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EARLY WARNINGS FOR TURNS IN BUSINESS CYCLES AND FINANCE 

By David Bock 

Statistical Research Unit 
Goteborg University, Sweden 

In many areas, it is important to detect turning points in time series early and without 
faults. Turns in business cycles and financial time series are discussed here. 

A variety of approaches for analyzing the turns in cyclical processes has been 
proposed. Some of the proposed techniques aim at point prediction of all values of the 
process. These techniques often give very low accuracy near turns. Other approaches 
concentrate on predicting the time of the tum. 

In this thesis we consider prospective monitoring of a stochastic process in order to 
call an alarm as soon as we have enough evidence that the critical event of interest has 
occurred. Statistical surveillance deals with the theory and methodology of online 
detection of an important change in the underlying process of a time series as soon as 
possible after it has occurred. The theory of statistical surveillance is used in this thesis to 
construct and compare methods for two important applications. 

In the first paper, three likelihood-based methods for detection of a tum are compared. 
The problem is being addressed in a business cycle context. We aim at timely detecting a 
turning point in a leading indicator of the business cycle. By detecting the turns in a 
leading indicator we have an instrument for predicting the turns in the business cycle. 
One of the methods is based on a hidden Markov model. The two others are based on the 
theory of statistical surveillance. One of these is free from parametric assumptions of the 
curve shape. Evaluations are made of e.g. the effects of different specifications of the 
curve and of the transition probabilities. 

The second paper investigates inferential differences and similarities between 
statistical surveillance and some prospective decision rules suggested for trading in 
financial markets. It is found that the proposed rules can be seen as special cases of 
classical methods of surveillance and can hence be discussed in the context of optimality 
properties of surveillance methods. Evaluation measures and utility functions commonly 
used in statistical surveillance are compared with those generally used in financial 
settings. Some of the methods are evaluated by case studies. The relative merits of case 
studies and Monte Carlo studies are discussed. 
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ABSTRACT 

On-line monitoring of cyclical processes is studied. An important application is early 
prediction of the next tum in business cycles by an alarm for a tum in a leading index. 
Three likelihood based methods for detection of a tum are compared in detail. One of the 
methods is based on a Hidden Markov Model. The two others are based on the theory of 
statistical surveillance. One of these is free from parametric assumptions of the curve. 
Evaluations are made of the effect of different specifications of the curve and the 
transitions. The methods are made comparable by alarm limits, which give the same 
median time to the first false alarm, but also other approaches for comparability are 
discussed. Results are given on the expected delay time to a correct alarm, the probability 
of detection of a turning point within a specified time and the predictive value of an 
alarm. 
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1. INTRODUCTION 

On-line monitoring of cyclical processes is important in different areas. An important 
application is early prediction of the next tum in business cycles by an alarm for a tum in 
a leading index and this case will be the starting point for this paper. Another application 
in a quite different area is natural family planning. Temperature and other cyclical 
leading indicators are used to predict the ovulation. 

The tum in a business cycle is a change from a phase of recession to one of expansion 
(or vice versa). Warning for a tum can be made by using information from one or several 
time series, which are leading in relation to the actual business cycle. By applying a 
system for detection of the turning points of a leading indicator we can receive early 
indication about the future behavior of the business cycle. For reviews and general 
discussions see e.g. Neftci (1982), Zarnowitz and Moore (1982), Westlund and 
Zackrisson (1986), Hackl and Westlund (1989), Diebold and Rudebusch (1989), 
Hamilton (1989), Zellner et al. (1991), Jun and Joo (1993), Lahiri and Wang (1994), Li 
and Dorfman (1996), Koskinen and Oller (1998) and Birchenhall et al. (1999). 

In recent years methods based on posterior probability or likelihood have been in 
focus. There are proofs for their optimality properties in the general theory on statistical 
surveillance (see e.g. Shiryaev (1963) and Frisen and de Mare (1991)). In this report, the 
effects of different specifications of likelihood-based systems for detection of turning 
points are examined. 

The performances of three methods for turning point detection in leading indicators 
are compared in detail. All three methods are based on the likelihood, but there are 
differences in model specifications, how much information that is used and parameter 
estimation. The HMlin method is based on a regime switching Hidden Markov Model 
(HMM) and agrees with a model which is piecewise linear as will be discussed in Section 
2.1. It is similar in several aspects to e.g. the method presented by Koskinen and Oller 
(1998). HMM is suggested for business cycle modeling and prediction by Hamilton 
(1989) and is used by e.g. Lahiri and Moore (1991), Lahiri and Wang (1994), Layton 
(1996), Koskinen and Oller (1998) and Gregoir and Lenglart (2000). The SRlin method 
is derived here by the Shiryaev-Roberts (SR) technique under the assumption of a 
piecewise linear model. The SRnp method was suggested by Frisen (1994) and evaluated 
by Andersson (2001) and Andersson (2002) under the name of MSR since it is a 
Maximum likelihood version of the SR method. The SRnp method is a non-parametric 
version of the SRlin method with no parametric assumption on the shape of the curve. 

Here, simulation studies are made to evaluate and compare the three methods. Special 
concern is given to the different ways to avoid false signals, to utilize prior information 
and the effect of assumptions regarding the shape of a turning point and the distribution 
of the time of transitions. Comparison of the three methods by application to Swedish 
data is made by Andersson et al. (2002). 

The inference situation can be described as one of surveillance, since we have 
continual observation of a time series with the goal of detecting the turning point in the 
underlying process as soon as possible. Repeated decisions are made, the sample size is 
increasing and no null hypothesis is ever accepted. Thus, the inference situation is 
different from that with a fixed number of observations. For general reviews on statistical 
surveillance, see Shiryaev (1963), Frisen and de Mare (1991), Wetherhill and Brown 
(1991), Srivastava and Wu (1993), Lai (1995), Frisen and Wessman (1999) and Frisen 
(2002). 
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The performance is evaluated using measures such as expected delay of a signal, 
probability of successful detection and predictive value of an alarm, as suggested by 
Frisen (1992). This is related to the evaluation of the chronology used by e.g. Kontolemis 
(2001) but quite different to the MSEP or Ale of errors in forecast values used by e.g. 
Bidarkota (2001). Some approaches, like that of Birchenhall et al. (1999), discuss both 
forecasting of values and detection of a regime change in a leading index. Here we deal 
solely with the detection of a change. 

