
 Research Report 
2011:3 

ISSN 0349-8034 
Mailing address: Fax Phone  Home Page: 
Statistical Research Unit Nat: 031-786 12 74 Nat: 031-786 00 00 http://www.statistics.gu.se/  
P.O. Box 640 Int: +46 31 786 12 74 Int: +46 31 786 00 00  
SE 405 30 Göteborg    
Sweden    
 

 

Research Report 
Statistical Research Unit 
Department of Economics 
University of Gothenburg 
Sweden 
 

  

 Methods and evaluations for surveillance  
in industry, business, finance, 

and public health 
  

Frisén, M 

 



E-mail: marianne.frisen@statistics.gu.se 
Grant sponsor:  Swedish Emergency Management Agency (grant 0314/206) 

 

 

Methods and evaluations for surveillance  

in industry, business, finance, and public health  

Marianne Frisén  

Statistical Research Unit, Department of Economics, University of Gothenburg, SE40530 
Gothenburg, Sweden  

 
An overview on surveillance in different areas is given. Even though methods have been 
developed under different scientific cultures, the statistical concepts can be the same. When 
the statistical problems are the same, progress in one area can be used also in other areas. 
The aim of surveillance is to detect an important change in an underlying process as soon as 
possible after the change has occurred. In practice, we have complexities such as gradual 
changes and multivariate settings. Approaches to handling some of these complexities are 
discussed. The correspondence between the measures for evaluation and the aims of the ap-
plication is important. Thus, the choice of evaluation measure deserves attention. The com-
monly used ARL criterion should be used with care.  

 
Keywords: expected delay; gradual change; likelihood ratio; monitoring; multivariate sur-
veillance 
 
 

1 INTRODUCTION 
Statistical methods play an important role to assure quality and reliability in industry1. Indus-
trial quality control requires material checks, monitoring of the production and assembly 
process as well as control of the finished goods. The different certificates issued for compa-
nies with good quality control are important marketing tools. For some purposes retrospective 
analyses are useful, but here on-line surveillance, aimed at detecting a serious change, will be 
discussed. The theory and application of statistical surveillance started in industrial produc-
tion. Around 1930, Walter A. Shewhart developed the first versions of sequential surveillance 
by introducing control charts for industrial applications2, and methods are still being devel-
oped in that area. Complex problems will be discussed in Section 5. One example is the mul-
tivariate problem of monitoring several sources of variation in the assembly process of the 
Saab automobile3. In business, timely decisions are important. If, for example, the churn rates 
change4 it should be detected as soon as possible. For business decisions it is also important 
to timely predict the shift from a period of expansion to one of recession. Leading economic 
indicators can be used to predict the turns of business cycles5,6. The changes are complex, and 
in Section 5 nonparametric maximum likelihood estimates will be discussed as a basis for a 
surveillance system.  

The textbooks on quality control by Montgomery7 and Ryan8 and overviews for example 
by Woodall and Montgomery9 focus on quality control in industry. Surveys on statistical sur-
veillance are given for example by Lai10, who gives a full treatment of the field but concen-
trates on the minimax properties of stopping rules, and by Frisén11, who characterizes me-
thods by their different optimality properties. The terminology is diverse. “Optimal stopping 
rules” is most often used in connection with financial problems when full knowledge about 
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the model is assumed, so that probability theory can be used to determine the optimal time for 
trading. Literature on “change-point problems” does not always treat the case of sequentially 
obtained observations but sometimes refers to the retrospective analysis. The term “early 
warning system” is sometimes used in economic and medical literature. The term “monitor-
ing” is most often used in medical literature and with a broad meaning. In the literature on 
industrial production, the terms “statistical process control” (SPC) and “quality control” are 
used. These concepts are often used in a broad sense.  

The aim of sequential surveillance is the timely detection of important changes in the 
process that generates the data. The general questions that are always inherent in surveillance 
inference are treated in Section 2. The inferential aims of surveillance differ from those of 
hypothesis testing. Since the aims are different, so are also the evaluations and methods 
which meet these aims. In Section 3, some commonly used optimality criteria are described, 
and general methods to aggregate information sequentially in order to optimize surveillance 
are discussed. 

One of the stated aims of the European Network for Business and Industrial Statistics, 
ENBIS, is to facilitate the rapid transfer of statistical methods and related technologies to and 
from business and industry. In Section 4, some important applications in finance and public 
health are described to demonstrate inferential similarities to and differences from those used 
in industry and business. Besides the important business and industrial applications, many 
new applications have come into focus. Even though the methods have been developed under 
different scientific cultures, inferential similarities can be identified. The description of some 
important applications in Section 4 also serves to demonstrate some general types of com-
plexity for which special developments are needed. Emerging needs in other areas and the 
availability of powerful computing resources have encouraged the development of more ad-
vanced and efficient methods that take newer optimality requirements into account. General 
approaches to constructing methods for such situations are discussed in Section 5. The dis-
cussion in Section 6 contains some reflections on the future of the theory and applications of 
statistical surveillance. 
 

