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ABSTRACT BOOTSTRAP CONFIDENCE INTERVALS IN LINEAR MODELS 

STURE HOLM 

UNIVERSITY OF G01EBORG 

A bootstrap method for generating confidence intervals in linear 

models is suggested. The method is motivated by an abstract 

nonobservable bootstrap sample of true residuals leading to an 

observable final result. This means that the only error in the 

method is the pure bootstrap error obtained by replacing the true 

residual distribution by the empirical one. It is shown that the 

method is valid, having the same asymptotic conditional 

distribution as the ordinary bootstrap method. Simulations 

indicate clearly that the abstract bootstrap method works better 

than the ordinary bootstrap method for small samples. 
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1. INTRODUCTION 

Already in the very beginning of the development of bootstrap 

methods, Efron (1979) discussed the possibility to use bootstrap 

methods for treating regression problems. He suggested the simple 

method of using the distribution of the empirical residuals as a 

bootstrap distribution for the error term. 

In formulas this means the following. The general regression 

model used is 

Yi=gi(~)+£i i=1,2, .... ,n 

where gi(.) are known functions of the unknown parameter ~ and 

Ei i=1,2, ... ,n are Li.d. with some unknown c.d.f. F(.). The bootstrap 

sample is then constructed as 

i=1,2, ... ,n 

where ~ is a least square estimate of ~ and the e*i:s are independently 

drawn with probabilty lIn for each empirical residual 

ei = Yi - gi(~) i=1,2, ... ,n 

These empirical residuals are however not independent m the 

original problem and neither do they have exactly the same distribution 

there. Thus they can at most serve as an approximation of a sample of 

true i.i.d. residuals. A bootstrap method using these empirical residuals 

thus has a further approximation beside the bootstrap approximation 

itself. 

In the book Efron(1982) and in several papers is also mentioned 

another method. For the simple linear regression model 

Y i = a + ~ (Xi - x) + Ei i=1,2, ... ,n 
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with Li.d. Ei:S, the method consists in choosing randomly n times among 

the pairs (Xi,Yi) to get a bootstrap sample. This is sometimes called the 

paired bootstrap method. 

The two methods are III fact related to two different designs of the 

original problem. The first one corresponds to x values at the disposal 

and choice of the experimenter, while the second method corresponds to 

random x values, which are not possible for the experimenter to choose. 

This is so because the aim of the bootstrap procedure is to depicture the 

original experiment, which must also include the deterministic or 

random mechanism for choosing the x values. The second method is 

'clean' for the situation of random x values, since there are no further 

approximation beside the one imposed by the bootstrap itself, but the 

situation with randomly choosen x values has restricted applicability. 

In this paper we will study bootstrap methods for the first type of 

situation, where the design in a linear model can be choosen by the 

experimenter. We will suggest a 'clean' method with no approximations 

beside the one imposed by the bootstrap itself. We will study some of its 

properties and compare it to the originally proposed method. 

2. ABSTRACT BOOTSTRAPPING IN SIMPLE LINEAR REGRESSION 

Suppose we have a simple linear regression model 

Y i = a + J3 ( Xi - X ) + Ei 

where independent observations Y 1, Y2, ... , Y n are obtained for the 

regressor values Xl, x2, .... , Xn. The true residuals Ei are supposed to have 

any continuous distribution with expectation 0 and to be independent, 

and the x values are at the disposal of the experimenter. 
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The abstract bootstrap method for this problem means the 

following.Imagine bootstrap samples from the set of true residuals Ei 

i=l, 2, .... , n. Neither the true residuals nor the bootstrap samples 

generated by these are observable, since they involve unknown 

parameters. Calculate theoretically what would happen, if these 

bootstrap samples were used for some statistical metod e.g. creating a 

confidence interval for ~. It then might happen (and in this case it does 

happen) that the final result involves only observable variables. The 

only approximation in the method would thus be the pure bootstrap 
A 

error imposed by using the empirical c.d.f. F(.) instead of the true c.d.f. 

F(.). 

Let us now study the simple regresslOn problem in some more 

detail. The true residuals are 

Ei = Yi - a - ~ ( Xi - x ) i = 1, 2, ... , n. 

