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Abstract: Statistical diagnostic testing is often associated with erratic conclusions due 

to the fact that a test against one certain specification may be highly sensitive to 

another specification. This paper concerns assessing normality of autocorrelated or 

heteroscedastic variables. It is shown why the type I error of skewnesslkurtosis test 

limits 100% if the data are not i.i.d. We propose a set of tests for non-normality, 

which are robust to autocorrelationiheteroscedasticity, covering a wide class of 

situations. The size and power of the tests are investigated by Monte Carlo 

techniques. 

Keywords: tests of non-normality, multivariate analysis, heteroscedasticity, 

autocorrelation. 



I. Introduction 

Statistical modelling often concerns diagnostic testing. Examples of such tests are 

tests for autocorrelation or heteroscedasticity. For instance, the analyst may ask "do I 

have reason to believe that my data are autocorrelated"? Certainly, a statistical 

technique capable of testing such a hypothesis is of great importance. But suppose 

that this test indicates autocorrelation only because another, (irrelevant) effect is 

present. Then the practitioner may be totally misled, trying to re-specify hislher model 

in a wrong direction. 

Problems of this kind have been given surprisingly little attention, though some have 

been recognised. For example, tests for ARCH (auto regressive conditional 

heteroscedasticity) effects are well known to be sensitive to autocorrelation. Further, 

Horswell and Looney (1993) showed that tests based on skewness coefficients do not 

discriminate between skewed and (non-normal) symmetric distributions, and Koenker 

and Basset (1982) refers to the "shakily" fact that most tests for heteroscedasticity rest 

on the assumption of normality. 

These effects of confounding suggest that research regarding diagnostic tests should 

involve robustness, rather than solely focus on size/power properties. Fortunately, 

some such results exist. For example, the robustness of the renowned Breusch­

Godfrey (Breusch (1978), Godfrey (1978)) test for autocorrelation have been 

examined by Shukur (2000), who concludes that the test is asymptotically invariant to 

non-normality. Koenker and Basset (1982) suggest a non-normality roust 

heteroscedasticity test. These and other results on robustness demonstrating the 

possibility to (at least roughly) establish whiteness of data, regardless non-normality, 

are obviously of great interest. The opposite problem, i.e. to assess normality of non­

i.i.d. data is more troublesome, as most non-normality tests are non-robust to 

autocorrelation. One specific example is given in Holgersson and Shukur (2001), 

where Monte Carlo simulations reveal that skewnesslkurtosis tests for non-normality 

are highly sensible to autocorrelation, especially in large samples and high­

dimensional variables, in the sense that the size of the non-normality test limits 100% 

when autocorrelation is present. Similarly, one may expect heteroscedasticity to 
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affect the properties of non-normality tests (which indeed it does, as we will see in 

Section III). 

This paper concerns assessing normality of (possibly multivariate) regression models. 

We give an explicit reason why skewnesslkurtosis tests are inconsistent in the 

presence of autocorrelation or heteroscedasticity (in the sense that the type-I error 

approaches 100% as the sample size increases). Furthermore, we propose three 

classes of tests for non-normality when heteroscedasticity or autocorrelation is 

present. The tests use different levels of information of the data generating process. 

The first assumes known covariance matrix, the second only assumes known structure 

of the covariance matrix while the third is useful for time series where the 

autocorrelation generating model is unknown. The size, power and robustness of the 

tests are then examined by means of Monte Carlo experiments. 

The paper is organised as follows. In the next section we present the model we 

analyse. In Section III we show why standard tests for skewness and kurtosis, e.g. the 

Jarque and Bera (1987) test, will not converge to its asymptotic null distribution when 

the variable is non-i.i.d. Section IV is concerned with possible choices of observable 

proxy variables to the unobservable disturbances. In Section V we present a class of 

skewnesslkurtosis tests which are variations of the Liitkepohl and Theilen (1991) test 

for multivariate non-normality on i.i.d. variables. In Section VI we present the design 

of the Monte Carlo experiment, while the results concerning size and power are 

presented in Section VII. Finally, a brief summary is given together with some 

conclusions in Section VIII. 
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II. Model specification 

The model considered in this paper is the multivariate regression model 

(2.1) 

where n is the number of observations and G is the number of response variables. 

By assumption, E [tt'] = (]"2Q(nxn) for some scalar (]"2 < 00, Q a positive definite 

(p.d.) matrix, and E[ X'Q-1t ] = O(kxG)' Furthermore, define X: = Q-l/2X. We then 

assume that p lim ( X' xl n) is a finite and non-singular matrix. Some further (not very 

restrictive) assumptions will be added later on. 

The model of (2.1) is frequently used, for example in the context of allocation models 

(see e.g. Bewley (1986)), and is a generalisation of univariate multiple regression (i.e. 

multivariate regression with only one equation) and is hence quite general. 

A frequently made assumption in (2.1) is that t is normally distributed. That a 

variable is normally distributed is a somewhat vague property. This may lead the 

practitioner to believe that a non-normality test is assessing whether a variable 

belongs to the family of normal distributions or not. This is usually not the case as 

most standard tests are, under the null hypothesis, assuming that t is i.i.d. normal. 

Thus we use two assumptions in the null hypothesis, which is often overlooked. 

The density function of a multivariate normally distributed variable is given by 

(see Srivastava (1979)). The covariances between the G equations is determined by 

L(GxG) and the covariance matrix of the n observations is Q(nxn)' Whenever Q -::f:. (]"21 

for scalar (]"2, the errors are said to be nonspherical. Two such cases that will be 
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considered in detail are heteroscedasticity and autocorrelation. Autocorrelation is 

usually associated with data sampled over time-equidistant intervals, while 

heteroscedasticity often arises in a model due to the fact that the variance is a function 

of the regressors. 

III. Failure of skewness and kurtosis testing of non-i.i.d. variables 

The skewness and kurtosis coefficients are frequently used to test for non-normality. 