2 CHARACTERISTICS OF SURVEILLANCE  
 
In this section, we treat the basic characteristics of all on-line surveillance. Some complex 
problems of surveillance connected to the applications in Section 4 will be treated in Section 
5.  
     In on-line surveillance we follow a process sequentially and make repeated observations. 
We also make sequential decisions. Neither of these characteristics distinguishes surveillance 
from sequential hypothesis testing. However, in hypothesis testing there is a fixed hypothesis, 
and we just gather more information about whether this hypothesis is true or not. This is not 
the case in surveillance. The monitored process may work well at first, but after some time 
the machine may break down so that there is a change during the observation period. We 
cannot accept the null hypothesis and stop the monitoring even if the process is fine for a 
long time. The machine may start to produce faulty items after some time, and we want to 
detect that. Another specific characteristic of surveillance is that time is important. We need 
timely decisions. To retrospectively test whether there was a change is something completely 
different. In surveillance we need to determine, at each decision time, whether we have 
enough information or if we should wait for more observations until we give an alarm. 

In Section 2.1, notations are introduced and the statistical surveillance problem is speci-
fied. The choice of evaluation measures should match the aims of the surveillance, as it will 
decide which methods are considered appropriate. Thus, the metrics for evaluation are impor-
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tant and closely related to the character of the surveillance. Evaluation in surveillance is de-
scribed in Section 2.2.  

2.1 Notations and specifications 
The variable under surveillance could be a direct observation, like the measurement of the 
length of a produced item, or a derived statistic, like the autocorrelation between successive 
measurements, or even a vector of observations. We denote the process by X = {X(t): t = 1, 
2, . .}, where X(t) is the observation (vector) made at time t. We consider discrete time.  

The purpose of the monitoring is to detect a possible change, for example in the average 
length. The time for the change is denoted by τ. In this section as well as the next one, we 
consider only one change. Methods for the more complex problems in Section 4 are de-
scribed in Section 5. Before the change, the distribution belongs to one family, fD, and after 
the change at time τ, it belongs to another family, fC. At each decision time s, we want to dis-
criminate between two events, C(s) and D(s). For most applications, these can be further spe-
cified as C(s)={τ s}≤  (at the decision time, there has been a change) and D(s)={τ>s}  (at the 
decision time, no change has occurred yet), respectively. The (possibly random) process that 
determines the state of the system could, for example, be a parameter in the distribution. 
Most studies in literature concern a step change, and this will be considered in this and the 
next section, while methods for more complex problems, which are needed for the applica-
tions in Section 4, will be treated in Section 5. 

The alarm statistic, sp(X ) , should be based on the observations s = {X(t);t s}X ≤  available 
at the decision time s. The distribution of the time of the alarm, At , is dependent on the alarm 
statistic and a control limit, G(s) , as  

A st = min{s;p(X )>G(s)}. (2.1) 

Often the surveillance is active, as the process is immediately stopped or changed at the 
alarm (for example in order to adjust a machine in industrial production). In some applica-
tions, by contrast, surveillance is passive12 in the respect that the process is not affected by 
the alarm. In the automatic monitoring of disease incidences, the incidence will not be imme-
diately affected by the detection of an unusual value. In passive surveillance, the error risks 
are different from those in active surveillance13,12. There are some recent suggestions of spe-
cial evaluation metrics for passive surveillance in public health14,15,16. However, the first 
alarm has a special meaning also in passive surveillance. Here, only the properties up to the 
first alarm will be considered. 

The change point τ can be regarded either as a random variable or as a deterministic but 
unknown value, depending on what is most relevant for the application. If the time τ is re-
garded as a random variable, we have a distribution. This can be regarded as a prior distribu-
tion if Bayesian inference is used. The intensity, (t)ν , of a change is defined as 

(t) = P(τ=t|τ t)ν ≥ , which is often assumed to be constant over time. The same methods can 
be derived by Bayesian or frequentistic inference. However, the evaluations differ. Within the 
Bayesian framework all information is contained in the posterior distribution, but in this pa-
per frequentistic inference is used. This calls for other measures, as will be seen in the next 
section. 

