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SUMMARY 

For data consisting of cross sections of units observed over time, 

the Error Component Regression (ECR) model, with random intercept 

and constant slope, may sometimes be adequate. While most interest 

has been focused on pOint estimation of the slope parameter S, little 

attention has been paid to the problem of making confidence state­

ments and tests about S. 

In this paper, the performance of some estimators of S and the 

corresponding test statistics are investigated. In consideration of 

bias, efficiency and power of tests, it is shown that the Maximum 

Likelihood estimator with the cqrresponding test statistic is out­

standing in large samples. But, in the small sample case there are 

hardly any reasons for the Maximum Likelihood approach. In the latter 

case, the use of estimators and test statistics based on within- or 

between group comparisons is suggested. 

The results, together with tools for a proper application of the 

ECR model, are demonstrated on data from a medical follow-up study. 
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1. INTRODUCTION 

Consider a sample of n units from which data y .. are obtained at 
lJ 

the times x .. , i=1 ... t and j=1 ... n. A simple linear regression model lJ 
for this pooling of cross section and time series data may be written 

y.=(1,x.)I3.+u .. Here 1=(1 ... 1)' and x.=(x1 .... x t .)' are non-random 
-J - -J -J -J - . -J J. J 
vectors, Y'=(Y1 ····yt·)' is a random vector of observations,B.= 

-J J J -J 
is a vector of random intercepts 13 0 , and fixed slopes 13 

J . 

while u. is a random vector of errors. It is assumed that B. 
-J '-J 

are uncorrelated, the.y.'s are 
-J 

2 
uncorrelated and 130j~N1 (0.,00.) 

and u. 
-J 

while 

2 
U.~Nt(O,o I), where ~Nt means 'has a 
-J - u-

t-dimensional normal law' with 

mean vector and dispersion matrix in the parenthesis. 

The model above is an Error Component Regression (ECR) model which is 

a special case of the Random Coefficient Regression (RCR) model in 

which both intercept .. and slope are random. It follows that 

~
ab" .~ ., 

y . ~Nt ( (1 ,x .) (~), ?a: .. ? ), 
-J - -J iJ '" 

:0 ••• ab 
b •.. ba 

222 where a=o +0 and b=o . a u u 

( 1 ) 

The ECR model has been used in many fields, especially in econometrics 

but rather few comparisons between different estimators of the para-

meters have been reported. In a frequently cited simulation study 

Maddala and Mount (1973) compared bias and mean squared error between 

11 alternative' es.ttmators of 13, including those given by the Maximum 

Likelihood (ML) method and several two-step Generalized Least Squares 

(GLS) methods. It was concluded that 'there is nothing much to chose 

among these estimators'. 
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Some effects of substituting estimators for the variance components 

0
2 and 0

2 in the expression for the 8-GLS estimator have been studied 
ex. u 

by Taylor (1980). More efficient estimators of the variance components 

need not lead to more efficient estimators of 8. 

While some interest has been focused on the improvement of point 

estimators of 8, little attention has been paid to the problem of 

making confidence statements and tests about 8. 

Here, some estimators of 8 will be compared when they are used as 

interval estimators and test statistics. The following estimators 

will be considered: The between-group-, the within-group-, the 

ordinary Least Squares (LS)- and the ML estimators. Two-step GLS 

estimators are not considered since their small-sample distributions 

are complicated and in large samples they are not more efficient than 

the ML estimator. 

The main purpose is to find recommendations for the choice between 

alternative 8-estimators. Estimators of the variance components will 

only be briefly discussed in connection with the estimation of 8. 

