1)} , i.e. the lower limit of MSE(a) will 

always be the MSE of the estimators of either the linear or the non­

linear models. 

The distribution of ea is complicated, and the MSE(a)-curves were here 

examined using simulations over a d-interval sufficiently large to catch the 

relevant information. Ho was rejected for large values of the pretest statistic 

-210gA where A is the ratio of the ML functions under Ho and HI' 

respectively. Using critical values from the chi-squared distribution with one 

degree of freedom the test was found to approximately hold the nominal test 
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size. Over all examined parameter settings in the sequel, the maximal 

difference was 8% of the nominal test size a . 

As an illustrative example, some MSE(a)'s for E[I;j] when p=1 and 

a~o/a;=0.05/0.10=0.5 are given in Figure 3. For d=l, i.e. Po=p=l, 

MSE(O) is smallest and MSE(l) is largest as expected. This was found to be 

true for all d on the interval [0.961;1.038], with the equality 

MSE(O) = MSE(l) at the end points. It can also be seen that MSE(a) for all 

a> 0 tend to be equal to MSE(l) already for relatively small deviations of d 

from unity. Note that the curves in Figure 3 are not fully symmetric. The 

general findings in Figure 3 are valid also for the other parameter settings in 

this paper. 

0.10 

0.09 

D 
0.08 D 

D 

D 

0.07 D 

0.06 

Series order at d=1 

- - - - - 0=1 

x 0=0.4 
A 0=0.2 
o 0=0.1 
D 0=0.01 

D --0=0 
D 

D 

0.05 +-----,-----,-----,-----.-----,----------, 

0.7 0.8 0.9 

Figure 3. MSE(a) for E[l';j] when p=l. 
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In Figure 3, P was equal to unity. However, from Figure 4a it can be seen that 

the value of d where MSE(O) = MSE(1) for E['y;j] is a decreasing function of 

P for d > 1. Approximately this gives the length of the d-interval where 

MSE(O) < MSE(a) for a> 0 which thus can be seen to be decreasing with 

larger values of P and to be very short for P ~ 2. This length has in a further 

simulation study been found not to be dependent on O"~ , but to be a decreasing 
o 

function of nand T and to be an increasing function of 0"; . This result is to 

some extent surprising since we know from Section 3 that the R-values are 

dependent on the quotient O"~o /0"; , i.e. both variances. 

4.2 Optimal pretest size 

There are several common optimality criteria for pretesting, see e.g. Judge and 

Bock? Chap. 3.3.3. Here, a minimax regret solution will be considered where 

the regret, as a function of d , is defined as 

REG(a)=MSE(a)-min{MSE(O),MSE(1)}.29 The minimax optimal value of 

a, say a', is the value which minimises the maximum possible regret; 

sup REG ( a') :s; sup REG ( a) for d E (-00, +00) and all a ~ O. This criterion is 
d d 

reasonable for many applications since it avoids large losses in estimation 

accuracy both when d is close to unity and when it diverges more. 

Considering a situation where Po might be well-founded from an extensive 

previous research it is obvious that e.g. a very risk adverse criterion that just 

minimises max(MSE) would be inappropriate. The solution for the latter 

criterion would be to use a' = 1, since max(MSE(I)):S; max(MSE(a)) over 

d E (-00, +00). This would be a relatively inefficient solution if we can assume 

that Po is close to p. 
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The maximum regret of E[r;j] can be seen in Figure 4b as a function of a . In 

this example the minimum of the maximum regret-function can be found 

approximately for a' = 0.17 . Using the minimax regret optimality criterion the 

value of a' is determined by the shape ofthe MSE-curves. For d = 1 the MSE­

values are solely determined by the differences in variance of the estimators, 

and estimators with small R-values (c£ Figure 2) will then have relatively large 

regrets. When d"* 1 the shape of the MSE-curves is more complicated since it 

also depends on the bias, and a' thus have to be examined in a simulation 

study. 

a. h. 

1.20 

1.15 

"C 1.10 

1.05 
x 

Xx 

1.00 +-_~_x..c;.x-,,-x .... x ~ ................................. 

