
Mailing address: 
Dept of Statistics 
P.O. Box 660 
SE 405 30 Goteborg 
Sweden 

Research Report 
Department of Statistics 
Goteborg University 
Sweden 

Bayes prediction of binary 
outcomes based on correlated 
discrete predictors. 

Robert Jonsson 
Anders Persson 

Fax Phone 
Nat: 031-7731274 Nat: 031-77310 00 
Int: +46317731274 Int: +463177310 00 

Research Report 2002:3 
ISSN 0349-8034 

Home Page: 
http://www.stat.gu.se/stat 



BAYES PREDICTION OF BINARY OUTCOMES 

BASED ON CORRELATED DISCRETE PREDICTORS 

by Robert Jonsson and Anders Persson 

Department of Statistics, Goteborg University, Sweden 

ABSTRACT 

An approach based on Bayes theorem is proposed for predicting the binary 

outcomes X = 0, 1, given that a vector of predictors Z has taken the value z. It 

is assumed that Z can be decomposed into 9 independent vectors given X = 1 

and h independent vectors given X = 0. First, point and interval estimators 

are derived for the target probability lP (X = 1 I z). In a second step these 

estimators are used to predict the outcomes for new subjects chosen from the 

same population. Sample sizes needed to achieve reliable estimates of the target 

probability in the first step are suggested, as well as sample sizes needed to get 

stable estimates of the predictive values in the second step_ It is also shown that 

the effects of ignoring correlations between the predictors can be serious. The 

results are illustrated on Swedish data of work resumption among long-term 

sick-listed individuals. 

Key words: Conditional independence; Confidence intervals; Interactions; Multino

mial probabilities; Prediction; Work resumption. 
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1 Introduction 

In many situations there is a great need for predicting categorical outcomes at 

the individual level. For example, during recent years there has been an in

creasing rate of cases with long-term sickness in many countries, and in Sweden 

the increase has been about 30% per year during the period 1997-2001 (SOU 

(2002)). This has focused on the need for better individual predictions of fu

ture state of health, which in term would facilitate the proper rehabilitating 

interventions. Commonly used methods for such predictions have been logis

tic regression (Cox (1970)) or 'computer diagnosis' based on empirical Bayes 

weights (Afifi and Azen (1979), pp. 306-10). The latter two approaches give 

identical results, since they only differ in the way in which the predictor vari

ables are represented. With a few exceptions, the two approaches have been 

used under the assumption that the predictors are independent. The reasons 

for such an assumption are seldom declared, except for the need for simplifi

cation, even if it has been pointed out that the assumption may be unrealistic 

in most applications (Afifi and Azen (1979), p. 307). The effects of assuming 

predictors to be independent, when they actually are dependent, upon bias and 

precision of the estimated parameters and on the prediction error seems to have 

been ignored. 

In this paper we suggest an approach based on Bayes theorem for predicting the 

two outcomes 'healthy' (X = 0) and 'non-healthy' (X = 1). The vector of pre

dictors Z have discrete elements and these are allowed to be dependent in such 

a way that there are dependency between some predictors and independency 

between some sets of predictors. Furthermore, the number of independent sets 

of predictors given X = 0 may be different from the corresponding number given 

X = 1. In a first step point and interval estimators are derived for the probabil

ity IP (X = 1 I z), where z denotes an outcome of the vector Z. The performance 

of the estimators are studied in simulations (Section 3 and Section 4). Then, in 

a second step the estimates are used to predict the outcomes for new subjects 

being sequentially chosen from the same population (Section 5). The success 

of the predictions is studied by simulations from which the agreement between 
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predicted and actual outcomes are summarized by the predictive values for the 

outcomes X = 0 and X = 1, as well as the proportion of correct predictions. 

Special attention is devoted to the sample size needed to get reliable estimates 

of](D (X = 1 I z) in the first step, but also to the sample size needed to get stable 

estimates of the predictive values in the second step. In the simulation study 

data from a study, called the ISSA-project, will be used (Bergendorff et al. 

(1997), (2001) and Riksforsakringsverket och Sahlgrenska Universitetssjukhuset 

(1997)). In the latter, work resumption among sick-listed men and women with 

lower back- and neck pain was considered. Here, 5-10 predictors were chosen 

from more than 200 variables. The extraction of predictors from the original list 

of variables was made by simply choosing those variables for which a change in 

the variable value caused the largest change in the empirical probability of work 

resumption. The variables selection process will not be considered in this paper. 

Instead attention will be paid to the problem of how to use a given number of 

predictors in an optimal way. These issues are further considered in (Persson 

(2002)). The paper finally ends with a discussion in Section 6. 

2 Notations and Some Basic Results 

Let the binary outcome variable X denote the health state for a given individual, 

'non-healthy' (X = 1) and 'healthy' (X = 0), with probability p(x) =](D (X = x), 

x = 0, 1. Groups of predictors such that elements within groups are dependent 

and elements in different groups are independent will be called independent 

groups. In general, it will be assumed that the complete vector of predictors 

Z can be decomposed into g independent groups of predictors given X = 1, 

Zl, ... , Zg and h independent groups given X = 0, Zl, ... , Zh. The conditional 

probabilities are defined as 

](D (Zr = Zr I X = x) 

](D (Zs = Zs I X = x) 
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q(X) (zr) and 

q(x) (zs) , 

(1) 



where x = 0,1, r = 1, ... ,g and s = 1, ... , h. Thus, 

lP' (Z = Z I X = x) = q(x) (z) = { I1~=l q~~~ (Zr) 
I1s=l q (zs) 

The observed frequencies corresponding to the outcomes in (1) are denoted by 

N(x) (zr) and N(x) (zs), respectively. Obviously, Lz N(x) (z) = N(x), x = 0,1 

and N(l) + N(O) = n, the fixed total sample size. The above notations are 

illustrated in Table 1 for the case with two binary predictors. 

0 1 

Zll X =x 0 N(x) (0,0) ,q(x) (0,0) N(x) (0,1) ,q(x) (0,1) NiX) (0) ,qi
X

) (0) 
1 N(x) (1,0) ,q(x) (1,0) N(x) (1,1) ,q(x) (1,1) NiX) (1), qi

X
) (1) 

N~X) (0) ,q~X) (0) N~X) (l),q~X) (1) N(x),l 

Table 1: Cell frequencies and probabilities with two predictor variables, where 
x = 0,1. 

The probability of interest is 1[" = lP' (X = 1 I z), and from Bayes theorem it 

follows that 

lP' (X = 1) .lP' (Z I X = 1) A p(l)q(l) (z) 
1[" = Lx lP'(X = x) .lP'(Z I X = x) = 1 + A' where A = p(O)q(O) (z)· (2) 

Note that the quantities 1[" and A in (2) are functions of z although this notation 

has been suppressed for convenience. Thus, with k binary predictors there are 

2k possible outcomes for 1[" and A. 