Particularly popular is the Jarque and Bera (1987) omnibus test (JB), with its statistic 

defined as {n-?1/6} +{n(Y2 -3t 124}, where YI and Y2 are the sample skewness and 

kurtosis coefficients. When the target variable is i.i.d. normally distributed, the 

statistics above are each asymptotically X(~) distributed. If the observations are not 

independent, i.e. if n =/:- I due to autocorrelation, the JB statistic will not converge to 

its null distribution, as is exemplified in Holgersson and Shukur (2001). To obtain an 

explicit reason for the non-convergence of the statistic in this case, we use the result 

00 

of Lomnicki (1961): Consider a univariate time series Xi = Llfl"k8i-k' where 
k=O 

Lomnicki showed that, for a one-dimensional random variable, 

denotes convergence in law. From this follows immediately that 

Pk =/:- 0 ~ {nyJ6} + {n{r2 -3 r 124} ~ Xt2) \!k*O· (3.1) 

For example, consider a process defined by Xi = (}xi_I +8;> i.e. the classical MA(I) 

process. Then it is well known that PI = -8/( 1 + 82 
) , Pk = 0, k > 1. Hence 

YI ~ N ( 0, {_83 
/ (1 + 82 t}) and the non-convergence follows directly for 8 =/:- o. To 

examine the null distribution of the JB statistic for the case where n =/:- I due to 

heteroscedasticity rather than autocorrelation, we use the result of Kendall and Stuart 

(1976), that, given normality, 
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and 

where mj =(l/n)L;=I(xi-xY and x is the sample mean. The moments of the 

univariate skewness and kurtosis coefficients for heterogeneous observations can then 

be obtained by assuming that the random variables {Xi} ;=1 are independently 

distributed N (fl, O"i
2 
). The numerators and denominators of the quotients above are 

derived in Appendix A (using leading term approximations): 

E[ m;J= LO"i
20"J/n2+o(n-1/2). (3.4) 

'*J 

From these expressions it follows that if 0"1
2 

-::f:. O"i -::f:. ••• -::f:. O"~ then the variance of J;;YI , 

i.e. n(3.2)/(3.5), will in general not limit the value 6, and the expectation of 

J;; (Y2 -3), i.e. J;; ((3.3)/(3.4)-3), will not limit the value O. Hence, 

(0"12 
-::f:.O"i -::f:.···-::f:.O"n=> {nYI/6} + {n(f2 -3r /24}~ %(22)" (3.6) 

F or example, consider a random variable such that Xi ~ N (fl, 0":) where 0": = i/ n for 

i = 1, ... , n. Then it may be shown that lim J;; (y 2 - 3) = 00 (Appendix A3). 
n.-+oo 

In other words, measures of multivariate skewness and kurtosis that are extensions of 

those above will in general not converge to their null distribution when the covariance 

of the disturbance vector is non-scalar (e.g. Llitkepohl and Theilen (1991), Malkovich 
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and Afifi (1973) or Jarque and Mckenzie (1995)). Indeed, it is likely that most 

standard non-normality tests, for example those based on empirical distribution 

functions or empirical characteristic functions, will not converge to their null 

distributions if the data is not i.i.d., as they usually measure the complete distribution 

of the target variable. Consequently, accepted null hypothesis will indicate that the 

data is normally distributed, while a rejected null hypothesis may either be due to 

non-normality or non-scalar covariance matrix n. Thus, standard tests for non­

normality are diagnostic only if we know that the target variable is i.i.d. Since non­

scalar covariance matrixes are frequently occurring in various applications of 

statistics, this confounding problem is rather serious. The important issue is then to 

overcome the problem. There are two obvious possibilities. One is to construct tests 

that are robust to non-i.i.d. data (i.e. to construct tests that assess the distribution of 

E). The second is to assess the distribution of transformed variables with scalar 

covariance matrices (i.e. to asses the distribution of n-1J2E). We shall consider both 

approaches in this paper. Details are given in Section V. 

IV. Proxy variables to the unobservable disturbances 

Often we want to make some inferences of the disturbance component E of (2.1). As 

this is unobservable we will have to use an observable proxy variable instead, usually 

the residuals i = Y - Y . A specifically useful property of residuals that ensures their 

usefulness in diagnostic testing is that they converge in probability to the true 

p 

disturbances, i.e. IEj •n -ejl~O. Uitkepohl and Schneider (1989) examined the 

possibility of using residuals for evaluation of the distribution of the random 

component for the case of pure autoregressive processes. They concluded that the 

residual-based test works very well. In our case with exogenous information, a 

natural approach is to use GLSIFGLS estimation, thus covering heteroscedasticity as 

well. 

Apart from difficulty with assessing normality, the main problem with non-spherical 

disturbances is that the point estimates of regression parameters will be inefficient and 

the interval estimates may be erratic. In such situations the GLS method is commonly 
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used. For multivariate regression we can describe the method as follows. Let 

E [ EE'] = (j20 . If 0 is known, we can perform the transformation 

Y = XB + E 1--7 0-Ij2y = 0-1/2 X + 0-1/2E, or, Y = XB + E. (4.1) 

The OLS estimates of the regression parameters of the transformed model above are 

well known to be both unbiased and efficient. The residuals of (4.1) are usually 

specified as Y - Y where Y = XBOLS = x{(x'xt xv}. These residuals will limit E 

in distribution, which are non-spherical. Therefore, we will instead use the residuals 

A _::. A e 
EGLs : = Y - Y . It is shown in Appendix B that Ej ~Ej. These residuals are particularly 

useful in testing for non-normality, since the covariance matrix of E is scalar 

(i.e. E [ EE'] = a 2I). The transformation matrix 0-1/2 for heteroscedastic variables may 

for example consist of known weights due to unequal number of observations in each 

point Y; (e.g when Y; is an average of nj individuals, say). The GLS transformation 

matrix for a regression model with AR(P) disturbances is well known and can be 

written as 0-1/2 = h( <j)), where h(·) is a function given by the autoregression 

parameters ¢. Gailbraith and Zinde-Walsh (1992) supply exact and asymptotic 

expressions for h(.) for a general stationary ARMA process. Now, the residuals ~ 

mentioned above are not always realistic, particularly not for the case of 

autocorrelation, since 0 is often unknown. For example, the heteroscedasticity is 

sometimes assumed to be of some parametric form, i.e. OJii,g = r E [ ~g ] as in Bickel 

(1978), and has to be estimated. Denoting the resulting estimated covariance matrix 

by 0, we may perform the same transformation as in (4.1), 

y = XB + E 1--7 g-1/2y = g-1/2X + g-1/2E, or, Y = XB + & , say. (4.2) 

For multivariate FGLS to operate in the case of autocorrelation, we assume that the 

parameters are equal in all processes. For example, if the disturbances follows an 

AR( 1) process with parameter ¢, then by assumption ¢I = ... = ¢G. We may then take 
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the mean value of the estimates above as our final estimate: ¢ = 2:.;=1 ¢g /G. The 

~ _.::. ~ c 
residuals of (4.2) are defined as EFGLS:=Y - Y OLS • It may be shown that E; ~E;, (see 

Appendix C). Hence, if the assumptions regarding nand Q of (4.1) and (4.2) above 

hold, the ~FGLS and ~GLS residuals will be useful for testing non-normality. The 

situation where no explicit information of n is available is more difficult. To our 

knowledge, no techniques are at the present available for assessing non-normality of 

heteroscedastic data of unknown structure. However, the case of autocorrelation can 

be handled by using some quite general assumptions of the process, even if the 

autocorrelation generating model is unknown. Our three classes of tests are presented 

and discussed in the next section. 

v. Assessing normality of non-spherical variables 

Skewness and kurtosis tests are popular for assessing normality. The reasons for this 

may be that they are easy to implement and are often included in program packages. 

