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Abstract: The properties of a forecast usually depend upon whether the forecast is 

conditioned on the final period observation or not. In the case of unconditioned forecasts 

it is well known that the point predictions are unbiased. If on the other hand the forecast 

is conditional, then the forecast may be biased. Existing analytical results in literature are 

insufficient for describing the properties of the conditioned forecast properly, particularly 

in multivariate models. This paper examines some finite sample properties of conditioned 

forecasts of the VAR(l) process by means of Monte Carlo experiments. We use a number 

of parameter settings for the V AR( 1) process to demonstrate that the forecast bias of the 

conditioned forecast may be considerable. Hence, unless the analyst has a clear idea of 

whether the conditioned or unconditioned forecast is relevant for the time series being 

analysed, statistical inferences may be seriously erratic. 
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I. Introduction 

The topic of time series analysis has been an area of intense and active research during 

the last decades. Developments have been proceeding at a fast pace. Much of this 

research has strived to develop techniques capable of analysing more and more 

complicated processes. However, the theoretical basis on which inferences are formed in 

time series analyses seem to have been less cared less for. Consequently, erratic 

conclusions may be drawn in the most simple time series models, even when all 

assumptions imposed hold. 

One of the main objectives oftime series analysis is that of forecasting. In fact, it is often 

the sole objective of the analysis of a time series. It is therefore important that forecasts 

are formed on a sound inferential basis and that they provide, in some sense, good 

forecasts. A wide variety of different forecasting procedures are available through the 

literature and it is important to realize that no single method is universally optimal. 

Rather, the analyst must choose the procedure which is most appropriate for a given set 

of conditions. The properties of a forecast usually depends upon if the forecast is 

conditioned on the final period observation or not. In the case of unconditioned forecasts 

it is well known that the point predictions are unbiased, see e.g. Dufour (1985), 

Malinvaud (1970). If on the other hand the forecast is conditional, then the forecast bias 

may be substantial (Phillips (1979)). The question then arises whether one should 

consider the forecast to be conditioned or unconditioned on the last observed period. 

Quoting Phillips (1979), "it is the case of conditional forecast that is of greatest interest 

since, in practice, we do forecast with given final values .... But in the evaluation of the 

success of the forecasting procedure, on average we might be interested in looking at the 

unconditional distribution." In other words, the question of whether the forecast is 

conditioned or not should depend upon whether the forecast is performed using a single 

sample or consecutive samples from the population being analysed. If one decides to 

consider the forecast to be conditioned, one should take into account that the forecast may 

well be biased. Further on, this bias will carry over to uncertainty measures such as 



confidence intervals or hypothesis tests of the forecast. In addition, these effects are 

expected to be accentuated in high dimensional data. 

When it comes to analytical results, the literature on forecasting is incomplete. In a 

general multivariate time series, one can at the most expect to find analytical results for 

the first order bias approximation of the parameter estimates (Nicholls and Pope (1988)). 

(An exception though is the case when the process have started at a known time point, 

rather than in the infinite past as is the most common case, see e.g. Abadir and Larsson 

(1996). To describe analytically the properties of a conditioned forecast as compared to 

its unconditioned counterpart will then be very complicated. 

The purpose of this study is to demonstrate that point and interval forecasts can be quite 

different depending on whether conditional or unconditional forecasts are used. We stress 

that, unless the analyst has a clear idea of whether the conditioned or unconditioned 

forecast is relevant for the time series being analysed, statistical inferences may be 

seriously erratic. 

The paper is arranged as follows: In the next section, we present the model of concern in 

this paper along with some basic assumptions of the data generating process. Section III 

discusses some relevant measures associated with Vector Auto Regressive process of 

order one (i.e. the V AR(1) process) and presents expressions showing the difference 

between the conditioned and unconditioned forecasts. In Section IV we present the Monte 

Carlo experiment and discuss some scalar-valued measures that are relevant for 

describing the performance of the conditioned vs unconditioned V AR(1) forecasts. The 

results of the simulations are presented in Section V. Finally, in Section VI we supply a 

summary ofthe main results ofthe paper. 