Section 2 contains a description of different likelihood based approaches, specifically 
of the HMlin, the SRlin and the SRnp methods. It also contains theoretical analyses of 
the effect of some assumptions. In Section 3 results from a simulation study on the 
effects of different methods and different assumptions are presented. The choice of 
models for the simulation study is motivated by similarity to Swedish data. Section 4 
contains a summarizing discussion. 

2. SPECIFICATIONS OF SOME LIKELIHOOD BASED APPROACHES 

In this section the basic assumptions and specifications used by the three methods are 
given. The assumptions for the three methods and some other important methods are 
summarized in Table 1. The implications of some of these assumptions are discussed in 
this section, while some are examined by simulation studies in Section 3. 

Table 1. Summary of the specifications used for some methods. Explanations in the text 
Specification Neftci Hamilton Birchenhall HMlin SRlin SRnp 

(1982) (1989) et. al. (1999) 
Type of next tum Yes No No No Yes Yes 
known 
Parametric E(Xlt) E(Xlt) P(Cjx) E(Xlt) E(Xlt) No. 
function logistic 
Equal slopes No No - No Yes No 
for the two phases 
Equal variances for No Yes - No Yes Yes 
the two phases 
Equal slopes over Yes Yes - Yes Yes No 
time 
Classification P(Cjx» P(Cjx) P(Cjx»0.5 and P(CjX) > P(CjX) > P(CjX) > 

1- >0.5 P(Cjx» P 0.5 kSRlin ; ksRnp; 

P(tA<'t) MRLDfix MRLDfix 

"Informative" Yes Yes - Yes No No 
distribution of 
transitions 
Time dependent Yes No - No No No 
transition probability 
Auto No Yes No No No No 
Correlation 

By monitoring the movements of a leading economic indicator, we have an instrument 
for predicting the turning points of the general business cycle. The aim is to detect a 
change from expansion to recession (or vice versa) in the leading indicator as soon as 
possible after it has occurred. Some of the likelihood based methods use an HMM, to 
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describe the underlying process that changes at an unknown time. An additional aim 
when using HMM in addition to detecting the change from one phase to another often is 
to determine a whole chain of phases. That additional aim is not treated in this paper. 
Only detection of the last change of phases is considered. Thus, the vocabulary of 
statistical surveillance is suitable. 

2.1 Model within each expansion- and recession state 

Denote the process under observation by X and the observations available at time t by Xt: 
X(t'), ... X(1), X(2), ... , X(t). Time t=1 is the first time point in a period of special interest. 
Here we discuss the detection of a peak in the expected value of X: fl (1), fl (2), ... but 
the problem is equivalent for the detection of a trough. For a peak we have 

{
fl(1) :s; fl(2) :s; ... :s; fl(t), t < -r 

(1) 
fl(1):S; ... :s; fl(-r-1) and fl(-r-1) ~ ... ~ fl(t), t ~-r 

where t=1 is in a period of expansion and -r is the time of the tum. Note that fl(t) is 
monotonic within each state. Observe that the dependency of fl(t) on -r makes fl(t) a 
stochastic variable. 

The SRnp method uses only the monotonicity restriction, and is not based on any 
other assumptions of the shape of the regression. 

Many HMM approaches relies on constant differences fl(t) - fl(t-l) within each phase. 
This agrees with the linearity within each phase used for the HMlin method. That is 

{
flo + fli . t, t < l' 

floo= , 
flo + fli . (-r-l)- fl2 . (t -1'+ 1), t '?-r 

The SRlin method is also based on the assumption of linearity within phases and in 
addition on the assumption that the slopes for the two phases are equal in absolute values. 
For research on asymmetry of the business cycle, see Neftci (1984), Falk (1986), 
McQueen and Thorley (1993). The effect of a non-symmetric turning point on the 
performance of the SRnp method is studied in Andersson (2001). The effect of 
misspecification of the SRlin method is examined by the Monte Carlo study in Section 3. 

If there is evidence of considerable heteroscedasticity, then the observations should 
have different weights in the alarm statistic. Sometimes, as here, the logarithm 
transformation is used for variance stabilization and equal weights are used. 

The model discussed here is: 
X(t) = fl(t) + c(t), (2) 

where c(t) -iid N[O; (Y 2]. The assumptions in (2) might be too simple for some 
applications, but are used here to emphasize the basic inferential issues. These 
assumptions are also the ones, which most suggested methods are based on. Ways to 
handle models with seasonal effects, autoregression and multivariate situations are 
discussed in the related paper by Andersson et al. (2002). 

2.2 Event to be detected 

For the SRnp method we have the following situation. At decision time s an alarm 
statistic is used to discriminate between D(s) = { -r> s} and C(s) = { -r:S; s }, where -r is the 
unknown time when the underlying process fl changes from expansion to recession. 
Knowledge of whether the next tum will be a trough or a peak is assumed. The solutions 
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for peak- and trough-detection are equivalent, as everything is symmetrical. It is the 
knowledge per se which is important. For peak detection, i.e. detection of transition from 
expansion to recession, the SRnp method discriminates between the following two 
events: 

DSRnp(s): JL(l) ~ ... ~ p(s) (3) 
C SRnp(S): p(1) ~ ... ~ p( r-l) and p( r-l) ~ p( ty ~ ... ~ pes) 

where r={ 1,2, ... , s} and at least one inequality is strict in the second part. 
For the SRlin method the aim is to discriminate between D and C, such that 

DSRlin(S): pes) = flo + /ks (4) 
CSRlin(S) = {U C(ty}, 

where C(ty: pes) = flo + /k(r-l) - PI·(s-r+l) and where r={ 1,2, ... , s} and flo and PI are 
known constants. 

For the HMlin method, the situation is such that at decision time S an alarm statistic is 
used to discriminate between 

DHMlin(S): p(s-l) ~p(s), (5) 
CHMlin(S): p(s-l) > pes). 