When all predictors are independent, both conditionally on X = 1 and on X = 

0, then q(x) (z) is a product of the marginal probabilities. For practical reasons 

it is often a great advantage if conditional independency between predictors, 

or at least between sets of predictors, can be assumed. This is because empty 

individual cells are more likely to appear than empty marginal celis, and under 

independency the probability 1[" can be estimated from marginal frequencies 
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with greater accuracy than from within-cell frequencies. For example, with 11 

binary predictors there are 211 = 2048 individual cells, in contrast to 2·11 = 22 

marginal cells. In addition to the case with no independent sets of predictors and 

the case with independent predictors, there are a variety of cases with partial 

independency. 

The conditional variable (N(x) (z) I N(x) = n(x)) is obviously multinomially dis

tributed with parameters n(x) and q(x), where q(x) is vector of all possible 

probabilities which have been assigned to Z. Thus, for binary predictors q(x) = 

(q(x) (1, ... , 1) , ... , q(x) (0, ... ,0)). The probability generating function (pgf) of 

M (n(x),q(x)) can be expressed as 

h (x) ((X) (x) (X)) d ( (x))T. h f (x) were8 = sl...l, ... ,SZl ... Zk""'SO ... o an q 1st etransposeo q . 

Lemma 1 The vector of all cell frequencies (N(l) (z) :N(O) (z)) is multinomi

ally distributed with parameters (n,p(1)q(l): p(O)q(O)). 

Proof of Lemma 1. 

E [}lk (S~~~"Zk) N(l) (z) }~t (S~~~"Zk) N(O) (z) I N(l) = n (1)] 

= E [)~t (S~~~"Zk) N(l) (z) I N(l) = n (1)]. E [}lk (S~~~"Zk) N(O) (z) I N(O) = n - n (1)] 
n(1) n-n(l) 

= [8(1) ( q(l)) T] . [8(0) ( q(O)) T] 

Now, N(l) is binomially distributed with parameters n and p(l). Thus, by 

taking the expectation of the last expression over N(1) we obtain the pgf of 
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• 
From Lemma 1 it follows that cell frequencies with equal as well as different 

values of x are negatively correlated. Consider for instance the data in Table l. 

Here we obtain, 

COY (N(l) (1,1) ,N(l) (0,0)) 

COY (N(l) (1,1) ,N(O) (1,1)) 

-n (p(l)) 2 q(l) (1, 1) q(l) (0,0) 

_np(l) (1 - p(l)) q(1) (1,1) q(O) (1,1). 

When the predictors are dependent rather than independent, we may, for some 

combinations of the parameters of p(x) and q(x) (z) obtain extremely different 

results. To show this we calculate the difference between the probability 1r 

in the independent and dependent case. For simplicity and without loss of 

generality, we consider only the case with two predictors where Zl = 1 and 

Z2 = 1. Figure 1 shows the differences for various values of pel) /p(O) with all 

possible 2 x 2 contingency tables with probabilities .05 (.1) .95. The differences 

are symmetric when pel) /p(O) = 1. Although, it is impossible from Figure 1 to 

identify the parameter values of q(x) (z), calculations show that the differences 

tends to zero when the parameter values are similar in both tables i.e. when 

q(l) (1, 1) ~ q(O) (1,1), for all values of pel) /p(O). The purpose of this illustration 

is to show that, in fact, it does matter if we assume that the predictors are 

independent or not. 

Expression (2) seems to be the simplest way to express the dependency between 

1r and the q-probabilities, but there are other ways. One is logistic regression. 
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Consider for example the case with two predictors which are dependent, both 

given X = 1 and X = 0. Then, 

A 
p(1) (q(l) (1, 1))ZlZ2 (q(1) (1,0))Zl(1-Z

2
) 

p(O) q(O) (1,1) q(O) (1,0) 

x (q(1) (0,1)) (1-zll
z
2 (q(l) (0,0)) (1-

Z
1)(1-

Z
2) 

q(O) (0,1) q(O) (0,0) 

(

p(1) q(l) (1 1)) 
log p(O)q(O) (1: 1) is the intercept, 

(
q(l) (1,0) q(O) (0,0)) (q(l) (0,1) q(O) (0,0)) 

log q(O) (1,0) q(l) (0,0) ,/32 = log q(O) (0,1) q(l) (0,0) and 

(

q(l) (1,1) q(O) (1,0) q(O) (0,1) q(l) (0,0)) . 
log (0) ( ) (1) ( ) (1) ( ) (0) (0 0) are regressIOn parameters. 

q 1,1 q 1, ° q 0,1 q , 

In a similar way, it can be showed that in the case when the predictors are 

independent, both conditionally on X = 1 and X = ° we obtain 

_ (p(l) k (X)) _ (q}l) (1) q}O) (0)) 
a - log (ii) TIi=l qi (0) and /3i - log (0) (1) 

P qi (1) qi (0) 

for i = 1,2, ... , k, where q}x) (Zi) denotes the marginal probabilities. With k de

pendent predictors there will be 2k -1 /3-coefficients, and this way of representing 

the q-probabilities will be extremely extensive. Notice also that omitting the in

teractions between the predictors in the logistic model is equivalent to assuming 

that the latter are independent. 
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Another approach for parametrization is the use of Bayes weights. Again, as

sume for simplicity that we have two predictors Zl and Zl, then we may rewrite 

A in (2) as 

{ (
p{l)) (q{l) (z))} 

exp log p{O) + log q{O) (z) 

{ (
p{l)) (q{1) (Zl)) (q{l) (Z2)) } 

exp log p{O) + log q{O) (Zl) + log q{O) (Z2) , 

where, log (q{l) (Zi) Iq{O) (Zi)) are called Bayes weights (Afifi and Azen (1979), 

p. 306-10). 

3 Point Estimation of 7f' 

The Maximum Likelihood (ML) estimator of the target probability in (2) is 

obtained as 

(3) 

Some simple examples of (3) are: 

In (i) no sets of predictors are independent, and in (ii) all predictors are inde

pendent. In (iii), Zl, Z2 and Z3 are dependent when X = 1, while (Zl, Z2) and 

Z3 are two independent groups of predictors when X = o. 

The fact that (3) is the ML estimator is a direct consequence of Lemma 1. Ac

cording to the latter, N{x) (z) In and N{x) In are the ML estimators ofp{x)q{x) (z) 

and p{x), respectively, so N{x) (z) IN{x) is the ML estimator of q{x) (z) and from 

this the result in (3) follows. 
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Below some properties of the estimator in (3) are studied, and some expressions 

for the estimated variance are given. Results will be derived separately for the 

case when all predictors are dependent and for the more general case when g 

groups of predictors are dependent given X = 1 and h groups are dependent 

given X = O. The reason for the separation of the two cases is that various 

degrees of approximations are used for deriving the results. 