From these we take an abstract sample Ei * i = 1, 2, ... , n, where we 

denote the number of the Ej choosen in the i:th place by j(i). This means 

that we have 

C'* - CO(') <-1 - "'J 1 • 

With this sample of residuals we get the (abstract !) bootstrap 

observations 

Yi* = a + ~ ( Xi - x ) + Ej(i) i = 1, 2, ... , n. 

When substituting Ej(i) from its defining equation, we get the bootstrap 

Y observations 

Yi* = a + ~ ( Xi - x ) + Yj(i) - a - ~ ( Xj(i) - X ) = 

= Yj(i) - ~ ( Xj(i) - xi ) 

which yields the bootstrap estimate 

~* = (Wy* - ~ Wx* )/Qx + ~ 

where 
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n 

=L Xj(i) ( Xi - x ) 
i=l 

and 
n 

Wy* = L Y j(i) ( Xi - x) . 
i=l 

N ow a confidence interval with confidence level q for ~ is obtained 

(as always) by checking for each hypothetical ~, if it is rejected or not in 

a test with significance level 1 - q. If we want a two-sided confidence 

interval, we have to make one-sided tests at level (1 - q)/2 in each 

direction. This means that we here use the observable two-dimensional 

bootstrap variable 

( 

n n 

(Wy*,Wx*) = L Y j(i) ( Xi - x ) , L Xj(i) ( xi -
i=l i=l J 

x )) ). 
to check the extremeness of the outcome ~ in the bootstrap distribution 

of ~* for different hypothetical ~: s. 

In order to obtain an upper 1 - (1-q)/2 confidence limit, consider 

some ~' and a level (1-q)/2 test of the hypothesis ~ = ~' against the 

alternative ~ < W. Now the formula 

~* = ~ + ( Wy* - ~ Wx* )/ Qx (1) 

can be written 

~* = Wy*/Qx + ~ ( 1 - Wx*/Qx ). (2) 

Here usually Wx* < Qx, since in the bootstrap distribution E*( Wx* ) = 0 

and Var*( Wx* ) = Qx2/n. Even by the rough Chebyshev inequality 

P*( 1 - Wx*/Qx < 0 ) < lin. 

Thus there is an indication that ~ is smaller than ~' when ~* is small if 

W x * < Qx. If occationally W x * > Qx, the sign of 1 - W x * /Qx is reversed, 
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and there is an indication that ~ is smaller than ~' if ~* is large. The 

limits at which the hypothesis ~ = ~' is rejected in favour of ~< ~' are 

determined in the bootstrap distribution under the assumption that ~ = 

~', one limit for each hypothetical ~'. 

In particular we are interested in obtaining those ~', for which we 

reject ~ = W in favour of ~ < ~', when the outcome of ~* equals ~, since it 

gives us the bootstrap symmetric upper confidence limit for ~, when the 

outcome is~. According to formula (2) and the comments following it, 

the bootstrap estimate of the probability to get a more extreme outcome 

than ~ for ~* equals 

P*( (~* < ~ and Wx*/Qx < 1) or (~* > ~ and Wx*/Qx > 1) ) = 

= P*( (Wy*/Qx +W (1 - Wx*/Qx) < ~ and Wx*/Qx < 1) or 

( Wy*/Qx + W (1 - Wx*/Qx) < ~ and Wx*/Qx > 1) ). 

This probability equals the probability of the shadowed area in the 

following figure for the bootstrap variables Qx-W x * and Wy*. 
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The bootstrap probability of this shadowed area is a monotone 

function of ~'. Computationally the confidence limit can most easily be 

found by a further simple construction. Starting with the extreme ' ~' = 

and decreasing ~' , one point after the other will be included in the area. 

A point ( Qx - Wx* , Wy* ) will be included at a ~' determined by 

Wy* = ~ Qx - ~' ( Qx - Wx* ) 

which means 

W = ( ~ Qx - Wy* ) / ( Qx - Wx* ) 

= ~ + (~Wx* - Wy*) / ( Qx- Wx*). 

The computation of the confidence limits can be administrated by 

calculating for each simulated bootstrap sample the value 

(3) 

( ~ Qx - Wy* )/( Qx - Wx*) and then after the whole simulation sorting 

those values and finding the (l-q)/2 and 1 - (l-q)/2 quantiles. 