The difference between the events for SRlin and SRnp is only the assumptions on pet). 
However, for the HMlin method the events are different also in another aspect. The 
apparently simpler event in the HMlin approach is combined with a more complicated 
situation regarding the information of previous states. Knowledge of previous states is 
not utilized in the HMlin expression for the posterior probability. However, both the 
events DHMlin(S) and CHMlin(S) correspond to families of histories of states. Due to the 
Markov dependence the probabilities for the history on those earlier states will have an 
effect. Thus, CSRnp(S) and CSRlin(S) only concern the last turning point, whereas CHMlin(S) 
includes a family of series of turning points. The effect on knowledge of the type of the 
next tum will be further examined in Section 2.6. 

2.3 Transition probabilities 
The probability of a transition from recession to expansion (or vice versa) can be 
assumed to be time dependent as by e.g. Neftci (1982), Diebold et al. (1994) and Filardo 
(1994). Even though there are no principal difficulties with this, constant transition 
probabilities have been used in this paper like in most approaches in the HMM 
framework, see e.g. Layton (1996). Thus, a geometric distribution for r is used. 

For the SRnp and SRlin method the type of the next tum (peak or trough) is assumed 
to be known. This is also assumed by e.g. Neftci (1982). Motivations for this assumption 
are discussed in Section 2.6. It is then sufficient with one transition probability 

v = p(C(t)ID(t -1)) = p{r = tlr ~ t). 
This transition probability is the intensity parameter in the geometric distribution for 1". 

For the HMlin method two transition probabilities are needed since both transition from 
recession to expansion and vice versa have to be considered in the alarm statistic. 

The transition probability from one phase to another is estimated from an earlier 
period and treated as known constants by the HMlin method. When the posterior 
probability for HMlin is calculated in the simulation study the maximum likelihood 
estimates Pl2 = 0.13 and P21 = 0.10 are used. The transition probabilities will have an 
effect on the weight that different observations will have in the test statistic. The effect of 
weighting the observations can be assumed to have a minor influence as long as the 
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estimated transition probabilities are fairly close to the true values. Greater influence can 
be expected on the alarm rate, since the alarm limit depends on the distribution of r: By 
(7) in Section 2.4 we can see that if we have a constant alarm limit 0.5 for the posterior 
probability, then the alarm limit for the likelihood ratio will depend on P(D)/P(C), which 
in tum depends on the transition probabilities. Thus, the HMlin method is sensitive to the 
values of the transition probabilities. 

A non-informative prior is used by the SR and SRnp approaches and therefore no 
estimate of the transition probability is necessary. When the distribution of ris unknown, 
this approach is not optimal, but the approximation seems to work well, (see Frisen and 
Wessman (1999) where the Shiryaev-Roberts approximation is used to detect a change 
from an in-control level to an out-of-controllevel). If a prior based on observed data, for 
example with a high weight for a turning point after 10 quarters, was used, the influence 
of data would be reduced and the probability of an alarm after 10 quarters would be very 
high. This balance between experience from earlier periods and data for the present one 
has to be judged by the users. 

The approach by Birchenhall et al. (1999) is similar to that of Hidden Markov Models 
and the LR approach for surveillance in the respect that it is based on Bayes theorem and 
likelihood and that it models the probability of the type of regime. However, a major 
difference is that the classification into different regimes is based on explanatory 
variables but not on transition from the earlier state. 

2.4 Alarm statistics 

In all methods discussed here the alarm statistic is based on the likelihood ratio. The full 
likelihood ratio method (LR) has several optimal properties, see Frisen and de Mare 
(1991). The expected utility, based on very general functions of the gain of an alarm and 
the loss of a false alarm, is maximized. One interesting consequence is that the expected 
delay of an alarm is minimized for a fixed probability of false alarm. The LR method 
gives an alarm for the first time s for which 

LR(s) = f(xsIC) >ks, 
f(xsID) 

wherefis the likelihood function and ks =k/(l-k) . (P(D(s»/P(C(s». 

(6) 

It is shown, by Frisen and de Mare (1991), that the posterior probability approach is 
equivalent to the likelihood ratio approach for the situation where P( C) = I-P(D), i.e. 

{ . p(CI ) > k}= { . f(xslc) > P(D)· k } (7) 
Xs· Xs - x S

• f (xsID)-P(C).(I-k) 

where k is the alarm limit for the posterior probability. The choice of k is discussed in 
Section 2.5 on control of false alarms. 

2.4.1 HMlin 
The posterior probability is utilized by many authors, e.g. Neftci (1982), Hamilton 

(1989), Lahiri and Wang (1994) and Kim and Nelson (1998). For the HMlin method, the 
alarm statistic at time s is the posterior probability based on the observations available at 
time s, P(CjXs). The time of the alarm, tA, for the HMlin method is defined as 

6 



(8) 

and is thus based on all observations. In some papers, for example Koskinen and Oller 
(1998), the computational formula for a HMM alarm statistic is presented as 

p(C(t)IX (t -1) = x(t -1))· !(x(t)IC(t)) 

!(x(t)lx(t-l)) 

which equals 

p(C(t)IX (t) = x(t), X (t -1) = x(t -1)) , 

which gives the impression that only the last two observations are included. However, at 
decision time s, the formula above is used recursively until we have the alarm statistic 

p(C(s)IX (s) = x(s), X (s -1) = x(s -1), ... ,X (1) = x(I))=p(C(s)lxs ). 

If it is assumed that more than one change can occur in the time interval {I, s}, the 
recursive formula, used by the HMlin method, is suitable. However, if only the first 
change during the monitoring period is of interest and it is known a priori if the next tum 
will be a peak or a trough, then it is advantageous to utilize this information e.g. by the 
SRlin and SRnp methods. 

2.4.2 SRlin 
We derive this method from the LR method (6) which has several optimality properties. 
Here we have 

D(s): #(s) = flo + Iks 
C(s) = {u C(t)}, 
C( t): #(s) = flo + /kCr-l) - 0 I·(s-r+ 1), 

where flo, /31 and olare known constants. 
Under the assumption of a normal distribution, the optimal alarm rule LRlin for 

discriminating between D(s) and C(s) above can be derived to give an alarm for the first 
time s where 

LRlin(s) > ks, 
where LRlin(s) = 

tv j . exp[(~)[2(-C>I -PI) I.(x(u). u)+4C>I . I.(x(u). (j -1»)+ Wj)] 
J=I 2(j U=J U=J 

with Wj = (A' -/if). ~u' +41\' ,(j-I){~(U - j+J))+2AdPI +1\). ~U-4AA' ~(j-I) 
and Vj = P(-r = j) , ks =k/(I-k) . (P(DSRliis))/P(CSRlin(S)), where k is a constant. 