II. Model specification and assumptions 

The VAR(P) model consists of a system of several equations where each of the different 

dependent variables is dependent on the earlier outcomes and the other endogenous 

variables. The series is modelled by including p lags of each dependent variable in all or 

some of the different equations. This makes it possible to catch the dynamics of the 

system but it also affects the predictions of future values. Since the influential work of 

Sims (1980) V AR modelling has been used in a broad variety of fields. For example; 

Edlund and Karlsson (1993) used seasonal dummies to forecast the level of Swedish 

unemployment, Stergiou and Christou (1996) forecasted the catches of the fisheries and 

found the predator prey dynamics between the anchovy and sardine. Peiris and McNicol 

(1996) modelled the daily weather, while Baccala and Sameshima (2001) modelled the 

neural structure in the brain. These studies are examples of the broad area of applications 

of the V AR process. 

In this paper we focus on first order models without intercept term. This model will be 

written as 

t = 0, 1,2,00', (2.1) 

, 
where 1'; = (1";t' Y2t'" YKt ) is a random (K xl) vector, A is a ( K x K) coefficient matrix 

, 
and Ut = (Ult , U 2t 00 . U Kt) is a (K xl) white noise vector. K denotes the number of 

equations in the system and p denotes the number of lags in the equation. The covariance 

of the error terms will be written as E(U,o;) = Iu' 

The process above can be assumed to have started in an infinite past, i.e. in t = -00 • 

Further, it will be assumed that the eigenvalues of A have an absolute value less than 

one to ensure stationarity of the process. The first order moment of the process is 

E (1';) = 0, since the intercept is assumed to equal zero. The auto covariance over a h-step 



lag will be defined as r A h) := E ( I:I:+h'). Moreover, we will assume that the noise 

iid 

vector is Gaussian, i.e. UI ~ N p (0, I:u). We shall also discriminate between random 

variables and their realised fixed counterparts by denoting the former by capital letters in 

order to avoid possible confusions. Hence the realisation of {I:, t = 0, 1, 2, ... ,} will be 

written as {YI' t = 0, 1, 2, ... ,}. 

The possibly oversimplified model (2.1) will provide us with a tool to examine some 

relevant properties of estimated V AR(1) processes under ideal conditions. The results of 

our simulations of Section IV will of course be altered for more complicated processes, 

such as VARMA processes. However, the main difference between conditioned and 

unconditioned forecasts discussed in Section III will carry over to any data driven 

forecast. Hence we expect our simulation results (Section IV) to be most favourable, in 

the sense that more complicated models with for example heteroscedasticity or 

misspecifications, will perform even worse as compared to our settings. 

The next section presents the most popular methods of point and interval estimation of 

the V AR(!) process as presented in the standard time series literature e.g. Lutkepohl 

(1993). In particular, these are the methods used in most statistical packages capable of 

handling multivariate time series, such as SAS or EViews. Therefore the results of this 

paper should be valuable to the applied forecaster. 



III. Point- and interval predictions. 

In this section we discuss some details concerning important properties regarding point 

and interval forecasts and some measures associated to them. When predicting the future 

this can be done conditional or unconditional on the last component ofthe time series (Le. 

I;., used to form the forecast). Even though the realised forecasts are numerically 

identical for the conditioned and unconditioned forecasts, their statistical properties will 

usually differ. In other words, the two different ways of looking at YT represent different 

inferential points of view and may give different properties to the forecasts produced. 

In Section I, we discussed the importance of distinguishing between conditional and 

unconditional forecasts. In this section we present some simple expressions that illustrate 

the difference between forecasts with respect to conditioned/unconditioned forecasts. 

When predicting future outcomes of a time series, it is quite common to use point 

forecasts solely, but they do not say anything about the uncertainty of the forecast. The 

uncertainty can be included by constructing a confidence interval for the true unknown 

outcome (i.e. a forecast interval). For a thorough discussion on the topic of calculating 

interval forecast see Chatfield (1993). It seems that very little attention has been given to 

the actual properties of intervals based on unknown estimated parameters, which is the 

most usual situation. This is particularly apparent for conditioned forecasts where, to our 

knowledge, no results are available. It will therefore be of great relevance to examine the 

properties of interval estimates as well as point predictions. 