Case I. No sets of predictors are independent 

The estimator in (3) is now obtained from the special case (i) above and an 

expression for the variance of the latter is given by 

V [A] 11"(1-11") (1 (1-11"')) 11"(1-11") C ar 11" = - + 2 = . ,say, 
n 11"' n(1I"') n 

(4) 

where 11"' = p(l)q(l) (z)+p(O)q(O) (z). An estimator ofthe variance (4) is obtained 

from 

-v [A] _ -ir (1--ir) (1 (1 --ir')) _ -ir (1--ir) CA 
ar 11" - ( ) -:::; + 2 - • ,say, 

n - 1 11" n (-ir') n 
(5) 

where -ir' = n-1 (N(1) (z) + N(O) (z)). 

In order to motivate these expressions, notice that according to Lemma 1 and 

the results (AI) and (A2) in the Appendix, it follows that, for a fixed value of 

z, N' = N(l) (z) + N(O) (z) is binomially distributed with parameters nand 11"' 

and also that (N(l) (z) IN') is binomially distributed with parameters N' and 

11". Thus, we obtain the expectation 

so -ir is unbiased. The variance is (Rao (1973), p. 97) 

Var [-ir] = E [Var (-ir IN')] + Var [E (-ir IN')] 
N' N' 
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= E [N'1f (1 ~ 1f)] + Var [1f] = 1f (1 -1f) E [(N,)-l] + O. (6) 
N' (N') N' N' 

Since there is a non-zero probability [(1 - 1f') n] that N' takes the value 0, one 

should re-define the estimator of 1f either by adding 1 in the denominator or by 

conditioning on N' > O. This would however make the estimator is unnecessary 

complicated in the large sample situation which is considered here. Instead a 

Taylor series expansion will be used. From Appendix (A4) it follows that 

(7) 

By inserting the approximate expectation (7) into (6) we obtain the variance in 

(4). The estimated variance in (5) is obtained by simply replacing the parame

ters 1f and 1f' by their obvious estimators. By using n - 1 in the denominator 

rather than n, a slight improvement of the closeness to the true variance is 

obtained. 

The expression for the variance of ir in (4) agreed well with the true variance 

determined from simulations. However, there were some deviations depending 

on the sample size n and the parameters q(x) (z). The best agreement was 

obtained with a uniform distribution of the q-probabilities. A simulation study 

with four cells as in Table 1, showed that with a uniform distribution, the 

absolute relative difference was below 1% even for a relatively small sample size 

n = 50, and declined rapidly for larger values of n. The agreement became 

worse when one of the cell probabilities was close to 1. For example, with the 

parameter setting q(x) (1,1) = 0.93, q(x) (1,0) = 0.02 = q(x) (0,1), q(x) (0,0) = 
0.03, x = 0,1, the absolute relative difference was as large as 60% for n = 50. In 

the latter case one has to choose n = 400 to keep the absolute relative difference 

below 5% and to choose n = 800 in order to keep it below 0.5%. It was also 

found that similar conclusions could be drawn about the average performance 

of the estimated variance in (5) as for (4). 
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Even though the last example is a rather extreme one, it illustrates that some 

caution is needed when (4) and (5) are used in situations where the cell proba

bilities are close to 0 or 1. 

By means of (4) it is possible to study analytically how the variance of it depends 

on the parameters p(l), q(1) (z) and qeD) (z). When p(1) = ! the variance is a 

symmetric function of q(l) (z) and qeD) (z) which decreases as the latter of the 

two quantities increase, as can be seen in Figure 2. For pel) =I ! the behavior 

of the variance is more complicated. When p(1) < ! the variance decreases 

with increasing qeD) (z), but now the variance has a local maximum at some 

q(l) (z) > 0 (Figure 3). The value of q(l) (z) which gives this maxinlum will 

increase as pel) tends to zero. When pel) > ! the same pattern is observed, but 

with q(l) (z) interchanged by qeD) (z) (Figure 4). 

Case II. g sets of predictors are independent given X=l and h sets of predictors 

are independent given X=O 

An expression for the variance of it is given by 

(8) 

An estimator of Var [it] is 

(9) 

In contrast to Case I, the denominator of it now consists of a sum of products 

of multinomial variables and the exact distribution of this is very complicated. 

Instead all derivations will be based on Taylor approximations. 
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From Appendix (A4) it follows that 

Var [1l-] ~ (10) 

Var [il] 

where n~=l N(l) (zr) and nZ=l N(O) (zs) are two independent products condi

tionally on N(l). These products consist of independent variables, which are 

distributed M (N(l),q(l) (Zr)) and M (N(O),q(O) (zs)), respectively. From Ap

pendix (A3) it follows that, for fixed values of Zr and zs, 

E (n~=l N(l) (zr) I N(l)) 

E (nZ=l N(O) (zs) I N(O)) 

( N(l)) 9 n~=l q(l) (zr) , and 

(N(O)) h nZ=l q(O) (zs) , while 

By using the Taylor expansion in Appendix (A4) it is seen that the variance of 

any ratio of independent variables X and Y can be written 

Var X ~ E (X) Var (X) Var (Y) ( )2( ) (Y ) E (Y) [E (X)]2 + [E (y)]2 . 
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From the last results and by taking the approximate expectation over N(1) it 

finally follows that 

In a similar way it can be shown that 

and by again using the Taylor approximation in Appendix (A3) one gets 

The expression for Var [1t] in (8) is finally obtained from (10) and by using the 

fact that A2/ (A + 1)4 = 1T2 (1 _ 1T)2. 

The estimator of the variance in (9) is simply obtained by inserting obvious 

estimators for parameters. 

When 9 = 1 = h, the expression in (8) should reduces to (4). However, in this 

case it is easily shown that (8) can be written as 

Var [1t] = 1T (1 - 1T) I,. 
n 1T 

Thus, the two expressions in (4) and (8) are the same if 

The agreement between the expressions for the variance of 1t in (8), the estimated 

variance in (9), and the true variance was determined from 100,000 simulations. 

