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1 Introduction
The aim of sequential surveillance is the timely detection of important changes in
the process that generates the data.
Surveys and bibliographies on statistical surveillance are given for example by
Lai (1995), who gives a full treatment of the field and concentrates on the mini-
max properties of stopping rules, by Woodall and Montgomery (1999) and Ryan
(2000), who concentrate on control charts, and by Frisén (2009) and the following
discussion who consider optimality for different applications.

2 Specifications and notations
The variable under surveillance depends on the application. We denote the process
by X = {X(t) : t = 0, 1, 2, . . .}, where X(t) is the observation made at time t,
which is here discrete.
The purpose of the monitoring is to detect a possible change. The time for the
change is denoted by τ . We consider only one change. Before the change, the
distribution belongs to the family f 0, and after the time τ , the distribution belongs
to the family f 1. The change point τ can be regarded either as a random variable
or as a deterministic but unknown value, depending on what is most relevant for
the application. Here, we use the latter approach.
At each decision time s, we want to discriminate between the two events,C(s) and
D(s). For most applications, these can be further specified as C(s) = {τ ≤ s} (at
or before the decision time, there has been a change) and D(s) = {τ > s} (at the
decision time, no change has occurred yet), respectively. The (possibly random)
process that determines the state of the system is denoted by µ(t). This is here
a parameter in the distribution. We consider a step change, where a parameter
changes from one constant level, say µ(t) = µ0, to another constant level, µ(t) =
µ1. Then, we have µ(t) = µ0 for t = 0, . . . , τ − 1 and µ(t) = µ1 for t ≥ τ .
We use the observations Xs = {X(t) : t ≤ s} to form an alarm criterion which,
when fulfilled, is an indication that the process is in state C(s), and an alarm is
triggered. We use an alarm statistic, H(Xs), and a control limit, L(s), where the
time of an alarm, tA, is

tA = min
{
s : H(Xs) > L(s)

}
.

Here, only the properties up to the first alarm will be considered.
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3 Models
Both models where the change from one distribution to another is in the condi-
tional distribution (on the earlier distribution) and in the unconditional distribution
are of interest. Since anAR(1) process depends on an earlier observation, the case
of no observation before the possible change time will be treated separately. In
the sequel it is assumed that the correlation coefficient, α, and the variance of the
observations are known.

3.1 U: Unconditional Change Point Models
Here we have one (unconditional) distribution for X before the change and an-
other after. The distribution f 0

(
X(t)

)
is true for t < τ and another f 1

(
X(t)

)
for

t ≥ τ . This framework was already deployed in Goldsmith and Whitfield (1961)
and Bagshaw and Johnson (1975). Essentially, the shift at the change point τ is
added to the unconditional mean of the data.

3.1.1 UA: At Least One Observation Before the Possible Change

The available observations areX(0), X(1), . . . The values of τ which we consider
are 1, 2, . . . We will study the model UA:

X(t)− µ(t) = α
(
X(t− 1)− µ(t− 1)

)
+ ε(t) ,

where the independent ε(t) ∼ N (0, σ2) and there is a step change in the uncondi-
tional mean µ(t),

E
(
X(t)

)
= µ(t) =

{
0 , t < τ

δ , t ≥ τ
.

Thus, the distribution for X(0) has mean zero. The (unconditional) variance for
all observations is

V ar
(
X(t)

)
= γ0 = σ2/(1− α2) .

Since we have one observation for t = 0, before the possible change, and thus
E
(
X(0)

)
= 0, we have

X(1)− µ(1) = αX(0) + ε(1) .

Observe that though this is a change between the unconditional distributions, the
conditional distribution has two change points (τ and τ + 1) and the conditional
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problem does not fit in the usual surveillance theory for one change point. The
conditional mean is

E
(
X(t)

∣∣X(t− 1)
)

=


αX(t− 1) , t < τ

αX(t− 1) + δ , t = τ

αX(t− 1) + (1− α)δ , t > τ

.

Yashchin (1993) mentioned this specific pattern for t = τ at the end of his Section
2. He considered this contribution as a head start for the CUSUM sequence right
at the change point. See also Harris and Ross (1991) and Atienza et al. (1998)
for some more references in SPC literature on the use of the unconditional model.
Another way to express this UA model (see, e. g., Schmid, 1997) is

X(t) = αX(t− 1) + ε(t) ,

Y (t) =

{
X(t) , t < τ

X(t) + δ , t ≥ τ
.

For Y (t) = X(t) + d(t) we get

Y (t) = αX(t− 1) + ε(t) + d(t) = α
(
Y (t− 1)− d(t− 1)

)
+ ε(t) + d(t)

= αY (t− 1) + d(t)− αd(t− 1) + ε(t)

with

d(t) =

{
0 , t < τ

δ , t ≥ τ
.

Note that case UA is the framework deployed quite recently in Han and Tsung
(2009b).