0.5 1.0 1.5 2.0 2.5 3.0 

p 

0.03 

e 
~ 0.02 

E 
" .~ 0.01 

'" ::;: Xx 

x.x .. xxx.. • 

0.00 +-----,---~---r--___. 
0.0 0.1 0.2 0.3 0.4 

a 

Figure 4. In a.) the values of d where MSE(O) = MSE(I) over p for E[.Y;j] , and in 

b.) the maximum MSE regret over d as a function of a when p = 1 . 

The minimax regret solution a' was examined in a simulation study for a 

variety of practically relevant parameter settings. The results do not indicate 

that a' depends on o-~o and 0-:, but on n, T and p for which the values are 

given in Table 1. The dependences are expressed differently for the different 

parameters. From Table 1 the value of a' can be seen to be relatively large and 

stable for the estimator of E[r;j] over p. This can probably partly be 

explained by the corresponding relatively large and stable value of R in Figure 

2c. Compared to E[r;j] we can see that a' for Po and PI is smaller for small 
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values of p, and approximately the same for larger values of p. From Figure 

2a-b we can then see that the explanation of the results in Table 1 is more 

complicated than only the differences in variance. Extreme parameter values 

were not treated here, but n = 5, T = 100 and n = 100, T = 5 were included for 

comparing a' in pre-clinical and clinical study settings, respectively. 

However, for the cases studied here no differences regarding a' were found. 

This is interesting since the values of nand T affect both the MSE's and 

variance and bias of the estimators to different extent. The main conclusion 

from Table 1 is that the level of a' is rather stable for the different settings and 

that it is relatively large compared to the nominal test sizes normally chosen in 

ordinary test situations. 

Table 1. Minimax regret optimal test sizes a' found in a simulation study. 

a' for 
p n,T a' for /30 a' for /31 

E[~j] 

0.5 n=T=5 0.10 0.09 0.18 

n=T=10 0.14 0.13 0.18 

n=lOO, T=5 0.16 0.16 0.19 

n =5, T =100 0.16 0.16 0.19 

1.0 n=T=5 0.16 0.15 0.17 

n=T=10 0.15 0.15 0.17 

n =100, T =5 0.16 0.16 0.19 

n = 5, T = 100 0.16 0.16 0.19 

2:2.0 n=T=5 0.17 0.17 0.17 

n=T=lO 0.17 0.17 0.17 

n=lOO, T=5 0.17 0.17 0.19 

n =5, T =100 0.17 0.17 0.19 
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Having a balanced design, the estimation of the population parameters in mixed 

models is related to the case when no subject specific components are present, 

especially for a;o = o. This relation was first indicated in Section 3 where it 

was found that the R-ratio for PI does not depend on the variances, while the 

R-ratios for Po and E[Yij] depend on only the quotient a;j a; . In Table 1 a 

stronger indication of the relation was found since the results were found not to 

be dependent on the variances at all. The generalizability of the results in Table 

1 was further revealed in a study where a~ was put to zero. Approximately 
o 

the same results as in Table 1 were obtained also in this particular situation. 

4.3 An example of pretesting in pharmacokinetics 

To illustrate the potential gain of using a pretest procedure we will consider an 

early phase study of the pharmacokinetics of indomethacin following bolus 

intravenous injection of the same dose in 6 individuals.30 For each subject, 

plasma concentrations of indomethacin were measured at 11 time points 

ranging from 15 minutes to 8 hours post-injection. This data set was used by 

Davidian and Giltinanl5 in Chap. 5.2.4 where they represented each of the two 

apparent exponential phases of drug disposition by a mono-exponential 

function like exp(Yij). Here, the 5 observations equally spaced between 15 

minutes and 75 minutes are chosen as the first exponential phase for illustrative 

purposes. In Figure 5, the logarithm of the measured concentrations and the 

estimated mean functions E[Jij] for the linear model (where Po = 1 as in 

Davidian and Giltinan) and the non-linear model (p = 0.461) are shown. The 

sums of squares of errors for the two mean functions are relatively similar, 2.01 

and 1.90 respectively, which verifies that the chosen time interval is reasonable 

for representing the first phase. 
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1.5 

c 
~ 0.5 i ~ " . 
; O~----~-~~--~----~ 
" c: o 
%-0.5· 
...J 

-1 

-1.5 

0.5 ~ .... '" 1.5 

Figure 5. E[r;j] for p = 0.461 (solid line) and Po = 1 (dashed line) and the logarithm 

ofthe concentrations in the example. 