In this case the comparison is complicated by the fact that there are many q

probabilities involved, and therefore we only consider the case with two indepen

dent sets of mutually dependent predictors Zl = (Zl' Z2) and Z2 = (Z3, Z4), 
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both given X = 1 and X = O. By varying the parameters p(l), qW (Zl' Z2) 

and q~~) (Z3, Z4), x = 0,1, it was found that the absolute difference between the 

variance of fr in the simulations and the variance given by (8) and (9) with a 

few exceptions were below .001 for n ?:: 200. In no case the difference was larger 

than .0003 for n ?:: 400. In the sequel we choose n = 400 and study how the 

variance of fr in (8) depends on the magnitude of the q-probabilities and also 

on the number of independent sets of predictors 

Figures 5-12 illustrate how the variance simultaneously depends on qW (Zl' Z2) 

and q~~ (Z3, Z4) for some values ofp(l), qi~) (Zl' Z2) and q~~ (Z3, Z4). All variances 

are considered for a fixed set of (Zl' Z2, Z3, Z4), e.g. (1,1,0,1). Therefore, the 

z-arguments have been omitted in the legends to the figures. In Figure 5 it is 

seen that the variance is a symmetric function of its arguments when pel) = ! 
and qi~) (-) = q~~ (.). For pel) < ! (see Figures 6-12), the pattern is more 

complex and in this case one can identify a saddle-point. The level of the latter 

increases as qi~) (Zl' Z2) = q~~) (Z3, Z4) tends to zero, while at the same time the 

saddle becomes tighter. For p(1) > ! this saddle-point pattern vanishes and the 

variance increases as qi~) (Zl,Z2) and q~~) (Z3,Z4) tends to zero (not shown in 

the figures). 

To study how the variance of fr depends on the number of independent sets of 

predictors some simplifications have to be made. Put g = h, so there is an equal 

number of sub-groups of independent predictors both given X = 1 and given 

X = 0, and assume that all q(l) (z) = q(l) and qeD) (z) = qeD) while pel) = !. 
Then Figure 14 shows that the variance of fr increases with increasing g as far 

as q(l) = q(D), and that the increase is larger for small q's. When q(l) i= qeD) 

there is a different pattern. For large differences between the q's, the variance 

declines with increasing value of g, but for smaller differences the variance has a 

local maximum before it starts to decline. These findings suggest that much can 

be gained if it is possible to find (1) many predictors with the property that (2) 

the q-probabilities q(1) (z) differ much from qeD) (z). On the other hand, failure 

to identify predictors with different q-probabilities, or including such predictors 

for some reasons, will increase the variance of fr. 
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4 Interval Estimation of 1r 

When the estimated value of 7f is used for predicting the state of an individual, 

it is customary to make the predictions 'X = l' if 7f > ~ and 'X = 0' if 7f < ~ if 
the costs of misclassification are unknown. Such rigid classification rules may be 

useful if one wants to evaluate the prediction ability of certain predictors, but 

for practical purpose they can be risky. The predicted outcome of an individual 

sometimes calls for an intervention, by for instance offer the individual medical 

rehabilitation programs. Wrong predictions may then be very expensive. If 

the costs of misclassification are known, the rigid rule above can be replaced 

by generalized Bayes classification rules, which minimize the expected cost of 

misclassification (Afifi and Azen (1979), p. 292). However, the costs are seldom 

known, or may be hard to quantify. In such cases it may be wise to compute a 

confidence interval (CI) for 7f. Crs that are clearly outside ~, can be considered 

to indicate that the corresponding predictions are more likely than Crs that 

cover ~. In this section we consider various ways to construct a CI for 7f. As in 

the preceding section, two cases will be treated separately. 

Case I. No sets of predictors are independent 

We will compare the expected length and actual coverage probability of five 

different Crs. Let T d. as. N(O, 1) denote that a statistic T asymptotically has 

a standard normal distribution. The various Crs are derived from the following 

properties, where the same notations are used as in Section 3. 

-rr-7f 
(i) 1/2 d. as. N(0,1), 

{Var [-rr]} 

-rr-7f 
(ii) 1/2 d. as. N(0,1), 

{ 1f(1:1f) . 6 } 

(iii) 

(v) 

-rr-7f 1/2 d. as. N(O, 1), (iv) (N(1) (z)IN') d. B(N',7f) and 

{~} 
log (..4.) -log (A) 

---'--<----1/..,.,-2 d. as. N(O, 1). 

{V; [log (..4.)]} 

Here the statistics in (iii) and (iv) are conditional and based on the particular 
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outcome N' = N(l) (z) + N(O) (z), while log (A) is an estimator of log (A) to 

be considered below. Let Z be the 100 (1 - a/2) % percentile of the standard 

normal distribution, and let F (nl, n2) denote the 100 (1 - a/2) % percentile of 

the F-distribution with nl and n2 degrees of freedom. Then the CI's derived 

from (i) - (iv) are frL < 1r < fru, where frL and fru are obtained from: 

(iv) 

(i) fr ± Z . {Var [fr]} 1/2 

2fr+ z:c ± {( 2fr+ z:c) 2 _ 4fr2 (1 + z:c) }1/2 
(ii) ___ ~~_-:--_--:-~ ___ -L-_ 

2 (1 + z:c) 

(iii) 
2fr+~ ± { (2fr+~) 2 _ 4fr2 (1 + ~) } 1/2 

2 (1 + ~~) 

N(l) (z) 

(N(O) (z) + 1) F [2 (N(O) (z) + 1) ,2N(1) (z)]' 

(N(l) (z) + 1) F [2 (N(l) (z) + 1), 2N(O) (z)] 

N(O) (z) + (N{1) (z) + 1) F [2 (N(l) (z) + 1) ,2N(O) (z)] 

exp {lOg (A) ± 1.96 {Va;: [log (A)]} 1/2} 

(v) { 1/2}' where 
1 + exp log (A) ± 1.96 {Va;: [log (A)]} 

log (A) 
Va;: [log (A)] 

log (N(l) (z)) -log (N(O) (z)) and 

1 1 
= N(l) (z) + N(O) (z)' 

(11) 

The expressions (11) : (i) - (iv) follows from well known results (Casella and 

Berger (1990), p. 444-49). (11): (v) follows from very rough approximations 

(see Appendix (A4)) E [log (A)] ::::::: log (A), and 
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where 

E[N(X)(z)] np(X) q(x) (z) 

Var [N(X) (z)] 

COy [N(l) (z) ,N(O) (z)] 

np(x)q(x) (z) (1- p(x)q(x) (z)) , x = 0, 1, and 

_np(l)p(O)q(1) (z) q(O) (z) . 

This implies that 

Var [log (A)] 
Va;: [log (A)] 

~ ~ (p(l)q~l) (z) + p(O)q~O) (z)) , and hence 

1 1 
~ N(l) (z) + N(O) (z)· 

The simple expression in (11) : (v) is worth a comment. log (A) is in fact a 

poor estimator of log (A). By instead using the alternative estimator 

which follows by considering terms of the order n-1 in the Taylor expansion of 

E [log ( A) ] , both bias and variance can be reduced substantially. The estimated 

variance of this alternative estimator is 

1 1 1 1 
--:c:-:--:---:- + - - ---r;-

N(l) (z) N(O) (z) [N(l) (z)]2 [N(O) (z)]2 

+~ CN<'~ (z)l' + [N(O: (Z)]') - 4~ (N<'~ (z) + N<O~ (z») 2 

To illustrate the difference between the two estimators of log (A), consider the 

case when there are 2 dependent predictors Zl and Z2, given X = 1 and given 

X = 0, and with the parameter setting 
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(1) ( ) q12 1,1 

(0) ( ) q12 1,1 

.24, qW (1,0) = .38, qW (0,1) = .11, qW (0,0) = .27, 

.71, ql~) (1,0) = .25, ql~) (0,1) = .02, ql~) (0,0) = .02. 