When evaluating the forecasts of a time series, this may be done in several ways. Since 

we are interested in point- as well as interval forecasts we have chosen to evaluate the 

properties of the following measures. Firstly, we wish to quantify the precision of the 

point forecast. A convenient measure for this is the frequently applied Mean Square Error 

of Prediction (MSEP). The expected value of the forecast error is also of concern, since 

this measure reflects possible forecast bias. Hence, these two measures will be included 

in the study. Secondly, the property of the interval estimates needs to be quantified. 



Interval predictions can be performed as intervals for each marginal process. These are 

usually obtained by some multiple inference procedure, such as the Bonferroni correction 

Lutkepohl (1993). In this case, the coverage rate is a relevant measure. In this section we 

will describe the different measures discussed above along with some of their important 

properties. 

Before we look at the forecast expressions, and in order to avoid confusion, it is 

important to distinguish between fixed and stochastic variables. Suppose that we wish to 

forecast Yr+h' where the integer h is the lead time (i.e. the forecasting horizon). The point 

forecast of YT +h made conditional on data up to time T for h steps ahead will be denoted 

by YT ( h) when regarded as a random variable and by YT ( h) when it is a particular value 

determined by the observed data. 

Following Lutkepohl (1993), the linear minimum MSE point predictor of the VAR(1) 

process 1';+h is 1'; ( h) = A h 1'; = A1'; ( h -1). Hence the forecast error of the h-step optimal 

forecast is 

h-l 

1'; ( h) - 1';+h = L Ai UI+h-i , (3.1) 
i=O 

with its corresponding mean square error covariance matrix 

(3.2) 

If UI ~ N ( 0, Iu ) , we have {1';+h - 1'; ( h )} ~ N ( 0, Iy ( h )) and it fo Hows that 

Y. - Y. (h) 
k,l+h k,1 ~ N(O 1) 

O'k (h) , , (3.3) 



where -0c,l+h is the k-th component of ~+h and (j'k (h) is the square root of the k-th 

diagonal element of ly (h). The expression (3.3) is useful when inferences are to be 

formed (e.g. hypothesis tests or confidence intervals) on one specific marginal process or 

if simultaneous inferences of the full process are to be formed. Now, the expressions 

above are not feasible (operational) since the autoregressive parameters are unknown, and 

have to be estimated. Following Lutkepohl (1993) the OLS estimator of the 

autoregressive parameter A of (2.2) is given by 

A=YZ'(zz't =A+ UZ'(Zz't (3.4) 

where Z is the matrix of 1 :st order lag of Y . Furthermore, 

(3.5) 

where r = plim (ZZ'/T), Vec is the vec operator stacking the columns of a matrix into 

one elongated column vector, ® is the Kronecker product and .e denotes convergence in 

law. It is well known that (3.4) is biased towards zero, though the bias vanishes 
A 

asymptotically according to (3.5). Further analytical results of A - A, are given by e.g. 

White (1961), for univariate A and Nicholls and Pope (1988) for the general multivariate 

case. As we will soon see, the impact of the bias of A is directly connected to the issue 

of conditioned versus unconditioned forecasts. Replacing the unknown parameter A with 

its OLS estimate, the one-step forecast becomes ~ (1) = A~ with its corresponding 

forecast error given by 

(3.6) 

The above forecast error is known to have zero mean when UI is symmetric, see e.g 

Malinvaud (1970), Dufour (1985). These results refer to the unconditional forecast. 

However, the expectation of the error of the forecast conditional on ~ = YI is usually not 

zero. For example, for a univariate process, the conditioned forecast error is given by 

E [y, (1) - y,+lly, = YIJ = -2 (A/T) YI + 0 (T-2) (3.7) 



(Phillips (1979)). Hence, in general, we have for the multivariate process 

(3.8) 

~ 

The bias of (3.8) may be reduced either by increasing the sample size, or by replacing A 

with a bias reduced estimate, if such can be found. However the r; component of the 

forecast error remains outside our control since it is given from the data. 