The gain of using the suggested pretest procedure can be examined by 

comparing the MSE's for the linear and non-linear models, respectively, with 

the MSE of the pretest estimators using the minimax regret optimal test size. In 

a simulation study the parameter settings O"~ /0"; = 0.049/0.025 and 
o 

P = 0.461 were used as estimated from the data in Figure 5. Three different 

null-hypotheses were tested, Po = 0.461, 0.5, 1.0, where Po = 0.5 was 

included since it would be a natural ad-hoc value from looking at the data. The 

optimal test sizes were found in Table 1 for P = 0.5 . 

The results can be found in Table 2. For Po = P = 0.461 the results were 

expected from the results in Figure 2. The MSE(O) ' s from estimating Po and 

PI should then be much smaller than the corresponding MSE(a') 's and 

MSE(1) 's, while a smaller difference was expected when estimating E[r;j]' 

From the results in Figure 4a we know that the value of d can diverge 

relatively much from unity when P is small and still having the inequality 

MSE(O) < MSE( a) for a > O. In Table 2 this is clear regarding the results 

when Po = 0.5. MSE(O) is then still smallest, but the differences have 

decreased. For Po = 1 we can see that the power is almost 100% which gives 
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MSE( a') ~ MSE(1). However, all three MSE(O) ' s are now very large, even 

when estimating E[~j]. The decrease in MSE from the stabilizing effect of 

using a fixed Po is now erased by the bias ofthe estimators. 

Table 2. The ratio MSE( a) / MSE( a') where P = 0.461 . 

Estimated a' from Po = 0.461 Po =0.5 Po =1.0 

parameter: Table 1: a=1 a=O a=l a=O a=l a=O 

Po 0.10 1.63 0.062 1.19 0.18 1.00 5.88 

PI 0.09 1.66 0.024 1.20 0.16 1.00 6.60 

E[~j] 0.18 1.04 0.91 1.02 0.91 1.00 5.92 

The main conclusions from Table 2 are 1.) also incorporating relatively poor 

hypothetical information can decrease the MSE substantially compared to 

always estimating the non-linear model, and 2.) the risk in terms of MSE of 

using the linear model can be large also for reasonable choices of Po. 

However, it can be argued that the main interest is in the mean function for 

which the MSE only to a limited degree depends on the choice of model, and 

that the MSE's when estimating Po and PI separately are of less interest. This 

is partly true, since E[Yy] is important for calculating e.g. Aue in both 

pharmacokinetics and in pharmacodynamics.3
) Nevertheless, also the single 

estimator of Po is important when e.g. adjusting the AUe for baseline.32
, and 

PI is e.g. used for estimating viral decay rates32 and for shelf-life studies of 

drugs33
• 
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5. Discussion 

It was the purpose of this paper to discuss accurate estimation strategies in non­

linear mixed models. To emphasise on the inferential issues of the pretest, the 

study was limited to a simple non-linear mixed model setting. First it was 

found that the relative difference in variance of the estimators of the linear 

model (p known) and the non-linear model (p unknown) can be considerably 

large. The difference is especially large for some estimators and some values of 

p. The problem was then how to utilize the efficient estimators of the linear 

model when p is unknown. Since uncertain hypothetical information about p 

might be available in e.g. bioequivalence studies, a pretest procedure based on 

both models was introduced. Optimal pretest sizes were found for a minimax 

regret criterion, and the benefits of the pretest approach were illustrated in a 

study of the pharmacokinetics of indomethacin. For d = 1 it was found that the 

MSE was decreased by up to 40% when using the pretest estimator instead of 

applying the non-linear model. The decrease was even larger, 85%, when 

comparing the pretest estimator to a reasonable linear model suggested in the 

literature. The suggested optimal pretest sizes were also found to be 

approximately valid for the case when no subject specific components are 

present. Having a balanced design this result was to some extent expected since 

the estimators of the longitudinal model then coincide, cf. Longford34 Chap. 