Let us now compare this abstract bootstrap procedure to the 

earlier used percentile method. In that method a bootstrap sample IS 

taken from the empirical residuals 
A A< . 

ei = Yi - a - P ( Xi - x ) . 

With the same notations as before the random choice of residual to add 

to the linear function & + ~ ( x - x) in the point x = Xi IS 

ej(i) = Yj(i) - & - ~ ( Xj(i) - x ) 

and we get the bootstrap sample of Y values 

Y j(i) - ~ ( Xj(i) - Xi ) i = 1, 2, .... , n 

for the design points Xi i = 1, 2, ... , n. 

The bootstrap estimate of ~ becomes 

~* = ( W y * + ~ ( Qx - W x * ) ) / Qx . 

The implicit model is here that ~ - ~ has a fixed distribution 

approximated by that of ~* - ~. Thus we find the upper limit in a 
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symmetric confidence interval with confidence level 1 - q by finding 

the p' making 

P*( ~ - P' > ( Wy* - ~ W x * ) / Qx ) = (1-q)/2 

i.e. the upper confidence limit is obtained as the 1 - (1-q)/2 fractile III 

the bootstrap distribution of 

( ~ ( Qx + Wx* ) - Wy* ) / Qx = 

= ~ + ( ~ W x * - Wy * )/Qx. ( 4 ) 

In the same way we get the lower confidence limit as the (1-q)/2 

quantile in the same distribution. This is to be compared to the more 

accurate abstract bootstrap method, where we use the same quantiles in 

the distribution of 

( ~ Qx - Wy* ) / ( Qx - Wx* ) = 

= ~ + ( ~ Wx* - Wy*)/( Qx - Wx* ). 

Observe that the 'bootstrap random parts' in the two cases have a 

common factor, including the main variation, and different dividends Qx 

and Qx - W x *. The difference of the bootstrap variables for the abstract 

method and the ordinary percentile method equals 

( ~ Wx* - Wy*) Wx* / ( Qx ( Qx - Wx*) ). 

For the ordinary bootstrap method the expectation III the 

bootstrap distribution equals 

E*( ~ + ( ~ Wx* - Wy* )/Qx) = ~ 

and the variance equals 

where 

n 
Var*( ~ + ( ~ Wx* - Wy* )/Qx) = L ei2 / n Qx 

i=l 

ei = Yi - &. - t ( Xi - x ). 

Thus the unconditional variance equals 

E( Var*( ~ + ( ~ Wx* - Wy* ) ) = (n-2) (}"2 / n Qx 

(5) 
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which is smaller than the vanance of ~ by a factor (n-2)/n. This 

illustrates the wellknown fact, pointed out already by Efron (1982), that 

the ordinary bootstrap method has a tendency of underestimating the 

variation. For the abstract bootstrap method the expectation not even 

exists, since with positive probability W x * = Qx . Nevertheless the 

bootstrap distribution can be a very good approximation of the true 

distribution. 

3. GENERAL LINEAR MODELS 

N ow let us consider more general linear models like linear 

regresion models with more than one regressor or analysis of variance 

models. We write the model in the form 

Y = a + X' ~ + £ 

where we have singled out the general mean vector a (with all 

component values equal to some common 0.0) and use a reduced design 

matrix X. If the number of observations is n, and the number of 

components in ~ is p, the X matrix is of type pxn. The error vector £ is 

supposed to consist of ij.d. components having some unknown 

continuous distribution with expectation O. We further suppose the 

design to be orthogonal between the a component and the individual ~ 

components i.e. 

X a' = 0 (p-vector). 

No orthogonality between ~ components IS required. The orthogonality 

condition means that the LS estimate of ~ equals 

~ = S-l X Y 

where S = X X'. 



The components of the unobservable error vector 

E=Y-a-X'f3 
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are 'used' in an abstract bootstrap procedure, where we imagine E* 

having components choosen randomly with replacement from the 

components of E. Let j(i) be the number of the E component choosen to 

be the i:th component of E *. Then this component is 

Ej(i) = Yj(i) - ao - Xj(i)' f3 

where Xj(i) is the j(i):th column vector of X. For the whole vector of 

abstract bootstrap observations we use the notation 

E* = y* - a X*' f3 . 

The bootsstrap observation vector would now be 

a + X' f3 + y* - a - X*' f3 = y* - ( X*' - X') f3. 