3.1.2 UB: No Observation Before the Possible Change

This is the most frequently discussed model in the literature and it is relevant for
many applications.
Here we need a special specification of the distribution of the first observation.
It is common, as in, e. g., Knoth and Schmid (2004), to rely on the marginal
distribution and assume

X(1) ∼ N
(
µ(1), γ0

)
.

In Section 5 we present several CUSUM type methods for this model.

3.2 C: Conditional Change Point Models

Here the conditional distribution f 0
(
X(t)

∣∣X(t− 1)
)

is true for t < τ and another
f 1
(
X(t)

∣∣X(t− 1)
)

for t ≥ τ .
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3.2.1 CA: At Least One Observation Before the Possible Change

By deploying d(t) directly we get immediately to the AR(1) model with a potential
change in the conditional distribution. Thus, by writing

X(t)− d(t) = α
(
X(t− 1)− d(t)

)
+ ε(t)

we conclude that

X(t) = αX(t− 1) + (1− α)d(t) + ε(t) ,

and finally for the conditional expected value

E
(
X(t)

∣∣X(t− 1)
)

=

{
αX(t− 1) , t < τ

αX(t− 1) + (1− α)δ , t ≥ τ
.

Note thatE
(
X(t)

)
= αE

(
X(t−1)

)
+(1−α)d(t) so thatE

(
X(t)

)
= αE

(
X(t−

1)
)

for t < τ . This is stationary only for a zero mean process. Additionally,
E
(
X(τ)

)
= δ and E

(
X(τ + i)

)
= (1−αi+1)× δ for i = 0, 1, . . . Hence, the se-

ries
{
X(t)

}∞
t=τ

is not stationary anymore. This demonstrates the great difference
between the conditional and unconditional models. They will be appropriate for
different applications.

3.2.2 CB: No Observation Before the Possible Change

Like for UB we would need some special definition for X(1). We have not seen
any work on this case.

4 Minimax optimality
A minimax solution, with respect to τ , avoids the requirements of information
about the distribution of τ . Lorden (1971) and later Moustakides (1986) treat the
“worst possible case”, by using not only the least favorable value of change time,
τ , but also the least favorable outcome of Xτ−1 before the change occurs. Their
minimax criterion is the minimum of:

W = sup
τ≥1

ess sup Eτ
{

[tA − τ + 1]+|Xτ−1
}
,

where Eτ () denotes the expectation for the change point position τ . The mini-
mization is for a fixed value of ARL0 = E∞(tA), where τ = ∞ denotes the in
control case where no change ever appears. Formulas for easier calculation ofW
are described in Appendix B. Numerical methods for approximate calculation are
described in Appendix C.
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5 The CUSUM method

5.1 CUSUM for general models
The CUSUM method was first suggested by Page (1954) and is reviewed for ex-
ample in the book by Hawkins and Olwell (1998). The alarm condition of the
method, for detection of a change at time τ from distribution f 0 to distribution f 1,
can be expressed by the partial likelihood ratios as (this is simply the transfer of
Page (1954) or Siegmund (1985) to dependent observations – see Subsection A.1
for some details regarding Page’s definitions)

tA = min
{
s : max

1≤t≤s
L(s, t) > G

}
, (1)

where G is a constant and

L(s, t) =
f 1(Xs|τ = t)

f 0(Xs|τ = t)
.

The method is sometimes called the likelihood ratio method, but this combination
of likelihood ratios should not be confused with the full likelihood ratio method,
which is a weighted average of the partial likelihood ratios. For the optimality
properties of methods constructed by different combinations of the partial likeli-
hood ratios see Frisén (2003).
For iid data the CUSUM method satisfies the minimax criterion of optimality de-
scribed in Section 4. Other positive properties of the method have been confirmed
for example by Srivastava and Wu (1993). It was demonstrated by Frisén and
Wessman (1999) that the CUSUM method works almost as well with respect to
the expected delay as the full likelihood ratio method and Shiryaev-Roberts meth-
ods which are constructed to meet the expected delay criterion.
Lai (1995) and Lai and Shan (1999) point out that the general structure and the
good minimax properties of generalizations of the CUSUM method make this
technique suitable for complicated problems.

5.2 CUSUM for autocorrelated Data
In many applications, there are time dependencies. For examples in finance see,
e. g., Okhrin and Schmid (2007a) and Okhrin and Schmid (2007b). For an exam-
ple of an environmetric application see Pettersson (1998). The theory of surveil-
lance of dependent data is not simple. The most common approach to surveillance
of models with dependencies is to adjust the alarm limit of an ordinary method, so
that the false alarm risk is controlled, see, e. g., Schmid and Schöne (1997). An-
other approach is to monitor the process of residuals as in, for example, Kramer
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and Schmid (1997). It is natural to modify the CUSUM method by use of the
conditional likelihood (conditioned on earlier observations). Several suggestions
about how to handle the first statistic and how to get less computational burden
are given. For discussions about different variants of CUSUM for dependent data
see, e. g., Nikiforov (1979), Basseville and Nikiforov (1993), Yashchin (1993),
Schmid (1997), and Lai (1998).
For the model CA we have

L(s, t) =

f 0
(
X(0)

