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PREDICTION OF WORK RESUMPTION IN THEORY AND PRACTICE 

by Anders Persson 

Department of Statistics, Goteborg University, Sweden 

In Sweden, the number oflong-term sick-listed has increased by about 30% per year 

during the period 1997-2001, and the cost for health insurance is 108 billion SEK in 

the state budget (2002). Thus, the prediction of work resumption is very important. It 

is also important to identify the influence of different factors. In this thesis, an ap­

proach for prediction of future work resumption is proposed. The suggested method 

takes into account the dependency structure of the predictors in a flexible way. 

In the first paper (1) an approach based on Bayes theorem is proposed for predicting a 

binary outcome conditionally on the values of a set of discrete predictors. Point- and 

interval estimators are derived for this probability, and the properties of these estima­

tors are examined in detail by theoretical results and simulations. It is found that the 

variance of the estimated probability is heavily dependent on the situation. It was also 

found that a sample size of at least 400 was required to obtain reliable estimates of the 

prediction probabilities. 

The second paper (2) is an application of the suggested approach in paper (1) to pre­

dict the outcome of work resumption for men and women with lower back- and neck 

pain in a Swedish population. In this application, the predictors have a complex de­

pendency structure. Hierarchical cluster analysis has been used to identify independ­

ent groups of predictors such that predictors within groups are dependent but inde­

pendent of predictors in other groups. In a first step, point- and interval estimates of 

the probability of 'no work resumption' given the value of a set of predictors were 

calculated from the data set. In a second step, new observations were generated with 

the same characteristics as those in the first step. Predictive- and relative predictive 

values as well as proportions of correct classifications were calculated. The predictive 



values and the proportions of correct predictions ranged from 0.59 to 0.81 and 0.70 to 

0.86, respectively. 
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BAYES PREDICTION OF BINARY OUTCOMES 

BASED ON CORRELATED DISCRETE PREDICTORS 

by Robert Jonsson and Anders Persson 

Department of Statistics, Goteborg University, Sweden 

ABSTRACT 

An approach based on Bayes theorem is proposed for predicting the binary 

outcomes X = 0, 1, given that a vector of predictors Z has taken the value z. It 

is assumed that Z can be decomposed into 9 independent vectors given X = 1 

and h independent vectors given X = 0. First, point and interval estimators 

are derived for the target probability lP (X = 1 I z). In a second step these 

estimators are used to predict the outcomes for new subjects chosen from the 

same population. Sample sizes needed to achieve reliable estimates of the target 

probability in the first step are suggested, as well as sample sizes needed to get 

stable estimates of the predictive values in the second step_ It is also shown that 

the effects of ignoring correlations between the predictors can be serious. The 

results are illustrated on Swedish data of work resumption among long-term 

sick-listed individuals. 

Key words: Conditional independence; Confidence intervals; Interactions; Multino­

mial probabilities; Prediction; Work resumption. 
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1 Introduction 

In many situations there is a great need for predicting categorical outcomes at 

the individual level. For example, during recent years there has been an in­

creasing rate of cases with long-term sickness in many countries, and in Sweden 

the increase has been about 30% per year during the period 1997-2001 (SOU 

(2002)). This has focused on the need for better individual predictions of fu­

ture state of health, which in term would facilitate the proper rehabilitating 

interventions. Commonly used methods for such predictions have been logis­

tic regression (Cox (1970)) or 'computer diagnosis' based on empirical Bayes 

weights (Afifi and Azen (1979), pp. 306-10). The latter two approaches give 

identical results, since they only differ in the way in which the predictor vari­

ables are represented. With a few exceptions, the two approaches have been 

used under the assumption that the predictors are independent. The reasons 

for such an assumption are seldom declared, except for the need for simplifi­

cation, even if it has been pointed out that the assumption may be unrealistic 

in most applications (Afifi and Azen (1979), p. 307). The effects of assuming 

predictors to be independent, when they actually are dependent, upon bias and 

precision of the estimated parameters and on the prediction error seems to have 

been ignored. 

In this paper we suggest an approach based on Bayes theorem for predicting the 

two outcomes 'healthy' (X = 0) and 'non-healthy' (X = 1). The vector of pre­

dictors Z have discrete elements and these are allowed to be dependent in such 

a way that there are dependency between some predictors and independency 

between some sets of predictors. Furthermore, the number of independent sets 

of predictors given X = 0 may be different from the corresponding number given 

X = 1. In a first step point and interval estimators are derived for the probabil­

ity IP (X = 1 I z), where z denotes an outcome of the vector Z. The performance 

of the estimators are studied in simulations (Section 3 and Section 4). Then, in 

a second step the estimates are used to predict the outcomes for new subjects 

being sequentially chosen from the same population (Section 5). The success 

of the predictions is studied by simulations from which the agreement between 

2 



predicted and actual outcomes are summarized by the predictive values for the 

outcomes X = 0 and X = 1, as well as the proportion of correct predictions. 

Special attention is devoted to the sample size needed to get reliable estimates 

of](D (X = 1 I z) in the first step, but also to the sample size needed to get stable 

estimates of the predictive values in the second step. In the simulation study 

data from a study, called the ISSA-project, will be used (Bergendorff et al. 

(1997), (2001) and Riksforsakringsverket och Sahlgrenska Universitetssjukhuset 

(1997)). In the latter, work resumption among sick-listed men and women with 

lower back- and neck pain was considered. Here, 5-10 predictors were chosen 

from more than 200 variables. The extraction of predictors from the original list 

of variables was made by simply choosing those variables for which a change in 

the variable value caused the largest change in the empirical probability of work 

resumption. The variables selection process will not be considered in this paper. 

Instead attention will be paid to the problem of how to use a given number of 

predictors in an optimal way. These issues are further considered in (Persson 

(2002)). The paper finally ends with a discussion in Section 6. 

2 Notations and Some Basic Results 

Let the binary outcome variable X denote the health state for a given individual, 

'non-healthy' (X = 1) and 'healthy' (X = 0), with probability p(x) =](D (X = x), 

x = 0, 1. Groups of predictors such that elements within groups are dependent 

and elements in different groups are independent will be called independent 

groups. In general, it will be assumed that the complete vector of predictors 

Z can be decomposed into g independent groups of predictors given X = 1, 

Zl, ... , Zg and h independent groups given X = 0, Zl, ... , Zh. The conditional 

probabilities are defined as 

](D (Zr = Zr I X = x) 

](D (Zs = Zs I X = x) 

3 

q(X) (zr) and 

q(x) (zs) , 

(1) 



where x = 0,1, r = 1, ... ,g and s = 1, ... , h. Thus, 

lP' (Z = Z I X = x) = q(x) (z) = { I1~=l q~~~ (Zr) 
I1s=l q (zs) 

The observed frequencies corresponding to the outcomes in (1) are denoted by 

N(x) (zr) and N(x) (zs), respectively. Obviously, Lz N(x) (z) = N(x), x = 0,1 

and N(l) + N(O) = n, the fixed total sample size. The above notations are 

illustrated in Table 1 for the case with two binary predictors. 

0 1 

Zll X =x 0 N(x) (0,0) ,q(x) (0,0) N(x) (0,1) ,q(x) (0,1) NiX) (0) ,qi
X

) (0) 
1 N(x) (1,0) ,q(x) (1,0) N(x) (1,1) ,q(x) (1,1) NiX) (1), qi

X
) (1) 

N~X) (0) ,q~X) (0) N~X) (l),q~X) (1) N(x),l 

Table 1: Cell frequencies and probabilities with two predictor variables, where 
x = 0,1. 

The probability of interest is 1[" = lP' (X = 1 I z), and from Bayes theorem it 

follows that 

lP' (X = 1) .lP' (Z I X = 1) A p(l)q(l) (z) 
1[" = Lx lP'(X = x) .lP'(Z I X = x) = 1 + A' where A = p(O)q(O) (z)· (2) 

Note that the quantities 1[" and A in (2) are functions of z although this notation 

has been suppressed for convenience. Thus, with k binary predictors there are 

2k possible outcomes for 1[" and A. 

When all predictors are independent, both conditionally on X = 1 and on X = 

0, then q(x) (z) is a product of the marginal probabilities. For practical reasons 

it is often a great advantage if conditional independency between predictors, 

or at least between sets of predictors, can be assumed. This is because empty 

individual cells are more likely to appear than empty marginal celis, and under 

independency the probability 1[" can be estimated from marginal frequencies 
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with greater accuracy than from within-cell frequencies. For example, with 11 

binary predictors there are 211 = 2048 individual cells, in contrast to 2·11 = 22 

marginal cells. In addition to the case with no independent sets of predictors and 

the case with independent predictors, there are a variety of cases with partial 

independency. 

The conditional variable (N(x) (z) I N(x) = n(x)) is obviously multinomially dis­

tributed with parameters n(x) and q(x), where q(x) is vector of all possible 

probabilities which have been assigned to Z. Thus, for binary predictors q(x) = 

(q(x) (1, ... , 1) , ... , q(x) (0, ... ,0)). The probability generating function (pgf) of 

M (n(x),q(x)) can be expressed as 

h (x) ((X) (x) (X)) d ( (x))T. h f (x) were8 = sl...l, ... ,SZl ... Zk""'SO ... o an q 1st etransposeo q . 

Lemma 1 The vector of all cell frequencies (N(l) (z) :N(O) (z)) is multinomi­

ally distributed with parameters (n,p(1)q(l): p(O)q(O)). 

Proof of Lemma 1. 

E [}lk (S~~~"Zk) N(l) (z) }~t (S~~~"Zk) N(O) (z) I N(l) = n (1)] 

= E [)~t (S~~~"Zk) N(l) (z) I N(l) = n (1)]. E [}lk (S~~~"Zk) N(O) (z) I N(O) = n - n (1)] 
n(1) n-n(l) 

= [8(1) ( q(l)) T] . [8(0) ( q(O)) T] 

Now, N(l) is binomially distributed with parameters n and p(l). Thus, by 

taking the expectation of the last expression over N(1) we obtain the pgf of 
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• 
From Lemma 1 it follows that cell frequencies with equal as well as different 

values of x are negatively correlated. Consider for instance the data in Table l. 

Here we obtain, 

COY (N(l) (1,1) ,N(l) (0,0)) 

COY (N(l) (1,1) ,N(O) (1,1)) 

-n (p(l)) 2 q(l) (1, 1) q(l) (0,0) 

_np(l) (1 - p(l)) q(1) (1,1) q(O) (1,1). 

When the predictors are dependent rather than independent, we may, for some 

combinations of the parameters of p(x) and q(x) (z) obtain extremely different 

results. To show this we calculate the difference between the probability 1r 

in the independent and dependent case. For simplicity and without loss of 

generality, we consider only the case with two predictors where Zl = 1 and 

Z2 = 1. Figure 1 shows the differences for various values of pel) /p(O) with all 

possible 2 x 2 contingency tables with probabilities .05 (.1) .95. The differences 

are symmetric when pel) /p(O) = 1. Although, it is impossible from Figure 1 to 

identify the parameter values of q(x) (z), calculations show that the differences 

tends to zero when the parameter values are similar in both tables i.e. when 

q(l) (1, 1) ~ q(O) (1,1), for all values of pel) /p(O). The purpose of this illustration 

is to show that, in fact, it does matter if we assume that the predictors are 

independent or not. 