The results are applied to data consisting of haemoglobin (HbA
1c

) 

measurements from diabetic patients. 
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2. SOME SAMPLE MOMENTS AND A TRANSFORMATION 

The following sample moments will be used extensively: 

t t n n 
x.= L: x .. /t, y.= L: y .. /t, x= L: x., y= L: Y·/n, 

J i =11J J i =1 1J j=1 J j=1 J 

t 
s = L: (x .. -x.) (y .. -y . ) , 

x j Y j i=1 1J J 1J J (2 ) 

n 
Within-group sums of squares: W = L: s ,Wxx and Wyy 

xy j=1 x j Yj 

n 
Between-group sums of squares: B = L: (x.-x) (Y.-y), Band B . 

xy j=1 J J xx yy 

The derivations will be much simplyfied by the following transformat-

ion: 1 1 

1 /t'2' ••. 1 /t'2' 

z.=My., where M= l21 ••.• l2t -J --J --: = L 
( 3) 

where the raws in Mare ortogonal. 

Since M'M=I the matrix L in (3) has the property 

L'L=I-11'/t. (4) 

Using (4) the within-group sums of squares can be written 

n n n 
W = L: x!L'Ly., W = L: x~L'Lx. and W = L: y~L'Ly .. 

xy j=1- J - --J xx j=1-J- --J yy j=1-J- --J 
(5) 

By the transformation in (3) we obtain the vectors 

[
_ 1] [_ 1] Y·t'2' (a+f3x·)t'2' z.= ~J __ ~ N ( _____ J ___ , 

-J Ly. t Lx. 
--J --J [ ~~~~~=~~+--g~--l)· 0' : (a-b) I - -

(6) 
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3. DERIVATION OF ESTIMATORS 

GLS- and ML estimation of the slope B has been studied in the more 

general case when the single slope is replaced by a vector of slopes 

( Balestra and Nerlove (1966), Maddala (1971)). Simultaneous 

solution of the resulting equations then becomes complicated ( see 

Hsiao (1986) chap. 3). In the present case it is instructive to show 

how simple expressions can be derived for the estimators and the 

standard errors ( SE's) of the estimators. 

3.1 LS APPROACH 

As is seen from (6), the transformation (4) leads to the two un-
_ 1 _ 

correlated components z1 .=y.t~ and (z2 .... Zt.) '=(Ly.) I. The ordinary 
J J J J ~~J 

LS estimators of B and a which are obtained by only using the z 1j
1 s, 

j =1 .•• n, are 

~b=BXy/BXX and ~b=Y-~bX' 

~b may be called the between-group estimator of B. According to 

fundamental results in LS theory 

~ ~N (Q a+b(t-1)) d 
~b 1~' ntB an 

xx 
n 

~b= E (Y·-~b-~bx.)2=n(B -~b2B )~(a+b~t-1))x2(n_2), 
j=1 J J YY xx 

where x 2 (n-2) denotes a Chi-Square variable with n-2 degrees of 

freedom (d.f). Furthermore, ~b and ~b are independent. 

(7 ) 

(8 ) 

Similarly, the ordinary LS estimator of B obtained from the vectors 

(z2j ... Ztj) I, j=1. .. n, is 

n -1 n 
~ =( E(Lx.) 1 (Lx.)) E(Lx.) 1 (Ly.)= Wxy/Wxx ' (9) 

w j=1~~J ~-J j=1--J --J 

where the last equality follows from (5). ~w may be called the 
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within-group estimator of S. The residual 
n 
I (Ly.-LX.S )' (Ly.-LX.S ) can be written 

j=1 --J --J w --J --J w 
It follows that 

S 'UN (S (a-b)) and 

sum of squares ~= 
w 

'V2 
nt(Wyy-SwWxx) by using (5) • 

w 1 'ntW 
xx 

~ =nt(W -S2w )'U(a-b)x 2 (n(t-1)-1). 
( 1 0 ) 

w yy w xx 

The statistics S and ~ are independent and also independent of w w 

Sb and ~b in (8). 

The ordinary LS estimator of S, obtained from the complete vectors 

z . , 
-J j=1 ... n, is SL~=SXY/Sxx. 