A simulation study using the relatively large sample size of n = 400, showed 

that the alternative estimator had a relative bias which was more than 50% 

smaller than the original estimator. The variance was reduced by 35% and the 

expression above for the estimated variance of the alternative estimator was 

very close to the actual variance. However, when the alternative estimator was 

used for making Cl's, the distribution of the pivotal statistic for (v) was slightly 

skew, and for this reason the coverage rate of 95% was not maintained. The 

actual coverage rate could in fact drop down to 91%. This illustrates that a 

CI based on a crude estimator may perform better than a CI based on a more 

sophisticated estimator. 

The performance of the Cl's in (11) : (i) - (v) was found to depend on the 

q-probabilities. As for the expressions (4) and (5) in Section 3, the worst case 

was obtained when one of the cell probabilities are close to 1. This is illustrated 

in Table 2, where the 5 Cl's are compared regarding expected length and cov

erage probability. First of all one may notice that none of the Cl's keeps the 

stipulated level of 95% if the sample size, n, is 100 or less. For n = 200 the 

95%-level is only maintained by (11) : (ii) and possibly by (11) : (iii). How

ever, the expected lengths of the latter are too large to be accepted. When 

the q-probabilities tend to be more uniformly distributed, the probability that 

the 95% level is maintained increases, also for smaller samples. The overall 

conclusion is that (11) : (ii) performs best, even if the Cl's may be somewhat 

conservative. When n is large the computational simple expression in (11) : (v) 

may be an alternative. (11) : (i) should be avoided. The latter Cl's did not even 

maintain the 95% level in the most favorable case with uniformly distributed 

q-probabilities and n = 1600. 

Case II. g predictors are independent given X=l and h predictors are indepen

dent given X=O 
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Now the CI's are derived from the following properties, where the same notations 

are used as in Section 3 for Case I: 

if - 1r log ( A) - log ( A) 
(i) 1/2 d. as. N(O,l), (ii) 1/2 d. as. N(O,l). 

{n
2
(1:n)2 . b} {bin} 

Due to the complexity of the statistic A in this case, we do not consider any 

conditional statistics, as in Case 1. The CI's of 1r derived from (i) and (ii) above 

now are if L < 1r < ifu, where if Land ifu are the solutions of 

( z.J bin ± 1) =f 
( i) 

(z.J bin ± 1 r =f 4zif.J bin 

2z.Jbln 

( ii) 
exp {log (A) ± 1.96 {bin f/2} 

1 + exp {lOg (A) ± 1.96 { b In } 1/2} 

(12) 

In (i) the upper part of the two signs ± and =f refers to ifL and the lower part 

to ifu. In (ii) the upper part of ± refers to ifu and the lower part to if L. 

(i) follows from the following arguments. Put f (1r) = (if -1r) I (1r -1r2). Then 

the statement - z < (if - 1r) I ylVar [if] < z is equivalent to - z yI Din < f (1r) < 

zylDln, where the meaning of D is clear from (8). Here f (1r) is a monotonously 

decreasing function of 1r E (0,1) for all if E (0,1) with the inverse 

which gives the CI in (i). 

Now, log (A) can be written log (if) - log (1- if), and by using (8) together 

with Appendix (A4) one gets 
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which motivates the use of the statistic in (ii). The expression for the CI in 

(12) follows easily by noticing that 

.. exp{c£l exp{cu} 
CL < log (A) < Cu Implies that 1 {} < 7r < 1 {}' + exp CL + exp Cu 

When D in (12) is used for constructing a confidence interval for 7r, N(l) (zr) 

and N(O) (zs) in (12) should be replaced by N(l) (Zr) + 1 and N(O) (zs) + 1, 

respectively. This will make the confidence interval less conservative. 

Tables 3 and 4 show expected lengths and coverage probabilities for the two CI's 

in (12), the latter being determined from simulations. The differences between 

the two are very small. (12): (i) tends to give somewhat shorter CI's, but 

(12) : (ii) tends to give CI's which agree better with the stipulated level of 95%. 

Again we point out that, although log (A) is a poor estimator of log (A), CI's 

constructed from log ( A) perform well. 

5 Prediction 

In this section we consider the possibility to predict the outcomes X = 1 and 

X = 0 based on fr, the estimates of 7r. The outcome X = 1 will be predicted 

whenever fr > ~ and otherwise the outcome X = 0 will be predicted. This rather 

strict classification rule is chosen merely for simplicity. In practical work it would 

perhaps be better to use a less rigid classification rule and take the CI's for 7r 

into consideration. The predictions will be performed in a two-step approach, 

where in the first step 7r is estimated from a sample of a certain population, 

and then in a second step this estimate is used to predict the outcomes for new 

subjects being chosen from the same population. If the predicted outcome is 

denoted by X P, the success of the predictions will be measured by the predictive 

20 



values lP'(X = 11 XP = 1) and lP'(X = 0 I XP = 0), and the probability of a 

correct prediction lP'(Correct) (see Ch. 3 in Campbell and Machin (1990)). 

Of special interest will be to study how the predicting ability depends on the 

sample size, which is used in the first step to estimate 7r, and also to determine 

the sample size, which is needed in the second step for reaching stable estimates 

of the measures of predicting ability. Attention will also be paid to study how 

miss specification of the dependency structure of the predictors may affect the 

predicting ability. 

5.1 A Simulation Example 

In this section we consider the ability to predict work resumption for long

termed sick-listed subjects. The sample considered here is a part of a larger 

sample within the ISSA-study that has previously been described in detail 

(Bergendorff et al. (1997), (2001) and Riksforsakringsverket och Sahlgrenska 

Universitetssjukhuset (1997)), and consisted of 545 full-time working employed 

men sick-listed for at least 28 days because of a lower back pain diagnosis. Af

ter 28 days the values on the following predictor variables were obtained: (1) 

Age, (2) Complete rehabilitation plan, (3) Comorbidity, (4) Working ability, (5) 

Sick-listing in family, (6) Suitable working tasks, (7) Ethnicity, (8) Heavy lifts. 