Observe that we have the same design in the bootstrap experiment as m 

the original one. The bootstrap estimate of f3 thus equals 

S-l ( S f3 + X y* - X X*' f3 ) . 

Like in the simple case with one regressor we consider the possibility of 

a more extreme observation than f3 for different f3 :s. This means that a 

crucial point is when 

~ = S-l ( S f3 + X y* - X X*' f3 ) 

1.e. when 

f3 = ( S - X X*' )-1 ( S ~ - X y* ) 

if the inverse exists. The bootstrap distribution of the variable 

( S - X X*' )-1 ( S ~ - X y* ) ( 6 ) 

should be studied in order to obtain confidence sets of different types 

for f3 or to test different hypotheses. 

The inverse does not exist if x* happens to be equal to X. The 

probability of this is n-n . The nonexistance of the inverse, which might 

occur also in other cases, ought to be a rare event. It has however to be 
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taken into account in the registration procedure for the bootstrap 

simulation results as well as in calculation of the risk probabilities III the 

bootstrap distribution. 

Like in the case of simple linear regression it might illuminate the 

method to compare it to the ordinary percentile method based on Efron 

(1982). After some elementary calculation we find in this case that the 

confidence interval with confidence coefficient q is given by the (l-q)/2 

and (1 +q)/2 fractiles of the bootstrap distribution of 

S -1 ( ( S + X X*' ) ~ - X y* ) = 

= ~ + S-1 ( XX*' ~ - X y* ). 

The difference between the two bootstrap distributions equals 

( ( S - X X*')-1 - S-1 ) (XX*' ~ - XY*) = 

= S-1 XX*' ( S - XX*' )-1 ( XX*' ~ - XY* ), (7) 

which could be compared to the special case of simple linear regressIOn 

in formula (5). 

4. SOME SPECIAL CASES 

In this section we will study the abstract bootstrap method for 

some other special cases than the simple linear regression, which was 

used as an introduction in section 2. 

EXAMPLE 1. The simplest of all linear models is a two sample case, 

where the interesting parameter is the translation between the means 

of the samples from two distributions of the same form. In our model 

we can formally use design points -1/2 and 1/2 for the two samples, 

which means that the f3 parameter is just the translation between the 
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samples. We denote the sample sizes by n1 and n2 and the means by Y1 

and Y2. By simple calculations it now follows that 

and 

Qx = n1 n2 / ( n1 + n2 ). 

The bootstrap random quantities Wx * and Wy* can be written 
1 

Wx* = [Nl1* n2 + N22* n1 - n1n2] 
n1+n2 

and 

Wy* 

where 

Y1 * and Y 2 * are the means of the Y values of random samples 

(among all Y:s !) corresponding to the points Xl and X2, 

NIl * is the number of Y values in the bootstrap sample 

corresponding to Xl, which come from the original sample 1 and 

N 22 * is the number of Y values in the bootstrap sample 

corresponding to X2, which come from the original sample 2. 

From this it easily follows that the confidence interval generating 

bootstrap random variable in this case equals 

( S - XX*' )-1 ( S ~ - X y* ) = 

= [(Y2-Y2*)-(Y1-Y1*)]/[2-Nll*/n1-N22*/n2] (8) 

The method needs at least 5 observations in each original sample, 

otherwise the probability of getting the nominator equal to 0 will be too 

large. 

Formula (8) gives a simple illustration of the basic behaviour of 

the abstract bootstrap method. It is seen that the bootstrap random 

choice of units gives a denominator, which estimates varying factors 
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times the interesting parameter. This factor is compensated by the 

nominator. 

EXAMPLE 2. Another very simple special case is the 'simple analysis 

of variance situation' with a number of observation series, which can be 

supposed to have the same unknown distributional form and to differ 

only in location. For simplicity we consider the same number m of 

observations in each series. The number of series is denoted by k. The 

parameter ~ with k components has the restriction 
k 
L Pi = 0 
i=l 

m order to give ortogonality to the a component. In a bootstrap sample 

we denote the mean of all Y:s choosen in creation of series i by Yi*. 