2.2 Evaluation measures 
The evaluation measures are important since they should correspond to the aims . Quick de-
tection and few false alarms are desired properties of methods for surveillance. For some ap-
plications, also other specific requirements are relevant. These questions are discussed in 
Section 4.  
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Evaluation by significance level, power, specificity, sensitivity, or other well-known me-
trics may seem convenient. However, these metrics are not easily interpreted in a surveillance 
situation since they change with the length of the surveillance. The significance level has no 
unique value for methods commonly used in a surveillance system. The probability of a false 
alarm will tend to one when the length of the surveillance tends to infinity. The problems 
regarding the use of the conventional metric significance level apply also to power, specifici-
ty, and sensitivity. Accordingly, conventional measures should be supplemented by other 
measures designed for statistical surveillance.  

 
2.2.1. False alarms 

The most commonly used measure for surveillance is the Average Run Length when there is 
no change, ARL0=E(tA|D). A variant of the ARL is the Median Run Length, MRL, which is 
convenient to use in simulation studies. A measure commonly used in theoretical work is the 
probability that the alarm occurs before the change, PFA = P(tA<τ). The distribution of τ is 
also involved here. Other measures of the false alarm tendency have also been suggested in 
connection with complex situations and special applications.  

 
2.2.2. Delay  

The most commonly used measure of the delay is the ARL1, which is the Average Run 
Length until the detection of a change (if the change occurred at the same time as the surveil-
lance started). The part of the definition within parentheses is not always spelled out but gen-
erally used 17,8.  

An alternative measure of delay, which is closely related to a highly general utility func-
tion18, is the expected value of the delay from the time of change, τ=t, to the time of alarm, tA. 
It is here denoted by  

ED(t) = E[max (0, tA-t) | τ=t]. (2.2) 

Since the value of ED(t) will typically tend to zero as t increases, it may be preferable to use 
the conditional expected delay  

CED(t) = E[tA-τ | tA ≥τ=t ] = ED(t) / P(tA ≥ t). (2.3) 

Note that ARL1= CED(1)+1=ED(1)+1. For most methods, the CED(t) will converge to a 
constant value when the time of the change increases. This value is the Steady state Average 
Delay Time, SADT19,20. It is, in a sense, the opposite of ARL1 since only very large values of 
τ are considered.  

The first ones to use the notation CED and calculate CED for a specific value of τ seem to 
have been Zacks and Kenett in 199421. The present author advocates11,22 that CED be calcu-
lated for several values of τ to give the whole picture. 

Sometimes, the time available for rescue actions is limited. The Probability of Successful 
Detection23 measures the probability of detection with a delay time no longer than a constant 
d  

A APSD(d, t) P(t d | t t)= − τ ≤ ≥ τ = . (2.4) 

It may be useful to describe the ability to detect the change within a certain time also when 
there is no absolute detection time limit. The PSD can be calculated for different time lim-
its24,15. The ability to make a very quick detection (small d) is important in surveillance of 
sudden major changes, while the long-term detection ability (large d) is more important in 
surveillance where smaller changes are expected.  
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2.2.3. Predictive value 
When there is an alarm, it is important to know whether this alarm is a strong indication of a 
change or just a weak one. To judge this, it is necessary to consider the risk of false alarms, 
the expected delay, and how often changes occur. If τ is regarded as a random variable, this 
can be done by one summarizing measure. The predictive value of an alarm was suggested23 
as 

A APV(t) P( t | t t)= τ ≤ = . (2.5) 

This is the probability that a change has occurred when there is an alarm. Some methods have 
a nearly constant PV. Others, like the Shewhart method, have a very low PV at early alarms 
but a higher one later (for a constant intensity ν). The early alarms will not prompt the same 
serious action as later ones. In fact, one might consider disregarding early alarms by some 
methods. The FIR variants25, which give a Fast Initial Response, have the opposite aim and 
are suitable when the probability of an immediate change is very high. 

By choosing an alarm limit which results in a good predicted value, a relevant balance be-
tween the false alarms and the delay may be obtained. A computer program which illustrates 
the balance between delay and false alarms by the predicted value for different situations and 
methods is available for download at www.statistics.gu.se/surveillance, where also other free 
computer programs for surveillance can be found. 

 

3 OPTIMAL METHODS 
 

Different methods for aggregating information over time will be suitable for different situa-
tions. In order to see the correspondence we will first, in Section 3.1, specify commonly used 
optimality criteria and then, in Section 3.2, describe the methods which are optimal according 
to these different criteria. 

3.1 Optimality criteria 

The delay of an alarm depends on whether the change appears early or late after the start of 
the surveillance. In addition, this dependency is different for different methods. There is thus 
no single simple summarizing measure. Instead, several optimality criteria have been sug-
gested.  
 