Here, Comorbidity means that the subjects has other diseases than lower back 

pain. Working ability was subjectively assessed on a scale ranking from 1 (low) 

to 10 (high). Suitable working tasks means that the employer was willing to 

adjust the working tasks in agreement with the subject's state of health. In a 

previous study, these variables were found to be the most important ones for 

predicting work resumption among men with lower back pain (Bergendorff et 

al. (2001)). 

The outcomes to predict at 90 days are X = 1, if there is no work resumption and 

X = 0 otherwise. The predictor variables were dichotomized in the following 

way. Age = Zl = 1, if age> 30 years and 0 otherwise, Complete rehabilitation 

plan (Z2) = 1, if yes and 0 otherwise, Comorbidity (Z3) = 1, if yes and 0 
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otherwise, Working ability (Z4) = 1, if scale value < 5 and 0 otherwise, Sick

listening in family (Z5) = 1, if yes and 0 otherwise, Suitable working tasks 

(Z6) = 1, if no and 0 otherwise, Ethnicity (Z7) = 1, if Swedish and 0 otherwise 

and Heavy lift (Zs) = 1, if yes and 0 otherwise. 

Notice that all binary predictors have been defined in such a way that the out

come 1 of a predictor favors the outcome X = 1. The reasons for dichotomizing 

the variables Age and Working ability have given previously (Bergendorff et al. 

(2001)). Although the variable Age has been found to be continuously nega

tively related to the probability of work resumption in other studies (Jonsson 

(2001)), this was not the case in the present study where the selected subjects 

differed from the test of the population in several aspects. E.g. all were full-time 

working employed. 

In this example the first task is to estimate 

A hierarchical cluster analysis (Anderberg (1973) and Jobson (1992)) suggested 

the following independent sets of vectors 

(Z I X = 1) 

(Z I X = 0) 

{(Zl,Z2,Z31 X = 1), (Z4,Z51 X = 1), (Z6,Z7'ZS I X = I)} 

{(Zl, Zs I X = 0), (Z3, Z4, Z6 I X = 0), (Z2, Z5, Z7 I X = O)} 

Thus, e.g. Zl (age) and Z3 (comorbidity) were correlated among those who did 

not return to work after 90 days, but uncorrelated among those who returned to 

work. For a more detailed description of the dependency structures the reader 

is referred to the paper by Persson (2002). The corresponding q-probabilities 

were 
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where, 

Zl,Z2,Z3 q(l) (Zl,Z2,Z3) Z4,Z5 q(l) (Z4, Z5) Z6,Z7,ZS q(l) (Z6, Z7, zs) 

111 .09 11 .02 111 .22 
110 .02 10 .17 110 .02 
101 .50 01 .21 101 .06 
011 .01 00 .60 011 .35 
100 .27 100 .01 
010 .01 010 .01 
001 .07 001 .23 
000 .03 000 .10 

Zl, Zs q(O) (Zl, zs) Z3, Z4, Z6 q(O) (Z3, Z4, Z6) Z2,Z5,Z7 q(O) (Z2,Z5,Z7) 

11 .64 111 .01 111 .02 
10 .24 110 .02 110 .02 
01 .11 101 .01 101 .01 
00 .01 011 .03 011 .05 

100 .01 100 .01 
010 .24 010 .30 
001 .03 001 .05 
000 .65 000 .54 

These q-probabilities were estimated from the data set, and will be used as fixed 

probabilities for generating samples in the simulation study. The prevalence p(1) 

was 0.54. This figure was also taken from the empirical study. 

The various outcomes (Zl, ... , zs) give rise to 256 values of the estimated posterior 

probability 1['. The 5 smallest and largest of these are 

11001010 
11011010 
10000010 
11000010 
10001010 

lP' (X = 1 I z) 
.0156 
.0316 
.0391 
.0432 
.0786 

01010000 
01110000 
01000100 
01000110 
01000111 

lP' (X = 1 I z) 
.9852 
.9852 
.9860 
.9860 
.9860 

Here one may notice that Zl = 1 (age> 30 years) in all cases giving the smallest 

probability, while Zl = 0 in all cases giving the largest probabilities. 

The simulation experiment was performed in the following way: First, one sam

ple was selected, each being based on the sample sizes n = 25, 50, 100, 200, ... , 1000, 

and from each sample 1[' was estimated. The latter quantity was then used to 
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predict the outcome at 90 days for new subjects being selected from the same 

population. The number of new sampled subjects was m = 1000, ... , 100000, 

and for each of these, the outcome X = 1 was predicted (X P = 1) if 7r > ~, and 

the outcome X = 0 was predicted (XP = 0) if 7r < ~. The predicted outcomes 

were then compared with the actual outcomes, and the predictive values were 

computed as well as the proportion of correct predictions. Here it was found 

that the predictive values had stabilized already at m = 1000. 

Figure 14 shows how the predictive values depend on the sample size n in the 

first sample. It is seen that the predictive values starts to stabilize when n 

is larger than 400 and that this stabilization process goes faster for (X P = 1) 

than for (XP = 0). The final values were 0.74 for (XP = 1), 0.73 for (XP = 0) 

and 0.73 for JP> (correct). The similarity between the latter values is merely a 

coincidence. 

6 Discussion 

When predicting the future state of health based on estimated probabilities, the 

choice of good predictors is of major importance, like in all areas of prediction. 

If very little is known about which variables that will serve as good predictors, 

a first step may be to perform preliminary study where as many variables as 

possible are included as candidates. This was made in the ISSA-study mentioned 

in Section 1 and 5.1. Here, 5-10 variables were chosen as predictors among a total 

of more than 200 variables. In this paper we have considered the situation where 

a first sample is taken in order to estimate 'If and where the prediction ability is 

evaluated in a second sample from the same population. Then the questions arise 

of how to extract the predictors from a larger list of candidates, how many to use 

and how to identify the dependency structure between them, if necessary. The 

dependency structure can be created by hierarchical cluster methods (Anderberg 

(1973) and Jobson (1992)). Simulations show that the procedure works very 

well with dichotomous variables. Since a correct specification of independent 
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clusters has been showed to be of such great importance this issue should be 

further investigated. 

Throughout the paper it has been assumed that the dependency structures 

between sets of predictors are correctly specified. This is a matter of crucial 

importance, since by assuming sets of predictors to be conditionally independent 

when they in fact are dependent may have serious effects on bias and variance 

of the estimator of 7r. An illustrative example is the following one with two 

predictors. Let the cell probabilities in Table 1 be qg> (1,1) = 0.10, qg> (1,0) = 

O 40 (1) (0 ) (0) ( ) 0 (0) (0) 0 0 (0) (0) h h . = q12 ,1, q12 1,1 = .20, q12 1, =.1 = q12 ,1, so t at t e 

correlation between Zl and Z2 is -0.60 given X = 1 and +0.52 given X = o. 
From (2) it follows that the target probability to estimate when (Zl' Z2) = (1,1) 

is 7r = 0.33, and according to (4) Var [1l"] = 0.0148 when n = 100. On the other 

hand, by assuming independency between Zl and Z2 the target probability 

becomes 7r = 0.74, while the variance of the estimator is 0.0067 when n = 100. 

