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On assessing multivariate normality 

By 
H.E.T. Holgersson 

Department of Statistics, 
School of Economics and Commercial Law, Goteborg University, 

Box 660 SE-405 30 GOteborg, Sweden. 

Statistical analysis frequently relies on the assumption of normality. Though 

normality may often be relaxed in view of inferences of for example population 

expectations, it can be crucial in other aspects such as diagnostic tests or prediction 

intervals. It is then important to apply a hypothesis test against possible non­

normality. But as the normality assumption usually regards normality of an 

unobservable variable, the test has to be applied on an observable proxy variable 

instead (usually the residuals), which may invoke biases in small samples. Additional 

problems arise as most tests for non-normality are valid only if the variables are 

independently and identically distributed (iid), a property often violated in for 

example economic applications. 

This thesis consists of two papers dealing with the properties of non-normality tests in 

multivariate regression models. We give here a brief summary of the contents of the 

two papers. 

The first paper, (written jointly with Ghazi Shukur), gives a short background of an 

omnibus test against non-normal multivariate skewness and kurtosis, namely the 

J arque&McKenzie test. The small sample properties of the test are examined in view 

of robustness, size and power when applied to OLS residuals from systems of 

regression equations. The investigation has been performed using Monte Carlo 

simulations where factors like e.g. the number of equations, nominal sizes and 

degrees of freedom have been varied. Our analysis reveals four factors that have a 

bearing on the performance of the JM test's nominal size when applied to residuals, 

namely the degrees of freedom, number of equations, autocorrelation and distribution 

of regressors. Especially, we show that autocorrelation will ruin the test completely, 

in the sense that the true size will limit one, no matter the nominal size. Moreover, we 

show that a simple transformation of the residuals along with empirical critical values 



will provide exact size regardless of distribution of regressors, number of degrees of 

freedom or number of equations, as long as the variables are iid. The power of the test 

is examined using heavy-tailed distributions. In general, the test has high power 

against the alternative distributions examined. In stark contrast, the power has shown 

to be zero for independent marginal distributions with normal skewness and kurtosis. 

The second paper concerns the problem of testing for non-normality in multivariate 

models with nonspherical disturbances. We give an explicit reason why moment 

based non-normality tests, such as the popular Jarque&Bera test and multivariate 

extensions, in general fails if the variables are not iid. We propose several possible 

choices of proxy variables to the unobservable errors, which are applicable to non­

normality testing as long as the structure of the covariance matrix is known. However, 

we show by Monte Carlo simulations that even a small misspecification of the 

covariance structure may well lead to an inconsistent test procedure, in the sense that 

the size will limit unity. Thus, the use of regular non-normality tests on variables with 

a complicated data generating process, such as in economic applications, is dubious. 

In addition our simulations reveal that the power can be reduced if the covariance 

matrix is unknown. 

In all, the two papers concern the problem of assessing normality on unobservable 

multivariate variables. The properties of the test methods have been investigated with 

respect to size and power under conditions that are of relevance in empirical studies. 

We have also proposed methods for controlling the size when the covariance structure 

is known. Moreover, as opposed to many other inference procedures where a good 

approximation of the covariance suffices to provide sound results, we conclude that 

non-normality testing must be done with great care. 
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ABSTRACT 

In this paper, a short background of the Jarque and McKenzie (1M) test for non­
normality is given, and the small sample properties of the test is examined in view of 
robustness, size and power. The investigation has been performed using Monte Carlo 
simulations where factors like, e.g., the number of equations, nominal sizes, degrees 
of freedom, have been varied. 

Generally, the 1M test has shown to have good power properties. The estimated size 
due to the asymptotic distribution is not very encouraging though. The slow rate of 
convergence to its asymptotic distribution suggests that empirical critical values 
should be used in small samples. 

In addition, the experiment shows that the properties of the 1M test may be disastrous 
when the disturbances are autocorrelated. Moreover, the simulations show that the 
distribution of the regressors may also have a substantial impact on the test, and that 
homogenised OLS residuals should be used when testing for non-normality in small 
samples. 
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I. INTRODUCTION 

The main purpose of this paper is to investigate the small sample performances 

of the Jarque and McKenzie (JM) test for non-normality when applied to system 

of regression equations, in view of robustness, size and power. 

The normal distribution is often considered as a mathematical abstraction 

without connection to reality. Some scientists even state that normality is a pure 

myth (e.g.,Geary (1». However, these claims are often based on the bare fact that 

an observable random variable Xd (d being the dimension of the variable) rarely 

fulfils two fundamental properties of the normal distribution; namely that the 

sample space should equal ]Rd, (for example, a one-dimensional random variable 

should be defined on the whole real line), and that of symmetry. Thus, variables 

such as the weight of newborn babies or the number of sunspots per day can never 

be normally distributed. Yet, these variables can often be approximately normally 

distributed, in the sense that the normal-theory can be used on them resulting in 

reasonable inferences of their nature. 