Further we denote the number of Y:s choosen from series j in the 

bootstrap creation of series i by Ni,j* and the total number of Y:s 

choosen from series j by Nj*. Now it is easily seen that the confidence 

interval determining bootstrap random variable equals 

( Ik - ! [Ni,j* ] + ~ k ek [ Nj*]' )-1 [ Yi* - y* - Yi + Y ] (9) 

where Ik is a unit kxk matrix, ek is a unit k vector, Y is the grand mean 

of the Y:s for the original observations and Y* is the grand mean for the 

Y:s in the bootstrap sample. The brackets [ and] are used to denote 

vectors or matrices with the elements written inside the brackets. 

It is neccessary to make an inversion in each bootstrap sample 

although the estimation in the original problem involves no inversion. 

This is due to the 'problem variation' inherent in the abstract bootstrap 

method, mentioned also in the previous example. 
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5. ASYMPTOTIC VALIDITY 

A fundamental paper on the asymptotics for ordinary bootstrap in 

regression models is Freedman (1981). Theorem 2.2 in his paper gives 

the asymptotic normality for the conditional distribution of the boots tap 

estimate in a general case with possibly unequal sample sizes of the 

original sample (n) and the bootstrap sample (m) under some mild 

conditions. We will use his results here, but since we discuss only the 

case of same size of the original sample and the bootstrap sample, we 

will specialize to the standard case m = n, when we use his results. It 

will be proved here that the abstract bootstrap method has the same 

asymptotic distributional properties as the ordinary bootstrap method, 

1.e. that the abstract bootstrap method is also asymptotically valid. 

Freedmans (1981) conditions for the regression problem include 

the conditions that the model is of the type we study, i.e. that the design 

is non-random and that the errors are i.i.d. Beside these conditions 

there is a design convergence condition, which in our notation means 
that limn-7 oo SIn = limn -7

oo 
XX'/n = V ,for some positive definite V. 

THEOREM 1. Suppose that the design in the linear model Y = a + X' f3 + E 

is nonrandom, the components of the error vector E are i.i.d. and the 

design matrix X satisfies 
limn-7oo XX' = V 

where V is positive definite. Then with probability 1, the conditional 

distribution of the normalized confidence set determining random 

vector 

n 1/2 ( S - X X*' )-1 ( S ~ - X Y* ) 
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converges weakly to a normal distribution with expectation 0 and 

covariance matrix (}"2 V-I . 

PROOF. The conditions of Theorem 2.2 in Freedman (1981) are 

satisfied. Thus by that Theorem the conditional distribution of the 

normalized confidence set determining random vector 

nl/2S-1 [(S+XX*')~-XY*] 

for the ordinary bootstrap method converges weakly to a normal 

distribution with expectation 0 and covariance matrix (}"2 V-I. According 

to formula (7) the difference between the normalized confidence set 

determining random vectors for the ordinary bootstrap method and the 

abstract bootstrap method equals 

n 1/2 S-1 XX*' ( S - XX*' )-1 X ( X*' ~ - Y* ) = 

= n S-1 n-1/2 XX*' n(S -XX*')-1 n-lX(X*'~ - Y*). 

Here n-l/2 XX*' converges in distribution and n S-1 as well as 

n ( S - XX*' )-1 converge to V-I. Finally n-1 X ( X*' ~ - Y* ) converges in 

probability to 0, and so does the whole product. Thus by a 

multidimensional Cramer-Slutsky theorem, the conditional distributions 

of the normalized confidence set determining random vectors for the 

ordinary bootstrap method and the abstract bootstrap method converge 

to the same limit. See e.g. Ganssler & Stute (1977) Korrolar 8.6.6. page 

354. 

QED. 
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5. SIMULATION COMPLEMENTS 

The theoretical results and discussions in the previous sections will 

here be illustrated by simulations for the case of simple linear 

regressIon. 

Suppose first that we have equidistant x values and normal 

distributions. For this case we have compared the confidence coefficient 

and the lengths of the confidence intervals for the slope based on the 

ordinary t method, the common bootstrap percentile method and the 

abstract percentile method. The intended confidence coefficient were in 

all cases equal to 95 %. A simulation with 1000 regression observation 

sets were generated for each of the sample sizes n = 10, 20, 40. They 

were treated by the three confidence interval methods for the same 

samples. Bootstrap sample size for the two bootstrap methods were 

1000. The same bootstrap samples were used in both cases. The missing 

probabilities for the different regression sample sizes obtained in the 

simulation were 

Sample SIze 

10 

20 

40 

t method 

4.6 % 

4.8 % 

5.5 % 

Ordinary bootstrap 

10.9 % 

6.6 % 

6.6 % 

Abstract bootstrap 

4.8 % 

4.6 % 

5.4 % 

The mean length of of the ordinary bootstrap method interval and 

the mean length the abstract bootstrap method interval had the 

following changes in relations to the mean length of the t method 

interval. 
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Sample size Ordinary bootstrap Abstract bootstrap 