)
×

t−1∏
i=1

f 0
(
X(i)

∣∣X(i− 1)
)
×

s∏
i=t

f 1
(
X(i)

∣∣X(i− 1)
)

f 0
(
X(0)

)
×

s∏
i=1

f 0
(
X(i)

∣∣X(i− 1)
)

= exp

{
1

2σ2

s∑
i=t

−
(
X(i)− αX(i− 1)− (1− α)δ

)2 (2)

+
(
X(i)− αX(i− 1)

)2}

with t = 1, 2, . . . , s. For the model CB we have the same expression for t > 1 but

L(s, 1) =
f 1
(
X(1)

)
f 0
(
X(1)

) = exp

{
1

2γ0

[
−
(
X(1)− δ

)2
+
(
X(1)

)2]} (3)

For the model UA, we have a third distribution f 0,1 besides f 0 and f 1.

L(s, t) =

f 0,1
(
X(t)

∣∣X(t− 1)
)
×

s∏
i=t+1

f 1
(
X(i)

∣∣X(i− 1)
)

s∏
i=t

f 0
(
X(i)

∣∣X(i− 1)
)

= exp

{
1

2σ2

[
−
(
X(t)− αX(t− 1)− δ

)2
+
(
X(t)− αX(t− 1)

)2
(4)

+
s∑

i=t+1

−
(
X(i)− αX(i− 1)− (1− α)δ

)2
+
(
X(i)− αX(i− 1)

)2]}

For the model UB we have the same expression as for UA for t > 1 but L(s, 1)
is the same as for CB. This statistic combined with the CUSUM rule (1) is in the
sequel named method M1.
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For all the models the CUSUM statistic is based on

max
t=1,2,...,s

L(s, t) .

For application and numerical evaluations, other equivalent expressions are more
convenient. We define

H(s) = max
t=1,2,...,s

σ2 logL(s, t)

δ
(5)

as the CUSUM statistic. The same operation applied to G leads to the alarm limit
h = σ2 logG/δ . The iteration rules of H(s) for the different CUSUM methods
are derived in Appendix A.

5.3 Alternative CUSUM-like Methods for Model UB
Several alternatives to method M1 are suggested here and in the literature. The
statistics of M1 described in Section 5.2 by (3) and (4) can be expressed as

H(1) = (1− α2)
(
X(1)− k

)
,

H(s) = max
{
H(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
, ε̃(s)− k

}
where ε̃(s) = X(s) − αX(s − 1) and k = δ/2. As is seen in Appendix A, this
leads to a sequence with reflecting barrier

H∗(s) = max{H(s), zr} with zr =

{
−αk , α > 0

αh− α(1− α)k , α < 0

and

H∗(s) = max
{
H∗(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
, ε̃(s)− k, zr

}
.

The alarming behavior is, for h > 0, equivalent to that of M1. Reflection at 0, the
usual CUSUM lower barrier and deployed in Knoth and Schmid (2004), leads to

H0(1) = max{H(1), 0} ,
H0(s) = max

{
H0(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
, ε̃(s)− k, 0

}
.

H0(s) does not exhibit the same alarming behavior as H(s) and H∗(s). Note
that in Schmid (1997) the iteration rule for H(s) was proved, while in Knoth
and Schmid (2004) it was wrongly assumed (without proving it) that H0(s) =
max{H(s), 0}. The method based on the statistic H0 in combination with the
CUSUM alarm rule is here named M4.
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The next two competing CUSUM methods are quite similar. If we would consider
the UA instead of the UB framework, then they would coincide. Essentially, they
differ in the treatment of the first observation. They stem from concepts such as
introducing CUSUM as sequence of repeated SPRTs as in Basseville and Niki-
forov (1993) or deploying the standard CUSUM to the (empirically recaptured)
residuals, ε̃(s), like in Runger et al. (1995). To get the method based on repeated
SPRTs, in the sequel called M2, apply the CUSUM method derived for CB –
based on (2) and (3) – to UB. This leads to the same sequence for s > 1 as for the
repeated SPRTs and the same choice for s = 1 as for method M4.

O(1) = H0(1) = max{(1− α2)
(
X(1)− k

)
, 0} ,

O(s) = max
{
O(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
, 0
}
.

Eventually, the residual CUSUM derived as in Knoth and Schmid (2004) — see
also Harris and Ross (1991), Runger et al. (1995), or Wieringa (1999) for earlier
works on residual CUSUM schemes — provides method M3. Here we have

R(1) = max

{
(1− α2)

(√
1 + α

1− α
X(1)− 1− α

1 + α
k

)
, 0

}

and
R(s) = max

{
R(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
, 0
}
.

The basic idea of the residual schemes is to apply a standard method to an iid
stream of new variables that are normalized in the in-control.
For all methods described above, their worst-case performance differs between
τ = 1 and τ > 1. We will examine modifications of their first CUSUM statistic
which makes the worst-case performance equal between τ = 1 and τ > 1. The
basic idea is to mimic at τ = 1 the worst-case for τ > 1. The latter is based on
the minimal value for the last CUSUM value prior the change point τ . For M1 it
is zr, while for the other methods it is 0. Fortunately, the value H∗(τ − 1) = zr
yields the following nice property:

H∗(τ) = max
{
zr+(1−α)

(
ε̃(τ)−(1−α)k

)
, ε̃(τ)−k, zr

}
= max

{
ε̃(τ)−k, zr

}
.