P(-r ~ s) 

The LRlin(s) statistic is a function of the transition probability v-=P(r=tlr~t). The 

Shiryaev-Roberts, SR, approach by Shiryaev (1963) and Roberts (1966) avoids a choice 
of this value by using equal values of P( r =t) for all t. This approach can be motivated 
either by the limiting distribution when v tends to zero or by a non-informative prior for 
1". The Shiryaev-Roberts approach implies equal weights for the partial likelihood ratios 
and a constant alarm limit. 

The Shiryaev-Roberts method for detection of a symmetric turning point with linear 
functions as in (4), has the statistic 
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SRlin(s) = 'I,exp[(~)(4/31 . 'I,(x(u). (j -l-u»)+ Wj )] 

J=l 2(5 II=J 

where Wj = (4. /3? . (j -1) + 4· /30 . /31 ). t (u - j + 1). The time of the alarm, tA, for the SRlin 
u=j 

method is 

tA = min [t: SRlin(t) > k SRlin] (9) 
where kSRlin is a constant alarm limit to be determined to satisfy a false alarm property. 

2.4.3 SRnp 
The nonparametric SRnp method is a Shiryaev-Roberts variant of the maximum 
likelihood ratio statistic 

max !{xsIC} 
MLR(s)= . 

max f{xsID} 
with maximum over the class of all monotonic (D) or unimodal (C) functions 
respectively. 

To detect the change in monotonicity (3) we need the maximum likelihood estimators 
under the restrictions DsRnp (monotonically increasing) and CSRnp (a tum). 

The denominator of MLR(s) is 

max f{xsID} = f{xsl.aD} , 

where .aD is the estimated parameter vector which corresponds to 

max !(xsIJi) , 
jiEFD 

where FD is the family of Ji-vectors such that Jl(1)::; fl(2)::; ... ::; fl(s). This means that .aD is 

the maximum likelihood estimator of Ji under the monotonicity restriction D. This 
estimator is described by e.g. Robertson et al. (1988). 

For the event C=CSRnp we have C = {C], Cz, ... , Cs}, where Cj implies 
{fl(1)::; ... ::;fl(j-1),fl(j-l) ~fl(j) ~ .... }, j E {l, 2, ... , s}. 

In the numerator ofMLR(s) we have 

max f{xsIC}= 

i(P(t' = j)). (max !{Xs1Cj }) = 
j=l P(t'::; s) 

i(P(t' = j)). (f{Xsl.aCj }), 
j=l P(t'::; s) 

where .aCj is the estimated parameter vector which corresponds to 

max. !(xsIJi) , 
jiEFCj 

where Y:j is the family of Ji-vectors such that Jl(1) ::; ... ::; f1(j-l) and fl(j-l) ~ f1(j) ~ .... , 
where j = { 1, 2, ... , s} and where at least one inequality is strict in the second part. 
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This means that /l Cj ,j E { 1, 2, ... , s}, is the maximum likelihood estimator of f.1 under 

the monotonicity restriction Cj. This estimator was given by Frisen (1986). 
Thus, f.1 is estimated using a non-parametric method and the maximum likelihood 

ratio at decision time s is 

MLR(s) = t P(r = j) f(xs ;/lCj) . 
j=lP(r~s) f(xs;/lD) 

The MLR statistic is a function of the distribution of r. This is avoided by using the 
Shiryaev-Roberts approach, as described in Section 2.4.2. The alarm statistic of the SRnp 
method is 

s f( ~Cj) 
SR () _ " x s ; f.1 

np s - L.. ~D' 
j=l f(xs ;f.1 ) 

The time for alarm is 

tA = min [t: SRnp(t) > kSRnp] , (10) 

where kSRnp is a constant. The method was suggested by Frisen (1994) and evaluated by 
Andersson (2001) and Andersson (2002). 

The inference situation is different from that of estimation of the number and locations 
of structural breaks in series with a fixed number of observations. Examples of the latter 
approach are Mudambi (1997) who describes a method based on polynomial regression 
for confirmation of the existence of structural breaks and identification of the number and 
locations of the breaks, and Delgado and Hidalgo (2000), who propose a method based 
on kernel estimators for estimating the location and size of breaks in a non-parametric 
regression model. 

2.5 Control of false alarms 
The way in which false alarms for turns are controlled is important. The constants in the 
alarm rules of Section 2.4 have to be determined. In the 8eneral theory and practice of 
surveillance, the most common way is to control the ARL , (the Average Run Length to 
the first alarm if the process does not have any tum). Hawkins (1992), Gan (1993) and 
Andersson (2002) suggest that the control is made by a statistic similar to the ARLo, 
namely the MRLo, which is the median run length M[tA I 'Z!=oo]. This has several 
advantages, such as easier interpretations for the skewed distributions and much shorter 
computer time for calculations. 

The time of the alarm, tA, for the SRlin and SRnp methods, is the first time for which 
the alarm statistic exceeds a constant. This constant is determined to yield a fixed value 
of MRLo. In the simulation study below, MRLo is chosen to agree with the value achieved 
by the HMlin method. 

A direct Bayesian approach, which is often used, is to control the limit for the 
posterior probability. The limit 0.5 for the posterior probability is often used when 
classification is made. This approach is also used for HMlin, as an alarm is given as soon 
as P(qxs) > 0.5. Zellner et al. (1991) discuss the limit value of the posterior probability 
in the context of loss functions. If the loss of a false alarm equals that of a missed alarm, 
then the expected total loss would be minimal if the limit 0.5 is used for the posterior 
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probability. However, Birchenhall et al. (1999) describe the limit 0.5 as reflecting lack of 
prior information. They discuss the use of an estimated prior probability instead of 0.5 
and give results for an "uncertain region" where the posterior probability is between 
these values. 

The approach used in much theoretical work e.g. Shiryaev (1963) and Frisen and de 
Mare (1991) and for which optimality theorems are available, is a control of the 
probability of false alarm 

00 

P(tA<t)= 'IP(r = i)· pet A < iID). (11) 
i=l 

The alarm limit is determined to yield a fixed false alarm probability. Neftci (1982) and 
Lahiri and Wang (1994) use this criterion for alarms for turning points of business cycles. 