B S +W B' ').{ xx b xx w 
I:5 LS B +W 

xx xx 

This can be written 

(11 ) 

which is a weighted average of the between-group estimator and the 

within-group estimator. This estimator is normally distributed with 

mean S and variance 

V(').{ ) {(a+b(t-1))B +(a-b)W )}/ntS2 • I:5 LS = xx xx xx (1 2) 

Unbiased estimators of the varia'nces of the estimators can be derived 

from the residual sums of squares: 
. ~ 

\f(Sb) = n(n-~)B 
xx 

~ 
\f(Sw) = nt(n(t-~)-1)W 

xx (13) 

Finally, unbiased estimators of the variance components are 

'U2 ~ t~b ~w 'V2 'V 'V ~w 
0u =15={n-2 -n(t-1)-1}/t and 0a=a-b= n(t-1)-1 . (14) 

The properties of these estimators can be obtained from (8) and (10) 

and from the fact that ~b and ~w are independent. 
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3.2 ML APPROACH 

The negative log-likelihood of the transformed vectors in (6) is 

-logL= nt n n (t-1 ) 
2log27f+2log (a+b (t-1 ) ) I 2 log (a-b) 

n _ _ 2 
t I(y.-a-Sx.) 

+ j=1 J J + 
2 (a+b (t-1)) 

1 n 
2(a-b) I(y.-X.S)ILIL(y.-x.S). 

j=1-J -J - - -J -J 

(15 ) 

Differentiating this with respect to a and equating to zero yelds 

a=y-Sx, ( 1 6 ) 

where I-I indicates the ML estimator. 

Differentiating (15) with respe~t to a and b leads to the equations 

t n - - -- 2 
I(y.-a-Sx.) = a+b(t-1) and 

n j =.1 J J 

n 
I(y.-x.S) ILIL(y.-x.S)= n(t-1) (a-b), 

j=1-J -J - - -J -J 

while the same procedure for S yelds 
.' 

n n 
I X!LILx.S - I x!LILy. 

j=1- J - --J j=1- J - --J = ~(~a_-~b~) __ 
n _ _ _ a+b(t-1) 
I x. (y.-a-Sx.) 

j=1 J J J 

( 17 ) 

(18) 

( 1 9 ) 

By in turn putting (16) into (17) and (18) and then (17) and (18) 

into (19) a cubic equation in S is obtained, which can be simplyfied 

to 

S3 + PS2 + QS + R =0, where 

P= _{ (2t-1)BXy +(t+1.)WXY } Q= ~ 2BXYWXY (t-1)~ 
t B t W ' tW + B W + t B 

xx xx xx xx xx xx 

B W B W 
and R= _{ (t-1) yy xy xy yy} 

t B W +tB W . 
xx xx xx xx 

(20 ) 

The solution of S into (16) gives a. The ML estimators of a and b 
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are then obtained from the expressions 

- L:b L: w t - -
b= -n- nt(t-1) and a= nL: b-(t-1)b, (21 ) 

where L:b= n(B +S2B -2SB ) and L: =nt(W +S2w -2SW ). yy xx xy w yy xx xy 

The ML approach thus rests upon the solution of S in (20). Put 

F=(3Q-p2 )/3 and G=(2p 3-9PQ+27R)/27 and consider D=F 3 /27 + G2 /4. If 

D>O it is well known that (20) has one real solution, but for D<O 

there may be two or more unequal real roots in which case these have 

to be inserted into the likelihood function in order to find the 

ML estimator. 

From (20) it is seen that S is a non-linear function of the jointly 

sufficient LS-statistics ~b' ~w' 'tb and 'tw' 

As n+oo the vector of estimators (a, S, a, b) I tends to a normal 

distribution with mean vector (a, S, a, b) I and dispersion matrix 

with the following non-zero elements, obtained from the 2:nd partial 

derivatives of -logL cf. Kendall and Stuart (1961), chap. 18): 

V(a)= 

V(b)= 

1 --
=Cov(a,S) , 
x 

1 -2 -
nt(a+b(t-1» + x V(S), 

2 
_2_ ( (a - b) + (a + b (t -1 ) ) 2) , 
nt2 t-1 

V(a)= _2_«t-1) (a-b)2 + (a+b(t-1»2), 
nt 2 

2 2 2 Cov (a,b) = nt «a-b). - (a+b (t-1» ). 