Now, if r; is distributed symmetrically and centred around zero, it will obviously have its 

maximum density at zero. Hence, if one regularly performs forecasts of a system, such as 

daily air temperature using the latest 24 hourly observations, then one will typically be 

interested in the average performance of the conditioned forecast. The expectation of 

such a forecast is 

(3.9) 

where the first identity is given by the law of iterated expectations. The last identity of 

(3.9) is given by Dufour (1985). In other words, in the light of (3 .8-9), it is crucial that the 

forecaster has a clear idea of whether the success ofthe forecast should be evaluated with 

given final period values (i.e. 3.8) or if it is more relevant to evaluate the performance on 

average (i.e. 3.9). However, the approach of most relevance will vary from case to case. 

For most situations the conditioned forecast might be the more relevant while in some 

situations the average performance (i.e. the unconditional forecast) may be the relevant 

approach. An informative example ofthe possible implications of conditioning on what is 

likely to happen (in our case the event that r;. = E[r;. ]) instead of conditioning on the 

realisation of r;. that actually happened (in our case the event YT = YT) are given by Cox 

and Hinkley (1974) p. 38. 

When it comes to the analytical properties of the point estimator (3.4) the literature is 

rather sparse. The one dimensional case (i.e the AR(1) process) has been examined by 

White (1961) who supplies asymptotic bias expressions for the first two powers of the 



autoregressive parameter up to order 0 ( T-5
/
2 
), while Vinod and Shenton (1996) supply 

exact moments. However, in the latter case, numerical integrations are needed which may 

be considered as a high cost of effort for obtaining a precision superior to 0 ( y-5/2 ) . 

When it comes to the multidimensional case, the only result (to our knowledge) which 

provides bias expressions of (3.4) for the case of a stochastic initial value, is that of 

Nicholls and Pope (1988). These authors supply an asymptotic bias expression up to 

o ( y-3/2 ). Even though their derivation is a nice piece of applied mathematics, their bias 

expression does not allow for bias adjustment of the autoregressive parameter, since it is 

too complex. In fact, their paper suggests that it is doubtful if it is at all possible to obtain 

bias reducing constants of a multi dimensional V AR process. Hence, in view of the bias 

of A and (3.8), it seems as forecasting a multivariate VAR(1) process in finite samples is 

a major problem. 



IV. The simulation experiment 

The exact properties of the estimated point and interval forecasts of the V AR process are 

unknown. In addition, the forecast properties will be even more complicated when the 

forecast is made conditional on the last observed data. There exist very few analytical 

results in the literature on this somewhat complicated issue and we are left to evaluate the 

properties by means of Monte Carlo simulations. In this section the Monte Carlo 

experiment is presented along with a discussion on some of the matters involved in the 

simulation experiment. 

Criteria/or judging the quality o/forecasts. We previously discussed various measures 

of concern as regarding the properties of conditioned and unconditioned forecasts. In 

particular, we argued that the precision of the point predictor and the precision of the 

interval predictor are of interest. The interval predictor may be considered as a measure 

of the uncertainty of the point predictor. Its precision, or quality, is usually measured by 

its covering rate, i.e. the frequency of covering the true unknown future outcome being 

predicted. Hence we will include the forecast error and the coverage rate of the 

conditioned/unconditioned forecasts in our simulation experiment. The coverage rate is 

defined as the frequency of times (in repeated sampling) that the multi dimensional cube 

contains the true future realisation being forecasted. 

Further, we previously discussed the relevance of the MSEP measure. This measure is 

quite informative as it combines the squared bias of the forecast with the forecast 

variance. Since the MSEP is a measure in JRk
, it will be difficult to evaluate. Therefore 

we will map it into JR by using the mean value of the diagonal elements of the MSEP 

matrix as a scalar valued average measure of multivariate MSEP, referred to as TMSEP. 