3.1.1.  ARL optimality 
The most commonly used optimality criterion is stated as minimal ARL1 for a fixed ARL0. 
ARL1 is the expected run length under the assumption that τ=1 and that the observations at all 
time points have distributions which belong to fC. ARL0 is the expected value of the run 
length given that all observations have distributions which belong to fD. Discriminating be-
tween the two alternatives that all observations come from either of the two distributions 
should allocate the same weight to all observations by the ancillary principle. However, effi-
cient methods for surveillance will give most weight to the most recent observations. One 
should beware when violating inference principles. The dominating position of the ARL cri-
terion was questioned11 as some (artificial) methods which are useless in practice are ARL 
optimal. 

  An argument for the ARL criterion has been26 that for many methods it agrees with a va-
riant of the minimax criterion. However, it was demonstrated22 that for the EWMA method 
(see Section 3.2.5), there is no similarity between the optimal parameter values according to 
the ARL criterion and those according to the minimax criterion, while the optimal parameter 
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values by the criterion of expected delay and the minimax criterion agree well. The ARL-
optimal value of λ in the EWMA method is zero11, and it was demonstrated22 that other 
claims correspond to a local minimum. The ARL can be used as a descriptive measure but is 
questionable as a formal optimality criterion. 

 
3.1.2.  SADT optimality 

The steady state delay time, SADT, measures the delay asymptotically when τ tends to infini-
ty. This emphasis on late changes is thus the opposite of the ARL criterion, which focuses on 
early changes. In an evaluation27 of methods for surveillance of small incidence rates it was 
demonstrated that methods which were earlier (when judged by the ARL) considered to be 
the most efficient were the least efficient when judged by SADT. 

 
3.1.3.  Minimal expected delay 

The expected delay depends on the time of the change, τ. Instead of giving emphasis to ex-
tremely early (ARL) or extremely late (SADT) changes, it is natural to evaluate by an aver-
age. The minimizing of this average, for a fixed false alarm probability, is termed the ED 
criterion (the minimal expected delay criterion). The ED criterion corresponds to a highly 
general utility function18.  

 
3.1.4.  Minimax optimality 

A minimax solution, with respect to τ, avoids the requirements of information about the dis-
tribution of τ. Often, an even more pessimistic criterion is used. The “worst possible case” is 
determined by using not only the least favorable value of the change time, τ, but also the least 
favorable outcome of Xτ-1 before the change occurs. The minimax criterion28, upon which 
much theoretical research is based, is the minimum of: 

1
1

supesssup {[ 1] | },AE t Xτ τ
τ

τ +
−

≥
− +  (3.1) 

for a fixed ARL0.  
 

3.2 Methods 
For some methods, the delay is short for early changes but bad for later ones. For other me-
thods the case is the opposite. Thus, different methods will turn out to be the best depending 
on which summarizing measure is used. Different optimality criteria will give different an-
swers to the question of which method is the best for a specific situation, since different op-
timality criteria put emphasis on different values of τ.  

The sequentially obtained information will be aggregated in order to take advantage of all 
information. Many methods for surveillance can be expressed by a combination of partial 
likelihood ratios. The likelihood ratio for a fixed value of τ is  

L(s, t) = fXs(xs |τ=t) /fXs(xs | D). (3.2) 

The formula for these likelihood components will vary between situations. Commonly used 
methods are often expressed for simple settings like independent Gaussian observations with 
a step shift. Here, generalized versions are described by the likelihood expression. This is the 
basis for adaptation to the more complex settings in Section 5. 

  
3.2.1.  The full likelihood ratio method  

The full likelihood ratio method (LR) with the alarm statistic  
.  
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f (x |D(s))
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X

 (3.3) 

is optimal with respect to the criterion of minimal expected delay and also to a wider class of 
utility functions12. The full likelihood statistic can be expressed as a weighted sum of the par-
tial likelihoods L(s,t). The weights are proportional to the density of τ. An equivalent12 ex-
pression is by the posterior probability. This has motivated the name “the Bayes method.” 
However, it depends on the application whether the distribution of τ should be considered as 
a “prior”, as an observed frequency distribution, or just as the situation for which optimality 
is needed. 
 

3.2.2.  The Shiryaev-Roberts method 
The simplest way to aggregate the likelihood components is to add the partial likelihood ex-
pressions. This means that all possible change times, up to the decision time s, are given 
equal weight. The method18,29, now called the Shiryaev-Roberts method, can also be given a 
natural interpretation if the time of the change, τ, is regarded as a random variable. The me-
thod can then be regarded as a special case of the full likelihood ratio method where the in-
tensity ν tends to zero. It can also be seen as the LR method with a non-informative prior for 
τ.  