See (11) and (12) in the Appendix and recall the specific structure of zr for α >
0 and α < 0. Thus, it is sufficient to equip H∗(1) for τ = 1 with a similar
distribution as the one of ε̃(τ) − k for τ > 1. Consequently, replacing H(1) =
max

{
(1− α2)

(
X(1)− k

)
, zr
}

by

max
{√

1− α2
(
X(1)−

[
2− 1/

√
1− α2

]
k
)
, zr

}
9



does the trick. Recall also the singular nature of the residual ε̃(τ): E1

(
X(1)

)
=

Eτ
(
ε̃(τ)

)
= δ while Eτ

(
ε̃(s)

)
= (1 − α)δ for s > τ , and δ/2 = k. Denote the

new method with M1e.
For M2 and M3 it is simpler. Now, the new first value of the CUSUM sequence
should behave like (1−α)

(
ε̃(τ)− (1−α)k

)
. Hence, replace O(1) and R(1) with

max
{

(1− α)
√

1− α2
(
X(1)−

[
2− (1 + α)/

√
1− α2

]
k
)
, 0
}
.

Originally, M2 and M3 differed only for the first CUSUM statistic. Thus, the
above modification leads only to one new CUSUM method. Denote it with M2e.
The most subtle case of modification is for method M4. Here, we have to dis-
tinguish between α > 0 and α < 0. For positive α, the contribution of (1 −
α)
(
ε̃(τ) − (1 − α)

)
dominates ε̃(τ) − k for ε̃(τ) < (2 − α)k. Furthermore, for

ε̃(τ) < (1− α)k the reflecting barrier is the maximum. On the contrary, for neg-
ative α it becomes dominant for (2 − α)k < ε̃(τ). Eventually, H0(1) is replaced
by

max
{ √

1− α2
(
X(1)−

[
2− 1/

√
1− α2

]
k
)
,

(1− α)
√

1− α2
(
X(1)−

[
2− (1 + α)/

√
1− α2

]
k
)
, zr

}
.

This scheme, the last one on our list, is denoted with M4e.

Table 1: CUSUM type schemes for UB
code description Reference (example)
M1 CUSUM defined by likelihood ratio Schmid (1997)
M2 Repeated SPRTs Basseville and Nikiforov (1993)
M3 Residual CUSUM Runger et al. (1995)
M4 modified M1 — reflection at 0 Knoth and Schmid (2004)
M∗e modified first statistic This section

6 Minimax properties of the CUSUM method
Lai (1998) gave results under certain restrictions for asymptotic minimax of the
CUSUM method when the average run length tends to infinity. He exemplified
with a Markov chain. This gives proofs for the asymptotic minimax optimality of
the model CA since the restrictions are fulfilled. Han and Tsung (2009a) proved
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the minimax optimality under certain other restrictions but without the require-
ment of the average run length tending to infinity. They exemplified with an AR
model with a bounded state space and found that the requirements are satisfied.
Theoretical results for the unconditional models are hard to achieve since we can-
not rely on the extensive theory of surveillance for one change in distribution as
explained in Section 3.1. However, case UB is of great interest for application.
Thus we report results by numerical approximations and Monte Carlo simulations.

6.1 Effect of the e-Adjustment
The e-versions described in Section 5.3 are uniformly better than the original ones
as seen in Figure 1. This can heuristically be explained. We change the first
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Figure 1: Difference inW between the e-versions and the original versions.

CUSUM statistics to ensure W1 = W>1 for the considered shift. This leads to
only a tiny change of h (see Figure 2), since this is dominated by what happens
for later times. Note that M2 is the only scheme, whereW1 is smaller thanW>1.
The change is in the direction which makes the worst ofW1 andW>1 better. Thus
W gets better.
Since our results are numerical, we support our claim by demonstrating that the
differences are statistically significant at a Monte Carlo study. Thus the difference
is not due to random errors induced by the Monte-Carlo study. Whether the dif-
ference is of significant importance for a specific application is another story. This

11



−1.0 −0.5 0.0 0.5 1.0

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

α

h 
di

ff 
be

tw
ee

n 
or

ig
in

al
 a

nd
 e

−
sc

he
m

e

For zr ≥ 0 M1 (M1) and M4 (M4e) are equivalent

M1
M2
M3
M4
zr for M1

−
1.