The prediction interval of the V AR process is usually constructed via the marginal 

statistics {~.I+h - ~.I (h)} / ak (h) which have an asymptotic N (0,1) distribution 

(Lutkepohl (1993)). The k marginal statistics can be joined in a global statistic by using 

the Bonferroni correction. The procedure may be described as follows: let If/ be the 



(1- a) ·100% percentile from the N ( 0,1) distribution. Then the joint percentile for the k 

dimensional Nk (0,1) distribution may be found by taking the (l-a/k ).100% 

percentile, Ij/, say, from the N ( 0,1) distribution. By constructing marginal confidence 

intervals using Ij/ rather than If/, i.e. ~,t (h) ± o-k (h)lj/, we get (asymptotically) a 

simultaneous prediction interval with a covering rate of at least (1- a) ·100% . We will 

refer to this measure in our experiment as the covering rate (CR). 

Details on the simulations. The distributional properties of the unconditioned forecast 

are straight forward and impose no particular difficulties regarding the simulations. The 

conditioned forecasts on the other hand need more attention. There is no technique to 

generate a stochastic process in such a way that the last observation attains a certain pre­

defined value. Hence we are forced to generate a large number of series and save only 

those where the last observation lies in close proximity to the pre-defined value ofthe last 

observation. Lets say we have sufficient computer power at hand to save only those 

replications which are within an interval of Y
t 
± ~. For example, if we are interested in 

the forecast properties conditional on J;" = 4 and chose ~ = 0.1, we would then use only 

the realised processes with a last observation within 3.9 - 4.1. One may wonder how this 

choice of ~ will affect the results of the simulations as compared to the extremes 

~ = lim and ~ = lim respectively. The latter case, i.e. ~ = lim, corresponds to the whole 
d~O d~OO d~OO 

real line and is hence equal to the unconditional case. In other words, the choice ~ = 0.1 

is slightly closer to the unconditional case as compared to ~ = lim . Hence our results are 
d~O 

conservative in the sense that the simulated biases are underestimated, i.e. the true biases 

are larger as compared to the simulated. 

Choice of parameters in the simulation. The bias in the point estimate is a function of 

the true parameter values of the process, i.e. A of (2.2). To choose the elements of A one 

by one becomes quite tedious when the dimension of the process increases. When there 

are three equations present there will be 9 parameters to determine, and this will be messy 



unless some systematic technique is applied. The properties of the A matrix is a function 

of its eigenvalues in the sense that A = P AP-l , or equivalently, A = P AP-1 where A is a 

diagonal matrix with the eigenvalues of A,. and P its corresponding eigenvectors, see 

Lutkepohl (1993). If any of the eigenvalues have modulus one, then the process will be 

non-stationary which is a non-standard situation and will therefore not be considered in 

this paper. Further, if the eigenvalues are zero the V AR process reduces to a white noise 

vector, which is irrelevant in this paper. Hence, we will use a setting that has high but 

stationary autocorrelation. This is done by putting the largest eigenvalue of A, Amax , equal 

to 0.8 in all models. 

The V AR process is assumed to have started in an infinite past. In order to mimic this 

behaviour we have used 50 values to start up the process. These first 50 values have then 

been removed from the analysed data. Since the autocovariance of the V AR(1) process 

may be expressed as r(h)=AhIy = (PAhp-1)I p and because the largest eigenvalue in 

this study is 0.8, it follows that the largest autocovariance for 50 lags is smaller than 

1.5 .10-5
• Hence 50 start-up values should suffice for all parameterisations of A 

considered here. The factors on which the simulations depend are displayed in Table i. 

and Table ii. below. 

T bl . F t d· th a e I. ac ors use m e experiment 
FACTOR SYMBOL VALUE 

Number ofMC Replications R 10000 

Number of observations T 15, 22, 32, 46, 66. 

Number of equations K 1,2,3. 

Number of forecast periods h 1,2. 

Autoregressive parameter A Amax = 0.8 (the highest eigenvalue) 

Covariance matrix Iu 5·1 

Last observed values y, Fixed in the conditional forecasts 
Yt =0,2,4. 

Stochastic E(l;) = 0 in the 

unconditional forecast 



T bl .. M a ell. d' th . 1ft d t d 'b th easures use m e simu a Ion s u ~ 0 escn e rt' fth ti t e~r~e les 0 e orecas. 
MEASSURE DEFINITION 

Coverage probability Percentage ofthe replicate where none ofthe 

predictions is outside the interval. 