Expression (2) seems to be the simplest way to express the dependency between 

1r and the q-probabilities, but there are other ways. One is logistic regression. 
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Consider for example the case with two predictors which are dependent, both 

given X = 1 and X = 0. Then, 

A 
p(1) (q(l) (1, 1))ZlZ2 (q(1) (1,0))Zl(1-Z

2
) 

p(O) q(O) (1,1) q(O) (1,0) 

x (q(1) (0,1)) (1-zll
z
2 (q(l) (0,0)) (1-

Z
1)(1-

Z
2) 

q(O) (0,1) q(O) (0,0) 

(

p(1) q(l) (1 1)) 
log p(O)q(O) (1: 1) is the intercept, 

(
q(l) (1,0) q(O) (0,0)) (q(l) (0,1) q(O) (0,0)) 

log q(O) (1,0) q(l) (0,0) ,/32 = log q(O) (0,1) q(l) (0,0) and 

(

q(l) (1,1) q(O) (1,0) q(O) (0,1) q(l) (0,0)) . 
log (0) ( ) (1) ( ) (1) ( ) (0) (0 0) are regressIOn parameters. 

q 1,1 q 1, ° q 0,1 q , 

In a similar way, it can be showed that in the case when the predictors are 

independent, both conditionally on X = 1 and X = ° we obtain 

_ (p(l) k (X)) _ (q}l) (1) q}O) (0)) 
a - log (ii) TIi=l qi (0) and /3i - log (0) (1) 

P qi (1) qi (0) 

for i = 1,2, ... , k, where q}x) (Zi) denotes the marginal probabilities. With k de­

pendent predictors there will be 2k -1 /3-coefficients, and this way of representing 

the q-probabilities will be extremely extensive. Notice also that omitting the in­

teractions between the predictors in the logistic model is equivalent to assuming 

that the latter are independent. 
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Another approach for parametrization is the use of Bayes weights. Again, as­

sume for simplicity that we have two predictors Zl and Zl, then we may rewrite 

A in (2) as 

{ (
p{l)) (q{l) (z))} 

exp log p{O) + log q{O) (z) 

{ (
p{l)) (q{1) (Zl)) (q{l) (Z2)) } 

exp log p{O) + log q{O) (Zl) + log q{O) (Z2) , 

where, log (q{l) (Zi) Iq{O) (Zi)) are called Bayes weights (Afifi and Azen (1979), 

p. 306-10). 

3 Point Estimation of 7f' 

The Maximum Likelihood (ML) estimator of the target probability in (2) is 

obtained as 

(3) 

Some simple examples of (3) are: 

In (i) no sets of predictors are independent, and in (ii) all predictors are inde­

pendent. In (iii), Zl, Z2 and Z3 are dependent when X = 1, while (Zl, Z2) and 

Z3 are two independent groups of predictors when X = o. 

The fact that (3) is the ML estimator is a direct consequence of Lemma 1. Ac­

cording to the latter, N{x) (z) In and N{x) In are the ML estimators ofp{x)q{x) (z) 

and p{x), respectively, so N{x) (z) IN{x) is the ML estimator of q{x) (z) and from 

this the result in (3) follows. 
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Below some properties of the estimator in (3) are studied, and some expressions 

for the estimated variance are given. Results will be derived separately for the 

case when all predictors are dependent and for the more general case when g 

groups of predictors are dependent given X = 1 and h groups are dependent 

given X = O. The reason for the separation of the two cases is that various 

degrees of approximations are used for deriving the results. 

Case I. No sets of predictors are independent 

The estimator in (3) is now obtained from the special case (i) above and an 

expression for the variance of the latter is given by 

V [A] 11"(1-11") (1 (1-11"')) 11"(1-11") C ar 11" = - + 2 = . ,say, 
n 11"' n(1I"') n 

(4) 

where 11"' = p(l)q(l) (z)+p(O)q(O) (z). An estimator ofthe variance (4) is obtained 

from 

-v [A] _ -ir (1--ir) (1 (1 --ir')) _ -ir (1--ir) CA 
ar 11" - ( ) -:::; + 2 - • ,say, 

n - 1 11" n (-ir') n 
(5) 

where -ir' = n-1 (N(1) (z) + N(O) (z)). 

In order to motivate these expressions, notice that according to Lemma 1 and 

the results (AI) and (A2) in the Appendix, it follows that, for a fixed value of 

z, N' = N(l) (z) + N(O) (z) is binomially distributed with parameters nand 11"' 

and also that (N(l) (z) IN') is binomially distributed with parameters N' and 

11". Thus, we obtain the expectation 

so -ir is unbiased. The variance is (Rao (1973), p. 97) 

Var [-ir] = E [Var (-ir IN')] + Var [E (-ir IN')] 
N' N' 
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= E [N'1f (1 ~ 1f)] + Var [1f] = 1f (1 -1f) E [(N,)-l] + O. (6) 
N' (N') N' N' 

Since there is a non-zero probability [(1 - 1f') n] that N' takes the value 0, one 

should re-define the estimator of 1f either by adding 1 in the denominator or by 

conditioning on N' > O. This would however make the estimator is unnecessary 

complicated in the large sample situation which is considered here. Instead a 

Taylor series expansion will be used. From Appendix (A4) it follows that 

(7) 

By inserting the approximate expectation (7) into (6) we obtain the variance in 

(4). The estimated variance in (5) is obtained by simply replacing the parame­

ters 1f and 1f' by their obvious estimators. By using n - 1 in the denominator 

rather than n, a slight improvement of the closeness to the true variance is 

obtained. 

The expression for the variance of ir in (4) agreed well with the true variance 

determined from simulations. However, there were some deviations depending 

on the sample size n and the parameters q(x) (z). The best agreement was 

obtained with a uniform distribution of the q-probabilities. A simulation study 

with four cells as in Table 1, showed that with a uniform distribution, the 

absolute relative difference was below 1% even for a relatively small sample size 

n = 50, and declined rapidly for larger values of n. The agreement became 

worse when one of the cell probabilities was close to 1. For example, with the 

parameter setting q(x) (1,1) = 0.93, q(x) (1,0) = 0.02 = q(x) (0,1), q(x) (0,0) = 
0.03, x = 0,1, the absolute relative difference was as large as 60% for n = 50. In 

the latter case one has to choose n = 400 to keep the absolute relative difference 

below 5% and to choose n = 800 in order to keep it below 0.5%. It was also 

found that similar conclusions could be drawn about the average performance 

of the estimated variance in (5) as for (4). 

10 



Even though the last example is a rather extreme one, it illustrates that some 

caution is needed when (4) and (5) are used in situations where the cell proba­

bilities are close to 0 or 1. 

By means of (4) it is possible to study analytically how the variance of it depends 

on the parameters p(l), q(1) (z) and qeD) (z). When p(1) = ! the variance is a 

symmetric function of q(l) (z) and qeD) (z) which decreases as the latter of the 

two quantities increase, as can be seen in Figure 2. For pel) =I ! the behavior 

of the variance is more complicated. When p(1) < ! the variance decreases 

with increasing qeD) (z), but now the variance has a local maximum at some 

q(l) (z) > 0 (Figure 3). The value of q(l) (z) which gives this maxinlum will 

increase as pel) tends to zero. When pel) > ! the same pattern is observed, but 

with q(l) (z) interchanged by qeD) (z) (Figure 4). 

Case II. g sets of predictors are independent given X=l and h sets of predictors 

are independent given X=O 

An expression for the variance of it is given by 

(8) 

An estimator of Var [it] is 

(9) 

In contrast to Case I, the denominator of it now consists of a sum of products 

of multinomial variables and the exact distribution of this is very complicated. 

Instead all derivations will be based on Taylor approximations. 
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From Appendix (A4) it follows that 

Var [1l-] ~ (10) 

Var [il] 

where n~=l N(l) (zr) and nZ=l N(O) (zs) are two independent products condi­

tionally on N(l). These products consist of independent variables, which are 

distributed M (N(l),q(l) (Zr)) and M (N(O),q(O) (zs)), respectively. From Ap­

pendix (A3) it follows that, for fixed values of Zr and zs, 

E (n~=l N(l) (zr) I N(l)) 

E (nZ=l N(O) (zs) I N(O)) 

( N(l)) 9 n~=l q(l) (zr) , and 

(N(O)) h nZ=l q(O) (zs) , while 

By using the Taylor expansion in Appendix (A4) it is seen that the variance of 

any ratio of independent variables X and Y can be written 

Var X ~ E (X) Var (X) Var (Y) ( )2( ) (Y ) E (Y) [E (X)]2 + [E (y)]2 . 
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From the last results and by taking the approximate expectation over N(1) it 

finally follows that 

In a similar way it can be shown that 

and by again using the Taylor approximation in Appendix (A3) one gets 

The expression for Var [1t] in (8) is finally obtained from (10) and by using the 

fact that A2/ (A + 1)4 = 1T2 (1 _ 1T)2. 

The estimator of the variance in (9) is simply obtained by inserting obvious 

estimators for parameters. 

When 9 = 1 = h, the expression in (8) should reduces to (4). However, in this 

case it is easily shown that (8) can be written as 

Var [1t] = 1T (1 - 1T) I,. 
n 1T 

Thus, the two expressions in (4) and (8) are the same if 

The agreement between the expressions for the variance of 1t in (8), the estimated 

variance in (9), and the true variance was determined from 100,000 simulations. 

In this case the comparison is complicated by the fact that there are many q­

probabilities involved, and therefore we only consider the case with two indepen­

dent sets of mutually dependent predictors Zl = (Zl' Z2) and Z2 = (Z3, Z4), 
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both given X = 1 and X = O. By varying the parameters p(l), qW (Zl' Z2) 

and q~~) (Z3, Z4), x = 0,1, it was found that the absolute difference between the 

variance of fr in the simulations and the variance given by (8) and (9) with a 

few exceptions were below .001 for n ?:: 200. In no case the difference was larger 

than .0003 for n ?:: 400. In the sequel we choose n = 400 and study how the 

variance of fr in (8) depends on the magnitude of the q-probabilities and also 

on the number of independent sets of predictors 

Figures 5-12 illustrate how the variance simultaneously depends on qW (Zl' Z2) 

and q~~ (Z3, Z4) for some values ofp(l), qi~) (Zl' Z2) and q~~ (Z3, Z4). All variances 

are considered for a fixed set of (Zl' Z2, Z3, Z4), e.g. (1,1,0,1). Therefore, the 

z-arguments have been omitted in the legends to the figures. In Figure 5 it is 

seen that the variance is a symmetric function of its arguments when pel) = ! 
and qi~) (-) = q~~ (.). For pel) < ! (see Figures 6-12), the pattern is more 

complex and in this case one can identify a saddle-point. The level of the latter 

increases as qi~) (Zl' Z2) = q~~) (Z3, Z4) tends to zero, while at the same time the 

saddle becomes tighter. For p(1) > ! this saddle-point pattern vanishes and the 

variance increases as qi~) (Zl,Z2) and q~~) (Z3,Z4) tends to zero (not shown in 

the figures). 