0
−

0.
5

0.
0

0.
5

z r

Figure 2: Changes in the alarm threshold from M* to M*e.

depends heavily on the value of α.
We describe the technique in detail for one case. To demonstrate that M1 is worse
than M1e for some value of α (in this case α = −0.65), we chose alarm limits
numerically such that the ARL0 is larger for M1e than for M1. We check by simu-
lations that this is so with a p-value less than 1%. The related results, based on 109

replicates, are ÂRL
0

M1 = 499.9837 with corresponding standard error 0.015747

for h1 = 4.397069 and ÂRL
0

M1e = 500.6255 with standard error 0.015793 for
h1e = 4.4 for M1 and M1e, respectively. Thus, the ARL0

M1e is significantly larger,
on the 1 % level, than ARL0

M1. Next, we test on the 1% level that the value ofW
is larger for M1 than for M1e for the selected value of α. Here we got, for 1011

replicates, ŴM1 = 3.367583 with standard error 0.000004 and ŴM1e = 3.231286
with standard error 0.000004 for M1 and M1e, respectively. The p-value for a
test of equal (or better) value ofW for M1 (for the same or less ARL0) is thus at
most 1 − 0.992 = 0.02. For the considered example, the p-value would be much
smaller.

6.2 Comparison Between the Different e-Methods
In order to give evidence that none of the methods M1e, M2e=M3e or M4e is
optimal with respect to W uniformly over α, we chose interesting values of α
based on the numerical results in Figure 3. To show that M1e is not optimal we
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demonstrated thatW is significantly worse than M2e=M3e for α = 0.65 in spite
of a significantly less ARL0. We got the resultW = 27.639 for M2e=M3e with
slightly increased h (ARL0=500.40), andW = 27.686 for M1e (ARL0=500.00),
all with a standard error smaller than 0.0001. To show that M2e=M3e is not
optimal we demonstrated thatW is significantly worse than M1e for α = −0.65.
The result wasW = 3.2570 for M2e=M3e (ARL0=500.00) andW = 3.2313 for
M1e (ARL0=500.84), all with a standard error smaller than 0.00001. Eventually,
to indicate that M4e is not optimal we demonstrated thatW is significantly worse
than M1e for α = −0.65 (W = 3.2404 for M4e). Thus none of the e-methods is
uniformly optimal with respect toW . See Figure 3.
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Figure 3: Differences to the values ofW of M1e for the methods M2e=M3e and
M4e, respectively. The lines are numerical results. The circles are results by
Monte-Carlo simulations. The diameters of the circles are roughly equal to 6
times the standard error. The solid circles are for the schemes with calibrated
ARL0. The empty circles are for the special schemes with higher values of ARL0

for the method with the least value ofW , to allow the empirical proof of lack of
uniform optimality, given in the text.

7 Discussion
An advantage of the conditional C-models is that there is a change between two
distributions while there is a change between three ones in the unconditional mod-
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els. An advantage with the A-models where an observation before the possible
change is available is that no special test is necessary for the first decision but
all are motivated by the same conditional likelihood ratio. In an application we
might know that the system is in control at t = 0 and we look for possible future
changes. For this CA model, sharp optimality results are available.
However, this CA model is not suitable for all applications. Model UB is com-
monly used in practice – see, for example, Runger et al. (1995), Schmid (1997),
Wieringa (1999), Sparks (2000). In an application, it might be possible that the
change has happened before the monitoring is started.
A drawback as concerns possibilities of analytical uniform results for model UB is
that the first statistic gives little information for large α, and the combination with
an aim to detect also τ = 1 makes the problem unbalanced with a great emphasis
on τ = 1. One determines the alarm limit for ARL0 where the behavior for large
values of s dominates but the worst case is often for τ = 1, for which small values
of s dominate.
We used statistical inference based on a simulation study to prove our main re-
sults. In Section 6.1 we demonstrated that the four earlier methods are dominated
by the e-versions and in Section 6.2 we demonstrated that none of the e-methods
is uniformly best. Thus the conclusion is that none of the seven methods exam-
ined is uniformly (with respect to α) minimax optimal but that improvement over
commonly used methods is possible.

Appendix A: Iteration rules

For sequential methods, it is convenient with iteration rules, which allow updates
of the statistic obtained at previous time points. For all four models, convenient
formulas for calculation can be found. We will first look at the conditional models
CA and CB, where results are available in the literature but express the iteration
rules in a way that makes comparison with the unconditional ones easy. Then, we
will derive new results for the unconditional models UA and UB.

A.1 Iteration Rules for the Conditional Models

For CA, the normalized logarithm of the likelihood ratio σ2 logL(s, t)/δ in H(s)
is equivalent to

(1− α)
s∑
i=t

(
X(i)− αX(i− 1)− (1− α)δ/2

)
.
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Remember that ε̃(s) = X(s)−αX(s−1) are the empirical residuals and k = δ/2.
Now we have the iteration rule

H(s) = max
t=1,2,...,s

(1− α)
s∑
i=t

(
ε̃(i)− (1− α)k

)
= max

{
max

t=1,2,...,s−1
(1− α)

s−1∑
i=t

(
ε̃(i)− (1− α)k

)
, 0

}
+ (1− α)

(
ε̃(s)− (1− α)k

)
= max

{
H(s− 1), 0

}
+ (1− α)

(
ε̃(s)− (1− α)k

)
. (6)