We briefly mentioned some multivariate measures in Section III. Here we will 

consider variations of a test suggested by Liitkepohl and Theilen (1991) that we feel is 

particularly useful for non-spherical disturbances. The test is a multivariate 

generalisation of measures of univariate Skewness and Kurtosis, defined as follows: 

Let U = [uI ... un ] be a sample of n observations on a G variate random vector, and let 

ii and S be the corresponding sample mean and covariance matrix respectively. 

Further, let P be the Cholesky decomposition of S (such that S = PP'), and define 
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for g = 1, ... , G. Then, under the null hypothesis of normality, we have 

(5.1) 

(see Liitkepohl and Theilen (1991)). We will refer to this test as the LT test. It has 

been shown that the limiting distribution of (5.1) also follows when u i is replaced by 

residuals from an V AR(P) process (Liitkepohl and Theilen (1991)), and as the 

V AR(P) is a more general model than the multivariate regression model, their proof 

covers the multivariate regression as well. In order to distinguish between different 

target variables ofthe statistic we shall henceforth write (5.1) as b (U). 

The null hypothesis Ho: U ~ N (JI, L, Q) is rejected at the a -level whenever 

It is readily seen that this test will have power against any distribution such that 

E[bgt}t=O or E[bg2 J::;t:3 or V[bgt J::;t:6 or V[bg2 J::;t:24 if the u/s are i.i.d. Note 

though, that according to (3.1) and (3.6), we need Q=I for (5.1) to hold. As the 
A A 

limiting null distribution of our residuals EGLS and EFGLS in Section IV equals that of 

the true disturbances, though with scalar covariance matrix, both b (~GLS) and 

b(~FGLS) can be used to test for non-normality. However, it is shown in Holgersson 

and Shukur (2001) that the size of residual-based tests might be biased in small 

samples, due to the distributional properties of X. In addition, the L T statistic itself 

has unknown null distribution and relies on asymptotic properties. However, for the 

case of known ,Q, we can actually obtain an exact test. As the statistic of (5.1) is 

invariant to linear transformations (see Liitkepohl and Theilen (1991)), the size may 

be controlled by Monte Carlo techniques in the following way: Let b(~GLS t be the 
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fixed realised test statistic defined above, and suppose that we have B independent 

realisations of b (~GLS t at hand, {b (~GLS t r=l say, and let 

The associated (Monte Carlo) critical region is then defined as P B ( b (~GLS )0) ::;; a , so 

that PB (b (~GLS t) may be interpreted as an estimated p-value of the realised statistic 

b(~GLS t· If a( B+ 1) is an integer, we have P[PB (b(~GLS t)::;; a ] = a (see Dufour, 

Abdeljelil et al. (1998)). The rationale of this technique is that b(~GLS t have the same 

distribution as (the population counterpart of) b(~GLS t. Now, since E is 

unobservable, we can instead use the observable linear combination 

~=(I-X(XIXtXI)E=:MxE, i.e. our GLS residuals, to obtain a Monte Carlo 

critical region for b (~GLS ) by noting that b (~GLS t = b (MxE) and taking 

b(~GLS)6:=b(Mx()6)' where 86 is an NG,n(O,I(GxG),I(nxn)) Monte Carlo sample. 

Since () has the same distribution as E under the null hypothesis, and Mx is a fixed, 

known matrix, it follows that b(~GLS)6 will have the same distribution as b(~GLS) (see 

Appendix D). The null hypothesis Ho: E ~ N( O,:E,n) is then rejected at the a -level 

whenever PB (b (~GLS t) ::;; a , i.e. 

P(PB (b(~GLS )0)::;; a I E ~ N(O,:E,n)) = a. (5.2) 

By using this approach for the GLS residuals we obtain an exact inference procedure 

that is equivalent to using the true unobservable disturbances in conjunction with 

exact critical values for the statistic. We will refer to this test as the Monte Carlo test. 
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For the case of only known structure of the covariance matrix n, the Monte Carlo 

method will no longer be exact as the Mx -part of E: = MxE will be stochastic in finite 

samples and would so result in a stochastic critical region. Therefore we will instead 

use b (~FGLS) as a test statistic with its critical value (under the null hypothesis of 

normality) determined by '1 where P (xt2G) ;::: '1 ) = a . Hence, 

!~"!o P(b(~FGLS) > '11 E ~ N(O,~,n)) = a. (5.3) 

This test will be referred to as the Feasible Generalised Least Square Residual test. 

Finally, we will formulate a non-normality test in presence of autocorrelation of 

unknown type. From the expressions on p.5 we have 

(5.4) 

Proceeding just like in (5.1), though with 

(5.5) 

(5.6) 

_ _ _ e 

we obtain b p := b"p + b2,p ~ Xt2G) . Now, the Pic's are unknown and have to be replaced 

by consistent estimates. Consistent estimates of 2::::p!,g and 2::::P:,g cannot be 

achieved for all kind of processes. However, consistent estimates for a wide class of 

processes may be obtained by replacing all Pic, k = 1, 2, ... ,q, with its least square 

estimates (e.g. Hamilton (1994» and putting Pic ( k > q) equal to zero. The 

truncation point q cannot be chosen arbitrarily large, but it may be allowed to grow 

with n as long as q grows at a slower rate than .j;;. For example, consistent 
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estimates of I:::pi,g and I:::p:,g are obtained for q = n4
/
10 (see Appendix E), 

though possible a-priori knowledge of the autocorrelation structure should be used to 

set a fixed truncation point if possible. For example, most of the "regular" processes 

used in the literature, such as e.g. stationary ARMA processes, have autocorrelations 

close to zero already after 10-20 lags. Our test statistic for non-normality for data with 
_ _ _ f 

unknown autocorrelation will be b p := b1,p + b2,p ~ xt2G) , i.e. 