To study how the variance of fr depends on the number of independent sets of 

predictors some simplifications have to be made. Put g = h, so there is an equal 

number of sub-groups of independent predictors both given X = 1 and given 

X = 0, and assume that all q(l) (z) = q(l) and qeD) (z) = qeD) while pel) = !. 
Then Figure 14 shows that the variance of fr increases with increasing g as far 

as q(l) = q(D), and that the increase is larger for small q's. When q(l) i= qeD) 

there is a different pattern. For large differences between the q's, the variance 

declines with increasing value of g, but for smaller differences the variance has a 

local maximum before it starts to decline. These findings suggest that much can 

be gained if it is possible to find (1) many predictors with the property that (2) 

the q-probabilities q(1) (z) differ much from qeD) (z). On the other hand, failure 

to identify predictors with different q-probabilities, or including such predictors 

for some reasons, will increase the variance of fr. 
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4 Interval Estimation of 1r 

When the estimated value of 7f is used for predicting the state of an individual, 

it is customary to make the predictions 'X = l' if 7f > ~ and 'X = 0' if 7f < ~ if 
the costs of misclassification are unknown. Such rigid classification rules may be 

useful if one wants to evaluate the prediction ability of certain predictors, but 

for practical purpose they can be risky. The predicted outcome of an individual 

sometimes calls for an intervention, by for instance offer the individual medical 

rehabilitation programs. Wrong predictions may then be very expensive. If 

the costs of misclassification are known, the rigid rule above can be replaced 

by generalized Bayes classification rules, which minimize the expected cost of 

misclassification (Afifi and Azen (1979), p. 292). However, the costs are seldom 

known, or may be hard to quantify. In such cases it may be wise to compute a 

confidence interval (CI) for 7f. Crs that are clearly outside ~, can be considered 

to indicate that the corresponding predictions are more likely than Crs that 

cover ~. In this section we consider various ways to construct a CI for 7f. As in 

the preceding section, two cases will be treated separately. 

Case I. No sets of predictors are independent 

We will compare the expected length and actual coverage probability of five 

different Crs. Let T d. as. N(O, 1) denote that a statistic T asymptotically has 

a standard normal distribution. The various Crs are derived from the following 

properties, where the same notations are used as in Section 3. 

-rr-7f 
(i) 1/2 d. as. N(0,1), 

{Var [-rr]} 

-rr-7f 
(ii) 1/2 d. as. N(0,1), 

{ 1f(1:1f) . 6 } 

(iii) 

(v) 

-rr-7f 1/2 d. as. N(O, 1), (iv) (N(1) (z)IN') d. B(N',7f) and 

{~} 
log (..4.) -log (A) 

---'--<----1/..,.,-2 d. as. N(O, 1). 

{V; [log (..4.)]} 

Here the statistics in (iii) and (iv) are conditional and based on the particular 
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outcome N' = N(l) (z) + N(O) (z), while log (A) is an estimator of log (A) to 

be considered below. Let Z be the 100 (1 - a/2) % percentile of the standard 

normal distribution, and let F (nl, n2) denote the 100 (1 - a/2) % percentile of 

the F-distribution with nl and n2 degrees of freedom. Then the CI's derived 

from (i) - (iv) are frL < 1r < fru, where frL and fru are obtained from: 

(iv) 

(i) fr ± Z . {Var [fr]} 1/2 

2fr+ z:c ± {( 2fr+ z:c) 2 _ 4fr2 (1 + z:c) }1/2 
(ii) ___ ~~_-:--_--:-~ ___ -L-_ 

2 (1 + z:c) 

(iii) 
2fr+~ ± { (2fr+~) 2 _ 4fr2 (1 + ~) } 1/2 

2 (1 + ~~) 

N(l) (z) 

(N(O) (z) + 1) F [2 (N(O) (z) + 1) ,2N(1) (z)]' 

(N(l) (z) + 1) F [2 (N(l) (z) + 1), 2N(O) (z)] 

N(O) (z) + (N{1) (z) + 1) F [2 (N(l) (z) + 1) ,2N(O) (z)] 

exp {lOg (A) ± 1.96 {Va;: [log (A)]} 1/2} 

(v) { 1/2}' where 
1 + exp log (A) ± 1.96 {Va;: [log (A)]} 

log (A) 
Va;: [log (A)] 

log (N(l) (z)) -log (N(O) (z)) and 

1 1 
= N(l) (z) + N(O) (z)' 

(11) 

The expressions (11) : (i) - (iv) follows from well known results (Casella and 

Berger (1990), p. 444-49). (11): (v) follows from very rough approximations 

(see Appendix (A4)) E [log (A)] ::::::: log (A), and 
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where 

E[N(X)(z)] np(X) q(x) (z) 

Var [N(X) (z)] 

COy [N(l) (z) ,N(O) (z)] 

np(x)q(x) (z) (1- p(x)q(x) (z)) , x = 0, 1, and 

_np(l)p(O)q(1) (z) q(O) (z) . 

This implies that 

Var [log (A)] 
Va;: [log (A)] 

~ ~ (p(l)q~l) (z) + p(O)q~O) (z)) , and hence 

1 1 
~ N(l) (z) + N(O) (z)· 

The simple expression in (11) : (v) is worth a comment. log (A) is in fact a 

poor estimator of log (A). By instead using the alternative estimator 

which follows by considering terms of the order n-1 in the Taylor expansion of 

E [log ( A) ] , both bias and variance can be reduced substantially. The estimated 

variance of this alternative estimator is 

1 1 1 1 
--:c:-:--:---:- + - - ---r;-

N(l) (z) N(O) (z) [N(l) (z)]2 [N(O) (z)]2 

+~ CN<'~ (z)l' + [N(O: (Z)]') - 4~ (N<'~ (z) + N<O~ (z») 2 

To illustrate the difference between the two estimators of log (A), consider the 

case when there are 2 dependent predictors Zl and Z2, given X = 1 and given 

X = 0, and with the parameter setting 
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(1) ( ) q12 1,1 

(0) ( ) q12 1,1 

.24, qW (1,0) = .38, qW (0,1) = .11, qW (0,0) = .27, 

.71, ql~) (1,0) = .25, ql~) (0,1) = .02, ql~) (0,0) = .02. 

A simulation study using the relatively large sample size of n = 400, showed 

that the alternative estimator had a relative bias which was more than 50% 

smaller than the original estimator. The variance was reduced by 35% and the 

expression above for the estimated variance of the alternative estimator was 

very close to the actual variance. However, when the alternative estimator was 

used for making Cl's, the distribution of the pivotal statistic for (v) was slightly 

skew, and for this reason the coverage rate of 95% was not maintained. The 

actual coverage rate could in fact drop down to 91%. This illustrates that a 

CI based on a crude estimator may perform better than a CI based on a more 

sophisticated estimator. 

The performance of the Cl's in (11) : (i) - (v) was found to depend on the 

q-probabilities. As for the expressions (4) and (5) in Section 3, the worst case 

was obtained when one of the cell probabilities are close to 1. This is illustrated 

in Table 2, where the 5 Cl's are compared regarding expected length and cov­

erage probability. First of all one may notice that none of the Cl's keeps the 

stipulated level of 95% if the sample size, n, is 100 or less. For n = 200 the 

95%-level is only maintained by (11) : (ii) and possibly by (11) : (iii). How­

ever, the expected lengths of the latter are too large to be accepted. When 

the q-probabilities tend to be more uniformly distributed, the probability that 

the 95% level is maintained increases, also for smaller samples. The overall 

conclusion is that (11) : (ii) performs best, even if the Cl's may be somewhat 

conservative. When n is large the computational simple expression in (11) : (v) 

may be an alternative. (11) : (i) should be avoided. The latter Cl's did not even 

maintain the 95% level in the most favorable case with uniformly distributed 

q-probabilities and n = 1600. 

Case II. g predictors are independent given X=l and h predictors are indepen­

dent given X=O 
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Now the CI's are derived from the following properties, where the same notations 

are used as in Section 3 for Case I: 

if - 1r log ( A) - log ( A) 
(i) 1/2 d. as. N(O,l), (ii) 1/2 d. as. N(O,l). 

{n
2
(1:n)2 . b} {bin} 

Due to the complexity of the statistic A in this case, we do not consider any 

conditional statistics, as in Case 1. The CI's of 1r derived from (i) and (ii) above 

now are if L < 1r < ifu, where if Land ifu are the solutions of 

( z.J bin ± 1) =f 
( i) 

(z.J bin ± 1 r =f 4zif.J bin 

2z.Jbln 

( ii) 
exp {log (A) ± 1.96 {bin f/2} 

1 + exp {lOg (A) ± 1.96 { b In } 1/2} 

(12) 

In (i) the upper part of the two signs ± and =f refers to ifL and the lower part 

to ifu. In (ii) the upper part of ± refers to ifu and the lower part to if L. 

(i) follows from the following arguments. Put f (1r) = (if -1r) I (1r -1r2). Then 

the statement - z < (if - 1r) I ylVar [if] < z is equivalent to - z yI Din < f (1r) < 

zylDln, where the meaning of D is clear from (8). Here f (1r) is a monotonously 

decreasing function of 1r E (0,1) for all if E (0,1) with the inverse 

which gives the CI in (i). 

Now, log (A) can be written log (if) - log (1- if), and by using (8) together 

with Appendix (A4) one gets 
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which motivates the use of the statistic in (ii). The expression for the CI in 

(12) follows easily by noticing that 

.. exp{c£l exp{cu} 
CL < log (A) < Cu Implies that 1 {} < 7r < 1 {}' + exp CL + exp Cu 

When D in (12) is used for constructing a confidence interval for 7r, N(l) (zr) 

and N(O) (zs) in (12) should be replaced by N(l) (Zr) + 1 and N(O) (zs) + 1, 

respectively. This will make the confidence interval less conservative. 

Tables 3 and 4 show expected lengths and coverage probabilities for the two CI's 

in (12), the latter being determined from simulations. The differences between 

the two are very small. (12): (i) tends to give somewhat shorter CI's, but 

(12) : (ii) tends to give CI's which agree better with the stipulated level of 95%. 

Again we point out that, although log (A) is a poor estimator of log (A), CI's 

constructed from log ( A) perform well. 

5 Prediction 

In this section we consider the possibility to predict the outcomes X = 1 and 

X = 0 based on fr, the estimates of 7r. The outcome X = 1 will be predicted 

whenever fr > ~ and otherwise the outcome X = 0 will be predicted. This rather 

strict classification rule is chosen merely for simplicity. In practical work it would 

perhaps be better to use a less rigid classification rule and take the CI's for 7r 

into consideration. The predictions will be performed in a two-step approach, 

where in the first step 7r is estimated from a sample of a certain population, 

and then in a second step this estimate is used to predict the outcomes for new 

subjects being chosen from the same population. If the predicted outcome is 

denoted by X P, the success of the predictions will be measured by the predictive 
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values lP'(X = 11 XP = 1) and lP'(X = 0 I XP = 0), and the probability of a 

correct prediction lP'(Correct) (see Ch. 3 in Campbell and Machin (1990)). 

Of special interest will be to study how the predicting ability depends on the 

sample size, which is used in the first step to estimate 7r, and also to determine 

the sample size, which is needed in the second step for reaching stable estimates 

of the measures of predicting ability. Attention will also be paid to study how 

miss specification of the dependency structure of the predictors may affect the 

predicting ability. 

5.1 A Simulation Example 

In this section we consider the ability to predict work resumption for long­

termed sick-listed subjects. The sample considered here is a part of a larger 

sample within the ISSA-study that has previously been described in detail 

(Bergendorff et al. (1997), (2001) and Riksforsakringsverket och Sahlgrenska 

Universitetssjukhuset (1997)), and consisted of 545 full-time working employed 

men sick-listed for at least 28 days because of a lower back pain diagnosis. Af­

ter 28 days the values on the following predictor variables were obtained: (1) 

Age, (2) Complete rehabilitation plan, (3) Comorbidity, (4) Working ability, (5) 

Sick-listing in family, (6) Suitable working tasks, (7) Ethnicity, (8) Heavy lifts. 

Here, Comorbidity means that the subjects has other diseases than lower back 

pain. Working ability was subjectively assessed on a scale ranking from 1 (low) 

to 10 (high). Suitable working tasks means that the employer was willing to 

adjust the working tasks in agreement with the subject's state of health. In a 

previous study, these variables were found to be the most important ones for 

predicting work resumption among men with lower back pain (Bergendorff et 

al. (2001)). 

