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1. Introduction 

The character of nonparametric statistical methods 

is that they are constructed for very general situations, 

without the specific narrow assumptions, which appear in the 

common parametric methods. Isotonic regression is a non­

parametric regression method, which has paid a well deserved 

attention for some decades. In this case the only assump­

tion about the regression function is that it is non-decreas­

ing (or non increasing). The basic theory of isotonic 

regression is contained in the book by Barlow, Bartholomew, 

Brenner and Brunk (1972). 

In many applications it is motivated to consider regression 

functions which are not only monotonic but also have certain 

convexity or concavity characteristics. For instance in 

quanta I response assays in biological applications, sigmoid 

curves are used. These are increasing functions which are 

first convex up to some point and then concave. There are 

suggested a number of parametric sigmoid curves for ana­

lysis of such applications. See e.g. Finney (1978) section 

17. 

In economical applications involving demand, supply and 

price, functions with prescribed monotonity and convexity or 

concavity are common. For instance in Lipsey & Steiner 

(1972) chapter 5 are found a number of convex decreasing 

demand curves and convex increasing supply curves (in both 

cases price as a function of quality). There is also given 

an example of the quality demanded as a function of house­

hold income which might change character from increasing 

concave to decreasing concave. 

In all these applications the regression functions can be 

assumed to satisfy some simple nonparametric) curve 

characteristics expressed in terms of increase or decrease 

and convexity or concavity. Either the function is of one 

type all the way, or it shifts character in a certain order 

at some (unknown) points. The aim of the present paper 

is to discuss the statistical problem of estimating such 

nonparametric regression functions. 
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The papers by Dent (1973) and Holloway (1979) 

consider the problem of estimating convex (or concave) 

regression functions. In both papers' thelE::!ast squares 

estimates are obtained by linear programming methods. 

The case of unimodal regression is treated in Frisen 

(1985) . 

The regression functions with a single characteristic 

are of four types, increasing convex,increasing concave, 

decreasing convex and decreasing concave. It will be seen 

in. the next section that .the corresponding estimation 

problems are analogous, and we will give a procedure for 

determinating least square estimates. 

For a regression function, shifting curve characteristic 

in a given point, we can obtain the least square estimate 

by a slight modification of the method for regression 

functions with a single curve characteristic. In the case 

when the regression function shifts curve characteristic 

in an unknown point we can find the least square estimate 

by calculating the sum of squares for the solutions for 

all possible shifting points. The general solution is then 

the one obtained for the shifting point giving the least 

sum of squares. 

The estimation procedure will be illustrated by two 

simple examples in section 3. In section 4 we will give 

the utmost simplest consistency result for the estimates. 

Further statistical properties and further details on the 

estimation procedure will be given in forthcoming papers. 
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2. Estimation procedure 

We will first discuss the estimation procedure for 

fitting a nondecreasing and convex function to a set of 

data by the least squares criterion. This means that to 

the observations (x"y,), (x 2 'Y2) , .•. , (xn'Yn ) with 

x,<x2< •.. <xn we will find a nondecreasing and convex 

function f (x) ':such that 

is minimal. As mentioned in the introduction, the 

problems to fit a function with some other nonchang 

curve characteristic will be very similar to this one. 

There is a reformulation of the problem which is good 

for theoretical as well as practical purposes. Let 

and 

fo (x) = , 

f,(x) =x-x, 

for k=2,3, •.. ,n-' 

Then any function f(x) which is non-decreasing and 

convex on the set {Xk Zk::,,2, ... ,n} can be written: n-' . 
f(x)= L: akfk(x) 

k=O 

where 

There are no restrictions on the constant a O. 

Thus our problem can be formulated as the problem of 

finding 
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~k~O k=1,2, •.. ,n-1 

and a O' which minimize 

For existance and uniqueness of solutions to the 

minimization problem, the following lemma is essential. 

Lemma 1: The set of nondecreasing convex functions on the 

set 

is a closed convex cone. 