Thus, both bias and variance will in this case differ with about 120%. This 

was just a counter example, but in practice the effects of ignoring correlations 

between the predictors can be serious and give rise to large differences between 

the estimated 7r'S (see the discussion in Persson (2002)). 

The results in Section 3 support the idea to include as many predictors as 

possible in the model, provided that the difference between the q-probabilities 

q(l) (z) and q(O) (z) is large. When the latter difference is small, it may result in 

a local increase in the variance of 1l" (see Figure 14). This argues against using 

predictors in the model with only slight differences between the q-probabilities. 

For p(l) = ~ and when both q(l) (z) and q(O) (z) are small, the variance of 1l" in 

(4) will be large, as shown in Figure 2. When there are two independent groups 

of predictors and p(l) = !, Figure 5 suggests that the variance of 1l" will be large 

if both qg) (Zl' Z2) and q~~ (Z3, Z4) are small. These results should apply to the 

example in Section 5.1 where p(1) was close to !. Notice that many of the q

probabilities were small. For p(l) < ! there is a different pattern. Now, Figures 

6-12 suggests that the variance will be large when there is a large difference 

between the q(lLprobabilities. 
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There are also questions about sample sizes needed to get reliable estimates of 

model parameters and of predictive values. The variance of 7r can be reduced 

by increasing the sample size, but due to the complicated dependencies on the 

parameters of the expression for the variance, it is not easy to give clear-cut 

recommendations for the choice of a proper sample size. The smallest sample 

size needed to reach an acceptable level of the variances of 7r, for making reliable 

CI statements and also for getting reliable values of the predictive values was 

n = 400. The latter may be smaller when the q-probabilities are relatively large, 

but n = 400 may be recommended as a safe rule of thumb. Even with samples 

of 400 it is seen from Tables 2-4 that the lengths of the CI's can be somewhat 

large, and that sample sizes above 1000 would be needed in order to get CI's 

with reasonable lengths. 

Although all results of the paper apply to predictors with an arbitrary number 

of outcomes, we have only been concerned with dichotomized predictors in the 

example of Section 5.1, and this needs an explanation. The reasons for only 

using binary predictors were that almost all of the variable values were subjec

tively assessed on an ordinal scale (exceptions were Age and Income), and that 

more or less pronounced threshold values could either be detected on probability 

plots (e.g. Working ability on a 10-point scale), or determined after consulting 

experts in the field (e.g. Complete rehabilitation plan on a 5-point scale). It 

was supposed that dichotomized predictors would behave more robustly than 

the original ordinal variables when predictions were made for new subjects. It 

may be argued that information is lost by the dichotomization. However, in the 

present study it was felt that this loss of information could be neglected. For 

instance, the variable 'Complete rehabilitation plan' got the maximal value 5 if 

the document was signed by the insured, but 4 if the same document was not 

signed. Here it seemed to be more relevant to know whether such a document 

existed or not. A further reason for dichotomizing is to reduce the possibility of 

getting zero cell frequencies. When there are enough many possible outcomes 

for a predictor it will be inevitable that this will occur. The problem with zero 

frequencies and missing values are further considered in Persson (2002). 
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ApPENDIX 

Some results for multinomial distributions. 

Let (X~l), ... , Xk1), X~O), ... , XkO)) be a random vector with a multinomial distrib

utiondenoted by M(n,p(1)qp), ... ,p(1)qk1) ,p(O)qiO), ... ,p(O)qkO)), where 2:7=1 qi1) = 

1 = 2:7=1 qiO) and p(l) + p(O) = 1. A binomial distribution with parameters n 

and p is denoted by B(n,p). 

From the probability generating function (pgf) it is easily verified that 

Direct calculation yields that 

( 

(1) (1) ) (1) (1) (0) _ . . . P qi . _ 
(Xi I Xi + Xi - x) IS distnbuted B x, (1) (0)' 2 - 1, ... , k. 

p(l)qi + P(O)qi 
(A2) 

Let N (zr), r = 1, ... ,g, be independent vectors each being distributed M(n, q (zr)). 

For fixed Zr, r = 1, ... , g, one may put N r = N (zr) and qr = q (zr). Then 

(A3) follows easily by repeated use of the expressions, 

Var (N1) nq1 (1 - q1) , 

Var (N1N2) Var (N1) Var (N2) + Var (N1) [E (N2)]2 + [E (N1)]2 Var (N2) 

= n4 (q1q2)2 { (1 + 1 ~~1 ) (1 + 1 ~:2 ) -I} and so on. 

30 



Approximation of functions of moments 

Let Xi, i = 1,2 be two independent random variables with means fLi and vari

ances a-r. Then it follows from a Taylor expansion that the function g (Xl, X 2 ) 

has the approximate moments (Kotz and Jonsson (1985), p. 646) 

where all derivatives are evaluated at fL = (fLI,fL2). Also, 
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LEGENDS TO FIGURES 

Figure 1: Calculation of the differences between the probability 7r with Zl = 1 

and Z2 = 1 in the independent and dependent case. 

Figure 2: Var [1r] from (4) in the case with two dependent predictors (Zl, Z2), 

given that n = 400 and p(l) = ~. 

Figure 3: Var [1r] from (4) in the case with two dependent predictors (Zl, Z2), 

given that n = 400 and p(l) = .10. 

Figure 4: Var [1r] from (4) in the case with two dependent predictors (Zl' Z2), 

given that n = 400 and p(l) = .90. 

Figure 5: Var [1r] from (8) in the case with two independent groups of depen

dent predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = ~, qi~) (-) = 
(0) ( ) q34 . = .05. 

Figure 6: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl,Z2) and (Z3,Z4), given that n = 400, p(l) = .10, qi~) (.) = .05 

(0) ( ) and q34 . = .10. 

Figure 7: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl' Z2) and (Z3, Z4), given that n = 400, p(1) = .10, qi~) (.) = .05 

(0) ( ) and q34 . = .20. 

Figure 8: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl' Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = .05 

(0) ( ) and q34 . = .30. 

Figure 9: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (-) = 
q~~) (.) = .05. 

Figure 10: Var [1r] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = 
(0) ( ) q34 . = .10. 
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Figure 11: Var [1l-] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = 

(0) ( ) q34 . = .20. 

Figure 12: Var [1l-] from (8) in the case with two independent groups of dependent 

predictors (Zl, Z2) and (Z3, Z4), given that n = 400, p(l) = .10, qi~) (.) = 

q~~) (.) = .30. 