!~ P(bp (~OLS) > a I E ~ N(O,~,Q)) = a. (5.7) 

This test will be referred to as the Feasible Lomniki test. 

VI. The Monte Carlo design 

In this section we discuss some characteristics that are involved in the problem of 

testing for non-normality in multivariate regression with non-spherical disturbances of 

known and unknown structures as in the situations mentioned in Section V. The small 

sample properties of our tests treated in Section V are unknown. It is therefore 

important to examine whether the actual behaviour of these tests is adequately 

approximated by asymptotic theory. In the absence of exact results, it is necessary to 

investigate the finite sample performance of the tests by means of simulation 

experiments. When investigating the properties of a classical test procedure, two 

aspects are of prime importance. Firstly, we wish to see ifthe actual size of the test is 

close to the nominal size (used to decide the critical region for the rejection of the null 

hypothesis). Given that the actual size is a reasonable approximation to the nominal 

size, we then wish to investigate the power of the test. In general, when comparing 

different tests we will therefore prefer those whose (i) actual size lies close to the 

nominal size and, given that (i) hold, (ii) have the greatest power. Other relevant 

criteria, such as which test has the most soundly theoretical basis, or which test is the 

most simple to perform, cannot be judged quantitatively. Therefore we leave this 

aspect to be judged by the reader. 
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In a Monte Carlo study we calculate the estimated size by observing how many times 

the null is rejected in repeated samples under conditions where the null is true. 

However, this estimated size is associated with a source of uncertainty due to a finite 

number of replications. Therefore we need a tool for deciding how close the estimated 

size must be to the nominal size for the result to be judged as "reasonable". It makes 

sense to define a test with nominal size 5% as reasonable if the estimated size lies 

between 4% and 6%. We then need to form a ± 1 % interval as a function of the 

number of replicates. An approximate confidence interval for the actual size (a) can 

be given by , t(1-a) a±2 
R 

where a is the estimated size and R is the number of replications. Solving for R for 

± 1 % interval gives R = 2250. Let us say we choose R = 10000. This gives us a 

conservative interval of ± 1 %. Hence, if the estimated size of any of our tests exceeds 

the interval 0.06 - 0.04, for a = 0.05, R = 10000, we conclude that the true size of 

the test systematically exceeds the nominal size. Note though that this interval is valid 

only when judging the estimated size for one single sample size. Judgement of the 

estimated size over a range of sample sizes simultaneously would require multiple 

inference techniques. 

Given that the actual size is a reasonable approximation of the nominal size, we then 

wish to investigate the actual power ofthe test (i.e. the probability of rejecting the null 

when false). We will therefore consider one skew and one symmetric alternative 

distribution. The first is defined by X = LY where y;. = [~i'''''YGJ i = 1, ... ,n are 

i.i.d. 1'00) variates, and LL' = ~GxG' a p. d. covariance matrix. We will write this 

distribution as 1'(~O'L)' In order to obtain heavy-tailed disturbances we use a variable 

defined by X=LT, where 'f; =[~i, ... ,TGJ are i.i.d. student 1(5) distributed variates, 

and again LL' = ~ . We write this distribution as 1(5,L)' 

Further, in Holgersson and Shukur (2001) the simulation results indicate that the 

biases in the estimated skewness and kurtosis, due to using residuals as a proxy to E, 

are negligible when X is close to a normal distribution. However, when the regressors 
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are following a heavy-tailed distribution, the rate of convergence to its expectations is 

rather slow. We will therefore use the 1(3,:E) distribution in the regressors in order to 

obtain more general regressors. 

In order to examine the effects of autocorrelated noise, we need to choose some forms 

of autocovariances. For simplicity, we consider (marginal) AR(l) processes, i.e. 

Big = ¢&i-l,g + big' which have a fairly long "memory", the autocorrelations being 

A = ¢k . The heteroscedastic disturbances will be examined using covariance matrices 

that are functions of a subset of the regressors, namely ()i
2 = (}2 + V1Xli + V2X 2i • 

Finally, preliminary examinations of the Liitkepohl and Theilen (1991) statistic of 

(S.I) revealed a rather slow convergence to its asymptotic null distribution, resulting 

in unnecessarily poor small sample properties. Hence we have used the invariance of 

linear transformations of the statistic to simulate empirical critical values, using one 

million replicates. The empirical critical values along with a graph showing the true 

size of the test are given in Appendix F. All tests examined in the Monte Carlo 

experiment are based on the formulas (5.2), (S.3) and (S.7) with the 95% quantile 

replaced by the simulated (nearly) exact 9S% quantile of the statistic. Below we 

present a table containing the relevant factors used in the experiment. 
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TABLE A. The tests used in the experiment. 

Heteroscedasticity robust tests Autocorrelation robust tests 

Monte Carlo (MC) Monte Carlo (MC) 

Feasible Generalised Lest Square Feasible Generalised Lest Square 

Residuals (FGLSR) Residuals (FGLSR) 

Feasible Lomninki test (FL) 

TABLE B. Properties of factors in the experiment. 

Factor Symbol Value/property 

Numbers of regressors k 5 

X[I:5] ~3) * 
Distribution of regressors 

X[6:7] U(1, 10) 

Nominal size a 5% 

Number of equations G 5 

Sample size n 15,35,65,100,150,200,500. 

Distribution of disturbances E- N(O, ~&, Q), ~5,~£), X(~O,~£) * 

Structure of heteroscedasticity n 
diag( X[6:7]9(2XI)) 

Value of parameter in the ¢ 0.2 0.7 

AR( 1) processes 

Value of heteroscedasticity 9(2XI) [3 2)' [1 0)' 
parameters 

Number of resamples in the B 199 

Monte Carlo test. 

• The toeplitz operator provides a convenient technique for choosing the elements in high-dimensional 

matrix-valued parameters. It is a mapping ]RG 1-7 ]RG
2 

where the upper triangle of the symmetric 

matrix A = toep!itz ('If, ' "', 'If G) is defined by its diagonal elements A gg = 'If" g = 1, "" G , the first off-

diagonal by A g{g+'} = 'If 2' g = 1, "', ( G - 1), the second off-diagonal by A g{g+2} = 'If 3' g = 1, .", ( G - 2 ) 

and so on, Here, the covariance matrix of the regressors is 1:, = toeplitz (5 3 1.8 0 0) and the 

covariance matrix of the disturbances are set to 1:& =toep!iz(25 157 1.20.2), 
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VII. Results 

In this section, we present our results of the main dominating effects in our Monte 

Carlo experiment regarding size and power properties of the variants of the L T test. 