2.7. However, in Section 3 it was found that the difference in efficiency of 

some of the estimators depends on both 0";0 and 0";, which could have 

influenced the generalizabiIity. 

In Section 4 the linear model was tested versus the less restricted non-linear 

model. The assumptions about the restrictions are crucial for the subsequent 

inference. Here, Po was assumed to be generated from theory and an earlier 

research procedure and to be exogenous, i.e. independent of the stochastic 

variation in the present data sample. It should not be mixed up with 
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endogenous values from formal and informal modelling procedures. An 

example of the latter is when the value of Po is found by plotting and 

comparing the data with known functions (often from a limited ad hoc set as 

the square root, the linear, the quadratic and the cubic). Since this is a kind of 

pretesting in itself, the inference of the following formal pretest procedure will 

then be unclear. It should also be clarified that no absolute knowledge about p 

is assumed here, since it would then be inefficient to use pretesting. 

There are several optimality criteria7 of pretests and generally a relatively large 

test size is suggested. Three common criteria are: 1.) The minimax regret 

criterion which was used by Ohtanes when pretesting a linear hypothesis with 

the aim of estimating the residual variance. An optimal test size of about 30-

70% was then suggested. The minimax regret criterion was used in this paper 

due to its appealing minimisation of the maximal loss compared to using the 

optimal solution for given d. Compared to the two following criteria, this 

gives a solution which can be considered as more useful for situations where 

relatively accurate information about p might be available. 2.) Defining the 

relative accuracy as MSE(1)/ MSE(a) another criterion is to choose the test 

size that gives the maximum relative accuracy among the test sizes which 

guarantee at least a certain minimum relative accuracy over d . In Bhoj et al8 

and in Khan et al36 examples were given where the optimal test sizes were 

found to be 20% and 35% respectively. However, when using the single 

hypothesis pretest procedure in this paper it can easily be seen that the value of 

a' would then solely be determined by the subjectively chosen minimum 

relative accuracy. Both the sUbjectiveness and the fact that the optimisation is 

not at all based on the regret when d is close to unity can be questioned. 3.) A 

third criterion would be to minimize the average MSE(a), or equivalently the 

average regret, over d. 37 However, optimising over d E (-00,00) we will 

always chose a' = 1 since MSE(a) -+ MSE(1) when a> 0 and d -+ ±oo. This 
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is not a satisfactory solution in situations where Po is likely to be close to p, 

which can be expected in areas of extensive research. A pretest size of 100% is 

then inefficient since it does not enable the use ofthe efficient estimators of the 

linear model although the risk of a large MSE is small. 

In this paper only the properties of the pretest estimator has been examined. 

Another important issue is the inference of a main test following after a pretest. 

For example, the inference when testing the decay rates of two drugs after 

pretesting the exponent p will not be straight forward. As noted by 

Greenland38 in a discussion of reanalysis of epidemiologic databases using 

pretesting39
, one has to construct confidence intervals and interpret tests results 

obtained from a likelihood function chosen by preliminary testing carefully. It 

has e.g. been shown that pretest estimators potentially have asymptotic non­

normality.40 

Further, it is well-known that the size of the main test may be inflated by the 

pretest procedure. This has been studied, e.g. for pretesting for non-linearity in 

regression followed by a main test for association between two variables, in 

Grambsch et ae. They found that the size of the main test increased by roughly 

50% and suggested simple modifications of standard practice to protect the size 

with only minimal loss of power. Pretest procedures are sometimes motivated 

by giving a larger power of the following main test. The difference in size and 

power between a test following after a pretest procedure and the test in the 

complete family has been studied by Albers et a141
• They used a preliminary 

test of equality of variances in two samples followed by a main test of the 

means. They found that the power change is often mainly nothing else but a 

factor times the size change. This implies that a larger power is only obtained if 

the size exceeds the nominal size. However, it has been shown that an 

increased sample size can reduce the consequences of pretesting with respect to 

size and power.42 
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Here, a class of simple non-linear regression models has been examined for a 

balanced design. A study of more general models including also other aspects 

of modelling such as prediction outside the study interval and tolerance 

intervals would be valuable. The study could also be extended to other 

parameters than the exponent and compared to the use of linearization 

procedures's. 
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Appendix I - The estimators 