(22 ) 

From these expressions the variances of the estimators of the variance 

2 2 components 0 and 0 can be calculated. a u 

Notice that the asymptotic variance of S in (22) is the same as the 

variance of the best linear combination of ~b and ~w when a and b 
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are known. 

To study some properties of 6 in finite samples a simulation study 

was performed in which 400 000 simulations were made for each choice 

of n=10 and 100, t=2 and 10, b=0.1 and 0.9, a=1 and 6=0. The result 

of the study is presented in Table 1. The bias was very small and 

the observed st.d. agreed well with the asymptotic theoretical st.d., 

obtained from (22). When the latter was estimated by inserting the 

ML estimates for the unknown parameters, somewhat lower values were 

obtained. 

St.d. 
b n t Bias Obs As EA's ----

O.J 10 2 0.0001 0.169 0.157 0.138 
II " 10 0.0001 0.081 0.078 0.073 
II 100 2 0.0001 0.050 0.050 0.049 
" " 10 0.0001 0.025 0.025 0.025 

0.9 10 2 0.0.001 0.070 0.069 0.063 
" II 10 0.0000 0.031 0.031 0.031 
II 100 2 0.0000 0.022 0.022 0.022 
" " 10 0.0000 0.010 tL010 0.010 

Table 1. Bias and precision of the ML estimator B expressed in 

standard deviation (st.d.). Obs= Observed from simulations, As= 

According to asymptotic theory and EAs= Estimated from simulations 

according to asymptotic theory. 
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4. COMPARISON BETWEEN THE ESTIMATORS 

A comparison between the proposed estimators leads to somewhat 

different conclusions than were reached in the simulation study by 

Maddala and Mount (1973) mentioned in the introduction. 

The relative efficiency of 

by the ratio between their 

two estimators ~1 and ~2 can be expressed 

variances, V(~1)/V(~2). Put K=B /S and xx xx 

p=b/a, the latter being the correlation between two observations Yij 

and y. I •• Then the following asymptotic results are obtained from 
1 J 

sect. 3: 

V(S)/V(Bb )= {1 + (1-K) (1 +p (t-1)) }-1 
K (1-p) , 

V(S}/V(Bw)= 1-V(S)/V(~b)' (23) 

V(S)/V(~LS)= 
2 2 ( ) p t K 1-K }-1 

{1+(1_P) (1+p(t-1)) -. 

These three asymptotic efficiencies are plotted in Figure 1 as 

functions of K for some values of t and p. 

The within-group estimator ~ is more efficient than the between-w 

group estimator ~b if p>(2K-1){K+(1-K) (t-1)}-1. The asymptotic 

relative efficiency of the LS estimator ~LS has a minimum for K=1/2 

and decreases to zero as p+1 or t+oo. When p>{1+t(1-K)}-1 the 

efficiency of ~LS is in fact smaller than that of Bw' in which case 

nothing is gained by also considering between-group variability. 

The results suggest that in large samples, say n>100 or n>10 and 

t>10 (cf. Table 1), much can be gained in precision by using the ML 

estimator. 

In small samples the variance of the ML estimator can be larger than 

the asymptotic expression in (22) (cf. Table 1) and even larger than 
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the variance of some of the LS estimators. Consider e.g. the case 

a=1 b=0.1 n=10 t=2 and B =1=W . Since K=Bxx/S xx the asymptotic , " xx xx 

relative efficiency of the ordinary LS estimator has a minimum. Yet, 

in this small~sample case, the LS estimator has smaller st.d. than 

the ML estimator, 0.158 compared to 0.169. 