The results will be presented in tabular form in two parts, size properties and power 

properties respectively. All simulations have been performed using R = 10 000 

replicates. 

Size properties 

In this subsection we present our results concerning the size properties of the tests 

proposed in Section V. Table I shows the size properties of the test when the variables 

are i.i.d .. All tests perform fairly well except for the case of only 15 observations (a 

sample size which leaves only a tiny number of degrees of freedom). Expectedly, the 

Monte Carlo technique gives an exact size, with simulation fluctuations around the 

nominal size. Since n = I is a special case of a known covariance matrix, this Monte 

Carlo technique is more useful than it may seem, as scalar-valued covariance matrixes 

do exist in some situations (indeed, this is the situation examined in most empirical 

studies of non-normality tests). 

Table II presents the size properties for our autocorrelation robust tests. As expected, 

the exact Monte Carlo technique yields correct size for all sample sizes. The most 

important property though, is that all three tests reach its nominal size asymptotically. 

Moving on to the heteroscedasticity robust tests in Table III, we see that all tests have 

correct size with the exception of small deviations in the case of n = 15. What is 

particularly worth noting is that the ''magnitude'' of heteroscedasticity does not seem 

to matter. 
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Table I. 

Size properties for i.i.d. disturbances 
Autocorrelation robust tests Heteroscedasticity robust tests 

n Me FGLSR FL Me FGLSR 
15 0,045 0,037 0,031 0,051 0,039 
35 0,050 0,047 0,050 0,045 0,053 
65 0,052 0,045 0,053 0,051 0,049 

100 0,051 0,052 0,049 0,052 0,055 
150 0,048 0,050 0,050 0,048 0,051 
200 0,049 0,048 0,050 0,053 0,050 
500 0,050 0,047 0,051 0,052 0,053 

Table II. 

Size properties for autocorrelated disturbances 
p=0.2 p=0.7 

n Me FGLSR FL Me FGLSR FL 
15 0,048 0,045 0,030 0,056 0,046 0,028 
35 0,051 0,047 0,044 0,050 0,048 0,021 
65 0,048 0,049 0,048 0,052 0,052 0,022 

100 0,049 0,047 0,050 0,051 0,050 0,028 
150 0,048 0,055 0,049 0,050 0,051 0,031 
200 0,052 0,053 0,048 0,051 0,050 0,036 
500 0,051 0,051 0,052 0,051 0,051 0,048 

Table III. 

Size properties for heteroscedastic disturbances 
()"2 = X

6
. 

1 ,1 
()"2 =3X6 . +2X

7
. 

I ,l ,I 

n Me FGLSR Me FGLSR 
15 0,054 0,035 0,050 0,034 
35 0,052 0,051 0,051 0,050 
65 0,050 0,054 0,055 0,049 

100 0,048 0,057 0,048 0,048 
150 0,049 0,056 0,051 0,052 
200 0,051 0,058 0,050 0,050 
500 0,048 0,052 0,049 0,052 
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Power properties 

In this section we present our results regarding the power properties of the various 

tests of Section V. Tables IV-VI concerns the power properties of our autocorrelation 

robust and heteroscedasticity robust tests for the X(~O).:) distribution. Table IV 

examines the case when the data are i.i.d.. All three autocorrelation robust tests 

behave similar. A particularly interesting finding is that the FL test has the same 

power as the exact Me test. Moving on to Table V we see that the power becomes 

slightly lower for low autocorrelation (¢ = 0.2) as compared to the Li.d. case in Table 

IV. Increasing the autocorrelation to ¢ = 0.7 causes further power reduction. In 

particular, the FL test needs 500 observations to reach full power as compared to the 

i.i.d. case when full power was reached for n = 100. What is striking though, is that 

the level of heteroscedasticity does not seem to matter. The tests behave similar for 

low and high heteroscedasticity, according to Table VI. Also, note that the power of 

the FGLSR and the Me tests are almost identical. In Tables VII-IX we examine the 

power properties of our tests for the T(5.E) distribution using the same autocorrelation 

and heteroscedasticity settings as in Tables IV-VI. In Table VII we see that the three 

autocorrelation robust tests have almost identical behaviour over the different sample 

sizes, and so does the two heteroscedasticity robust tests. The powers reported in 

Table VIII are similar to that of Table V. The power properties do not differ among 

the tests for low autocorrelation while for high autocorrelation the FL test clearly has 

lower power than the Me and the FGLSR test. Further, in Table IX, the difference 

between the FGLSR and the Me test seems to be minimal, and the intensity of 

heteroscedasticity, again, has no impact on the tests. 

To sum up, the power properties behave quite expectedly. All three autocorrelation 

robust tests consistently detect the non-normal distributions. In general, the factors 

that affect the power properties of our tests proved to be similar to those that affect the 

size. For high autocorrelation though, there is a clear distinction between the tests in 

the sense that the test using most information of the data generating process (the Me 

test) has highest power, while the test using no information of the data generating 

process (the FL test) has lowest power. The same result does not hold for the 

heteroscedasticity robust tests, as the two tests appear to have the same power. 
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Table IV. 

Power properties for i.i.d. disturbances, 0 ~ X(~O'L) 

Autocorrelation robust tests Heteroscedasticity robust tests 
n Me FGLSR FL Me FGLSR 
15 0,041 0,034 0,027 0,045 0,029 
35 0,434 0,435 0,426 0,440 0,428 
65 0,938 0,945 0,947 0,934 0,936 

100 1 1 1 1 0,998 
150 1 1 1 1 1 
200 1 1 1 1 1 
500 1 1 1 1 1 

Table V. 

Power properties for autocorrelated disturbances, o ~ X(~O'L) 
p=0.2 p=0.7 

n Me FGLSR FL Me FGLSR FL 
15 0,046 0,039 0,026 0,041 0,041 0,027 
35 0,438 0,416 0,379 0,405 0,296 0,060 
65 0,935 0,940 0,911 0,927 0,900 0,172 

100 1 1 0,998 1 0,999 0,341 
150 1 1 1 1 1 0,570 
200 1 1 1 1 1 0,754 
500 1 1 1 1 1 1 

Table VI. 

Power properties for heteroscedastic disturbances, 0 ~ X(~O'L) 

(J2 = X
6

. 
1 ,I 

(J2 = 3X6 . + 2X7 . 
I ,I ,I 

n Me FGLSR Me FGLSR 
15 0,047 0,031 0,050 0,032 
35 0,433 0,424 0,430 0,421 
65 0,935 0,940 0,932 0,944 

100 0,999 0,999 1 0,999 
150 1 1 1 1 
200 1 1 1 1 
500 1 1 1 1 
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Table VII. 