10 -23.1 % -1.6 % 

20 -10.2 % -to.1 % 

40 -4.6 % -to.5 % 

This is also what would be expected. The decrease in confidence 

coefficient for the ordinary bootstrap method ought to be reflected m a 

corresponding smaller length of the interval. The simulation is general 

in the sense that it is invariant in changes of the true slope and the 

error variance and linear transformation of the x scale. There are no 

essential differences between the intervals obtained with the t method 

and the abstract bootstrap method for these sample sizes. 

We have also made the same type of simulation for a skew long­

tailed error distribution with density 

f(x) = 3 / (x + 1.5)4 

f(x) = 0 

for x > - 0.5 

for x < - 0.5 

In a situation where the x values are equally spaced, the distribution is 

symmetrizised in the estimation of p, since the coefficients of the error 

contributions appear in pairs with the same absolute value and different 

signs. The long tails remain however. For this distribution we have 

obtained by simulation the distribution of the common t statistic used 

for making tests and confidence intervals for p. The sample size in the 

simulation is 50000 and the standard deviations in the estimates of the 

percentiles are less than 0.01. The simulation gave the following 97.5 

percentiles. 

Sample SIze 

97.5 % percentile 

10 

2.18 

20 

1.99 

40 

1.96 

Observe that the limits are more narrow in this case than in the case of 

normal distribution, which could in fact be supposed. 
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In a simulation with sample size 1000 three methods for creating 

95 % confidence intervals for ~ were compared, the t method with the 

table above, the ordinary bootstrap method and the abstract bootstrap 

method. For sample sizes 10, 20 and 40 the obtained missing 

probabilities were 

Sample size t-method Ordinary bootstrap Abstract bootstrap 

10 5.1 % 10.7 % 4.8 % 

20 6.0 % 8.0 % 4.7 % 

40 6.9 % 7.5 % 6.0 % 

The mean lengths of the intervals obtained with the ordinary bootstrap 

method and the mean lengths of the intervals obtained with the abstract 

bootstrap method got the following relations to the mean length of the 

intervals obtained with the t method. 

Sample size 

10 

20 

40 

Ordinary bootstrap 

-18.2 % 

-4.1 % 

-4.6 % 

Abstract bootstrap 

+3.8% 

+6.4% 

+0.5% 

The simulations indicate that there is a noticable difference 

between the common bootstrap method on one side and the abstract 

bootstrap method and the t method on the other side. At least in the 

studied cases the abstract method adapts well to the prerequired level 

of significance for small sample sizes and there are no essential 

differences between the 'tabel corrected t method' and the abstract 

bootstrap method. 



19 

6. REFERENCES 

DiCiccio T. J. & Romano J. P. (1988). A review of bootstrap confidence 

intervals. J. Roy. Statist. Soc. Ser. B, 50, 338-354. 

Efron B. (1979). Bootstrap methods : another look at the jackknife. Ann. 

Statist. , 7, 1-26 

Efron B. (1982). The jackknife, the bootstrap and other resampling plans. 

Soc. Ind. Appl. Math. CBMS-Natl. Sci. Found. Monogr. 38. 

Freedman D. A. (1981) Bootstrapping regression models. Ann. Statist. 

9, 1218-1228. 

Ganssler P. & Stute W. (1977). Wahrscheinlichkeitsteorie. Springer­

Verlag. 



1989:1 Johnsson, T. 

1989:2 Johnsson, T. 

1989:3 Frisen, M. & 
de Mare, J. 

1989:4 Palaszewski, 

1990:1 Holm, S. 

B. 

A procedure for stepwise regres­
sion analysis. 

On the closure of a bootstrap 
multiple comparison test. 

Optimal surveillance 

A stepwise test procedure for 
finding groups with non minimal 
parameters. 

Abstract bootstrap confidence 
intervals in linear models. 