p=O.l t=2 p=O.l t=10 
ML 1\ ML 1\ 

1 1 
LS 

LS 

W w 

0.5 0.5 

B 
B 

~--------~----------+> ~--------~----------~> 

o 0.5 1 

K 

p=0.9 .' t=2 
1\ ML 

1 

W 

0.5 

~-=====~~--------~> 
o 0.5 1 

K 

o 

1\ 

1 

0.5 

o 

0.5 

K 

p=0.9 t=10 
ML 

LS 

0.5 

K 

1 

1 

Figure 1. Relative efficiencies of some B-estimators plotted versus 

K=B Is . for two values of p=b/a and t. ML: ML estimator, LS: Ordinary xx xx 

LS estimator, B: Between-group estimator and W: Within-group estimator. 

Notice how.the efficiency of the LS estimator decreases with increasing 

p and t. The between-group estimator is never more efficient than the 

LS estimator, but it may be more efficient than the within-group estim-

ator when K is large. 
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5. TESTS AND CONFIDENCE INTERVALS FOR S 

Tests and confidence intervals for S can be based on the four 

estimators in sect. 4. Here, the performance of the following 
1 1 

statistics will be c~mpared: Tb=(Sb-S)/(~~Sb»2, Tw=(Sw-S)/(~(SW»2, 
'V "Z - - - '2 

TLS=(SLS-S)/(V(SLS» and TML=(S-S)/(V(S» , where the estimated 

variances are given in (13) and (22). In the latter case with the 

estimators inserted. for the parameters. 

The distributions of Tb and Tw are simple. Tests of HO:S=SO and 

confidence intervals for S can be based on the fact that Tb and Tw 

have Student-T distributions with degrees of freedom (df) n-2 and 

n(t-1)-1, respectively. The non-centrality parameters which are 1 

2 

needed for calculating thi powers of the tests are 0b=(S-SO) V(Sb) 

:tor Tb and 0w=(S-.SO)V(Sw)
2 

for Tw' 

The distribution of TLS is more 90mplicated. From (8), (10) and (13) 

it is seen that the denominator of TLS consists of a linear combinat­

ion of chi-square variables. TLS may thus be considered to be approx­

imately Student-T distributed with df in the range n-2 to nt-3 ( cf. 

Walsh (1947». The distribution of TML is even more cumbersome. 

Since TLS and TML has asymptotic standard normal distributions it is 

of interest to study the rate at which the convergence to the asymp-

totic distribution takes place. To this end 400 000 simulated values 

of TLS and TML were generated for each choice of the parameters 

S=O, a=1, b=O.1 and 0.9, Bxx /Sxx =0.1, 0.3, 0.5, 0.7 and 0.9, n=10, 

100 and 200 and finally, t=2 and 10. The comparison with the standard 

normal distribution was restricted to the 95%- and 99% percentiles. 
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For symmetry reasons there was no need to consider the 5%- and 1% 

percentiles. 

The agreement was found to be uneffected by the absolute magnitudes 

of Bxx and Wxx in the range 1 to 10000, but dependent on the ratio 

K=B /S . The largest discrepancy was observed for K=1/2. The 95%­xx xx 

and the 99% percentiles in this least favourable case are presented 

in Table 2. It is seen that the approach to normality with increasing 

n is somewhat faster for TLS than for TML . Table 2 suggests that TML 

can be treated as a standard normal variable when n>100 and t>10 or 

n>200 and t>2. 