The outcomes to predict at 90 days are X = 1, if there is no work resumption and 

X = 0 otherwise. The predictor variables were dichotomized in the following 

way. Age = Zl = 1, if age> 30 years and 0 otherwise, Complete rehabilitation 

plan (Z2) = 1, if yes and 0 otherwise, Comorbidity (Z3) = 1, if yes and 0 
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otherwise, Working ability (Z4) = 1, if scale value < 5 and 0 otherwise, Sick­

listening in family (Z5) = 1, if yes and 0 otherwise, Suitable working tasks 

(Z6) = 1, if no and 0 otherwise, Ethnicity (Z7) = 1, if Swedish and 0 otherwise 

and Heavy lift (Zs) = 1, if yes and 0 otherwise. 

Notice that all binary predictors have been defined in such a way that the out­

come 1 of a predictor favors the outcome X = 1. The reasons for dichotomizing 

the variables Age and Working ability have given previously (Bergendorff et al. 

(2001)). Although the variable Age has been found to be continuously nega­

tively related to the probability of work resumption in other studies (Jonsson 

(2001)), this was not the case in the present study where the selected subjects 

differed from the test of the population in several aspects. E.g. all were full-time 

working employed. 

In this example the first task is to estimate 

A hierarchical cluster analysis (Anderberg (1973) and Jobson (1992)) suggested 

the following independent sets of vectors 

(Z I X = 1) 

(Z I X = 0) 

{(Zl,Z2,Z31 X = 1), (Z4,Z51 X = 1), (Z6,Z7'ZS I X = I)} 

{(Zl, Zs I X = 0), (Z3, Z4, Z6 I X = 0), (Z2, Z5, Z7 I X = O)} 

Thus, e.g. Zl (age) and Z3 (comorbidity) were correlated among those who did 

not return to work after 90 days, but uncorrelated among those who returned to 

work. For a more detailed description of the dependency structures the reader 

is referred to the paper by Persson (2002). The corresponding q-probabilities 

were 
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where, 

Zl,Z2,Z3 q(l) (Zl,Z2,Z3) Z4,Z5 q(l) (Z4, Z5) Z6,Z7,ZS q(l) (Z6, Z7, zs) 

111 .09 11 .02 111 .22 
110 .02 10 .17 110 .02 
101 .50 01 .21 101 .06 
011 .01 00 .60 011 .35 
100 .27 100 .01 
010 .01 010 .01 
001 .07 001 .23 
000 .03 000 .10 

Zl, Zs q(O) (Zl, zs) Z3, Z4, Z6 q(O) (Z3, Z4, Z6) Z2,Z5,Z7 q(O) (Z2,Z5,Z7) 

11 .64 111 .01 111 .02 
10 .24 110 .02 110 .02 
01 .11 101 .01 101 .01 
00 .01 011 .03 011 .05 

100 .01 100 .01 
010 .24 010 .30 
001 .03 001 .05 
000 .65 000 .54 

These q-probabilities were estimated from the data set, and will be used as fixed 

probabilities for generating samples in the simulation study. The prevalence p(1) 

was 0.54. This figure was also taken from the empirical study. 

The various outcomes (Zl, ... , zs) give rise to 256 values of the estimated posterior 

probability 1['. The 5 smallest and largest of these are 

11001010 
11011010 
10000010 
11000010 
10001010 

lP' (X = 1 I z) 
.0156 
.0316 
.0391 
.0432 
.0786 

01010000 
01110000 
01000100 
01000110 
01000111 

lP' (X = 1 I z) 
.9852 
.9852 
.9860 
.9860 
.9860 

Here one may notice that Zl = 1 (age> 30 years) in all cases giving the smallest 

probability, while Zl = 0 in all cases giving the largest probabilities. 

The simulation experiment was performed in the following way: First, one sam­

ple was selected, each being based on the sample sizes n = 25, 50, 100, 200, ... , 1000, 

and from each sample 1[' was estimated. The latter quantity was then used to 
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predict the outcome at 90 days for new subjects being selected from the same 

population. The number of new sampled subjects was m = 1000, ... , 100000, 

and for each of these, the outcome X = 1 was predicted (X P = 1) if 7r > ~, and 

the outcome X = 0 was predicted (XP = 0) if 7r < ~. The predicted outcomes 

were then compared with the actual outcomes, and the predictive values were 

computed as well as the proportion of correct predictions. Here it was found 

that the predictive values had stabilized already at m = 1000. 

Figure 14 shows how the predictive values depend on the sample size n in the 

first sample. It is seen that the predictive values starts to stabilize when n 

is larger than 400 and that this stabilization process goes faster for (X P = 1) 

than for (XP = 0). The final values were 0.74 for (XP = 1), 0.73 for (XP = 0) 

and 0.73 for JP> (correct). The similarity between the latter values is merely a 

coincidence. 

6 Discussion 

When predicting the future state of health based on estimated probabilities, the 

choice of good predictors is of major importance, like in all areas of prediction. 

If very little is known about which variables that will serve as good predictors, 

a first step may be to perform preliminary study where as many variables as 

possible are included as candidates. This was made in the ISSA-study mentioned 

in Section 1 and 5.1. Here, 5-10 variables were chosen as predictors among a total 

of more than 200 variables. In this paper we have considered the situation where 

a first sample is taken in order to estimate 'If and where the prediction ability is 

evaluated in a second sample from the same population. Then the questions arise 

of how to extract the predictors from a larger list of candidates, how many to use 

and how to identify the dependency structure between them, if necessary. The 

dependency structure can be created by hierarchical cluster methods (Anderberg 

(1973) and Jobson (1992)). Simulations show that the procedure works very 

well with dichotomous variables. Since a correct specification of independent 
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clusters has been showed to be of such great importance this issue should be 

further investigated. 

Throughout the paper it has been assumed that the dependency structures 

between sets of predictors are correctly specified. This is a matter of crucial 

importance, since by assuming sets of predictors to be conditionally independent 

when they in fact are dependent may have serious effects on bias and variance 

of the estimator of 7r. An illustrative example is the following one with two 

predictors. Let the cell probabilities in Table 1 be qg> (1,1) = 0.10, qg> (1,0) = 

O 40 (1) (0 ) (0) ( ) 0 (0) (0) 0 0 (0) (0) h h . = q12 ,1, q12 1,1 = .20, q12 1, =.1 = q12 ,1, so t at t e 

correlation between Zl and Z2 is -0.60 given X = 1 and +0.52 given X = o. 
From (2) it follows that the target probability to estimate when (Zl' Z2) = (1,1) 

is 7r = 0.33, and according to (4) Var [1l"] = 0.0148 when n = 100. On the other 

hand, by assuming independency between Zl and Z2 the target probability 

becomes 7r = 0.74, while the variance of the estimator is 0.0067 when n = 100. 

Thus, both bias and variance will in this case differ with about 120%. This 

was just a counter example, but in practice the effects of ignoring correlations 

between the predictors can be serious and give rise to large differences between 

the estimated 7r'S (see the discussion in Persson (2002)). 

The results in Section 3 support the idea to include as many predictors as 

possible in the model, provided that the difference between the q-probabilities 

q(l) (z) and q(O) (z) is large. When the latter difference is small, it may result in 

a local increase in the variance of 1l" (see Figure 14). This argues against using 

predictors in the model with only slight differences between the q-probabilities. 

For p(l) = ~ and when both q(l) (z) and q(O) (z) are small, the variance of 1l" in 

(4) will be large, as shown in Figure 2. When there are two independent groups 

of predictors and p(l) = !, Figure 5 suggests that the variance of 1l" will be large 

if both qg) (Zl' Z2) and q~~ (Z3, Z4) are small. These results should apply to the 

example in Section 5.1 where p(1) was close to !. Notice that many of the q­

probabilities were small. For p(l) < ! there is a different pattern. Now, Figures 

6-12 suggests that the variance will be large when there is a large difference 

between the q(lLprobabilities. 
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There are also questions about sample sizes needed to get reliable estimates of 

model parameters and of predictive values. The variance of 7r can be reduced 

by increasing the sample size, but due to the complicated dependencies on the 

parameters of the expression for the variance, it is not easy to give clear-cut 

recommendations for the choice of a proper sample size. The smallest sample 

size needed to reach an acceptable level of the variances of 7r, for making reliable 

CI statements and also for getting reliable values of the predictive values was 

n = 400. The latter may be smaller when the q-probabilities are relatively large, 

but n = 400 may be recommended as a safe rule of thumb. Even with samples 

of 400 it is seen from Tables 2-4 that the lengths of the CI's can be somewhat 

large, and that sample sizes above 1000 would be needed in order to get CI's 

with reasonable lengths. 

Although all results of the paper apply to predictors with an arbitrary number 

of outcomes, we have only been concerned with dichotomized predictors in the 

example of Section 5.1, and this needs an explanation. The reasons for only 

using binary predictors were that almost all of the variable values were subjec­

tively assessed on an ordinal scale (exceptions were Age and Income), and that 

more or less pronounced threshold values could either be detected on probability 

plots (e.g. Working ability on a 10-point scale), or determined after consulting 

experts in the field (e.g. Complete rehabilitation plan on a 5-point scale). It 

was supposed that dichotomized predictors would behave more robustly than 

the original ordinal variables when predictions were made for new subjects. It 

may be argued that information is lost by the dichotomization. However, in the 

present study it was felt that this loss of information could be neglected. For 

instance, the variable 'Complete rehabilitation plan' got the maximal value 5 if 

the document was signed by the insured, but 4 if the same document was not 

signed. Here it seemed to be more relevant to know whether such a document 

existed or not. A further reason for dichotomizing is to reduce the possibility of 

getting zero cell frequencies. When there are enough many possible outcomes 

for a predictor it will be inevitable that this will occur. The problem with zero 

frequencies and missing values are further considered in Persson (2002). 
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ApPENDIX 

Some results for multinomial distributions. 

Let (X~l), ... , Xk1), X~O), ... , XkO)) be a random vector with a multinomial distrib­

utiondenoted by M(n,p(1)qp), ... ,p(1)qk1) ,p(O)qiO), ... ,p(O)qkO)), where 2:7=1 qi1) = 

1 = 2:7=1 qiO) and p(l) + p(O) = 1. A binomial distribution with parameters n 

and p is denoted by B(n,p). 

From the probability generating function (pgf) it is easily verified that 

Direct calculation yields that 

( 

(1) (1) ) (1) (1) (0) _ . . . P qi . _ 
(Xi I Xi + Xi - x) IS distnbuted B x, (1) (0)' 2 - 1, ... , k. 

p(l)qi + P(O)qi 
(A2) 

Let N (zr), r = 1, ... ,g, be independent vectors each being distributed M(n, q (zr)). 

For fixed Zr, r = 1, ... , g, one may put N r = N (zr) and qr = q (zr). Then 

(A3) follows easily by repeated use of the expressions, 

Var (N1) nq1 (1 - q1) , 

Var (N1N2) Var (N1) Var (N2) + Var (N1) [E (N2)]2 + [E (N1)]2 Var (N2) 

= n4 (q1q2)2 { (1 + 1 ~~1 ) (1 + 1 ~:2 ) -I} and so on. 
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Approximation of functions of moments 

Let Xi, i = 1,2 be two independent random variables with means fLi and vari­

ances a-r. Then it follows from a Taylor expansion that the function g (Xl, X 2 ) 

has the approximate moments (Kotz and Jonsson (1985), p. 646) 

where all derivatives are evaluated at fL = (fLI,fL2). Also, 
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LEGENDS TO FIGURES 

Figure 1: Calculation of the differences between the probability 7r with Zl = 1 

and Z2 = 1 in the independent and dependent case. 

Figure 2: Var [1r] from (4) in the case with two dependent predictors (Zl, Z2), 

given that n = 400 and p(l) = ~. 