Forecast bias E[Yt+h - Yt (h)] 

TMSEP' 
TMSEP = trace [ E (~+h - ~ ( h )) T / K = I y ( h ) / K 

*The TMSEP for the h-step forecast, i.e. trace {Iy (h)} / K , may be calculated by 

trace{Iy (l)}/ K = trace {Iu}/ K and trace{Iy (2)}/ K = trace{Iu + AluA'}/ K , 

Lutkepohl (1993). 

v. Results. 

The graphs and tables in the following section contain results from the simulations of 

one, two and three dimensional V AR(1) models. The simulations were performed using 

all assumptions from Section II. This means that all our simulation results correspond to 

the ideal situation and can hence be viewed as the optimal performance ofthe model. The 

series were simulated with varying factors according to Table i. above. We have also 

supplied the asymptotic (i.e. when T ---+ 00 ) measures so that the estimated finite sample 

measures may be compared to this. Clearly then, the closer the estimated measures are to 

its asymptotic limits, the better the forecast property. The results are shown in the graphs 

and tables below. In Table iii. below, we present the estimated confidence interval 

covering rate for conditioned and unconditioned forecasts, with forecast horizon one step 

ahead. In comparison between the unconditioned forecast and the forecast conditioned on 

~ = 0, it is striking that the two covering rates are nearly equal. The covering rates are 

slightly underestimated, particularly in the three-dimensional process, though they limit 

the nominal covering rates asymptotically. Moving on to table vi., where the same 

parameter settings are used as in Table v., though with the forecast horizon two steps 



ahead, no further news is provided. The covering rates are underestimated, but limit their 

nominal covering rate asymptotically. Further on, in Table v. we examine the TMSEP of 

the conditioned and unconditioned forecasts. The forecasts conditioned on y/ = 0 are 

uniformly closer to its limiting value over the whole range of sample sizes and 

dimensions, as compared to the unconditioned case. However, when y/ = 4, the 

conditioned forecasts converge slower than the unconditioned forecasts, in terms of 

TMSEP. Moving on to Table iv., the properties of the two-step predictions show similar, 

but accentuated, behaviour as that of the one-step predictions. Also, in Tables iii.-vi, the 

biases increase with the value of y/ . However, this is not the case with the forecast error. 

Following Tables vii. and viii., the forecast bias of the conditioned forecast when y/ = 2 

is larger than the bias of the forecast conditioned on y/ = 4, when K = 2. In fact, in this 

case, the forecast is heavily biased upwards when y/ = 2 but slightly downwards when 

y/ = 4 . When K = 3 , the bias of the forecast conditioned on y/ = 2 is close to zero, while 

the bias of the forecast conditioned on y/ = 4 is highly negative (note though, that the 

behaviour of the forecast conditioned on y/ = 0 is more or less identical to that of the 

unconditioned forecast). This seemingly odd performance needs further investigation. 

In Figures i. and ii. below we present simulations regarding forecast error as a function of 

y/. Figure i. visualises the forecast error for the two dimensional processes two step 

ahead. Obviously, the forecast error is not monotonically increasing with y/. The forecast 

error reaches a maximum when the forecasts are conditioned on values close to y/ = 2 . 

This explains the seemingly odd results of Tables vii-viii, where the bias of the forecast 

conditioned on y/ = 2 is high whereas it is zero at y/ = 4. When it comes to Figure ii, the 

forecast properties are altered as compared to the two-dimensional case in Figure 1. The 

forecast bias at y/ = 2 is slightly larger than 0, though it is highly negative at y/ = 4 . 



Table i. One step (h=l) covering rate for conditioned and unconditioned forecast. 