Proof: We can write the functions in the form 

with ak~O for k=1,2, ... ,n-1. 

If 
n-1 

g(x)= E Skfk(x) 
k=O 

is another function of this type, then so is 

n-1 
~f(x)+(1-~)g(x)= E (~ak+(1-~)Sk)fk(x) 

k=O 

for all ~,O~~~1. Thus the set is convex. Further 

obviously yf(x) belongs to the set for all y>O if f(x) 

belongs to the set. Finally it is easily seen that if 

f(x) is a limit of functions in this set, the function 

f(x) also belongs to the set, since limits of sequences 

of nonnegative numbers are non-negative. 

Q.E.D. 
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In order to be able to write things shorter we 

introduce the scalar product notation 
n 

i 

(f,g)= E f(xk)g(xk ) 
k=1 

and the norm notation 

II f II 
-~ _ (f,f) 2 

for functions defined on 

{ xk : k = 1 , 2 , • • • , n} . 
In the minimization problem, where we should find 

a ~o . k . k=1, ... ,n-1 and 0. 0 to minimize 

n-1 
Ilf - E akfk II 

k=O ' 

we typically have some positive ak=s, while the others 

are equal to O. 

Denoting 

we can write the approximating function 

Then we can formulate the following lemma on a 

characterisation of the solution to the minimization 

problem. 

Lemma 2. The function 

E akfk(x) 
REI 

is the solution to the minimization problem if and 

only if 
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(i) (f-I: <lkf] , f
J
., =0 

kE I <: 
VjEI 

and 

( ii) Vj~I 

Proof Denote 

and suppose first that 

is the solution. Then we can not have 

since then 

is smaller than M2 for some small positive or negative 

E. Further we can not have 

because then 

is smaller than M2 for some small positive E. 

Thus the solution must satisfy (i) and (ii). On the 

other hand if (i) and (ii) are satisfied, we have a local 

minimum, and there is only one local minimum, the 

global one. 
Q.E.D. 

.' .' . 
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This characterisation lemma is closely related 

to the stepwise method to find the solution. The 

method consists of two parts, the exclusion part 

and the inclusion and substitution part. 

The aim of the exclusion part is to find an index 

set 10 such that 

This is obtained by successive elimination. 

Exclusion part of estimation procedure: 

First write 

f= L: 
kE {O, ... ,n-1} 

Let 10 (1) be the index set consisting of 0 and all 

k~1 such that ak~o. Next make a least square approximation 

of f by the sum k~IO(1) a k
a1

) fk 

Again exclude indices corresponding to a
k
,(1)(0, 

let 10 (2) be the index set consisting of 0 and all 

k:2: ,1 such that a
k 

(1):2:0, and make a least square approximation 

of f by the sum 

. L: (2) 
kEI (2) a k f k · 

o 

This is continued until we find an index set 10 such that 

the least squares approximation 



of f has koefficients a ~O for all k~1 in 
k 
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Note. It might happen that we end up with 10= [o}. 
The exclusion part of the procedure is not necessary, 

we could always skip it and start the inclusion and 

substitution step with 10 = {o}. But generelly the 

exclusion part would give us a rough estimate, which is 

a good starting point in the inclusion and substitution 

part. In very simple cases it might also hit the solution 

directly. For instance if the function f itself is 

nondecreasing and convex, we would get 10= [0,1, ... , 

... , n-1J. 

Inclusion and substitution part of the estimation procedure. 

A. The index set 10 is such that 

L: 
(f -kEI akfk'.fj)=O VjEI O 

o 

and 

a ~O 
k VjEIO' {oj. Calculate for each j~IO the 

"projection" 

Aa. If P'~O 
J 

L: 
Vj(I O' the sum kEI akfk 

o 
is the solution to the minimization problem. 

Ab. If Pj>O for some JEIO continue to B. 
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B. Let m be the index corresponding to the maximal 

Pj (or one of the maximal Pj:s if there are several). 

Let Sk for kEIOU {m} be the constants minimizing 

. L: 
II f -kEIOU {m} Skfk II . 