Chu et al. (1996) advocate monitoring methods for structural change, which have a 
fixed (asymptotic) probability of any false alarm during an infinite long surveillance 
period without change. For some applications, this might be important because a strict 
significance test is in fact the goal. In that case, ordinary statements for hypotheses 
testing can be made. However, the price for this is high. The expected delay of the 
detection will be very large (see Pollak and Siegmund (1975)). 

2.6 Knowledge of the type of the next turn 
In many applications knowledge of whether the next tum will be a peak or a trough is 
available. This is certainly so for the natural family planning mentioned in the 
introduction. For business cycles, the confirmation that a time point is a turning point 
cannot be made directly. Layton and Katsuura (2001) point out that this is a problem for 
methods which assume knowledge on the type of past regimes for the estimation of 
parameters. It might be reasonable to think that the confirmation can come after 3 or 4 
quarters. Therefore, in the present simulation study, the evaluation period (t=I) starts 4 
time points after the last turning point of the estimation period. 

Knowledge of whether the next tum will be a peak or a trough makes it possible to use 
only data during the evaluation period. The likelihood ratio statistic of the surveillance 
approach can then be used. In fact, for the SRnp approach, nothing will be gained by 
including earlier time points in the analyses. However, without the information on the 
type of tum, the last observations contain little information and it is important to utilize 
also information from earlier times. This is a major difference between the HMM 
approach on one hand and the surveillance approach on the other. The former approach is 
used for the HMlin method and by e.g. Koskinen and Oller (1998). The latter approach is 
used for the SRlin and SRnp methods and by e.g. Neftci (1982) and Diebold and 
Rudebusch (1989). By comparisons of the differences between the complete methods and 
the differences induced by different specific effects above, we conclude that the 
knowledge of the type of the next tum is important information. 

If information about the type of the next tum is used in the surveillance, it means that 
the surveillance can be designed for detecting that particular type of tum. Instead of 
trying to detect both peaks and troughs, the method is designed for just detecting a peak, 
thereby simplifying the surveillance situation and improving the detecting ability. 

When the type of the next tum is known, the events D and C to be discriminated 
between are identical for the surveillance methods (e.g. SRlin) and the HMM methods 
(e.g. HMlin) if the same assumptions are made about the other features such as the shape 
of the regression. It is demonstrated by Frisen and de Mare (1991), that the likelihood 
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ratio method and the posterior probability approach give the same result as soon as the 
events D and C are the same and D is the complement to C. Thus, for a known type of 
the next tum, the HMM approach is identical to the surveillance by the likelihood ratio 
method. 

Past periods with known regime characteristics carry valuable information. Several 
authors utilize such information for estimation purposes. If the regimes for all past time 
points are completely known, then an optimal alarm statistic can be based on only the last 
observation. 

3. MONTE CARLO STUDY ON THE EFFECTS OF DIFFERENT SPECIFICATIONS 

3.1 Models used for the simulations 

The investigation of the effects of different specifications is made for the detection of a 
tum in an evaluation period with one tum. In the Monte Carlo study the comparisons are 
made for a situation similar to that of the Swedish industrial production (IP), after 
seasonal adjustment. For a description of IP, see Oller and Tallbom (1994). The seasonal 
adjustment is made using regression on seasonal dummies. The time series is illustrated 
in Figure 1. The data for the period 1970Ql to 1987Ql is used in the estimation process 
for the HMlin method and the period 1987Q2 to 1992Q2 is used for modeling the 
evaluation period. The expansions and recessions are dated using the records of the 
National Institute of Economic Research (1992). 

LnlP 
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o 8 16 24 32 40 48 56 64 72 80 88 96 

lime (quarters) 

Figure 1: Industrial production, quarterly data (1970Ql: 1992Q2). The evaluation 
period starts at 1987Q2, marked with a dashed vertical line. The seasonally adjusted 
values are connected, while the original values are unconnected. 

3.1.1 Model for event D (no turn) 
In order to evaluate the false alarm properties, the event D (no tum) has to be specified. 
In this case, we need a model of expansion for the whole evaluation period. A linear 
function was fitted to the expansion phase of the evaluation period (1987Q2: 1989Q3). 
The observations on X, under event D, are simulated using the same variance as for event 
C. The model used is 

XD(t) = tP(t) + t(t), (12) 
where f..L D(t) = 11.194 + 0.0069·t and t(t) - iid N[O; 0.016]. 

11 



3.1.2 Model for event C (a turn) 
The aim is to find a model which mimics the actual behavior of the turning point in the 
evaluation period (1987Q2: 1992Q2). The seasonal effects are included as seasonal 
dummies when the parameters of the regression curve and the standard deviation are 
estimated. The following model is found to fit well: 

x.C(t) = ;F(t) + E(t), 

{ 

2 3 
h C( ) 11.194 + 0.0066· t- 0.00017· t - 0.000015· t , 

were f1 t = 
11.340-0.0089· t, 

and E(t) - iid N[O; 0.016]. 

1 ::; t ::; 13 

t ~ 14 

(13) 

The turning point time ('t), here the peak time, is defined as the first time for which 11 
decreases since the start and for this model we have r = 10. This model is used in some 
of the simulations where the properties for the rounded curve are illustrated. However, it 
is not suitable for a study of the effect of different values of r since the growth of the 
slope is not constant. The different slopes in different parts of the curve will also have an 
influence when the value of r is varied. Thus, for examination of the influence of 
different values of T, an approximation of the rounded smooth curve is used, where the 
slopes are constant and equal before and after the peak. 

x.C(t) = f1CT(t) + E(t), (14) 
where f1c'\t) = 11.194 + 0.0069·t - 2Dl ·0.0069·(t- r+ 1) , t = { 1, 2, ... }, 

{
I, t ~ r 

andD1= 
0, otherwise 

and E(t) - iid N[O; 0.016 ]. 
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Figure 2: The rounded regression curve and the piecewise linear one with a turn at t=1O, 
and one realization for each of the models (13) and (14). 

3.1.3 Specifications for the estimation period 
Observations not only in the evaluation period, but also in previous expansions and 

recessions are used by most methods (see e.g. Neftci (1982), Hamilton (1989), Lahiri and 
Wang (1994» and here also by the HMlin method. One object in our simulation study is 
to study the effect of estimation of parameters in the regression function. 