Note that this iteration rule is slightly different to a common one which would be
here

H(s)′ = max
{
H(s− 1)′ + (1− α)

(
ε̃(s)− (1− α)k

)
, 0
}
. (7)

The latter agrees with Rule 2, S ′n = max(S ′n−1 + xn, 0) by Page (1954), and
can be seen as a sequence of sequential probability ratio test statistics. The main
advantage of (7) is that H(s)′ is bounded from below. This helps at setting up nu-
merical algorithms for calculating performance measures. However, it is recursion
(6) which is the CUSUM method (1) and which was considered in Moustakides
(1986) and, quite recently, in Han and Tsung (2009a) at their proofs for optimal-
ity. It corresponds to Page’s Rule 1: “Take action if Sn − max0≤i<n Si ≥ h”.
Replacing 0 ≤ i < n by 0 ≤ i ≤ n would give again (7). Because of H(s)′ =
max{H(s), 0} for all s, the replacement changes the alarming behavior only for
h < 0. This would, however, imply a very small E∞(tA) as pointed out by Mous-
takides (1986). Thus, the difference between the two methods is seldom important
for applications.
In case of CB, only the first value of the CUSUM sequence, H(1), has to be
changed. From the definition of L(s, 1) in Section 5.2 it follows

H(1) = (1− α2)
(
X(1)− k

)
. (8)

Note that with this start-up H(1) depends only on the first observation, that is,
there is no potential head start parameter involved.
In summary for CA and CB, the resulting CUSUM sequence is simply the usual
CUSUM applied to the (empirical) residuals with an adjusted reference value. A
further modified H(1) for CB leads directly to the so-called residual CUSUM
scheme as, e. g., in Knoth and Schmid (2004).

A.2 Iteration Rules for the Unconditional Models
It is more difficult for the cases UA and UB. In the sequel, it is shown that for
models UA and UB the barrier 0 has to be replaced by a different one in order to
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maintain equivalent alarming behavior as for CA/CB and the classical iid CUSUM
schemes. At first sight, a similar recursion rule with reflection at zero should be
possible (as claimed in Knoth and Schmid, 2004). A more detailed analysis of the
CUSUM for UA or UB provides different reflection borders. For UA the CUSUM
statistic becomes

H(s) = max
t=1,2,...,s

{
ε̃(t)− k + (1− α)

s∑
i=t+1

(
ε̃(i)− (1− α)k

)}

= max

{
max

t=1,2,...,s−1

{
ε̃(t)− k + (1− α)

s−1∑
i=t+1

(
ε̃(i)− (1− α)k

)}
+

(1− α)
(
ε̃(s)− (1− α)k

)
, ε̃(s)− k

}
= max

{
H(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
, ε̃(s)− k

}
. (9)

For UB, the only change from UA is for s = 1. There are many suggestions in the
literature as was seen in Section 5.3.

A.2.1 Iteration Rules with Reflecting Barriers

Now it looks like the sequence H(s) has no lower reflection barrier for UA. Es-
sentially, this is caused by the contribution of time s that is different for t = s than
for t < s. However, for a slightly changed method, a recursion with reflection bar-
rier can be established. For reasonable alarm thresholds, h ≥ 0, the new sequence
yields the same alarm behavior as the CUSUM method (9). By introducing

zr =

{
−αk , α > 0

αh− α(1− α)k , α < 0

we define the statistic
H(s)∗ := max{H(s), zr} .

The barrier zr is smaller than zero for α > 0, or α < 0 and h > (1 − α)k. For
zr > 0, the methods M1 and M4 (also M1e and M4e) are equivalent. For the
sequence H(s)∗, the following iteration rule is valid:

H(s)∗ = max
{
H(s− 1)∗ + (1− α)

(
ε̃(s)− (1− α)k

)
, ε̃(s)− k, zr

}
(10)

Proof of the iteration rule for H∗:
Consider first case α > 0. Deploying α > 0, and the definitions of H() and H()∗
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for s and s− 1 yields:

H(s)∗ = max
{
H(s),−αk

}
= max

{
H(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
, ε̃(s)− k,−αk

}
= max

{
H(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
,

− αk + ε̃(s)− (1− α)k,−αk
}

= max
{
H(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
,

− αk + (1− α)
(
ε̃(s)− (1− α)k

)
,−αk + ε̃(s)− (1− α)k,−αk

}
= max

{
H(s− 1)∗ + (1− α)

(
ε̃(s)− (1− α)k

)
, ε̃(s)− k,−αk

}
(11)

For case α < 0 the validity of the recursion is proved differently. Now, a simple
property of the sequence H(s) is utilized. For any s along the unstopped series,
ε̃(s)−k is not larger than h. Any s with ε̃(s)−k > h would flag an alarm on both
H(s) and H(s)∗ (if not already stopped earlier). From ε̃(s)−k ≤ h the following
inequalities can be derived:

αh− α
(
ε̃(s)− k

)
≤ 0

→ αh+ (1− α)
(
ε̃(s)− k

)
≤ ε̃(s)− k

→ αh− α(1− α)k + (1− α)
(
ε̃(s)− (1− α)k

)
≤ ε̃(s)− k

Based on the last inequality above and on the definitions of H() and H()∗ for s
and s− 1 we have:

H(s)∗ = max
{
H(s), αh− α(1− α)k

}
= max

{
H(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
,

ε̃(s)− k, αh− α(1− α)k
}

= max
{
H(s− 1) + (1− α)

(
ε̃(s)− (1− α)k

)
,

αh− α(1− α)k + (1− α)
(
ε̃(s)− (1− α)k

)
, ε̃(s)− k, αh− α(1− α)k

}
= max

{
H(s− 1)∗ + (1− α)

(
ε̃(s)− (1− α)k

)
,

ε̃(s)− k, αh− α(1− α)k
}

(12)

This completes the proof.

Appendix B: Integral equations and other formulas for calcula-
tion of performance measures

This section provides methods to calculate measures of expected delay numer-
ically. Note that they are determined under the change point model UB. It is
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easily adopted for UA. The results under CA and CB are obtained similarly to
the iid case. Under UB (also under CB), the schemes initialize with H(1) =
(1− α2)

(
X(1)− k

)
or with the maximum of this value and some reflection bar-

rier, or with the special start-up of the residual CUSUM method. Throughout this
section we use the term H(s) not as a well-defined likelihood expression as be-
fore, but as a dummy for the alarm statistic for each method. To calculate W ,
we have to distinguish between different change point positions. Essentially, the
cases τ = 1 and τ > 1 are different. The interesting quantities are

W1 = L1 = E1(tA) ,

L>1(z) = Eτ
(
tA − τ + 1 | H(τ − 1) = z, tA ≥ τ

)
for τ > 1, z ∈ [zr, h] ,

W>1 = L>1(zr) ,

whereW1 andW>1 denoteW restricted to change point positions τ = 1 and τ >
1, respectively. L>1(z) resembles the ARL function depending on H(τ − 1) = z,
the last value of the CUSUM sequence before the change. The totalW is simply
the max ofW1 andW>1.
The distribution of ε̃τ differs from the one of ε̃t for t > τ (and, of course, for
t < τ ). The following function allows to deal with this situation. Let

A(z) := Eτ
(
tA − t+ 1 | H(t− 1) = z, tA ≥ t

)
, t > τ , z ∈ [zr, h] .

For t > τ (cf Page (1954))

A(z) = 1 + F (z → zr)A(zr) +

∫ h

zr

A(z̃)f(z → z̃) dz̃ .

Thereby, F (z → zr) and f(z → z̃) denotes the transition cdf and pdf, respec-
tively, of the related CUSUM sequences. For the CA/CB schemes (zr = 0) it
could be solved as usually. For the UA/UB schemes a new approach is needed
as demonstrated below. Denote Φ() and φ() the cdf and pdf of a standard normal
distribution, respectively. Then given A(z), the above ARLs could be calculated
for the *B schemes (remember (8))

L1 = 1 + F1(zr)A(zr) +

∫ h

zr

f1(x)A(x) dx ,

F1(zr) = Φ

(
zr

1− α2
+ k − δ

)
,

f1(x) = φ

(
x

1− α2
+ k − δ

)
/(1− α2) .
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and for all schemes (for *A schemes L1 = L>1(zr))

L>1(z) = 1 + F>1(z → zr)A(zr) +

∫ h

zr

f>1(z → x)A(x) dx

with the related functions F>1() and f>1() for the considered CUSUM sequences.
For UA and UB in the most interesting case z = zr (W>1 = L>1(zr)), the two
functions are

F>1(zr → zr) = Φ

(
zr + k − δ√

1− α2

)
,

f>1(zr → x) = φ

(
x+ k − δ√

1− α2

)
/
√

1− α2 .

The corresponding functions for CA and CB (zr = 0) are

F>1(0→ 0) = Φ

(
(1− α)k − δ√

1− α2

)
,

f>1(0→ x) = φ

(
x/(1− α) + (1− α)k − δ√

1− α2

)
/
(√

1− α2(1− α)
)
.

Figure 4 illustrates the two different distributions used for the UB scheme.
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Figure 4: Probability and densities F1(zr), f1(x) and F>1(zr → zr), f>1(zr → x)
for UB with k = 0.5, h = 3, α = 0.3

To identify integral equations for the function A(z) in case of UA and UB we
have to take into account the three-fold structure of the iteration rule. Essentially,
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depending on z the component ε̃(s)−k is smaller or larger than the competing one
z + (1− α)

(
ε̃(s)− (1− α)k

)
. Eventually, for α > 0 the equations for z ∈ [zr, h]

look like

αh− α(1− α)k < z < h:

A(z) = 1 + Φ
(
(zr − z)/(1− α) + (1− α)k

)
A(zr)

+

∫ h

zr

A(z̃)
φ
(
(z̃ − z)/(1− α) + (1− α)k

)
1− α

dz̃ ,

zr < z < αh− α(1− α)k:

A(z) = 1 + Φ
(
(zr − z)/(1− α) + (1− α)k

)
A(zr)

+

∫ z/α+(1−α)k

zr

A(z̃)
φ
(
(z̃ − z)/(1− α) + (1− α)k

)
1− α

dz̃

+

∫ h

z/α+(1−α)k
A(z̃)φ

(
z̃ + k

)
dx ,

z = zr:

A(z) = 1 + Φ
(
(1− α)k

)
A(zr) +

∫ h

zr

A(z̃)φ
(
z̃ + k

)
dz̃ .