Power properties for i.i.d. disturbances, & ~ ~5,'E) 

Autocorrelation robust tests Heteroscedasticity robust tests 
n Me FGLSR FL Me FGLSR 
15 0,032 0,026 0,019 0,031 0,021 
35 0,370 0,354 0,376 0,364 0,342 
65 0,753 0,741 0,758 0,749 0,741 

100 0,927 0,919 0,933 0,924 0,927 
150 0,990 0,999 0,992 0,990 0,990 
200 1 1 1 1 1 
500 1 1 1 1 1 

Table VIII. 

Power properties for auto correlated disturbances, &~~5,'E) 
p=O.2 p=0.7 

n Me FGLSR FL Me FGLSR FL 
15 0,033 0,027 0,023 0,033 0,041 0,026 
35 0,368 0,360 0,344 0,358 0,287 0,094 
65 0,750 0,744 0,719 0,735 0,712 0,263 

100 0,952 0,921 0,907 0,923 0,912 0,405 
150 0,990 0,990 0,984 0,990 0,990 0,576 
200 1 1 1 1 1 0,705 
500 1 1 1 1 1 0,973 

Table IX. 

Power properties for heteroscedastic disturbances, & ~ ~5,'E) 

(j2 =X
6

. 
1 ,I 

(j2 =3X6 . +2X
7

. 
I ,I ,J 

n Me FGLSR Me FGLSR 
15 0,036 0,021 0,033 0,023 
35 0,373 0,360 0,379 0,346 
65 0,751 0,734 0,749 0,740 

100 0,926 0,925 0,925 0,924 
150 0,991 0,991 0,991 0,989 
200 1 1 1 1 
500 1 1 1 1 
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VIII. Conclusions and summary 

In this paper we have motivated why standard moment based tests for non-normality 

in general will not be valid for heteroscedastic or auto correlated variables, in the sense 

that the type I error limits 100% if the data is not i.i.d. Hence, using regular non­

normality tests on variables with a complicated data generating process, such as in 

economic applications, is questionable since a rejected null hypothesis may be due to 

non-normality or non-whiteness. 

In order to overcome this problem we proposed a class of moment-based tests 

consistent to non-normality in presence of autocorrelation (i.e. identically dependent 

distributed disturbances) or heteroscedasticity (independent heterogeneously 

distributed disturbances) when applied to multivariate regression models. 

The suggested tests rely on different levels of information of the data generating 

processes, namely (i) known covariance matrix (ii) known structure of the covariance 

matrix and (iii) no assumptions of the covariance matrix. 

Since scalar covariance matrixes (i.e. Q = I) is a special case of a known covariance 

matrix, the class (i) test is more useful than it may seem, as scalar-valued covariance 

matrices do exist in some situations (indeed, this is the situation examined in most 

empirical studies of non-normality tests). 

The test based on known structure of the covariance matrix is suitable in a FGLS 

framework while the non-normality test of class (iii) is useful in situations when 

normality is important and data are expected to be autocorrelated but nothing IS 

known about the autocorrelation generating model. 

A number of models were investigated in order to study the properties of the size, 

power and robustness of the tests. For each model we have performed 10 000 

replications for various sample sizes ranging from 15 to 500 observations. In addition, 

the power properties have been examined for one skewed and one symmetric 

distribution. 
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The general findings are that the Monte Carlo tests hold the size exactly, as expected. 

The FGLSR tests slightly underestimate the size in small samples. The test of class 

(iii) also underestimates the size slightly. This effect carries over to the power 

properties in the sense that the class (i) tests have highest power, the class (ii) tests 

have lower power while the test of class (iii) has lowest power. Hence, the amount of 

information of the data generating process available has an immediate effect on the 

tests, the more information available, the better performance of the test. What is 

striking though is that, when the data is i.i.d., all our tests are well behaved, in the 

sense that the size is close to the nominal size and the power is high. Hence the loss in 

using our robust non-normality tests on i.i.d. data is minimal as compared to its 

classical non-robust counterparts. In other words, robustness is obtained without 

sacrificing efficiency. 
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Appendices A-G. 

Appendix A. 

Consider a normally distributed variate x ~ N (,ul(nxl)' n.(nxn)) where ,u < 00 is a scalar 

and n. a p.d. matrix with typical elements {f)ii < 00 , (f)ii' = 0 for i 7= i', and 

(1jn)L~=I{f)( =0(1) for j=l, 2,3. Further, let 1:=(1, ... ,1)' and 

m2 :=(1jn)L~=I(Xi _X)2 = (1jn)x'Ax where A:=In -(1jn)11'. 

Proposition A.1. 

(a) E[ mn =(I/n2)LO"i20"~+o(n-I/2). 
i*i 

(b) E [ m~ ] = ( 1/ n3 
) L O"i2 O"~ 0": + 0 ( n -1/2 ) • 

i*i*k 

Summations of the type Laiaiak and LaPi contain (n3 -n) and (n2-n) terms 
i*i*k i*i 

terms respectively (permutations of i, j and k thus being allowed). 

Proof: Following Magnus (1978), the second and third moments of m2 are 

E[ (l/n2)( x'Ax)2 J = (1/ n2 ){(tr( An.) r + 2tr( (An.)2)} . 

E[ (l/n3
)( x'Ax )3J = (1/ n3 ){(tr( An.))3 + 6tr( An. )tr( (An.)2 )+8tr( (An.)3)}. 

Further, observe that each diagonal element of (11' n. r is 0 (1) for r = 1, 2, 3, so 

tr{( (1jn )11'n. y} = (1/ ni )nO(l) = (1/ ni-I )0(1) and hence 
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tr(nt -0(1)+0(n- I )-0(n-2)=tr{(n)3 +O(I)}, and similarly, 

tr{(An)2} =tr{(n)2 +O(I)}. 