Ba. If Sk~O VkEIou{m} start again from A with 10 

substituted by Ioufm}and constants SkkEIou[m}. 

Bb. If Sk<O for some kEIou{m}, calculate Ek=ak/(ak - Sk) 

and E*=k min{) Ek < 1. Then in the sum 
EIOU mJ 

L:((1-E*) ak+E*Sk)fk 
kEIOu {m} 

a.t least one coefficient equals O. Let 11 be the index 

set of the non-zero coefficients, and let 

yk =(1-E*)ak +E*Sk' kEI 1· 

Further let:fjk' ,kEI 1 be the constants minimizing 
L: . 

II f-kEI Pkfkli 
1 

If Pk~O VkEl start again from A with 10 substituted 

by 1 1 • 

If Pk<O fo~ some kEI1 calculate new tk=Yk/(Yk-Pk) 
mln 

kEI1 and E*=kEI L:k <1 and repeat Bb until only positive 

coefficients ar~ obtained. Then start from A again. 

Note. In each "cycle" of the Bb part of the procedure, 

the sum of squares of errors will strictly decrease. 

In each "complete cycle" including A we will start anew 

with a "presolution", with a smaller sum of squares of 

errors than in the previous case~ with positive co­

efficients in a least squares solution for a new set of 

indeces. Sinoe there is a finite number of possible 

chciices of indeces, the procedure will converge to the 

solution in a finite number of steps. In A is contained 
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a check step where we stop when we have found the 

solution as characterized in lemma 2. The inclusion 

of the index m corresponding to the function with the 

gr~atest "positive correlation" with the error in A 

made for intuitive reasons. It ought to be good for 

improving the solution as much as possible, and thus 

ought to give fast convergence. 

The procedure we have g'iven here is easily modified 

for other similar problems. For instance, if we want 

to fit a nonincreasing convex function to data (x 1 'Y1)' 

(x 2 'Y2)'···' (xn'Yn) with x 1<x 2<, ... ,<xn we use instead 

the function system 

f O(x)=1 

[

X -x 
fk(x)= Ok 

for x~x 
k 

for x>x
k 

for k=2,3, ... ,n-1 

and 

f (x) =x -x. 
n n 

If there are several observations for some xk we 

just use a function system with functions corresponding 

to all different values x k . The observation in a point 

is the mean of all y~ with the same xk and in the scalar 

product we use weights equal to the number of observations 

in the different points. 

For problems with shifting curve characteristics, there 

are two cases, which are especially simple. If we want 

to fit to data (x 1 'Y1), •.. ,(xn 'Yn) with x 1<x 2< .•.. <xn 
a function which is first nonincreasing convex and then 

nondecreasing convex, we can use the function system of 

the first problem in this section. But now there are 

no sign restrictions o~ the coefficients of neither 

fO(x) nor f1 (x). The modification of the procedure for 

this case is trivial. 

A similar solution is obtained for the problem of 

fitting a function which is first nondecreasing concave 

and then nonincreasing concave. 
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The problem of fitting a sigmoid curve, which 

is first nondecreasing convex and then nondecreasing 

concave is not so simple. 

3. Two simple examples 

In order to illustrate how the estimation procedure 

works, we will show the steps in detail for two simple 

examples. Our first example is a very simple one, used 

by Holloway (1979). 

Example 1. Fit a convex function (by least squares) 

to the data 

2 4 6 9 10 

10 2 6 4 8 

When we make an approximation in form of a linear 

combination of fO' f1' f2' f3' f4 there are no restric­

tions on the coefficients of fO and f1 in this case. 

After writing 

f=10-4f +6f - ~ f + l! f 
123 3 3 4 

we exclude f3' which has negative coefficient. 

Fitting a linear combination of fO' f1' f2' f4 by 

least squares we get 

f~10-3,37f1+3,69f2+2,84f4 

The coefficients of f2 and f4 are positive, and the 

scalar product of f3 and the error is negative. Thus 

we have the solution already at the end of the eli­

mination part of the procedure. 