Figure 3: Var [1r] from (4) in the case with two dependent predictors (Zl, Z2), 

given that n = 400 and p(l) = .10. 

Figure 4: Var [1r] from (4) in the case with two dependent predictors (Zl' Z2), 

given that n = 400 and p(l) = .90. 

Figure 5: Var [1r] from (8) in the case with two independent groups of depen­

dent predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = ~, qi~) (-) = 
(0) ( ) q34 . = .05. 

Figure 6: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl,Z2) and (Z3,Z4), given that n = 400, p(l) = .10, qi~) (.) = .05 

(0) ( ) and q34 . = .10. 

Figure 7: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl' Z2) and (Z3, Z4), given that n = 400, p(1) = .10, qi~) (.) = .05 

(0) ( ) and q34 . = .20. 

Figure 8: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl' Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = .05 

(0) ( ) and q34 . = .30. 

Figure 9: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (-) = 
q~~) (.) = .05. 

Figure 10: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = 
(0) ( ) q34 . = .10. 

32 



Figure 11: Var [1l-] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = 

(0) ( ) q34 . = .20. 

Figure 12: Var [1l-] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = 

q~~) (.) = .30. 

Figure 13: Predictive values for healthy (solid line) and non-healthy (dotted 

line) for various sample sizes. 

Figure 14: Var [1l-] as a function of number of independent sets of predictors. 
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Expected Length (Zl ,Z2) Coverage Probability (%) (Zl' Z2) 

CI n (1,1) (1,0) (0,1) (0,0) (1,1) (1,0) (0,1) (0,0) 

(11: i) 50 .29 .36 .36 .50 95 15 15 28 
100 .20 .60 .60 .73 95 40 40 59 
200 .14 .79 .78 .76 95 72 72 84 
400 .10 .70 .70 .58 95 89 89 92 
800 .07 .50 .50 Al 95 93 93 93 

(11: ii) 50 .27 .84 .84 .82 95 64 64 78 
100 .20 .79 .79 .75 95 87 87 94 
200 .14 .71 .71 .63 95 97 97 97 
400 .10 .58 .58 .50 95 96 96 96 
800 .07 045 045 .38 95 96 96 96 

(11: iii) 50 .29 1.69 1.69 1.55 95 63 63 77 
100 .20 1.44 1.43 1.23 95 85 85 92 
200 .14 1.08 1.08 .86 95 94 94 95 
400 .10 .73 .73 .59 95 96 95 96 
800 .07 .50 .50 Al 95 95 95 95 

(11: iv) 50 .30 .94 .94 .92 97 39 39 53 
100 .21 .89 .89 .85 96 64 64 78 
200 .15 .81 .81 .73 96 87 86 94 
400 .10 .67 .67 .57 96 97 97 97 
800 .07 .50 .50 042 95 97 97 97 

(11: v) 50 .28 .84 1.06 .82 95 15 15 28 
100 .20 .80 .98 .76 95 40 40 60 
200 .14 .72 .84 .65 95 75 75 90 
400 .10 .59 .66 .51 95 95 95 97 
800 .07 045 048 .38 95 96 96 96 

... 
Table 2: Expected lengths and actual coverage probablhties (%) of the vanous CI's m (11): (z)-(v) 

for 1t, based on two dependent binary predictors. The q probabilities were q(x) (1,1) = .93 , 

q(X) (1,0) = .02, q(X) (0,1) = .02 and q<X)(O,O) = .03, x = 0,1. The stipulated CI-level was 95%, and 

each figure was computed from 100,000 simulations. 



Expected Length: ZI,Z2,Z3,Z4 

I S.ample 
Size, n 

1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 

50 .42 .41 .68 .65 .48 .45 .69 .66 .66 .64 .76 .75 .61 .59 .74 .72 
100 .29 .30 .64 .57 .37 .34 .65 .58 .59 .58 .72 .69 .54 .51 .70 .66 
200 .20 .21 .58 .46 .28 .25 .57 .47 .51 .48 .65 .58 .44 .41 .62 .54 
400 .13 .15 .48 .35 .21 .18 .46 .35 .39 .36 .51 .43 .30 .27 .47 .37 
800 .10 .11 .37 .25 .15 .13 .33 .26 .27 .23 .33 .27 .17 .13 .26 .19 
1600 .07 .08 .28 .18 .11 .09 .23 .18 .18 .14 .18 .17 .10 .07 .10 .09 

Coverage Probability (%): ZI'Z2,Z3,Z4 

Sample 
1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 I size, n 

50 94 96 25 59 99 97 25 59 31 29 07 18 28 28 06 17 
100 95 96 55 89 97 97 53 88 56 54 28 48 53 53 28 47 
200 95 96 85 97 96 96 81 96 80 79 65 78 79 78 64 77 
400 95 95 98 97 95 95 93 96 92 91 88 91 91 91 87 91 
800 95 95 98 96 95 95 95 96 95 94 93 94 94 94 92 93 
1600 95 95 96 95 95 95 95 95 95 95 94 95 95 95 94 94 

Table 3: Expected length and actual coverage probabilities (%) of the various CI's in (12): (i) for n, based on two independent groups of 

dependent binary predictors (ZJ.ZZ) and (Z:J,Z4). The q probabilities were qg)(l,l)= .24, qg)(l,O)= .38, qg) (0,1) = .11, qg)(O,O) = .27, ql~)(1,1)=.71, 

ql(~)(l,O) = .25, q}~) (0,1)= .02 , q}~) (0,0)= .02, q~~ (1,1) = .34, q~~ (1,0)= .55, q~~ (0,1) = .04, q~~ (0,0) = .07 , q~~)(I,I) = .45 , q}~) (1,0)=.48, 

q~~) (0,1)= .02 , q~~) (0,0)= .05 and p(l) = .50. The stipulated CI-level was 95%, and each figure was computed from 100,000 simulations. 



Expected Length: Zl,Z2,Z3,Z4 

Sample 
1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 

size, n 
50 .38 Al .80 .74 .54 048 .83 .78 .79 .74 .92 .89 .64 .55 .82 .78 
100 .27 .30 .75 .63 040 .36 .75 .65 .66 .59 .80 .74 046 .36 .63 .54 
200 .19 .21 .66 049 .29 .26 .61 049 049 Al .57 .50 .29 .22 .37 .30 
400 .13 .15 .53 .36 .21 .19 045 .36 .34 .27 .33 .31 .19 .13 .18 .16 
800 .09 .11 040 .26 .15 .13 .32 .26 .24 .19 .20 .21 .12 .09 .10 .10 
1600 .07 .08 .29 .18 .11 .09 .23 .19 .17 .13 .13 .14 .09 .06 .6 .07 

Coverage Probability (%): ZpZ2,Z3,Z4 

Sample 
1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 

size, n 
50 96 96 25 59 96 96 25 59 36 36 9 22 36 36 10 23 
100 96 96 55 89 95 96 55 89 60 60 34 55 60 60 34 56 
200 95 95 84 97 95 95 84 97 84 84 72 84 84 84 73 84 
400 95 95 96 96 95 95 96 96 95 95 94 96 95 95 94 96 
800 95 95 96 95 95 95 96 95 96 96 96 96 96 96 96 96 
1600 95 95 95 95 95 95 95 95 95 95 95 95 96 95 95 95 

Table 4: Expected length and actual coverage probabilities (%) of the various CI's in (12): (ii) for n, based on two independent groups of 
dependent binary predictors (ZhZ2) and (Z3,Z4). The same q-probabilities as in Table 3 were used. The stipulated CI-level was 95%, and each 
figure was computed from 100,000 simulations. 



PREDICTION OF WORK RESUMPTION AMONG 

MEN AND WOMEN WITH LOWER BACK- AND NECK PAIN 

IN A SWEDISH POPULATION 

by Anders Persson 

Department of Statistics, Goteborg University, Sweden 

ABSTRACT 

An approach based on Bayes theorem is used to predict the binary outcome of work 

resumption X, where X = 1 if no work resumption and X = 0 otherwise, given a vector 

of discrete predictors Z for men and women with lower back- and neck pain in a Swed­

ish population. In this application the predictors have a complex dependency structure. 

Hierarchical cluster analysis is used to create independent groups of dependent predic­

tors such that predictors within groups are dependent while predictors in different 

groups are independent. The main purpose is to estimate the probability p( X = 11 z) 

and to calculate confidence intervals for this probability. Based on these estimates one 

may decide whether a given person should be predicted as healthy or as non-healthy, 

and predictive values are calculated in order to evaluate of the performance of the pre­

diction analysis. The results are compared with the frequently used ordinary logistic 

regression method without interactions. It is found that ignoring the correlations be­

tween the predictors may give seriously misleading results. Also, the problem with 

missing values is discussed. 

Key words: Confidence intervals; Hierarchical cluster analysis; Logistic regression; 

Prediction; Predictive value; Work resumption. 



1 INTRODUCTION 

In many applications the aim is to predict a binary outcome given the value of a set of 

predictor variables. A commonly used method for this situation is ordinary logistic 

regression (Cox (1970); Hosmer and Lemeshow (1989); McCullagh and NeIder (1989) 

and Neter et al. (1996)). In many applications, the predictors have a complex depend­

ency structure, which might be difficult to capture with the logistic model. Although the 

use of interaction terms works well in a logistic model with few predictors, problems 

may arise when there are many predictors. The reason for this is that there is a total of 

2k -1 fJ -parameters to estimate if all interactions are included. For obvious reasons it 

is almost impossible to include all interactions ifthere are many predictors. 

In this paper we apply a method suggested by Jonsson and Persson (2002) which is 

based on Bayes theorem to predict the outcome variable 'work resumption' (X = 0) and 

'no work resumption' (X = 1) among men and women with back- and neck pain diag­

nosis, conditional on the values of a discrete vector of predictors Z. 

This paper is motivated by the fact that the number of long-term sick-listed individuals 

has been increasing persistently in Sweden and in many other countries. Back- and neck 

pain is one of the most frequently cases behind long-term sick-listing (Bergendorff et al. 

(1997) and Hansson and Hansson (1999)). Since the middle of the 80s the National 

Social Insurance Board (RFV) has conducted studies to identify important factors af­

fecting health state improvement and work resumption. Due to increased efforts on 

economic and personal resources, including interventions to improve the propensity of 

work resumptions, it has resulted in amount of positive changes since the beginning of 

the 90s (RiksfOrsiikringsverket (1995) and Persson and Tasiran (2001)). But, during the 

period 1997-2001 the numbers of individuals who have been sick-listed longer than 365 

days have increased from 75,000 to 120,000. The relative increase during the 4-year 

period have been about 30% per year and the number of earlier retirements/temporary 

disability pensions have increased from 423,000 to 450,000. Including waiting period, 

sick pay, sickness allowance and earlier retirements/temporary disability pensions it 

corresponds to 800,000 full-time annual jobs or 14 percent of the population at the ages 
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18-65. The associated costs for health insurance are 108 billion SEK according to the 

state budget 2002 (SOU (2002)). 

A sample consisting of 1575 full-time working employed was available for the analyses. 

Four sub-groups were of special interest: men and women with back- or neck pain diag­

nosis, and were treated separately. The individuals in the sample were followed-up 

during a 2-year period and predictions were possible at 90 days, 1 year and 2 years after 

sick-listing, respectively. 

The process of prediction proceeded in the following two stages. In a first step, the 

probabilities 1f = P ( X = 11 z) were estimated and confidence intervals were calculated 

for each probability. In a second step, new subjects were sampled sequentially from the 

same population by simulations to make predictions of 'no work resumption' given the 

values of a set of predictors based on the estimates in the first step. 