We then get 

E[ m; ] = (l/n2 )E[ (x'Ax )2J = (1/ n2 ){(tr( n)+ 0(1))2 + 2tr( (n)2 + 0(1))} = 

(1/n2){(tr(n)f +20(I)tr(n)+(0(I)f +2tr(n)2 +20(1)} = 

( 1/ n2 ) { (tr ( n ) ) 
2 
+ 0 ( n ) + 0 (1) + 0 ( n ) + 0 (I)} = 

( 1/ n2 ) (tr ( n ) ) 
2 
+ 0 ( n -1/2) = ( 1/ n2 ) (I ;=1 (Y? )

2 
+ 0 ( n -1/2) = 

(l/n2 )(I;=I (Y:) +( l/n2 )(I(Yi2(Y~J + o( n-1/2) = (l/n2 )(I(Yi2(Y~J +o( n-1/2). 
l¢} l¢} 

Similarly, 

'PI =(tr(n)+O(I)l = (tr(n)l +3(tr(n))2 0(1)+3(tr(n))(0(1))2 +(O(I)l = 

(tr(n)l +O( n2)+0(n)+0(1) = (tr(n)l +O( n2), 

'P 2 = 6(tr( n)+ 0(1))( tr( n2)+ 0(1)) = (O( n )+0(1))( O( n)+ 0(1)) = O( n2), 
and 

Hence 

(l/n3)E[ (x'AxtJ = (1/n3){(tr( n)l +O( n2)+0( n)} = 

(l/n3 )(I;=I (Yi2 r +o( n-1/2) = (l/n3) I;=I (Yi:1 +( l/n3) I(Yi2(Y~(Yi+ o( n-1/2) 
l¢}¢k 

= ( 1/ n3 ) I (Yi2 (Y~ (Yi + 0 ( n-1/2 ), which completes Proposition A.I ~ 
i¢j¢k 
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Proposition A.2. 

(c) 

(d) 

(e) 

E[ mi] = (l/n){(l/n)15I ;;l cr; +(9/n3)(Icri2cr~criJ 
''''J",k 

-( 18/ n2) Icri4cr~}+ o( n-I). 
''''J 

Proof: From Kendall and Stuart (1976) p. 245, we have 

E[ 2J (1/ 2)E{""n 2r "" r r (2/ 2)("" r r "" 2 2r-2 "" 2 r-I r-IJ mr = n Lo;;IXi + LoX;Xj+ r n LoXiXj+ LoX; Xj + LoXi Xj Xk -

~ ~ ~ ~# 

(2r/n) Ix;+lx;-I} + {E[ mr ]}2 . 
''''J 

Hence 

E[ m3] = {(l/n)- 3/ n2} IE[ x;J -( 3/ n2) IE[ Xi ]E[ X~ J + o( n-I/2) = o( n-I/2). 

E[ m4 ] = {(l/n )-4/n2} IE[ X: J-( 4/n2) IE[ xi]E[ xn+o( n-I/2) = 

(l/n) IE[ X:] + o( n-I/2) = (3/n) Icr: +o( n-I/2 ). 

E[ miJ = (l/n ){(l/n) IE[ x;J+(l/n) IE[ x;JE[ x~J+(9/n3)IE[ x;JE[ x~J+ 
(9/n3) IE[ x;JE[ X; J+(9/n3) IE[ x;JE[ x~JE[ xiJ-

(6/n2) IE[ x:]E[ x~J} +{o( n-I/2)V = 

(l/n ){(l/n )15I;;1 cri6 + (9/n3 )(Icr/cr~criJ-(18/ n2) Icri4cr~}+ o( n-I), 
''''J",k ''''J 

and this completes proposition A.2 00 
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Let Xi ~ N(Jl,an where cr} = i/n, and observe that I;=J =(1/2)n(n+ 1) and 

I;=/ =(1/6)n(n+l)(2n+l). Hence 

(1/n) Icr} = (1/n) I(i/n) = (1/2n2 )n( n + 1) = 0(1), and 

(1/n) Icr: = (1/n) I(i/n)2 = (1/6n3 )Ii2 
= (1/6n3 )n(n+ 1)(2n+ 1) = 0(1). 

In other words, the results of Propositions A l.a and A2.d hold for cri
2 = i/ n, and we 

have the following: 

Proposition A3. 

!~Fn( E(m4)/ E(m;)-3) =00. 

Proof: 

E[ m4] = (3/n) Icr: +o( n-1/2) = (3/n) I (i/n)2 +o( n-1/2) = (3/n3
) Ii2 +o( n-1/2) = 

(3/ n3 )(1/6)n( n + 1)( 2n + 1) + o( n-1/2) = (1/2 )(1/ n2)( n + 1)( 2n + 1) + o( n-1/2). 

E ( m; ) = ( 1/ n2 ) (I cri
2 ) 

2 
+ 0 ( n -1/2 ) = ( 1/ n2 ) { ( 1/ n ) ( 1/ 2 ) n ( n + I)} 2 

+ 0 ( n -1/2 ) = 

(1/ 4) ( 1/ n2 ) ( n + 1)2 + 0 ( n-1/2 ). 

Hence 

Fn ({ E( m4)/ E( m;)} -3) ~ Fn ({(1/2)( 1/ n2)( n+ 1)(2n+ 1)/(1/4)( l/n2)( n+ 1)2} - 3) = 

= Fn ({ 2(2n+ 1)/( n+ I)} -3) = o( nI/2). 

In other words, Fn (E ( m4 ) / E ( m; ) - 3) is dominated by terms of order 0 ( n1/2) and 

so !~Fn(E(m4)jE(mn-3)=00 00. 
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Appendix B. Limiting distribution of GLS residuals 

The GLS residuals of the g:th marginal model are 

~ ._(y Y ) (I H)E for H : = X(X'X)-l X' where X = Q-1/2X g.(nxl)·- g - OLS.g = (nxn) - g (nxn) , , 

- _n-1/2 d Y- _n-1/2y -1 GA' h V(-)- 21 Eg -u Eg an g -U g' g- , ... , . ssummg t at Eg -(Yg , we get 

By Chebychev's inequality then, P (I~ig - E (~ig )1 ~ v) = P (Iiig - Big I ~ v):::; H:~~ . 