This example was almost too simple. Also the next 

one is simple, but it is complicated enough to get 

also inclusion steps. 

Example 2. Fit a nondecreasing convex function by least 

squares method to the data 

1 3 5 9 10 1 1 14 15 

3 5 4 5 7 10 1 1 14 
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After writing 

8 8 
f=3+f1-1,Sf2+0,7f3+1,7Sf4+fS- }f6+ }f7 

we exclude f2 and f 6 , which have negative coefficients. 

The least squares fit with a linear combination of fO' 

f 1 , f 3 , f 4 , fS and f7 becomes 

f~3,S+0,2Sf1-0,12Sf3+2,7981f4-2,0769fS+1,8462f7· 

Thus we next exclude f3 and f S . The least squares fit 

with a linear combination of fO' f 1 , f4 and f 7, 

f~3,3991+0,3149f1+0,8404f4+1,1S08f7 

has positive coefficients for f 1 , f4 and f 7 • This 

terminates the elimination part of the procedure. The 

error turns out to be negatively correlated with f 2 , 

fS and f6 but positively correlated withf3. The least 

squares fit with f3 included becomes 

f~3,SO+0,2Sf1+0,1161f3+0,7768f4+1,1786f7 

which has positive coefficients for f 1 , f 3 , f4 and f 7 . 

It is not necessary to eliminate some other functions 

when f3 is included. The error appears to have negative 

correlations with f 2 , fS and f 6 , which terminates the 

whole procedure. After a calculation including 3 least 

squares approximations we got the solution in the 

following table 

x k 1 3 5 9 10 11 14 15 

-f ··3,5·· . 4,0 4,5 5,9643 7,1071 8,25 11,6786 14,0 

In a procedure involving calculation for all possible 

subsets of variables f l , f 2 , f 3 , f 4 , f S ' f 6 , f7 would need 

64 calculations of least squares estimates. 

4. Consistency 

In this ·.paper we have no intention to treat the more 

intricate statistical properties of the estimates. We 

will only give a simple consistency property. 
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Theorem. Suppose that the mean of a random variable, 

Y is a strictly increasing and convex function ~(x) of 

x on the set {Xk ;k=1 ,2, ... ,n }, and that Y has a 

variance for all xk ' k=1,2, ... ,n. Suppose further that 

we make Nk observations of Y at xk and that all 

n 
N= L: Nk 

k=1 

Y:s are independent. Then the proposed estimator is 

uniformly consistant for estimating ~(x) for 

xE {Xk ;k=1,2, •.. ,n} when 

Proof. Because ~(x) is strictly increasing and convex 

there exists 00 such that all functions ~*(x) satisfying 

1~*(x)-~(x)l<ooVXE {Xk :k=1,2, ... ,n} are also strictly 

increasing and convex. But by the Chebychev inequality 

and the Boole inequality there exists for each s>O and 

0>0 a number N(s,o) such that 

P(IYk-~(xk) l<oVk=1,2, ... ,n)~1-s 

~1-s 
when Y is the mean of at least N(s,o) observations 

at x k • If the mean function (taking value Yk in xk ) 

is itself strictly increasing and convex the procedure 

will estimate ~(xk) by Yk • Thus if 

min Nk~N(S,o) 
1~k~n 

and o~oo the estimate p(x) will satisfy 

Q.E.D. 
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Illustration of example 2 

The following figures show the succesive steps in the 

estimation procedure 

, 

• , t , 4 • , , • • D « U u u U 

J 

Starting approximation 

All functions used 

, 

7 

• 

• , t , 4 • , ,'. • t. " tl t, '4 U 

J 

Third approximation 

Also functions f3 and fS 

excluded 

, 

, 

• 
• 

• , t , 4 • • , • • D " U U U U 

J 

Second approximation 

Functions f2 and f6 

excluded 

• 

• , I , 4 J • , • , D « U u u U 

J 

Fourth and final approxi­

mation. 

Function f3 included 
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