Regression curves that are similar to those of the estimation period are determined by 
fitting one regression model, including seasonal dummies, to each expansion- and 
recession phase respectively. The intercepts of the regression models are adjusted to 
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avoid jumps. The resulting chain of polynomials, without the seasonal components, and 
with the estimated standard deviation, is used as a model for the simulations. 

3.2. Control of false alarms 
For the HMlin approach, the alarm limit is the threshold probability 0.5 for the posterior 
probability. For the expansion situation, D, when there is no tum, the result from the 
simulation study is that this alarm limit will result in a median run length MRLo = 17 with 
a standard error of 0.13. 

The alarm limits of the SRn~ and SRlin methods are determined by an iterative 
procedure to yield the same MRL , 17. The standard error of the last estimate of MRL 0 is 
0.11 for SRnp and 0.12 for SRlin. 

3.3. Evaluation of the effect of different specifications 

The evaluations and comparisons of the methods is made using the probability of false 
alarm, the expected delay of an alarm, the probability of successful detection and the 
predictive value, as suggested by Frisen (1992). 

3.3.1 Comparison between methods with correct specification 
Two of the methods, SRlin and HMlin, assume knowledge about the shape of the 

regression. The comparisons are first made for the case when the actual function is linear 
(which is assumed by SRlin and HMlin) according to (14). 

3.3.1.1 False alarm 
As is seen in Figure 3, the HMlin method has more frequent false alarms at early time 
points, but low alarm probability later compared with that of the SRlin and especially 
SRnp. The curve for the SRlin method is between the other two. All curves cross at t= 
17. This is due to the construction of comparability: for all three methods the median run 
length to the first false alarm is set to be MRLo = 17. 
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Figure 3: The distribution of the time (quarters) of an alarm conditional on event D (no 
turn). HMlin (-), SRnp (---), SRlin ( ... ). 
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The total probability of a false alarm, P(tA < r) depends on the distribution of 1". When 
r has a geometric distribution, the false alarm probability is the smallest for the SRnp, 
and the largest for the HMlin. As a result of the assumption of a geometric distribution 
for t; the alarms at the beginning have a great influence on P(tA < t). The large false 
alarm probability for HMlin is a result of the error-spending curve with many early 
alarms. 

3.3.1.2 Delay of the alarm 
To illustrate how the probability of an alarm is changed at the turning point, the run 
length distributions when 1=10 are given in Figure 4 for the three methods. An 
immediate alarm at the turning point is desired but a probability of a delay is 
unavoidable. 

P(tA ::; t, 10) 
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Figure 4: The distribution of the time of an alarm for the piecewise linear curve, r=lO. 
HMlin (-), SRnp (- - -), SRlin ( •.. ). 

The conditional expected delay time of an alarm, CED(t) =E[tA -~tA ~ r] gives a 

measure of how well a method works. Also the conditional median delay, CMD( t) was 
calculated but gave similar results for the comparison between methods (but lower 
values) and these are thus not reported. 

The rounded model (13) gave shorter delay than the piecewise linear one (14) (the 
details are not reported here) for the HMlin method, while there was no difference for the 
SRnp mehod. One reason for this is that the rounded curve deviates from the HMlin­
model already before the tum. 

The delay times for the piecewise linear case are summarized by CED( t) in Figure 5. 
For r'5, 20 we have a standard error less than 0.009. 

The conditional expected delay is worse for SRnp than for HMlin, for small values of 
t; r<4. After that, the delay is slightly shorter for SRnp, compared to HMlin. The effect 
of r is large for SRnp for small values of 1". However, an asymptote is reached at about 
1=10. For HMlin, the effect of r is very small. A very slight increase in the conditional 

14 



expected delay can be observed as T increases. The SRlin method has the shortest delay 
for every To Both SRlin and HMlin reach their respective asymptote very early. The 
reason is that both these methods assume the correct parametric function for the tum (a 
piecewise linear function). The SRnp method needs more observations in the beginning 
to have enough evidence of a tum. 
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Figure 5: Conditional expected delay for the piecewise linear curve with turn at t: HMlin 
(-_), SRnp (---_), SRlin (000 _). 

The conditional expected delay is further summarized under the assumption of a 
geometric distribution for 1; by 

ED = :LCED(T).P(T= 0. 
i=! 

The expected delay, ED, is minimized by the full likelihood ratio method when 
methods with the same probability of false alarm are compared. Using v-=0.10 in the 
geometric distribution, ED is 1.79 for HMlin, 1.99 for SRnp and 1.26 for SRlin (with 
standard errors less than 0.0026). Thus, for correct specification the nonparametric SRnp 
method is not as good as the parametric ones. However the effect of knowledge of the 
type of the next tum, as used by the SRlin method is greater than the effect of correct 
parametric specification. 

3.3.1.3 Probability of successful detection 
Sometimes an alarm that comes too late is worthless. Thus it might be useful to 
complement the measure of expected delay with the probability of successful detection 
within d time points, PSD = p(t A - T) ::; dlt A > T = TO). This measure is given in Figure 

6 for -z= 10 and the piecewise linear model (14). The number of replicates is large so the 
standard error is less than 0.003 for each point of the curve. 

The PSD curves are very similar for the HMlin and SRnp methods. For SRnp, 
Andersson (2001) proved that the PSD increases as the post peak slope grows steeper. 
The effect of the rounded curve, compared to the piecewise linear curve, is twofold: A 
rounded peak results in an increase in the alarm statistic just before the peak. This means 
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that only a small increase in the alarm statistic is needed to call an alarm at the time 
points just after the peak. The result is an increase in the PSD. On the other hand, the 
characteristics of the peak just after the turning point (rounded or linear) will affect the 
alarm statistic and the PSD in opposite direction, thus resulting in a decreased PSD for a 
rounded peak. The SRlin method has the best PSD as could be expected since it utilizes 
both a known parametric model and a known type of next tum. 
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Figure 6: Probability of successful detection within d time points for the piecewise linear 
curve, t'=JO. HMlin (-), SRnp (- - -), SRlin ( ..• ). 