Thus ~e( H ii ) ~ 0 suffices for I~ig - Eig I ~ 0 to hold. Since the i:th diagonal 

element of H can be written as Hii = (Xil> ... ,Xik)(X'Xt (Xil, ... ,Xik )' , and k is a 

fixed finite number, it follows that plim(X'Xt =0 suffices for ~~;(Hii)~O to 

hold. Now, p lim ( X'X/ ntis a finite non-singular matrix by our assumptions of 

(2.1), and as (X'xt = (l/n) (X'X/nf it follows that plim(X'Xf =0. Finally we 

I
A I P PAt A t 

have from Rao (1973),p 122, E·n-E,·n ~O, En~E,.=>E·n~E,.Hence E ~E. I" I, I, Ig,n Ig 

Appendix C: Limiting distribution of FGLS residuals 
A P (A A) P 

According to Appendix B above, EGLS,i -Ei ~O. Hence if EFGLS,i -EGLS,i ~O, then 

~FGLS,i has the same asymptotic distribution as ~GLS,i (which is that of Ei)' This 

property holds under a fairly wide class of situations. In particular, let 

Q(nxn) := Q(nxn) (0) and !l(nxn) = Q(nxn) (0) where 0 is a parameter of finite dimension 

A P 
(and this dimension does not depend on n) such that 0 ~ O. In other words, Q is 

assumed to be a function of a finite-dimension parameter to which there exists a 

corresponding consistent estimate. Then, under most familiar settings met, we have 

(~FGLS'i -~GLS,i )~o. Of cause, this is something to be checked in every case. Below 
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we provide an example of how such a proof may be given: Let Big = ¢BH,g + ~g where 

~1_¢2 0 0 0 

-¢ 1 0 0 

P= 0 -¢ 1 (C.1) 

0 -¢ 0 

with its corresponding estimate P = p (¢), i.e. (C. 1 ) with ¢ replaced by ¢. 

Hence ~GLS,g = Yg - XPg = n-1/2 (Yg -XPg) = p(Yg - XPg) and so 

(~FGLS,g -~GLS,g) = (p - p)( Yg - Xpg ). The first element of this vector becomes 

~ P (A A) P 
so on. Hence, if ¢-¢~O, then EFGLS,ig -EGLS,ig ~O. Similar proofs may be given 

for general ARMA(p,q) processes, the elements of the corresponding P matrix are 

given in Gailbraith and Zinde-Walsh (1992). Furthermore, note that the inverse matrix 

root of a diagonal matrix, such as that of a heteroscedastic model where 

V [ Big] = OJig = 01 + 02Xi' say, is W;1/2 on its diagonal and zero elsewhere. Hence, if 

there exists a consistent estimate of OJig (e.g. Wig = 81 + 82xi for an observable Xi and 

~ P 
OJ ~ OJ' j = 1,2) then our example above covers this situation as well. However, 

again, this is something to be checked in every case. 
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Appendix D. 

Consider the (transposed) OLS residual matrix £ -E M (Gxn) - (Gxn) (nxn) , 

M = I(nxn) - X(X'xt X', and the corresponding sample covariance matrix 

S& := ££'/n = L&L~, say, where L& is the Cholesky root of S&. Next, consider a scale­

transformed disturbance variable &(Gxn):= I:(~xG)E and its observable counterpart 

&(Gxn) = &M = I:1/
2
EM . The corresponding covariance matrix may then be written as 

Then we have 

(D1) 

i.e. the "studentized" residual matrix L"&l& is identical to that of Li1£. In other words, 

Li1£ does not depend on I:. In particular, if &; ~ N(O,I) and E; ~ N(O,I:) , then 

Li1£ ~ L"&l&. However, the distribution of the scaled residuals Li1£ depend on the M 

matrix, since £ = EM. But as M is a fixed, observable matrix, we can generate an 

arbitrary number of independent Monte Carlo realisations of E, {E6}:=I' say, and from 

each drawing form E6 ~ E6M = £6 and then £6 ~ Li: £6. Hence, any bounded function 

of Li:£6 will have the same distribution as Li1£. In particular, if the statistic (5.1) on 

p. 10 is calculated from the Monte Carlo drawing Li1£p it will have the same 
6 

distribution as if calculated from Li1£, i.e. jj (Li1£ ) ~ jj (Li: £6) . I!I 
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Appendix E. 

Let {Xi} be the stationary process Xi = 2::=0 If/kZi-k' 

0<(J"2<00, 2::=ollf/kl<oo and E[z:]<oo. Then let Yk:=E[XiXi+k], Yk=Y-k and 

Pk := Y k I Yo, where 0 < Yo < 00 and IYk I < Yo (k > 1) by assumption. Now, consider 

consistent estimates of S3 and S4 : 

Firstly, note that 2::=ollf/kl < 00 => 2::=OIYkl < 00 (Hamilton (1994) p. 52). From our 

assumptions above we then have (l/Yo)2::=ohl = 2::=oIYkIYol = 2::=oIPkl < 00. 
Further, as IPkl<1 for k>1 it follows that Ip;I<IPkl dE{3,4} and hence 

2::=0 Ip; I < 00 and so there exists a q < 00 such that Ip:+II + Ip:+21 + ... < 8 holds for 

any 8 > O. In other words, 2::=1 P; may be approximated by 2::=1 P; for 

sufficiently large q. Now, consider the sample autocorrelation Pk,n = Yk,n/Yo,n where 

Pk,n ~ N(Pk' n -I Wk) for some Wk < 00 (Brockwell and Davis (1991), p. 221). Then 

V [n4/IOpA J=n8/IOV[pA ]=n-I/5w, -+0 and so (pA -P )=o(n-4/IO) Furthermore k,n k,n k k,n k . , 

( A3 3)_( A )( A2 A 2)_ ( -4/10)0(1)- (-4/10) Pk,n - Pk - Pk,n - Pk Pk,n + Pk,nPk + Pk - 0 n - 0 n , and 

( A4 4)_( A )( A )( A2 2)_ (-4/10)0(1)_ (-4/10) Pk - Pk - Pk - Pk Pk + Pk Pk + Pk - 0 n - 0 n . Finally, 

consider the sum A!: = 2::=1 (Pi,n - pn. Then A! contains q terms of order 

o(n-4/10) , ·f h 4/10 . Co 11 h "q A3 P "q 3 d so 1 we c ose q ~ n ,It 10 ows t at L..Jk=1 Pk,n -+ L..Jk=1 Pk ,an as 

and pg =1 and similarly, 
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Appendix F. 

Simulated true size for the Liitkepohl and Theilen (1991) test for a = 5% 
nominal size using 1 million replications. 

0.05 It>OM>A _ e --== 2 ==== 2: ==== Sl: 

/ 
0 , 

0.04 0 

I 
0 

0.03 I 
0 

0.02 I 
0.01 0 

I 
0.00 0 

0 500 1000 1500 2000 2500 3000 

Simulated critical values for the Liitkepohl and Theilen (1991) test using 1 
million replications. 

Empirical critical values Sample size 
13.81464 15 
14.49681 35 
15.80272 65 
16.76972 100 
17.41341 150 
17.76464 200 
18.28421 500 
18.38602 1000 
18.38040 1500 
18.37508 2000 
18.34429 3000 
18.30704 00 
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