The plan of the paper is as follows. Section 2 starts with a brief description of the mate­

rial. In Section 3 the statistical methods are described. Section 4 deals with estimation 

of p( X = 11 z) and calculation of confidence intervals for these probabilities. This 

section ends with prediction of 'no work resumption', and presents measures for predic­

tion ability such as predictive values. Finally, in Section 5, some concluding remarks 

are given. 

2 MATERIAL 

A sample of 1575 full-time working employed sick-listed for at least 28 days because of 

lower back- or neck pain diagnosis followed-up during a two-year period was available 

for the analyses. Data were collected by the National Social Insurance Board (RFV) 

sequentially during the period November 1994 until October 1995 represented by 5 

different counties of Sweden; Stockholm, Kristianstad, Vastmanland, Vastemorrland 

and G6teborg. Three time points were of special interest: 90 days, 1 year and 2 years 

after sick-listing. Individuals with both lower back- and neck pain diagnosis (240) were 
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excluded from the analyses due to difficulties with confounding effects. Each of these 4 

sub-groups (by sex and diagnosis) was treated separately due to large differences be­

tween their patterns of work resumption. For a detailed description of the material see 

Bergendorff et al. (1997); Bergendorff et al. (2001); Riksforsakringsverket och Sahl­

grenska universitetssjukhuset (1997) and Hansson and Hansson (1999). 

Unfortunately, the data quality was rather low since there were considerable amounts of 

missing values on some predictor variables (see discussion in Section 4.1). Furthermore, 

only 5 counties participated in the study. Hence, the results were not representative for 

the whole population of Sweden. 

Sometimes the term 'healthy' and 'non-healthy' will be used for simplicity rather than 

'work resumption' and 'no work resumption', respectively. The state 'healthy' was de­

fined as a sick-listed person who has become able to work. A person, who was fully or 

partially sick-listed, early retirement or entitled to temporary disability pension, was 

defined as a 'non-healthy' person (Bergendorff et al. (2001)). Occasionally, we use the 

abbreviation MB90, MBIY, MN90, MNIY, WB90, WBIY, WN90 and WNIY, where 

M=men, W=women, B=backpain, N=neckpain. 90=90 days and lY=1 year. 

Baseline characteristics. Sex, Age (Zl), Diagnosis and County. There were a total of 

883 females (56%) and 692 males at the ages 18-59. The mean(SD) age was 42(10) 

years for all groups. In the analyses, Age was dichotomized where Age= 1 if a person 

was older than 31 years and 0 if a person was younger than 31 years. High age was a 

positive factor for 'no work resumption' in all groups except for women with lower back 

pain diagnosis. 

Table 1 below shows the prevalence in the sub-groups at 90 days, 1 year and 2 year 

after sick-listing. People with lower back pain recovered faster than those with neck 

pain. Among persons with lower back pain there were 42 percent healthy within 90 

days, 79 percent within 1 year and 87 percent within 2 years. The corresponding figures 

for people with neck pain were 39, 73 and 81 percent, respectively. Men with lower 
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back pain recovered faster than women with the same diagnosis, while there was no 

significant difference between men and women with neck pain (Bergendorff et al. 

(2001)). 

90 days 1 year 2 years 
Men/Back 0.54 0.17 0.11 
MenINeck 0.60 0.30 0.21 
WomenlBack 0.63 0.24 0.15 
WomenINeck 0.63 0.25 0.18 

Table 1: Prevalence's at 90 days, 1 year and 2 years after sick-listing. 

There was a strong connection between sex and diagnosis. Table 2 shows that men 

suffered more frequently from back problems (79%) as compared to women (63%), 

while women suffered more frequently from neck problems (37%) as compared to the 

men (21%). The diagnoses varied between the counties in the material. Table 3 below 

shows the distribution of lower back- and neck diagnosis in the 5 counties. Lower back 

pain was the most frequent cause of sick-listing in Stockholm (73%) while neck pain 

was most frequent in Vastmanland (36%). 

County MenlBack MenlNeck WomenlBack WomenlNeck 
Stockholm 169 41 154 76 
Kristianstad 87 30 88 56 
Viistmanland 64 23 74 56 
Viistemorrland 76 23 104 52 
Goteborg 149 30 132 91 
Total 545 147 552 331 

Table 2: Number of cases of sick-listing by county, sex and diagnosis. 

County Back (%) Neck(%) 
Stockholm 73 27 
Kristianstad 67 33 
Viistmanland 64 36 
Viistemorrland 71 29 
Goteborg 70 30 

Table 3: Distribution of lower back- and neck pain diagnosis in the 5 counties. 
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Socioeconomic factors. Education (Z2) , Ethnicity (Z3) and Household income (Z4). 

Education was defined on a 3 level ordinal scale with 1 as lowest and 3 as highest de­

gree of education. Levell and 2 representing low education (=1) and leve13=high edu­

cation (=0). Ethnicity is a 20 level nominal variable where l=Swedish and 2-20 repre­

senting non-Swedish (=0). Finally, Household income was a continuous variable rang­

ing from 900 to 175,000 SEK, dichotomized as 1 if> 7000 SEK and 0 otherwise. 

Psychical working environment. Demand (Z5), Control (Z6), Strain (Z7) and Attitude 

(Zs). Demand was expressed as self experienced demands on their place of work, scaled 

25 (low)-100 (high), where 25-70 was defined as low (=0) and 70-100 as high (=1). 

Control is the possibility of affecting their own working environment scaled 25 (low)-

100 (high), where 25-70 was defined as low (=1) and 70-100 as high (=0). Strain is 

simply the ratio between Demand and Control, where 0.25-0.84 was defined as low (=0) 

and ~ 0.84 as high (=1). Attitude was measured on a scale 3 (low)-9 (high) where 0-4 

was defined as low (=0) and ~ 5 as high (=1). 

Physical working environment. Inconvenient working environment (Z9), Heavy lifts 

(ZIO) and Suitable working tasks (Zll). By 'Inconvenient working environment' and 

'Heavy lifts' we mean 4 level variable ranging from 1 (yes, often) to 4 (no, never), 

where 1-2 was defmed as yes (=1) and 3-4 as no (=0). Finally, by 'Suitable working 

tasks' is meant that the employer was willing to adjust the working tasks in agreement 

with the individual's state of health, where 1=00 and O=yes. 

Family and social networks. Sick-listing in the family (Z12), Temporary disability pen­

sion/early retirement in the family (Z13) and Offered temporary disability pension/early 

retirement (Z14). All variables were dichotomous where 1 =yes and O=no. 

Health state. Work ability (Z15), Comorbidity (Z16) and Smoking (ZI7). Working ability 

was subjectively assessed on a scale ranking from 1 (low) to 10 (high), where 1-4 was 

defmed as bad working ability and 5-10 as good working ability. By Comorbidity we 

mean that the individual has other diseases than lower back- or neck pain, where 1-2 
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was defined as no (=0) and 3 as yes (=1). Smoking was a 3 level variable defined as yes 

or never smoked (=1) and quit smoking (=0). 

Administrative interventions. The presence of Complete rehabilitation plan (ZIS) was 

a dichotomous variable defined as 1 =yes and O=no. 

Predictor 
MB(%) MN(%) WB(%) WN(%) p-value 
n=545 n= 147 n=552 n=331 

Age 84 82 86 83 .35 
Education 90 94 93 95 .11 
Ethnicity 19 21 14 26 <.01 
Household income 96 99 91 91 <.01 
Demand 48 63 56 66 <.01 
Control 34 32 48 56 <.01 
Strain 62 74 73 83 <.01 
Attitude 84 83 90 87 .07 
Inconvenient working environment 85 93 85 89 .17 
Heavy lifts 82 82 80 76 .48 
Suitable working tasks 50 64 62 63 .02 
Sick-listing in the family 13 13 9 8 .15 
TDP/ER in the family 17 15 14 12 .31 
Offered TDP/ER 11 24 12 17 .01 
Work ability 51 50 53 45 .26 
Comorbidity 8 15 8 8 .13 
Smoking 67 64 74 75 .05 
Rehabilitation plan 18 21 26 24 .02 

Table 4: Descriptive statistics and %2 -test of equal proportions between the 4 sub-groups. The 
proportions in the table are given that all predictors equals to 1 (see definitions in Table Al in 
Appendix). The abbreviation TDPIER denotes Temporary Disability Pension/Early Retirement. 

3 STATISTICAL METHODS 

A method based on Bayes theorem for predicting a binary outcome X = 0,1 given the 

values of a vector of discrete predictors Z, suggested by Jonsson and Persson (2002) is 

used for the analyses. The probability 7t was estimated according to (3) and 95% confi­

dence limits according to (l2:(i)) in the latter work. At baseline i.e. after 28 days of 

sick-listing a large set of predictors was available from the material. In a previous study 

(Bergendorff et al. (2001)) a list of potential predictors has been proposed for prediction 

of work resumption among men and women with lower back- and neck pain (see Table 
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5). The predictors were chosen on basis of probability plots. In a second step, a hierar­

chical clustering method (Anderberg (1973) and Jobson (1992)) have been used to cre­

ate independent groups of dependent predictors both given X = 1 and X = 0 . That is, 

for a given value of X the purpose is to identify groups of predictors such that predic­

tors within groups are dependent but at the same time are independent of predictors in 

other groups. Consequently, it is not necessarily the same predictors in the groups given 

X = 1 and X = 0 , respectively. In addition to the cluster analysis Pearson's correlation 

coefficient have been calculated between the predictors both given X = 1 and X = 0 to 

examine the dependency structure in detail. Although a %2 -test of independence in a 

2x2 contingency table may be sufficient, the correlation coefficient is perhaps a better 

descriptive measure of association between the predictors. In fact, the %2 -test and Pear­

son's correlation coefficient are related by r = {n-I X2}1I2 , where r is the correlation 

coefficient, X2 is the value of the chi-square statistic and n is the number of observa­

tions. 

Men Women 
Back Neck Back Neck 

Predictor 90d Iy 90d Iy 90d Iy 90d Iy 
ZI X X X X 
Z2 X (X) X X 
Z3 X (X) 

Z4 X X 
Z5 X (X) (X) (X) X X X (X) 

Z6 X 
Z7 (X) X 
Z8 (X) (X) 
Z; (X) (X) (X) (X) 

ZIO (X) (X) (X) 
Zl1 X X (X) (X) (X) 
ZI2 X 
Z13 (X) X 

ZI4 X (X) (X) (X) (X) 
ZI5 X X X X X X X X 

ZI6 X X X X X X X X 
Z17 (X) X 

ZI8 X (X) (X) (X) X X X X 

Table 5: Potential predictors for prediction analysis at 90 days and 1 year after sick-listing (Ber­
gendorff et al. (2001)). Predictors marked with (X) were not included in the models. See Table Al 
in Appendix for labels to the predictors. 
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One possibility to test whether a predictor has a significant effect on the outcome is a 

stepwise logistic regression. However, this method cannot be used for testing whether 

the predictors are dependent or not conditionally on X = 1 and X = o. This follows 

easily from the illustrations in (Jonsson and Persson (2002), p. 7). Furthermore, with 8 

predictors there are up to 255 f3 --coefficients to be tested in a pre-test, and this give rise 

to inferential problems. But, there is another possibility that we might consider. Let 

z! = (z; = 1 , Z r) be the vector of all predictors with the constraint that the ith predictor 

takes on the value 1 and Zo = (z; = 0, zr) that the ith predictor takes on the value 0, 

where zr is a subset of Z when the ith predictor is excluded. The effect of the predictor 

Z; given zr can be expressed as the estimated differences J = it! - ito, where 

it! =p(X=llzJ and ito =p(x=llzo). For example, if Z=(ZI'Z2) and zr =(Z2) 

then z! = (z! = 1 , Z2) and Zo = (z! = 0 , Z2). Since Z2 can take on the values 0 or 1 

there are 2 possible outcomes for J, it! and ito, respectively. The difference 8 is 

estimable if and only if there are observations on both z! and Z2. Let n' be the number 

of estimable 8's. Then, max{n'} = 2k
-!, where k is the number of predictors. We want 

to test the hypothesis Ho : 8 = 0 given that the predictors zr are in the model, against 

the alternative H A : 8 :t= 0 . It can be performed in many ways. With few estimable 8' s 

a Sign test may be appropriate. If the number of observations is sufficiently large and 

normal distribution of the J' s 's can be assumed, a test based on normality may be 

better, or if the distribution is at least symmetric a Wilcoxon Signed Rank test may be 

appropriate (Altman (1991». These tests require a large set of predictors and very few 

missing values. For example, if there are two predictors in the model, there are only two 

differences to calculate. This will be further explained in Section 4.1, and examples will 

be given in Table 9. 