TML TLS 
b n t 95% 99% 95% 99% -

O. 1 10 2 2. 11 3.23 1. 75 2.58 
" " 10 1. 86 2.75 1. 73 2.54 

" 100 2 1 .,68 2.38 1. 65 2.34 
" " 10 1 .66 2.34 1. 65 2.34 

" 200 2 1. 65 2.34 1. 65 2.34 
" " 10 1. 65 2.33 1. 65 2.33 

0.9 10 2 1. 95 2.98 1.85 2.88 
" " 10 1 .68 2.40 1. 84 2.82 

" 100 2 1 ~ 67 2.36 1. 66 2.36 
" " 10 1. 65 2.34 1. 65 2.34 

" 200 2 1 .,65 2.34 1. 65 2.33 
" " 10 1. 65 2.33 1. 65 2.33 

Standard 
normal: 1 .645 2.33 1 .645 2.33 

Table 2. 95- and 99% percentiles of the distributions of the 

statistics TML and TLS for some values of b, nand t when 8=0 and 

a=1. Each percentile is computed from a distribution based on 400 000 

simulations. The percentiles are to be compared with .those of the 

standard normal distribution. 
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The powers of two-sided tests of the hypothesis 6=0 at the 5% signifi­

cance level based on the four statistics were compared. As expected 

from the correspondence between efficiency of estimators and tests 

( cf. Kendall and Stuart (1961), chap. 25), similar conclusions about 

the powers could be drawn as for the estimators in sect. 4. Figure 2 

shows some examples of power curves. In large samples the powers of 

the ML statistic always dominated those of the other statistics. The 

within-group statistic may however be a good alternative when the 

observations are highly correlated within groups. 

p=0.1 p=O.9 
Power Power 

0.5 

1\ 1\ 

ML 

0.5 

w LS 

~--------------------~----------~>B .10 .15 
L---------------------~----------~>B 

.15 .05 .10 .05 

Figure 2. Positive parts of power curves for two-sided tests of the 

hypothesis $=0 at the 5% significance level when p=b/a=0.1 and 0.9 

while K=B /S =1/2. When p=0.1 the powers of the ML statistic (ML) 
xx xx 

and the within-group statistic (W) are slightly larger than the 

powers of the LS statistic (LS) and the between-group statistic, re­

spectively and therefore the latter are not shown. When p=0.9 the 

power of the between-group statistic is not shown because it is very 

small and is of less practical interest. 
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6. AN EXAMPLE 

A large number of diabetic patients were screened at Sahlgren's 

Hospital in Gothenburg during 1982-88. Details about the patient 

data set can be communicated by the author or by Dr H. Kalm, Dept. 

of Ophthalmology, Sahlgren's Hospital, S-413 45 Gothenburg, Sweden). 

To study whether there was an over-all reduction in HbA1c ( glycos­

ulated haemoglobin) among the participants in the screening, a sample 

of 461 patients with exactly two visits at the hospital was selected. 

Due to the large intra-patient variability of the HbA1c measurements, 

a mean of six values was calculated for each patient at each visit. 

With the present notations Yij represent the mean HbA1c level of the 

j:th patient, j=1 ... 461, obtained at the times x 1j =0 and x 2j =time 

after first visit ( years). 

Since means of HbA1c values were considered it may be reasonable to 

aSSlli~e normally distributed Yij'~' as in (1). It remains to check 

whether the ECR model with constant slopes and random intercepts is 

valid, or if both slopes and intercepts should be treated as random 

as in the RCR model. In the latter case the dispersion matrix of ~j 

in (1) is a quadratic form in (~'~j) ( cf. Swamy (1970), chap. 4.3) 

and it follows that the variance V(Y2j-Y1j) increases quadratically 

with x 2j in the RCR model while the variance remains constant in the 

ECR model. The following est~mates were obtained: 

Time after Sample 
first visit size 

x 2j =1 216 

X2j =2 172 

x 2j =3 58 

x 2 ,>4 
J-

15 

Estimated dispersion 
matrix of (Y1jLY2j~ 

(2.6 1.5) 
1.6 2.5 

(2.5 1.5) 
1.5 2.1 

(2.1 1.6) 
1.6 3.4 

Estimate of 
V(Y2 .-v1 .) - J--"'- J-

1 .9 

1 .2 

2. 1 

Not computed due to small samples 
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The roughly constant elements of the dispersion matrices and the 

absence of a quadratic increase in V(Y2j- Y1j) with x 2j indicate that 

the ECR model is adequate. 