One dimension (k=l) Two dimensions Lk=2) Three dimensions (k=3) 
NOBS Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 

15 0,94 0,91 0,92 0,93 0,88 0,90 0,89 0,89 0,84 0,91 0,89 0,85 
22 0,95 0,93 0,93 0,93 0,90 0,91 0,91 0,91 0,90 0,92 0,91 0,89 
32 0,95 0,93 0,94 0,94 0,92 0,93 0,93 0,92 0,93 0,94 0,93 0,92 
46 0,95 0,94 0,94 0,94 0,94 0,94 0,94 0,93 0,95 0,94 0,94 0,92 
66 0,95 0,94 0,95 0,94 0,94 0,94 0,93 0,94 0,95 0,94 0,95 0,94 
00 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 

Table ii. Two step (h=2) covering_rate for conditioned and unconditioned forecast. 
One dimension (k=l Two dimensions (k=2) Three dimensions (k=3) 

NOBS Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 
15 0,93 0,89 0,90 0,91 0,87 0,88 0,87 0,89 0,85 0,90 0,90 0,86 
22 0,93 0,91 0,92 0,92 0,90 0,90 0,90 0,91 0,90 0,92 0,91 0,91 
32 0,94 0,92 0,92 0,94 0,91 0,92 0,92 0,92 0,93 0,92 0,92 0,93 
46 0,94 0,93 0,94 0,94 0,93 0,93 0,93 0,92 0,95 0,93 0,93 0,94 
66 0,94 0,94 0,94 0,94 0,93 0,93 0,93 0,94 0,95 0,94 0,94 0,94 
00 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 

Table iii. One step (h=l) Trace Mean Square Error of Prediction. 
One dimension (k=1 Two dimensions (k=2) Three dimensions (k=3) 

NOBS Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 
15 5,50 5,12 5,25 5,56 5,87 4,90 5,37 6,01 6,64 5,02 5,95 7,89 
22 5,20 5,02 5,16 5,42 5,70 5,18 5,33 5,55 5,90 5,09 5,54 6,71 
32 5,25 5,13 5,03 5,25 5,41 4,97 5,06 5,59 5,61 5,05 5,42 5,92 
46 5,04 4,99 5,05 5,08 5,15 5,01 4,98 5,37 5,43 5,04 5,15 5,64 
66 5,07 5,09 4,90 5,14 5,23 5,06 5,11 5,10 5,28 5,11 5,08 5,31 
00 5 5 5 5 5 5 5 5 5 5 5 5 

Table iv. Two step (h=2) Trace Mean Square Error of Prediction. 
One dimension (k=1 Two dimensions (k=2) Three dimensions (k=3) 

NOBS Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 Unc. Yt=O Yt=2 Yt=4 
15 9,18 8,31 8,58 9,22 8,24 6,88 7,49 8,45 7,29 5,94 6,58 9,42 
22 8,96 8,21 8,46 8,91 7,90 7,01 7,54 7,86 6,71 6,11 6,58 7,73 
32 8,75 8,39 8,34 8,38 7,61 6,95 7,26 7,66 6,45 6,05 6,39 6,94 
46 8,64 8,25 8,15 8,41 7,27 6,94 7,22 7,62 6,30 6,07 6,27 6,96 
66 8,29 8,24 8,13 8,53 7,41 6,99 7,23 7,22 6,24 6,11 6,10 6,49 
00 8,20 8,20 8,20 8,20 7,00 7,00 7,00 7,00 6,04 6,04 6,04 6,04 



Table v. One step (h=1) forecast error. 
One dimension (k=1 Two dimensions (k=2) Three dimensions (k=3) 

NOBS Dnc. Yt=O Yt=2 Yt=4 Dnc. Yt=O Yt=2 Yt=4 Dnc. Yt=O Yt=2 Yt=4 
15 0,03 0,02 0,30 0,24 0,03 -0,01 0,25 -0,02 0,00 -0,01 0,16 -0,46 
22 0,07 -0,00 0,18 0,18 -0,02 0,02 0,22 0,02 0,01 0,01 0,13 -0,27 
32 -0,03 -0,01 0,14 0,18 -0,02 -0,00 0,11 0,05 -0,01 0,oI 0,09 -0,20 
46 -0,01 0,02 0,09 0,12 -0,02 0,01 0,09 0,06 0,oI -0,01 0,08 -0,12 
66 0,01 0,oI 0,06 0,08 0,oI -0,00 0,05 0,02 0,oI 0,02 0,05 -0,10 
00 0 0 0 0 0 0 0 0 0 0 0 0 

Table vi. Two step (h=2) forecast error. 
One dimension (k=1 Two dimensions (k=2) Three dimensions (k=3) 