4 PREDICTION 

This section is devoted to prediction of the binary outcome X = 'work resumption' con­

ditional on the values of a vector of discrete predictors Z. Weare primarily interested in 

predicting 'no work resumption' (X = I) . The reason for this is that among non-healthy 

persons it was desirable to find characteristics such that appropriate interventions e.g. 
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rehabilitation actions that gain work resumption can be taken as soon as possible after 

sick-listing. Predictions were made 90 days and 1 year after sick-listing, respectively. A 

detailed discussion is given in Section 4.1 for men with back pain (90 days) only. But, 

in Section 4.2 we summarize and compare the prediction results from the remaining 

sub-groups as well. 

4.1 Men with Lower Back Pain (90 days) 

There were 545 men with lower back pain diagnosis available for the analysis. Initially, 

there were 10 potential predictors of interest (see Table 5), but these have been reduced 

to 8 predictors. There were considerable amounts of missing values for most of the 

predictors (see Table Al in Appendix). For example, the predictor 'Suitable working 

tasks' had 333 (61%) missing values. With k binary predictors there are 2k possible 

outcomes for 1l. For example, with 8 predictors there are 256 various outcomes that 

require a rather large sample size and few missing values. The sample size needed for 

estimation of the 1l'S depend on the distribution of the cell frequencies (Jonsson and 

Persson (2002». 

Table 6 shows the dependency structure among the 8 chosen predictors given 'no work 

resumption' (X = 1) and 'work resumption' (X = 0) , respectively. Note that there were 

not the same predictors in the groups given X = 1 and given X = 0 . That is, the com­

position of predictors across groups affecting the probability of 'no work resumption' is 

different from the probability of 'work resumption'. The following dependency structure 

was obtained from the hierarchical cluster analysis. Note that it is not the same predic­

tors in Table 6 as in the simulation example in Section 5.1 in Jonsson and Persson 

(2002). 

10 



Group Predictors associated with 'no work resumption' (X = 1) 

1 Rehabilitation plan (ZI8), Demand (Z5), Suitable working tasks (Z,,) 
2 Sick-listing in the family (Zd, Ethnicity (Z3) 
3 Comorbidity (Z'6), Work ability (Z'5) Age (ZI) 

Group Predictors associated with 'work resumption' (X = 0) 

1 Comorbidity (ZI6), Demand (Z5)' Suitable working tasks (Z,,), Ethnicity (Z3) 
2 Rehabilitation plan (ZI8), Work ability (ZI5) Age (Z,), Sick-listing in the family (Z'2) 

Table 6: Result of hierarchical cluster analysis for men with lower back pain (90 days). 

Table 7 and 8 shows the correlations between pairs of predictors given X = 1 and 

X = 0 . It is seen that the hierarchical clustering method to some extent agrees with the 

correlation coefficients between pairs. But, from Table 7 it is seen that Age (ZI) in 

group 3 given X = 1 is pairwise independent of Work ability (ZI5) and Comorbidity 

(ZI6) with correlations .00 and -.05, respectively. However, Age (ZI) is at the same time 

independent of every predictor in the group 1 and 2. Furthermore, in group 2 given 

X = 0, Table 8 shows that Rehabilitation plan (ZIS) is pairwise independent of Age 

(ZI), Sick-listing in the family (Zd and Work ability (ZI5) with correlations .01, .08 and 

.06, respectively. But, Rehabilitation plan (ZIS) is at the same time independent of every 

predictor in group 1. It should be noticed that pairwise independency is not the same as 

simultaneously independency. 

Z, Z3 Z5 Z9 ZIO Z" Z\2 Z'5 Z'6 Z'S 
Z, 1 - - - - - - - - -
Z3 .07 1 - - - - - - - -
Z5 -.04 .II 1 - - - - - - -
Z9 -.05 .13 .09 1 - - - - - -
ZIO .06 .05 .10 .48 1 - - - - -
Z" .07 -.01 .36 .27 .33 1 - - - -
Z\2 .03 -.15 -.04 -.16 .01 -.12 1 - - -
Z'5 -.05 .10 .14 .08 -.05 .25 .01 1 - -
Z'6 .00 .23 .05 .02 -.05 .09 -.03 .15 1 -
Z'8 .01 -.03 .19 .16 .14 .25 .01 .14 .12 1 

Table 7: Correlation matrix for predictors among men with lower back pain diagnosis (90 days) 
associated with 'no work resumption' (X = 1). Significant correlations (5%) are marked with bold 

type (n(l) = 295) . 
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ZI Z3 Z5 Z9 ZIO Zl1 Z12 Z15 Z16 Z18 

ZI 1 - - - - - - - - -
Z3 .15 1 - - - - - - - -
Z5 .06 .09 1 - - - - - - -
Z9 -.04 -.06 .07 1 - - - - - -
ZIO -.15 -.17 .05 .44 1 - - - - -
Zl1 -.02 .12 .23 .26 .17 1 - - - -
Z12 -.20 .05 .07 .11 .04 .23 1 - - -
Z15 -.09 .10 .01 .06 -.02 .07 .17 1 - -
Z16 .08 .29 .14 -.01 .02 .19 .07 .20 1 -
Z18 .01 -.08 .06 .10 .12 .01 .08 .23 -.04 1 

Table 8: Correlation matrix for predictors among men with lower back pain diagnosis (90 days) 
associated with 'work resumption' (X = 0). Significant correlations (5%) are marked with bold 

type (n(O) = 250) . 

Sparse contingency tables often contain cells having zero frequency counts or missing 

values. Cells for which a nonzero count is impossible because of the design of the study 

are sometimes referred to as structural zeros. In this application, however, we are only 

concerned with missing values and sampling zeros i.e. nonzero counts are possible, but 

a zero occurs because of random variation. Sampling zeros are especially likely to arise 

when the sample is small and the contingency table has many cells (Agresti (1991». 

Out of the 545 observations there were 186 observations available for prediction and 

only 50 (20%) of the 256 probabilities were estimable due to missing values and sam­

pling zeros. It means that if new individuals are sampled from the same population in 

the same way as in the original survey, it is likely that some individuals have values of 

the predictors such that predictions for those subjects are not possible. The numbers of 

missing values for each predictor are presented in Table Al in Appendix. 

The separate effect for each predictor in the model is illustrated in Table 9 with the c5-

test (see also Figures 9-16 for plots of the 8' s for each predictor). The results in Table 

9 show that individuals with complete rehabilitation plan, bad work ability, sick-listing 

in the family and people who did not have suitable working tasks had higher probability 

of 'no work resumption'. But, Age, Comorbidity, Demand and Ethnicity did not show 

any significant differences indicating that these should be excluded from the model. 

However, due to the fact that there are very few estimable c5' s (n') the reliability of 
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the test result may be questionable. The reason for that n' is relatively small compared 

to the 50 estimable probabilities is that the test require values of every predictor in the 

vector zr both given Zj = 1 and Zj = o. Otherwise, 0 is not estimable for that combi­

nation ofZ. With 8 predictors the maximal value of n' is 128. None of the predictors in 

Table 9 has a value of n' greater than 20 and the value for Comorbidity is as low as 7. 

Predictor n' Mean(8) Median(8) Std. dev(8) p-value 

Age (ZI) 9 .037 .008 .102 .16 
Rehab. plan (ZIS) 11 .384 .291 .234 <.01 
Comorbidity (Z16) 7 .018 .060 .202 .94 
Work ability (Z15) 17 .175 .223 .199 <.01 
Demand (Z5) 17 -.041 -.064 .096 .09 
Sick-listing in the family (Z12) 10 .243 .241 .200 <.01 
Suitable working tasks (ZII) 18 .194 .178 .117 <.01 
Ethnicity (Z3) 10 .093 .114 .221 .19 

Table 9: Descriptive statistics and a Sign test of the differences g = itl -ito for testing if the 

predictors have an effect on the outcome variable. 

Table 10 shows the frequencies of predicted work resumption versus the true state. 

Predicted 
State 

Healthy 
Non-healthy 

True state 
Healthy Non-healthy 

81 33 114 
15 57 72 
96 90 186 

Table 10: Predicted and true state of work resumption for men with lower back pain 90 days. Out 
of the 545 individuals only 186 observations were available for prediction due to missing values 
on the predictor variables. 

In order to evaluate the prediction ability, simulations have been used to sample new 

individuals (100,000) from the same population. The prediction ability was evaluated by 

predictive values, relative predictive values and proportion of correct classifications. 

But the predictive value could in some cases be misleading without reference to the 

prevalence. For example, a predictive value of .92 and prevalence .90 is obviously not 

as good as if the prevalence was .20, say. Therefore, it seems more reasonable to use 

relative predictive values. The latter show the relative gain in predicting the outcome 

rather than simply guessing the outcome in accordance with the prevalence. From Table 
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1 it can be seen that the prevalence at 90 days was 0.54. The predictive value for 'no 

work resumption' and 'work resumption' was 0.76 and 0.74, respectively, with the corre­

sponding relative predictive values 42% and 37%. The proportion of correct classifica­

tions was 0.75 (see also Table 12 for comparisons with the remaining sub-groups). 

We recall that various values of Z give different values of 1[ • Figure 1 shows the or­

dered values of K and associated confidence limits. Since, it is not possible from the 

figure to identify the values of the predictors represented by the index variable on the x­

axis, Table A2 in Appendix presents all estimable 1['S, confidence limits and V[K]. 
The following examples illustrate how to interpret the results. 

Example 1. Mr. A is a Swedish man older than 31 years entitled to rehabilitation plan. 

He has other diseases than lower back pain, bad working ability and he experience high 

demand at his place of work, where his working tasks are not appropriate for him. Fur­

thermore, he has no cases of sick-listing in his family. Mr. A has a probability of 'no 

work resumption' equal to 0.97 with confidence limits (0.38; 0.99). 

Example 2. Mr. B is a Swedish man older than 31 years with no rehabilitation plan. He 

has no other diseases than lower back pain, good working ability and he does not ex­

perience high demand at his place of work, where his working tasks are appropriate for 

him. Furthermore, he has no cases of sick-listing in his family. Mr. B has a probability 

of ' no work resumption' equal to 0.14 with confidence limits (0.09; 0.26). 

4.2 Comparison of the Prediction Results for All Sub-groups 

Table 11 shows the proportion of K::; t and K > + in all the 4 sub-groups. It is seen 

that the proportion of K > t is rather high at 90 days for all groups and low after 1 year. 