The following summary statistics were obtained from the data: 

n=461, t=2, x=0.86, Y=8.29, 

Wxx =0.8988, 

Bxx =0.1596, 

W =-0.1007, W =0.4314, xy yy . 

Bxy =0.0486, Byy =1.9482. 

In this case B /S =0.15 and p=b/ais about 0.6 as estimated from xx xx 

the dispersion matrices. According to the results in sect. 4 the 

within-group estimator ~w can be expected to be nearly as efficient 

as the ML estimator S. The LS estimator ~LS shall be less efficient 

while the between-group estimator ~b shall be very poor. 

Calculations give the following estimates of S with estimated SE1s 

within parentheses: 

~b =0. 304 (0. 1 62), ~w =.~ 0 . 11 2 (0. 032), ~LS =-0. 049 (0. 037), 6 =-0. 097 (0.032) . 

~ ~ -
Estimates of a and bare: a=2.36, b=1.52 from LS approach and a=2.39, 

b=1.55 from ML approach. 

The hypothesis S=O is strongly rejected by two-sided tests based on 

the statistics Tw and TML whereas the statistics TLS and Tb fail to 

detect significant departures from the hypothesis at the 5% level. 

To conclude, there has been a significant decrease of over-all mean 

HbA1c level during the screening period of about 0.1 unit per year. 
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7. DISCUSSION 

LS theory has played a dominant role in estimating the parameters 

of the RCR model having a vector of random regression coefficients. 

If all measurements are taken at the same times for all n units 

things become easy. Under fairly general assumptions the LS approach 

leads to minimum variance unbiased estimators with simple distribut­

ions ( C.R. Rao (1965). But, during non-experimental conditions it is 

rarely feasible to collect data at the same times for all sample 

units, e.g. firms or patients. Then it becomes difficult to find 

optimal parameter estimates and the distributional problems become 

severe ( cf. Swarny (1970) chap. 4). In such cases it may be fruitful 

to check if the RCR model can be reduced to an ECR model, in which 

only the intercepts vary randomly between the sample units, as was 

done in the example of sect. 6. 

As has been demonstrated, the choice of estimator of the slope para­

meter in the ECR model is indeed not a question of less account. With 

large samples there should be just one candidate, the ML estimator. 

Exceptionally, the estimation equation '(20) may fail to produce an 

ML estimate due to boundary solutions when p=b/a is 0 or 1 ( cf. 

Maddala (1971». This is of less practical importance since the 

probability of boundary solutions tends to zero~as~t-cr~n~te~ds~to 

infinity. In the simulations in sect. 3.2 the ML approach failed 

with a frequency of about 1/1000 when t=2, n=10 and p=0.1. In large 

samples, say t>10 and n>100 or t>2 and n>200, the statistic TML based 

on the ML estimator behaves like a standard normal variable, at least 

at the extreme tails. This makes the ML approach easy to use. 

On the other hand, in small samples there are hardly any reasons for 
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using the ML approach. If tests or confidence statements about the 

slope parameter are required the use of the LS estimator leads to 

distributional problems. One possibility is to use the between- or 

the within group estimator ~b and ~w' respectively and the correspond­

ing statistics Tb and Tw. As shown in Figure 1 the efficiencies of 

the latter estimators are critically dependent on K=B Is . As K xx xx 

approaches 1 ~b becomes more efficient than ~w as far as p=b/a is 

small. But, it should be kept in mind that ~b can be very poor, as was 

demonstrated in the example of sect. 6. 

In practice it may be useful to first compute a confidence interval 

for p which, together with the information about K, can be used as a 

guidline for the choice between ~b and ~w. From the results in sect. 

3.1 it follows that a 95% confidence interval for p is given by 

T-F. 975 T-F. 025 <p< , with T 
T+(t-1)F. 975 T+(t-1)F. 025 

B _~2B 
t(n(t-1)-1) (yy b xx) 

n-2 (W _~2W ) 
yy w xx 

and where Fp is the p-percentile of the F(n(t-1)-1,n-2)-distribution. 
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