Figure 13: Predictive values for healthy (solid line) and non-healthy (dotted 

line) for various sample sizes. 

Figure 14: Var [1l-] as a function of number of independent sets of predictors. 
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Expected Length (Zl ,Z2) Coverage Probability (%) (Zl' Z2) 

CI n (1,1) (1,0) (0,1) (0,0) (1,1) (1,0) (0,1) (0,0) 

(11: i) 50 .29 .36 .36 .50 95 15 15 28 
100 .20 .60 .60 .73 95 40 40 59 
200 .14 .79 .78 .76 95 72 72 84 
400 .10 .70 .70 .58 95 89 89 92 
800 .07 .50 .50 Al 95 93 93 93 

(11: ii) 50 .27 .84 .84 .82 95 64 64 78 
100 .20 .79 .79 .75 95 87 87 94 
200 .14 .71 .71 .63 95 97 97 97 
400 .10 .58 .58 .50 95 96 96 96 
800 .07 045 045 .38 95 96 96 96 

(11: iii) 50 .29 1.69 1.69 1.55 95 63 63 77 
100 .20 1.44 1.43 1.23 95 85 85 92 
200 .14 1.08 1.08 .86 95 94 94 95 
400 .10 .73 .73 .59 95 96 95 96 
800 .07 .50 .50 Al 95 95 95 95 

(11: iv) 50 .30 .94 .94 .92 97 39 39 53 
100 .21 .89 .89 .85 96 64 64 78 
200 .15 .81 .81 .73 96 87 86 94 
400 .10 .67 .67 .57 96 97 97 97 
800 .07 .50 .50 042 95 97 97 97 

(11: v) 50 .28 .84 1.06 .82 95 15 15 28 
100 .20 .80 .98 .76 95 40 40 60 
200 .14 .72 .84 .65 95 75 75 90 
400 .10 .59 .66 .51 95 95 95 97 
800 .07 045 048 .38 95 96 96 96 

... 
Table 2: Expected lengths and actual coverage probablhties (%) of the vanous CI's m (11): (z)-(v) 

for 1t, based on two dependent binary predictors. The q probabilities were q(x) (1,1) = .93 , 

q(X) (1,0) = .02, q(X) (0,1) = .02 and q<X)(O,O) = .03, x = 0,1. The stipulated CI-level was 95%, and 

each figure was computed from 100,000 simulations. 



Expected Length: ZI,Z2,Z3,Z4 

I S.ample 
Size, n 

1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 

50 .42 .41 .68 .65 .48 .45 .69 .66 .66 .64 .76 .75 .61 .59 .74 .72 
100 .29 .30 .64 .57 .37 .34 .65 .58 .59 .58 .72 .69 .54 .51 .70 .66 
200 .20 .21 .58 .46 .28 .25 .57 .47 .51 .48 .65 .58 .44 .41 .62 .54 
400 .13 .15 .48 .35 .21 .18 .46 .35 .39 .36 .51 .43 .30 .27 .47 .37 
800 .10 .11 .37 .25 .15 .13 .33 .26 .27 .23 .33 .27 .17 .13 .26 .19 
1600 .07 .08 .28 .18 .11 .09 .23 .18 .18 .14 .18 .17 .10 .07 .10 .09 

Coverage Probability (%): ZI'Z2,Z3,Z4 

Sample 
1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 I size, n 

50 94 96 25 59 99 97 25 59 31 29 07 18 28 28 06 17 
100 95 96 55 89 97 97 53 88 56 54 28 48 53 53 28 47 
200 95 96 85 97 96 96 81 96 80 79 65 78 79 78 64 77 
400 95 95 98 97 95 95 93 96 92 91 88 91 91 91 87 91 
800 95 95 98 96 95 95 95 96 95 94 93 94 94 94 92 93 
1600 95 95 96 95 95 95 95 95 95 95 94 95 95 95 94 94 

Table 3: Expected length and actual coverage probabilities (%) of the various CI's in (12): (i) for n, based on two independent groups of 

dependent binary predictors (ZJ.ZZ) and (Z:J,Z4). The q probabilities were qg)(l,l)= .24, qg)(l,O)= .38, qg) (0,1) = .11, qg)(O,O) = .27, ql~)(1,1)=.71, 

ql(~)(l,O) = .25, q}~) (0,1)= .02 , q}~) (0,0)= .02, q~~ (1,1) = .34, q~~ (1,0)= .55, q~~ (0,1) = .04, q~~ (0,0) = .07 , q~~)(I,I) = .45 , q}~) (1,0)=.48, 

q~~) (0,1)= .02 , q~~) (0,0)= .05 and p(l) = .50. The stipulated CI-level was 95%, and each figure was computed from 100,000 simulations. 



Expected Length: Zl,Z2,Z3,Z4 

Sample 
1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 

size, n 
50 .38 Al .80 .74 .54 048 .83 .78 .79 .74 .92 .89 .64 .55 .82 .78 
100 .27 .30 .75 .63 040 .36 .75 .65 .66 .59 .80 .74 046 .36 .63 .54 
200 .19 .21 .66 049 .29 .26 .61 049 049 Al .57 .50 .29 .22 .37 .30 
400 .13 .15 .53 .36 .21 .19 045 .36 .34 .27 .33 .31 .19 .13 .18 .16 
800 .09 .11 040 .26 .15 .13 .32 .26 .24 .19 .20 .21 .12 .09 .10 .10 
1600 .07 .08 .29 .18 .11 .09 .23 .19 .17 .13 .13 .14 .09 .06 .6 .07 

Coverage Probability (%): ZpZ2,Z3,Z4 

Sample 
1,1,1,1 1,1,1,0 1,1,0,1 1,1,0,0 1,0,1,1 1,0,1,0 1,0,0,1 1,0,0,0 0,1,1,1 0,1,1,0 0,1,0,1 0,1,0,0 0,0,1,1 0,0,1,0 0,0,0,1 0,0,0,0 

size, n 
50 96 96 25 59 96 96 25 59 36 36 9 22 36 36 10 23 
100 96 96 55 89 95 96 55 89 60 60 34 55 60 60 34 56 
200 95 95 84 97 95 95 84 97 84 84 72 84 84 84 73 84 
400 95 95 96 96 95 95 96 96 95 95 94 96 95 95 94 96 
800 95 95 96 95 95 95 96 95 96 96 96 96 96 96 96 96 
1600 95 95 95 95 95 95 95 95 95 95 95 95 96 95 95 95 

Table 4: Expected length and actual coverage probabilities (%) of the various CI's in (12): (ii) for n, based on two independent groups of 
dependent binary predictors (ZhZ2) and (Z3,Z4). The same q-probabilities as in Table 3 were used. The stipulated CI-level was 95%, and each 
figure was computed from 100,000 simulations. 
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