 
3.2.3.  The Shewhart method 

This method2 is simple and the most commonly used method for surveillance. The alarm is 
given as soon as an observation deviates too much from the target. Thus, only the last obser-
vation is considered. The alarm statistic of the LR method reduces to that of the Shewhart 
method when we specify C(s)={τ=s} and D(s)={τ>s}. Thus, the Shewhart method has op-
timal error probabilities when we want to discriminate between a change at the current time 
point and the case that no change has yet occurred for these alternatives. By several criteria, 
however, the Shewhart method performs poorly30 for small and moderate shifts. 

 
3.2.4.  CUSUM  

The CUSUM method17,31 can be expressed by the partial likelihood ratios as 
tA = min{s; max(L(s, t); t=1, 2,.., s) > G}, (3.4) 

where tA is the time of the alarm and G is a constant. The CUSUM method satisfies the mi-
nimax criterion of optimality described in Section 3.1.4.  

 
3.2.5.  Exponentially weighted moving average 

The alarm statistic of the EWMA method32 is an exponentially weighted moving average,  

Zs = (1-λ)Zs-1+λY(s), s=1, 2, ... (3.5) 

where  0<λ<1 and Z0  is the target value. The asymptotic variant, EWMAa, will give an alarm 
at  

tA = min{s: Zs>LσZ}, (3.6) 

where L is a constant. In the exact variant, EWMAe, the exact standard deviation is used in-
stead of the asymptotic one in the alarm limit. EWMAe can be regarded as a repeated signifi-
cance test, but the EWMAa version may be preferable in other respects33. 

The EWMA statistic gives decreasing weights to earlier observations. If λ=1, the EWMA 
method reduces to the Shewhart method, but if λ approaches zero all observations have ap-
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proximately the same weight. Small values of λ result in a good ability to detect early 
changes, while larger values are necessary to detect later changes. The search for the optimal 
value of λ has attracted much attention in literature. Most reports on optimal values of the 
parameter λ refer to the ARL criterion. However, it was demonstrated11 that by this criterion, 
λ should approach zero. Wisely enough, this value of λ is seldom used in practice since it 
would seriously reduce the ability to detect late changes. 

The EWMA method cannot be directly expressed by partial likelihood expressions, but it 
can be expressed as an approximation of the full LR method. The ED optimal value of λ was 
derived11, and the optimality properties were illustrated by large-scale simulation studies22.  

 
3.2.6.  Adaptability of methods 

Some methods are flexible and have several parameters. The parameters can be adapted to 
make the method optimal for specific conditions, for example regarding the size of the 
change or the intensity of changes. The flexible methods give possibilities, but the burden to 
choose the parameters is sometimes seen as an argument for using less flexible methods. The 
LR method can be optimized both for shift size and for intensity. The EWMA method can be 
optimized for a combination of shift size and intensity, while the CUSUM and Shiryaev-
Roberts methods can be optimized for shift size. The Shewhart method does not have any 
parameters to optimize for. However, all the other methods tend to the Shewhart method 
when the size of the shift tends to infinity34. 
 

4 SURVEILLANCE IN FINANCE, PUBLIC HEALTH, AND OTHER AREAS 
In the past, industrial quality control dominated the development of surveillance theory. In 
recent years, however, much development has occurred within other areas together with a 
fruitful cross-fertilization between areas35,16. Two areas of different kinds and of recent inter-
est are financial surveillance and public health surveillance. They will be described in some 
detail, while some other areas will be described more briefly. The aim is to illustrate the di-
versity of surveillance needs and to indicate inferential similarities between apparently differ-
ent surveillance problems.  

4.1 Financial surveillance  
In finance, the timeliness of transaction strategies is obvious. There are many textbooks de-
scribing financial problems and statistical models and methods36,37,38,39,40,41,42. Various statis-
tical techniques are described in these books.  

When the stochastic model is completely known, we assume an efficient market and can 
use probability theory to calculate the optimal transaction conditions. The mathematical and 
probabilistic aspects of finance have developed considerably. Important contributions are 
found for example in the journal Finance and Stochastics.  

The theory of an arbitrage-free market may seem convincing. However, there are some 
doubts that it is generally applicable in practice, and many efforts are made to increase the 
return of an investment. The efficient market hypothesis depends on the complete knowledge 
about the model. When the information about the process is incomplete, there may be an arbi-
trage opportunity43. If, for example, a change can occur in the process, observations should 
be analyzed continuously to decide whether a transaction at a certain time point is profitable 
as measured either by return or by risk. Statistical surveillance is needed for the decision44. 
Different aspects of the subject of financial surveillance are described in the book45. 