The decomposition is driven by the competition between the components z+(1−
α)
(
ε̃(s)− (1− α)k

)
and ε̃(s)− k in (9) or (10). Let z̃ (as in the integrals above)

be the new CUSUM value. Then it would be generated by the first component if

z̃ = z + (1− α)
(
ε̃(s)− (1− α)k

)
≥ ε̃(s)− k

⇔ z̃ ≥ z̃ − z
1− α

+ (1− α)k − k

⇔ z ≥ αz̃ − α(1− α)k .

For instance, if z ≥ αh− α(1− α)k, then the condition above is fulfilled by all z̃
in [zr, h].
Similar ideas lead to the scheme for α < 0. Here, the integral equations are:

αzr − α(1− α)k < z < h:

A(z) = 1 + Φ
(
(zr − z)/(1− α) + (1− α)k

)
A(zr)

+

∫ h

zr

A(x)
φ
(
(x− z)/(1− α) + (1− α)k

)
1− α

dx ,
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zr < z < αzr − α(1− α)k:

A(z) = 1 + Φ
(
zr + k

)
A(zr)

+

∫ z/α+(1−α)k

zr

A(x)
φ
(
(x− z)/(1− α) + (1− α)k

)
1− α

dx

+

∫ h

z/α+(1−α)k
A(x)φ

(
x+ k

)
dx ,

z = zr:

A(z) = 1 + Φ
(
zr + k

)
A(zr) +

∫ h

zr

A(x)φ
(
x+ k

)
dx .

These integral equations will be solved numerically. The details are collected in
the next section.

Appendix C: Numerical methods

The specific nature of the integral equations in the previous section – the issue with
the integral border z/α+ (1− α)k and the associated decomposition in two inte-
grals impedes the deployment of standard methods such as the Nyström method
that is frequently used for ARL calculation – calls for methods like collocation.
It was successfully used in Knoth (2006) for the ARL calculation of CUSUM
schemes on the sample variance S2. To sketch the ideas we start with the case
α > 0. Recall that the reflecting barrier is zr = −αk for scheme H∗() (and 0
for H0()). Denote B = αh − α(1 − α)k. Consider the following set of nodes:
h > y1 > y2 > . . . > yb ≥ B > yb+1 > yN > yN+1 = zr. Thus, we have N + 1
nodes total with b nodes larger than B. For collocation, the true solution of the
integral equation is approximated by linear combination of certain base functions.
Here, we utilize Chebyshov polynomials Tj(). The true function A(z) is approx-
imated by

∑N
j=1 cjTj(z). The unit Chebyshov polynomials cos

(
j arccos(z)

)
are

rescaled from [−1, 1] to [zr, h], that is,

Tj(z) = cos

[
j arccos

(
2z − zr − h
h− zr

)]
. (13)

The nodes are derived from the extrema of the polynomial TN(z):

yi = zr +
h− zr

2

[
1 + cos

(
(N − 1− i) π

N − 1

)]
, i = 1, 2, . . . , N .
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Note that simpler rules to get both the nodes and the polynomials are possible, but
the chosen ones ensure numerical stability, e. g., for increasing N .
To calculate the weights cj we evaluate the following linear equations.

i = 1, 2, . . . , b :

N∑
j=1

cjTj(yi) = 1 + Φ
(
(zr − yi)/(1− α) + (1− α)k

)
A(zr)

+
N∑
j=1

cj

∫ h

zr

Tj(x)
φ
(
(x− yi)/(1− α) + (1− α)k

)
1− α

dx ,

i = b+ 1, b+ 2, . . . , N :

N∑
j=1

cjTj(yi) = 1 + Φ
(
(zr − yi)/(1− α) + (1− α)k

)
A(zr)

+
N∑
j=1

cj

∫ yi/α+(1−α)k

zr

Tj(x)
φ
(
(x− yi)/(1− α) + (1− α)k

)
1− α

dx

+
N∑
j=1

cj

∫ h

yi/α+(1−α)k
Tj(x)φ

(
x+ k

)
dx ,

i = N + 1↔ z = zr:

L(zr) = 1 + Φ
(
(1− α)k

)
A(zr) +

N∑
j=1

cj

∫ h

zr

Tj(x)φ
(
x+ k

)
dx .

The integrals are evaluated numerically (Gauss quadrature). It turns out that piece-
wise collocation, for z ∈ [zr, B] and [B, h], provides much better performance.
See Figure 5 for some illustration of the accuracy performance.
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