NOBS Dnc. Yt=O Yt=2 Yt=4 Dnc. 
15 0,oI -0,03 0,35 0,25 0,03 
22 0,09 0,02 0,23 0,19 -0,01 
32 -0,02 -0,01 0,15 0,18 -0,03 
46 0,00 0,04 0,18 0,17 0,00 
66 0,00 -0,02 0,06 0,09 0,03 
00 0 0 0 0 0 

Figure i. Bias of the forecast conditioned on YI 

in the two dimensional process, h = 2, N = 22. 
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Yt=2 Yt=4 Dnc. Yt=O Yt=2 Yt=4 
0,30 -0,13 0,01 -0,02 0,09 -0,73 
0,28 -0,03 0,00 -0,01 0,10 -0,45 
0,11 0,03 0,00 0,01 0,05 -0,29 
0,10 0,05 0,00 -0,02 0,06 -0,16 
0,00 0,02 0,01 0,01 0,01 -0,12 

0 0 0 0 0 0 

Figure ii. Bias of the forecast conditioned on YI 

in the three dimensional process, h = 2, N = 22. 
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To sum up, our graphs and tables show some interesting findings regarding conditioned 

versus unconditioned forecasts. In particular, the conditioned forecast might possess 

extremely bad performances, in terms of coverage rate of the intervals and in terms of 



forecasts errors. However, there does not seem to exist a simple linear relationship 

between the performance of the conditioned forecast and the value of the final 

observation being conditioned on, nor on the dimension of the process. In some situations 

the bias is increasing with the number of dimensions of the process, but for some values 

of the last observation, the bias decreases when the number of dimensions grows. Further, 

the unconditioned forecast is inferior to the conditioned forecast for some combinations 

of the last observation y/ and the dimension of the process, h, whereas it is superior for 

other combinations of y/ and h. Hence, it is not possible to conclude that the conditioned 

forecast is better or worse as compared to the unconditioned forecast. Consequently, 

since the performance of the two ways of regarding the forecast (conditioned or 

unconditioned) may differ considerably, it is important that the forecaster has a clear idea 

whether the forecast being performed should be considered conditioned or unconditioned 

on the final observation. In particular, we have demonstrated that the forecast bias of the 

conditioned forecast may be substantial. 



VI. Summary and conclusions. 

In this paper we have examined some differences in the performance of the conditioned 

vs the unconditioned forecast of the VAR(l) process. We have used measures of 

relevance for evaluation of forecasts, namely TMSEP, FE and CR. These measures have 

then been used in a Monte Carlo experiment in order to quantify the differences in the 

performance of the two approaches of forecasting. Our main findings are that 

unconditioned forecast is unbiased, as expected, but the conditioned forecast may have a 

substantial bias. Also, the squared measure TMSEP, is shown to be much higher for the 

conditioned forecast as compared to the unconditioned counterpart when the last 

observation of the time series is large. In particular, the difference in performance of the 

two forecasts may be expected to worsen as the number of equations in the process 

increases. The main source to the poor performance of the conditioned forecast is that of 

the bias of the autoregressive parameter, which in tum is a small sample problem as it 

vanishes asymptotically. But on the other hand, we find that the conditioned forecast may 

perform better than the unconditioned forecast whenever the last observation is small. 

Hence, if one has to perform forecasts based on small samples, it is extremely important 

to have a clear idea of whether the forecast should be conditioned on the last data, or if it 

should be unconditioned. The last situation usually appears when performing successive 

forecasts on data from the same population, in which case the average performance, i.e. 

the unconditioned forecast, is the relevant occurrence. 

Since the conditioned forecast might be rather different as compared to the unconditioned 

forecast, when based on a small sample, one may question whether the performance can 

be improved in some way. Unfortunately the bias of the point estimate of the 

autoregressive parameter, which is the source of the forecast bias, seems too complicated 

to be useful as a bias adjustment. Hence the well-known problem that forecasts of V AR 

processes have rather wide prediction intervals is extended by having a prediction bias. 

The seemingly trivial problem of forecasting a V AR process is hence subject for further 

research. 
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