Since financial settings are often complex, approaches for surveillance in more compli-
cated situations than those described in the earlier sections are of interest. Advanced stochas-
tic models are used to capture important features in finance. The expected value could depend 
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on time in a complicated nonlinear way. Peaks and troughs are often of special interest as 
trading indicators. The detection of such events will be discussed in Section 5.1. In finance it 
is natural to measure the success of a transaction strategy by the return of the investment. 
Parameters other than the expected value are often of great interest. The risk (measured by 
variance), is one such example. A transaction strategy that offers a low risk, as measured by 
variance (volatility), is preferable. Thus, methods for surveillance of the variance46 in a fi-
nancial series are of interest. Moreover, complicated dependency structures are common. 
Nonlinear time series models, like the GARCH model47, incorporate some of these features. 
Multivariate data streams are of interest for example when choosing a portfolio48 of stocks 
and will be discussed in Section 5.2.  

4.2 Public health surveillance 
The timely detection of various types of adverse health events is crucial49. The delay of one 
day in the detection of and response to an epidemic due to a bioterrorist attack can result in 
the loss of thousands of lives and millions of dollars50. Today different kinds of data51 are 
collected to monitor for bioterrorism. The need for surveillance of malpractice came into fo-
cus after the serial killings by the British family physician Harold Shipman. The monitoring 
of mortality rates52 in primary care was partly motivated by this case. 

The monitoring of incidences of different diseases and symptoms is carried out by au-
thorities to detect outbreaks of infectious diseases. Epidemics, such as influenza, are for sev-
eral reasons very costly to society, and it is therefore of great value to monitor both for the 
outbreak and during the epidemic period in order to allocate medical resources. Methods for 
the surveillance of common diseases can also serve to detect new ones. The models of in-
fluenza for surveillance purposes are complex53. Gradual changes from unknown baselines 
are common in the area of public health and will be discussed in Section 5.1.2. The detection 
of both the onset54 and the peak55 of the epidemic period requires methods which are robust56. 
Predictions of the characteristics of the present influenza period from early observations are 
important for the planning of health resources57.  

Most of the theory of surveillance is derived for normal distributions, but in public health 
other kinds of distributions are of interest. Poisson processes are of special interest in public 
health surveillance where an increased incidence of adverse health events is serious. The 
need for systems for the detection of an increased birth rate of babies with congenital mal-
formations58,59 was apparent after the thalidomide tragedy in the early 1960s. Much suffering 
could have been avoided if the harm of the medication had been detected earlier. The dis-
tance between negative events, measured by the number of positive ones in-between, can be 
used when no other time scale is relevant. There are methods designed for such a case, where 
the negative event is the birth of a baby with congenital malformation and the positive one is 
the birth of a healthy baby27. 

The detection of a clustering of cases may reveal a source of adverse health events60. Spa-
tial surveillance is frequently used in the area of public health, partly because of the effective 
and freely available computer programs by Kulldorff61. Spatial surveillance can be seen as a 
special case of multivariate surveillance, as discussed in Section 5.2. 

In public health surveillance, quick detection is beneficial both at an individual level and 
to society. Recently there has been a vivid discussion of evaluation metrics. Some recent 
suggestions regarding evaluation in public health surveillance have been based on the re-
quirement of simplicity coming from the medical authorities who have to handle the informa-
tion in this new area. Thus, these suggestions are often based on metrics suitable for the more 
familiar hypothesis testing situation. However, complex problems seldom have simple solu-
tions. 
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4.3 Monitoring of patients  
In intensive care as well as in more sparse contacts with patients, monitoring is needed to 
detect changes. The technical advancements and the improved recording of the status of pa-
tients should be supplemented by a statistical surveillance system. One example of surveil-
lance in intensive care is the monitoring of the signals from the baby’s heart during labor23. 
An example of less frequent data is the surveillance of the growth of the fetus during preg-
nancy. Both the individual factor of the body size of the mother and the general growth pat-
tern will have influence on the growth. A longitudinal model was used in the derivation of 
likelihood based surveillance62. Surveillance of patients after a kidney transplant63 was car-
ried out by a fully Bayesian inference. 

4.4 Environment monitoring 
There is a growing interest in detecting changes in the environment. Needs for environmental 
control are described for example in the journal Environmetrics. The dependency structure is 
important for a system for the surveillance of biodiversity64. In 1986 there was the nuclear 
accident at Chernobyl in the former Soviet Union. Later in the same year, the Swedish Radia-
tion Protection Institute installed 37 stations for measuring radiation. Likelihood based sur-
veillance with modeling of the background radiation was used in a surveillance system65,66. 
 

5 COMPLEX SITUATIONS 
Real world applications are often complex, as was seen in Section 4. Thus, the basic surveil-
lance theory described in Sections 2 and 3 has to be adapted to special issues. There are many 
different complexities of interest.  