3.3.1.4 Predictive value of an alarm 
The predictive value of an alarm at time t, PV(t) = P( T~ t I tA = t) reflects the trust you 
should have in an alarm. In Figure 7 the predictive value for t = {I, 2, ... , 12} under the 
assumption of a geometric distribution with intensity v =0.1 is presented. For t = 1 the 
exact value is calculated and for t = {2, ... , 12}, simulated values are used. From Figure 
7 it is evident that the price for the high alarm probability in the first point for the HMlin 
method is that those alarms are of little value. Since the predictive value is only 0.2, an 
alarm would hardly motivate any action. 

Both SRlin and HMlin reach their respective asymptotes early. The development for 
SRnp is a little different. The predictive value of SRnp increases until t = 6, after that the 
predictive value decreases slightly and reaches the same asymptote as SRlin at 
approximately t = 10. The SRnp method places no parametric restrictions on the turning 
point curve. All information about the curve comes from data. For small values of t the 
number of observed data is very small and thus the data have to be very extreme in order 
to call an alarm. However, as t increases (and the number of observations increases) the 
information about the curve is improved and at t = 10, SRnp has the same predictive 
value as SRlin. 
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Figure 7: Predictive value of an alarm at time t for V = 0.1. HMlin (-- -), SRnp (- - -

-), SRlin ( .•. -). 

3.3.2 Start of the evaluation period 
For the methods SRnp and SRlin it does not matter for the false alarm probabilities if the 
evaluation period is started directly after a regime shift or a little later. However, for the 
HMlin method this has a great influence. The reason for this is the difference in the 
knowledge of the type of the next tum. The probability of classifying the state as a 
continued recession is very high just after a trough if you do not have the information 
that the change of regime has already happened. The run length distribution and 
particularly the probability of a false alarm at the first time point is highly dependent on 
where the evaluation period begins in relation to the last change. To begin the monitoring 
at a turning point results in a very large false alarm probability (0.22) at t=1 for the 
HMlin method while it is reasonable (0.064) when started at t=4, as is done here. 

3.3.3 Effect of wrongly specified slopes 
If the slopes are estimated from a short period, then the parameters might be severely 
miss-specified. If the pattern is not stable, then even a long period for estimation will 
result in estimates that are not very useful without information about the natural variation 
of the pattern. The estimation procedures will result in a stochastic deviation from the 
relevant values. Few methods and neither SRlin nor HMlin incorporates this uncertainty 
in the alarm conditions. The effect of awrong specification of the regression coefficient is 
investigated for the SRlin method for two situations, namely an expansion and a tum at 
time To Here we allow for unsymmetrical turning points. The examples of 
misspecification are chosen such that they represent values between which approximately 

95% of the expansion estimates would be (sd[ Pd = 0.0009), with the estimation 
procedure used at the Swedish National Institute (Koskinen and Oller (1998)). 
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3.3.3.1 Only the post-peak slope is incorrectly specified 
We start with the situation when only the post-peak slope is incorrectly specified. The 
likelihood ratio 

LR(s) = f(xs\C) 
f(xs\D) 

is stochastically smaller the greater the difference between the events D and C, if the 
event D is true. 

We will now look at the situation in detail. The correct regression is 

J1(t) = { 
/30 + /31 . t, t < T 

/30+/31·(T-I)-/31·(t-T+I), t?T 

but the specified regression, used in the alarm statistic, is 

M(t) = {/lo + /l1 ·t, t<r' 
/l0+/l1·(r'-1)-(/l1 +y)·(t-r'+l), t'Cr'. 

/31=0.0069 and y= {0.0018, -0.0018}.The correct case and the two misspecifications 
are illustrated in Figure 8. 

j.l 11.3:Or----------------, 
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Figure 8: The piecewise linear regression curve for a turn at 10. The post-peak slope is 
correctly specified ( ..• ), too flat (--) and too steep (- - -). 

At decision time I we have that the SRlin statistic, using /31, is 

SRlin(l) =exp[ (Z~2 )4/l0/l' - x(l)· (4fiJ ))] 

whereas the SRlin statistic, using (/31 + y), is 

SR(l) = exp[ (Z~2 }4/lofiJ - r2 - ZfiJr + Z/lor - x(l) . (4/l, + Zr) lJ. 
The statistic is decreasing with yas soon as X(I) >(/30 - /31). This is in agreement with 

the general result that a likelihood ratio is stochastically smaller for the D event if the 
difference between the events is large. However, when the alarm limit is adjusted to give 
the same MRLo, the situation changes. For this case (but not the next that will be studied) 
the adjustment is minor and no details are reported. 
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There are no dramatic differences for the conditional expected delay, when comparing 
r-=O and 7¢0. For the case of too steep a post-peak slope the CED(l) is slightly smaller 
than for a correctly specified slope. The deviation is of about the same size but of 
opposite sign for the case of too flat a post-peak slope. The difference between a 
correctly and an incorrectly specified slope is small at the beginning of the recession. 
Since the delays are expected to be small, the misspecification in slope has a minor 
effect. For that reason it is natural that we do not observe any large differences between 
SRlin with a correctly specified slope and SRlin with an incorrectly specified slope 

The predictive value is very similar between r-=O and r-={0.0018, -0.0018}, except at 
t=1. The difference is due to the difference in the error-spending curve. For r-= -0.0018, 
the alarm statistic is optimized to detect a smaller change (flatter post-peak slope) and 
therefore the alarms are located later on. The result is few alarms at early time points, 
which results in a high predictive value for t=1. The opposite holds for r-= 0.0018. 

3.3.3.2 Both the pre-peak slope and the post-peak slope are incorrectly specified 
Now we look at the situation when both the pre-peak slope and the post-peak slope are 
incorrectly specified so that the correct regression is 

fi(t) = { 
J30 + /ll . t, t < r 
/lo+/lI·(r-1)-/lI·(t-r+1), t~r 

but the specified regression, used in the alarm statistic, is 

{ 
flo + (/ll + r) . t, 

M(t) = 
J30+(J3I +r)·(r-l)-(/ll +y)·(t-r+1), 

where /l1=0.0069 and r= 0.0018. 

t < r 
t~r 

This case will suffice to demonstrate the dramatic difference compared with the earlier 
case with incorrect specification only in C. 
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Figure 9: The piecewise linear regression curve for a turn at t = 10. Both pre-peak and 
post-peak slopes are correctly specified (- - -), too steep (--). 