Some denotations to be used below: 

n n n T 

Y=n-ILY; , Sw = L(Y; -Y/, Syy = LL(Y;j -Y;)2 , 
j=1 j=1 j=1 ;=1 

T TnT 

x= LX; IT, Sxx = L(X; _X)2 and Sxy = LL(x; -x)(Yy -Y;). 
;=1 ;=1 j=1 ;=1 

A. Estimators of the linear model. The estimators in the linear case, denoted by 

a single hat, are well-known and are given here for completeness. 43,44 Having a 

balanced design and a known p, the uniformly minimum variance unbiased 

estimators of the regression parameters in (1) are Po =! I.Po j and 
n j=1 

~ 1 n ~ ~ A 

PI = - " PI .. Here Po· and PI· are the ordinary least squares estimators of nf,:t } } } 

POj and Plj which are obtained by only using the data from the j:th subject. 

~2 A 

The variances are estimated as a~o = Sw _~ and a2 = Syy - PISxY 
n-l T n(T-I)-1 

It should be noted that the probability of a negative estimate of a~o lS 

p( a~o < 0) = p( F,,-I,n(T-Il-I < (1 + T· a~./ a;rl However, the properties of 

a~ are not examined in the paper. 

B. Estimators of the non-linear model. The ML estimators in the non-linear 

case are denoted by a double hat and are defined as the estimators in Appendix 
A 

IA but given the estimator p of p. To obtain p, start with the Likelihood of 

the observations in (1) 45: 
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(2) 

Recall that x; = t{ . The estimator p is then obtained by solving the equation 

510gL 5 () . ---=- 2/31Sxy -/312Sxx =0 where the unknown A parameter IS 
5p 5p 

simultaneously replaced by its estimator. The resulting expression can be 

written as 

5L 

5p 

n T 

"''''Yx -nT·f·x L.L. 1) 1 

j=1 ;=1 

T 

'" 2 T-2 L.X; - ·X 
;=1 

n T T 

LLYijx; lnt; -nfLx; lnt; 
j=1 ;;1 T ;=1 = O. (3) 

Lx;2Int; -xLx; lnt; 
;=1 

In the simulation studies, Section 3.2 and 4, this approach was found to be very 

time-efficient when using a numeric grid search procedure over p in (3). 

Appendix II - The asymptotic variances 

The asymptotic variances and covariances (n large) of the estimators in 

Appendix I can be derived from the expectations of the second order 

derivatives of the Likelihood in (2).45 For a given p, the following expressions 

for the estimators of the linear model were obtained ( T ~ 2 ): 
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~2 2 [( )( 2 2)2 4J V(~2)= 2CT: V(CTB ) = 2 T -1 CTB T + CTe + CTe , v , 
o n(T -1)T 0 e n(T -1) 

(4) 

while all covariances between (Po ,/31) and (a~ ,a;) are zero. 
o 

Further, for the estimators ofthe non-linear model the following expressions in 

(5) and (6) were obtained. First put: M = ~ :i:>; In t;, SI = :t x; In t; - T . M . x , 
T ;=1 ;=1 

(5) 
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and 

(6) 

A 

while the asymptotic variances of and a; are the same as the 

A A 

corresponding variances in (4), and all covariances between (Po, PI' ~) and 

(8~ ,8;) are zero. Finally, using the previous results the variance of the 
o 

estimated mean function was approximated (Taylor series) by 

A A 

+2x;[cov(Po,PI) + PI ·lnt· cov(Po,ft) + PIX; ·In t· COV(PI,ft)]. 
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