The theory of surveillance of dependent data over time, such as autocorrelated time 
series, is not simple due to the inherent time structure of surveillance. The most common ap-
proach to the surveillance of models with time dependencies is to make the alarm conserva-
tive by increasing the alarm limit of an ordinary method, so that the false alarm risk is con-
trolled67. Another common approach is to monitor the process of residuals68. This is especial-
ly useful in complicated time series models like GARCH, where explicit likelihood expres-
sions are not available47. The first observation in an autocorrelated series is special. There 
have been several suggestions about how to handle the first statistic and how to ease the 
computational burden69,70,71, 72. The CUSUM method for models where the change is in the 
conditional density (given the previous observation) is asymptotically minimax optimal for 
some autocorrelated models73,74.   

Most methods are constructed for normal distributions, but many applications require 
methods suited for other kinds of distributions. Since most methods can be expressed by like-
lihood functions (see Section 3.2), the change of the distribution in these functions will give 
methods which retain the optimality properties. For example, the EWMA method75 and the 
Shiryaev-Roberts method76 have been adjusted for the detection of a changed intensity in a 
Poisson process.  

There are many more complexities to consider, and two of them will be discussed in 
more detail. Complex types of changes are discussed in Section 5.1, and multivariate prob-
lems are described in Section 5.2. 
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5.1 Complex changes 
 

5.1.1. Changes between unknown levels 
Often, the change is characterized by a step shift in the expected value or another parameter 
of the distribution of the observations. The new parameter value after the change may be un-
known. A Bayesian approach to handling unknown levels can be useful. A prior for the un-
known shift size is used in the Mixture Likelihood Ratio (MLR) method77, which is a modifi-
cation of the CUSUM method. By the Generalized Likelihood Ratio (GLR) approach, maxi-
mum likelihood estimates are used in likelihood based methods. The GLR approach for the 
CUSUM method is asymptotically optimal28 when the shift size is incompletely specified.  

Knowledge about the shift size will increase the efficiency of the method. Errors in the 
pre-change conditions are even more influential since they will affect the false alarm rate and 
the trust in alarms5,54. In situations where we aim to detect an increase, we will get more false 
alarms if the baseline is underestimated than if the true value had been used. The opposite 
will happen if the baseline is overestimated. One way to avoid the problem of unknown pa-
rameters is to transform the data to a statistic that is invariant to the baseline. This can be 
done for example by using the deviation of each observation from the average of all previous 
observations23,78,79.  

 
5.1.2. Gradual changes  

Most of the literature on surveillance treats the case of an abrupt step change. In many appli-
cations, however, the change is gradual, as mentioned in Section 4. Methods for linear 
changes with a known baseline and a known slope have been suggested80,81. A method for 
detecting when a drift exceeds a threshold82 has been suggested and compared with methods 
which required knowledge of the baseline. As expected, methods which utilized a known 
baseline worked well in comparison. When the knowledge on the shape of the curve is uncer-
tain, non-parametric methods are of interest. A non-parametric method designed for the de-
tection of a change in monotonicity avoids the problem of unknown baseline. The need to 
detect turning points was described with reference to business cycles in Section 1, with refer-
ence to finance in Section 4.1, and with reference to public health in Section 4.2. At the out-
break of an epidemic disease the incidence typically increases gradually83 and then possibly 
declines53. Both the onset of the outbreak and the turning point are important to detect.  

The GLR approach, which has been suggested for unknown levels, can also be used for 
the situation where the timely detection of a change in monotonicity is of interest. The maxi-
mum likelihood estimation under order restrictions84,85 is used. The approach is semiparame-
tric as it is nonparametric with respect to the curve shape but parametric since distributions 
belonging to the exponential family are used86,87. Variants of this technique were used to 
detect turns in financial trading44 and epidemics56,55. By constructing a system for early warn-
ings of turns in one or several leading indicators of business cycles, the turning point time of 
the general business cycle can be determined using the same technique5,6. The properties of 
the semiparametric approach have been compared to those of parametric methods. If the pa-
rametric version is based on exact knowledge of the parameters, the parametric methods 
work best. In practice, however, the parameters are estimated, which affects the properties 
negatively and the nonparametric method can be preferred. 
  

5.2 Multivariate surveillance  
Multivariate surveillance is of interest in many areas, for example in financial settings47, as 
described in Section 4.1, and in public health surveillance 88, as described in Section 4.2. Spa-
tial surveillance is a special case of multivariate surveillance89. The surveillance of several 
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distribution parameters, such as the mean and the variance90, has the same structure as multi-
variate surveillance. Introductions can be found in a textbook91 on multivariate quality con-
trol and in an overview on multivariate statistical process control charts92. 