For a detailed examination of the estimated probabilities, see Figures 1-8 and Table A2, 

which show the ordered values of K and associated confidence limits. 
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The results obtained from the prediction analysis for all sub-groups are showed in Table 

11 and 12. It is seen from Table 11 that the proportion of estimable probabilities is 

rather low fore some groups and high for others. But, there is different number of pre­

dictors in the sub-groups. Of course, it easier to obtain a higher proportion of estimable 

probabilities with fewer predictors. 

Group n No. of No. of No. of No. of Proportion 
obs. for predictors probabilities estimable offf >t 

prediction to estimate probabilities 
MB90 545 186 8 256 50 0.58 
MBIY 545 161 6 64 23 0.l7 
MN90 147 47 6 64 9 0.56 
MNIY 147 80 6 64 21 0.24 
WB90 552 309 4 16 16 0.87 
WBIY 552 303 5 32 26 0.42 
WN90 331 111 6 64 16 0.56 
WNIY 331 138 5 32 14 0.36 

Table 11: Basic statistics for all sub-groups, separately. 

In Table 12 below it can be seen that the prediction ability after 1 year is better per­

formed as compared to 90 days. But, there are no differences in prediction ability be­

tween men and women and between lower back and neck pain diagnosis. 

Group Prevalence Predictive Relative Predictive Relative Proportion 
value predictive value predictive of correct 

non-healthy value healthy value classified 
non-healthy healthy 

MB90 0.54 0.76 42% 0.74 37% 0.75 
MBIY 0.17 0.59 244% 0.91 435% 0.86 
MN90 0.60 0.68 14% 0.82 37% 0.70 
MNIY 0.30 0.68 127% 0.81 170% 0.78 
WB90 0.63 0.81 28% 0.63 0% 0.73 
WBIY 0.24 0.65 169% 0.86 258% 0.82 
WN90 0.63 0.81 29% 0.62 -2% 0.73 
WNIY 0.25 0.70 199% 0.85 240% 0.82 

Table 12: Prediction ability for all sub-groups, separately. 
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5 DISCUSSION 

This paper is an application of an approach suggested by Jonsson and Persson (2002) 

based on Bayes theorem. The aim is to predict the outcome 'no work resumption' condi­

tionally on the values of a set of discrete predictors, and also to make CI statements. It is 

emphasized that problems may arise when some of the predictors have a considerable 

amount of missing values. The consequences of getting missing values may be serious. 

First, the number of observations available for prediction and the number of estimable 

probabilities decreases. Secondly, if new subjects are sampled sequentially from the 

same population, it is likely that we obtain individuals with values on the vector of 

predictors such that 7[ is not estimable. The material in this application contains many 

missing values, which would have justified the use of fewer predictors in the model. In 

the latter case we would have obtained relatively more observations for prediction. 

Fewer predictors do not necessarily alter the prediction ability. Also, the number of 

parameters to estimate increases dramatically as the number of predictors in the model 

increases. 

The proposed method works very well for most cases. Correct specification of the de­

pendency structure is a matter of crucial importance. The assumption of independent 

predictors when they in fact are correlated may lead to seriously misleading results 

concerning bias and variance (Jonsson and Persson (2002)). For example, for men with 

lower back pain (90 days) where ZI = Z3 = Zs = Z12 = ZI8 = 0 and Zll = ZIS = ZI6 = 1 

we obtain it = 0.76 for the Bayes approach with a corresponding estimate of 0.29 for an 

ordinary logistic regression model. In this paper we have used the decision rule; if 

7[ > t then a given subject is predicted 'no work resumption' and if 7[ ~ t then the sub­

ject is predicted 'work resumption'. The choice of the limit is somewhat arbitrary, but in 

a real life situation the estimated probability will be used in conjunction with other 

sources of information about the sick-listed person to reach a decision whether e.g. 

interventions should be taken. 
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A test for detecting separate variable effects in the model was suggested. Since the test 

depends on the number of predictors in the model it seems inappropriate to use such a 

test for materials with many missing value and few potential predictor variables. 

The results of the predictions showed that the prediction ability after 1 year was better 

performed as compared to 90 days, as measured by relative predictive values. But, there 

were no differences in prediction ability between men and women and between lower 

back- and neck pain diagnosis. 
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ApPENDIX 

Predictor Label 
No. of missing 

values (%) 

ZI Age f if ~ 31 years 
o if < 31 years 

0(0) 

Z2 Ed 0 fif low 
ucatIon 0 if high 208(38) 

Z3 E h 0 0 f if Non-swedish t mClty 
Oif Swedish 

170(31) 

Z4 H h Id 0 f if ~ 7000 SEK ouse 0 mcome o if < 7000 SEK 
239(44) 

Zs Demand f if high 
Oif low 

267(49) 

Z6 C I fif low 
ontro 0 if high 

267(49) 

Z7 S 0 tfhigh 267(49) tram 
Oif low 

Zs A 0 d fif high moral ttItu e o if low moral 
180(33) 

Zg I 0 kO 
0 fifyeS nconvement wor mg enVironment 

Oif no 
263(48) 

ZIO H I"ft f if yes eavy I s 
Oifno 

265(49) 

Zll S 0 bl kO k f if no Ulta e wor mg tas s o if yes 
333(61) 

Z12 So k roo th f: 01 f if yes IC - Istmg m e ami y 0 

Olfno 
187(34) 

Z13 TDP/ER in the family f if yes 
Oif no 

181(33) 

ZI4 Offered TDP/ER fif yes 
Oifno 

260(48) 

ZIS W k bT f if bad(~4) or a Iity o if good (>4) 
178(33) 

ZI6 C bOdo f if yes omor 1 Ity 
Oifno 

173(32) 

Z17 S kO r if yes or never mo mg o if quited 
184(34) 

ZIS R h bT 0 I f if yes e a I ItatIon p an 
Oifno 

7(1) 

Table AI: Labels to predictors and the number of missing values (%) for MB (n = 545) 0 The 

abbreviation TDP/ER denotes Temporary Disability PensionlEarly Retirement. 
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ZI Z3 Zs ZII ZI2 ZIS ZI6 ZI8 it it LOlrer itUpper V [it] 
1 1 1 0 0 0 1 0 0.03 0.01 0.61 0.001 
1 0 1 0 0 0 0 0 0.08 0.04 0.24 0.001 
0 0 1 0 0 0 0 0 0.08 0.04 0.38 0.002 
1 0 0 0 0 0 0 0 0.14 0.09 0.26 0.001 
0 0 0 0 0 0 0 0 0.14 0.07 0.41 0.005 
0 0 0 0 1 1 0 1 0.18 0.06 0.68 0.029 
1 0 0 1 0 0 0 0 0.19 0.11 0.38 0.004 
0 0 0 1 0 0 0 0 0.20 0.09 0.50 0.010 
1 1 1 0 0 0 0 0 0.23 0.09 0.61 0.021 
1 0 1 1 0 0 0 0 0.23 0.15 0.40 0.004 
1 1 1 1 0 0 0 0 0.30 0.15 0.58 0.015 
0 0 1 0 0 1 0 0 0.30 0.14 0.61 0.020 
1 0 1 0 0 1 0 0 0.31 0.18 0.54 0.010 
1 1 1 1 1 1 1 0 0.37 0.12 0.78 0.080 
1 1 0 0 0 0 0 0 0.39 0.19 0.67 0.024 
1 0 1 0 1 0 0 0 0.41 0.19 0.71 0.033 
1 1 1 1 0 1 1 0 0.44 0.19 0.74 0.040 
0 0 0 0 0 1 0 0 0.46 0.25 0.70 0.021 
0 0 0 1 1 1 0 1 0.46 0.16 0.81 0.084 
1 0 1 0 0 1 0 1 0.47 0.19 0.78 0.051 
1 0 0 0 0 1 0 0 0.47 0.33 0.62 0.007 

0 0 1 1 1 1 0 0 0.51 0.22 0.79 0.045 
0 0 0 1 0 1 0 0 0.55 0.29 0.77 0.025 
1 0 1 0 1 1 0 0 0.55 0.27 0.79 0.034 
1 0 0 1 0 1 0 0 0.56 0.37 0.72 0.011 
1 0 0 0 0 1 0 1 0.57 0.29 0.79 0.030 
I 0 0 0 1 0 0 0 0.57 0.30 0.79 0.027 
0 1 1 0 0 1 0 0 0.60 0.24 0.85 0.058 
0 0 1 1 0 1 0 0 0.61 0.34 0.80 0.021 
1 0 1 1 0 1 0 0 0.62 0.43 0.75 0.008 
1 0 0 1 1 0 0 0 0.66 0.34 0.85 0.027 
1 0 1 0 0 0 0 1 0.66 0.22 0.89 0.082 
1 1 1 1 0 1 0 0 0.69 0.41 0.85 0.016 
1 0 0 0 1 1 0 0 0.71 0.40 0.86 0.019 
1 0 1 1 1 0 0 0 0.71 0.38 0.87 0.021 
1 0 0 0 0 0 0 1 0.74 0.29 0.92 0.046 
1 1 1 0 0 1 0 1 0.75 0.28 0.92 0.049 
1 0 0 1 0 1 1 0 0.76 0.30 0.92 0.040 
0 0 0 1 0 1 1 0 0.76 0.26 0.93 0.060 
1 1 0 0 0 1 0 0 0.77 0.45 0.89 0.014 
1 0 0 1 1 1 0 0 0.78 0.43 0.90 0.016 
1 0 1 1 1 1 0 0 0.81 0.47 0.92 0.011 
1 0 1 1 0 1 1 0 0.83 0.35 0.94 0.024 
1 1 1 1 0 1 1 1 0.83 0.37 0.94 0.021 
1 0 0 1 0 1 0 1 0.84 0.50 0.93 0.009 
1 0 1 1 0 1 0 1 0.91 0.62 0.96 0.003 
1 0 0 1 0 0 0 1 0.92 0.39 0.97 0.007 
1 1 1 1 0 1 0 1 0.93 0.54 0.97 0.003 
1 0 1 1 0 0 0 1 0.96 0.43 0.99 0.002 
1 0 1 1 0 1 1 1 0.97 0.38 0.99 0.002 

Table A2: Ordered predicted values and associated eI's for various combinations of Z in 
accordance with Figure I (MB90). The variance corresponds to formula (8) in Jonsson and 
Persson (2002). See also Table A 1 for labels to the predictors. 
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LEGENDS To FIGURES 

Figure 1: The probability of 'no work resumption' and associated CI's (MB90). 

Figure 2: The probability of 'no work resumption' and associated CI's (MBIY). 

Figure 3: The probability of 'no work resumption' and associated CI's (MN90). 

Figure 4: The probability of 'no work resumption' and associated CI's (MNI Y). 

Figure 5: The probability of 'no work resumption' and associated CI's (WB90). 

Figure 6: The probability of 'no work resumption' and associated CI's (WB 1 Y). 

Figure 7: The probability of 'no work resumption' and associated CI's (WN90). 

Figure 8: The probability of ' no work resumption' and associated CI's (WNIY). 

Figure 9: Estimated differences J = 1Z'j - 1Z'o for Age (MB90). 

Figure 10: Estimated differences J = 1Z'j - 1Z'o for Rehabilitation plan (MB90). 

Figure 11: Estimated differences J = 1Z'j - 1Z'o for Comorbidity (MB90). 

Figure 12: Estimated differences J = 1Z'j - 1Z'o for Work ability (MB90). 

Figure 13: Estimated differences J = 1Z'] -1Z'o for Demand (MB90). 

Figure 14: Estimated differences J = 1Z'j - 1Z'o for Sick-listing in the family (MB90). 

Figure 15: Estimated differences J = 1Z'] -1Z'o for Suitable working tasks (MB90). 

Figure 16: Estimated differences J = 1Z'] - 1Z'o for Ethnicity (MB90). 
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