If the same alarm limit that was used in the correctly specified case would be kept, 
there would be a great increase in false alarms. The probability of a false alarm would, 
for the misspecified case, increase with time as the difference to the true D-state will 
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increase. The limit will be determined so that the MRLo = 17. At that time the difference 
between the states are enormous. Thus the limit will be changed much to compensate for 
this (from 7 to 960). The change of the alarm limit will create a completely new situation, 
as is seen below. 
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Figure 10: The distribution of the time of an alarm, conditional on event D (no turn). 
Both pre-peak and post-peak slopes are correctly specified (- - -), too steep (--). 

The low false alarm probability for small t for the incorrect specification (;C0.0018) in 
Figure lOis due to the increasing difference between the true and specified states. For 
small t the difference is small. However, as t increases, so does the difference. Thus, the 
likelihood for the specified D-state decreases and therefore, the alarm probability 
increases. 
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Figure 11: The probability of a false alarm when T is geometrically distributed with the 
parameter v. Both pre-peak and post-peak slopes are correctly specified (- - -), too 

steep (--). 
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The false alarm probability is the smallest when using the incorrect specified slopes 
for every value of the intensity, v. The low false alarm probability is a result of the error­
spending curve with few early alarms, in contrast to using correctly specified slopes that 
result in many early alarms. 
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Figure 12: The density of the time of an alarm, conditional on event D (no turn). Both 
pre-peak and post-peak slopes are correctly specified (- - -), too steep (--). 
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Figure 13: Conditional expected delay for a turn at 1". SRlin correctly specified slopes (­

- - -), SRlin too steep slopes (-- -), SRnp(-- 0). 

For small values of 1; the conditional delay is longer if both slopes (expansion and 
recession) are over-estimated, as seen in Figure 13. As -rincreases, the conditional delay 
decreases towards an asymptote, zero. Thus for the situation where both slopes are mis­
specified (too steep) the resulting delay is large if the turning point occurs early. If the 
turning point occurs late, the CED is zero (all alarms are false alarms). We also see that 
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although the non-parametric approach, SRnp, has a long delay time for early turns, it 
quickly reaches a reasonable asymptotic value of CED. We have standard errors less than 
0.009. 

The predictive value of an alarm, under the assumption of a geometric distribution 
with intensity vis shown in Figure 14. 
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Figure 14: Predictive value of an alarm at time t for V = 0.1. SRlin correctly specified 
slopes (- - - .), SRlin too steep slopes (-- .), SRnp(-- D). 

The predictive value is high for small values of t, as a result of the small false alarm 
probability. For larger values of t the predictive value decreases. We also see that the PV 
for SRnp is lower than that of SRlin (correct) for small values of t, but the asymptotic PV 
(which is the same as for SRlin (correct)) is reached quickly. 

The conclusion is that wrong assumptions about slopes may give very bad properties 
and that the SRnp method gives a safe way to avoid this. 

4. DISCUSSION 

Similarities between apparently different approaches are demonstrated. This might be a 
base for combining knowledge from several areas. Different approaches, HMM and 
statistical surveillance, are expressed in different ways but are equivalent when the 
assumptions are the same. 

The effect of knowledge of the type of the next turn has a major impact on the test 
statistics if this knowledge is utilized in the likelihood expressions. In practice, there 
should be no doubts about the type of the next turn as soon as the previous one is 
verified. 

The control of false alarms by the average time to a false alarm or by the probability 
of a false alarm is commonly used in surveillance. In the comparisons by simulations, all 
methods are adjusted to have the same median run length, MRLo, when no turning point 
occurs. 
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The Bayesian requirement that an alarm should be called whenever the posterior 
probability is greater than 0.5, is commonly used in the literature on Hidden Markov 
Models. Then, the assumed transition probability has a major impact on the false alarm 
tendency. Another drawback is that the fixed limit 0.5 might not give the appropriate 
false alarm rate for all applications. To decrease the false alarm rate, approaches such as 
smoothing are sometimes used. 

As is seen in Figure 3, the HMlin method has frequent false alarms at early time 
points, but low alarm probability later. This is due to the lack of utilization by the HMM 
approach of the knowledge of the type of the next turn. This allocation of the alarm 
probability to the beginning also implies short delay for alarm for early changes, but 
slightly longer delays for changes that occur late (see Figure 5 and 6). However, the 
usefulness of these early alarms can be questioned, as the predicted value is very low. 
The probability that a shift has occurred is only 0.2 when an alarm is made at the first 
time point. Observe that this is the case in spite of the fact that the posterior probability 
of a shift was above 0.5. We have thus two different measures of the trust in a shift. 
Which one of these that is most easily interpreted, by those who make the actual 
economical decisions, can be discussed. 

Most studies in this area assume a constant transition probability, which implies a 
geometric distribution for the time of the turn. A geometric density has the highest values 
at the early times. This is not in accordance with reality for business cycles. If evaluated 
with historical data, we would get the best predictors by using the density that agrees 
with history. Technically this is easily done by the likelihood ratio methods. However, an 
important aim is to make an alarm for turn also when this happens at an unexpected time. 
Thus, here we prefer to use a non-informative prior for the time of the shift in the 
suggested SRlin and SRnp methods. 

Parametric models contain information, which should be used whenever it is reliable. 
However, it is demonstrated that misspecifications which are probable in practice by the 
estimation procedure, have a major impact. One advantage of the non-parametric 
approach is that it works also when reliable information about the parametric function is 
not available. Also important is that the non-parametric method does not assume that all 
phases of the same type have the same level and parametric shape. In practice, this varies 
a lot. The SRnp method only uses the monotonicity change and not the level. The safe 
way by the SRnp method might be preferred, especially since there is no major loss of 
efficiency. 

Not all differences between the methods have been examined here. Hopefully, the 
ones that are analyzed will give some insight into the influence of assumptions used in 
some papers. An important issue for future research is to examine which characteristic of 
the leading index is the best predictor for a turn in the business cycle. The question 
remains whether it is the level as in Birchenhall et al. (1999), transition and level as in 
Hamilton (1989) and Koskinen and Oller (1998) or transition and change in monotonicity 
as in Frisen (1994) and Andersson (2002) that is most useful. The techniques of 
multivariate surveillance might be useful for this. 
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