A natural first approach is the reduction of the dimensionality of the problem. Principal 
components are often used to reduce dimensionality93 and are useful when these components 
have a natural interpretation in the application. The most far-going dimension reduction is to 
reduce the information to a univariate statistic and then monitor this statistic. This is probably 
the most common way to handle multivariate surveillance, and if the changes occur at the 
same time in all variables it is optimal. This is the case, for example, at a fixture failure in a 
Saab automobile3. If there is a common change point τ for all variables, a sufficient reduc-
tion94 exists. Hence, it is possible to use the results of Section 3.2 directly. If this sufficient 
statistic is used in an optimal univariate method, then we have an optimal method for the 
multivariate problem. We can derive the likelihood components L(s,t) and aggregate them by 
a method which guarantees optimality according to Section 3.2.l. 

However, if the changes do not occur at the same time, the situation is different. Then we 
have a genuinely multivariate situation, and the relation between the different change points, 

1,... pτ τ , for the p different variables is crucial. There are results on sufficient reduction95 also 
for the case of different change points. These results were used to construct a method for the 
spatial surveillance of influenza in Sweden96. A commonly used approach is the parallel sur-
veillance of each variable, which triggers a general alarm when there is an alarm for any of 
the components. This works very well provided that the changes occur far apart. If the 
changes occur nearly simultaneously one would expect the optimal method for simultaneous 
changes (as discussed above) to work well. An approach between these two is a mix of the 
reduction by time and the reduction by variable described above. Then, the accumulated in-
formation on each component is used in a vector of component-wise alarm statistics. At each 
decision time, this vector is transformed into a scalar alarm statistic which is monitored. In 
the MEWMA method97,98, EWMA is used to accumulate the information in the first step 
while the Hotelling T2 control chart is used in the second step.  

ARL1 is the most commonly used evaluation measure also in multivariate surveillance. By 
the ARL, the evaluation is made for changes occurring at the same time 
( 1 2 ... 1pτ τ τ= = = = ). However, the case of simultaneous changes is very special. If the 
changes are simultaneous, a sufficient reduction exists94. Thus, an optimal method for the 
multivariate surveillance problem can be constructed by the general approaches for univariate 
surveillance described in Section 3.2, and other methods, such as MEWMA, should not be 
considered. Since the ARL assumes simultaneous changes, it is not suitable for evaluating 
methods designed for genuinely multivariate situations with possibly different change points.  

In the case of different change points, 1,... pτ τ , for the p different variables, the detection 
ability depends on when the different changes occur. Hence, we need special evaluation 
measures suitable for multivariate surveillance99. In many applications, it is the first change 
which is the most important and for which an alarm is needed. In these cases, we can concen-
trate on the delay from this time min 1min{ ,... }pτ τ τ= . The conditional expected delay in Sec-
tion 2.2.2 can be generalized to 

1 p A min A minCED(τ ,...τ )=E(t -τ |t τ )≥ . (5.1) 
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6 DISCUSSION 
The area of industrial quality control dominated the development of surveillance theory for a 
long time. In recent years, the need for surveillance in other areas has become obvious. In the 
last decade, the threats of bioterrorism and new contagious diseases have been important rea-
sons behind the intensified research in the field of surveillance theory.  

Walter Shewhart made pioneering work in the 1920s by introducing statistical surveil-
lance in industrial quality control. By the Shewhart method, each observation is judged sepa-
rately. Earlier, the focus was on simple standardized methods. The next important step was 
taken with the introduction of aggregation of information over time by the CUSUM 
method17. Shortly afterwards, the EWMA method was suggested32. The full likelihood me-
thod18, which fulfills important optimality conditions, was suggested some years later. 

As has been seen, surveillance is used in more and more areas of life. These are often 
complex, which makes advanced statistical theory necessary. The advanced theory of surveil-
lance, which is needed for many applications, is relatively new territory. The theory of statis-
tical surveillance can be expected to be further developed in response to the demands of ap-
plications in various fields. A cross-fertilization back to the applications could then be ex-
pected.  

The recognition that different applications have different evaluation requirements will sti-
mulate further development of these metrics. In the past, simple evaluation techniques suita-
ble for simple applications were dominating. Today we do no longer need evaluation tech-
niques which are simple to compute. Evaluation methods directed at the essence of the appli-
cation may be easier to explain even though the numerical computation by the computer is 
difficult. Robust methods, which do not require unnecessary assumptions, will be derived. 
Multivariate problems require further theoretical efforts.  

A very rapid development of practice and research may be expected in the future. Efficient 
computers and computer programs will play an important role in this development. The au-
tomatic collection of different kinds of data and the new possibilities of handling large data 
sets constitute a good base for surveillance systems.  
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