In this paper, however, we will approach the theory of normality from a 

different point of view; many stochastically phenomenons are assumed generated 

by one deterministic component and one stochastic, the latter being an 

unobservable error term. This random component is much more in line with the 

normal theory than is the observable ones. For example, the two conditions above 

mentioned are intuitively satisfied when the random variable is defined as 

deviations from a certain central measure. 

Particularly, in regression analysis the error terms are frequently assumed to be 

normally distributed. It is not very likely that small deviations from this 

assumption will cause any serious inferential complications. On the other hand, 

when the deviations are large it is well known that diagnostic test based on the 

estimated versions of the disturbances will be suspect. Therefore, it is crucial that 

the distributional properties of the disturbances are examined carefully. 
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The history of nonnality test goes way back to the early century. The first 

well-known test is probably that of Kolmogorov (2), who suggested a (non­

parametric) test using the empirical distribution function. The topic has then been 

developed successively, and a large variety of methods have been proposed, both 

for univariate and multivariate variables. Yet, it seems like minimal research has 

been made on the empirical properties on the latter of these methods. 

Apart from this, we have the additional complication of handling an 

unobservable random variable, rather than an observable. Habitually, the so-called 

OLS-residuals are used as a proxy to the (possible multivariate) unobservable 

variable. This method may seem natural and intuitive as the residuals (under 

regular premises) are consistent estimates of the true errors. 

It has been shown that the distribution of any goodness-of-fit statistic, which 

depends only on the empirical distributions of the residuals, converges to that of 

the true variable (e.g., Pierce and Kopecky (3)). Unfortunately, asymptotic results 

like this has implicated that residuals often are used as if they were identical to the 

disturbances. Consequently, the small sample properties of this negligent use have 

been given brief attention. 

The paper is organised as follows: Section II discuss the model specification. In 

Section ill, we discuss non-nonnality test, while in Section IV we present our 

Monte Carlo design used in this paper. In section V we present our most 

interesting results regarding the simulations. Finally, in section VI we give a brief 

summarisation. 

II. MODEL SPECIFICATION 

In this section, we will set up some standard assumptions of the underlying 

model. We do not claim that these are always realistic, but they do provide an 

idea of how the non-nonnality test that we are about to examine behaves under 

idealistic situations. 
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Consider a standard linear regression model 

Y(nxl) = X(nxk)f3(kXl) + £(nxl) (1) 

so that the model contains k parameters, with X strictly exogenous. Especially, 

the fIrst column of X contains a unit vector. We will then make the following 

assumptions: 

i. IX/XI "* 0 (X is of full rank) 

ii. V(£IX)= cr 2I 

iii. E(£IX)= 0 

iv. lim(.!. X/X)-l = Q-l , a fInite matrix. 
n-+oo n 

v. f(£)= f(-£) (wherefis the density function). 

Assumption i. is not crucial; it serves merely to simplify the calculations. On the 

contrary, assumption iv. is of great importance in the asymptotic theory of 

regression analysis. Whenever this limit is not a fInite matrix, the point estimates 

of the regression parameters may not be consistent, in which case the residuals 

will not be consistent estimates of the true disturbances. It should be noted that 

the regressors are usually stochastic in economic data, meaning that all statistics 

in this paper based on residuals, will contain a stochastic component, C say, that 

will be an ancillary statistic. However, we can treat the regressors as if they were 

fIx by conditioning on C (Cox and Hinkley (4» as long as assumption (iii) holds. 

This will implicitly be made throughout the paper. The last assumption is 

basically enforced in order to restrict the study within reasonable bounds. 

The above analysis is, however, only strictly applicable in a single equation 

environment. Many models are expressed in terms of systems of equations, for 

example time series models across different units, in particular demand and 

production functions. In general, some sort of covariance structure will connect 

the models. 
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Treating each model separately, and performing a succession of single equation 

misspecification tests, will lead to the problem of mass significance. Even though 

this problem can be handled by using multiple inference, e.g. the Bonferoni 

inequality or the union-intersection method, this would lead to a reduction in the 

validity of our conclusions as the problem is in its very nature multivariate.* 

Therefore it is necessary to consider several models jointly in a multivariate 

model. In this paper, we will limit ourselves to the simplest models. 

Consider a system of linear regression equations 

YI XI 0 0 /31 £1 
Y2 0 X2 /32 £2 

= + , 
: 

Yp 0 Xp /3p £p 

The residuals of the system are defined as 

£1 YI - XJ31 MI£I 

£(npXI) = £2 = Y2 - Xi32 = M2£2 ,where M j = 1-Xj (X~Xj t X~ . 
£p Yp - Xp{Jp Mp£p 

Throughout this paper we will assume that M J = M2 = ... = M p = M . 

Since M is symmetrical, there exists an L such that M = L(nxq)L(qxn) , where q 

is the rank of M which equals (n-k). As M is idempotent we have 

LL'LL' = LL' ~ L'L = I(qxq). Then, if we define i = L' £ it follows that 

£ - N(O,cr2Iqxq). These residuals can be considered as homogenised OLS 

residuals, and in what follows will be referred to as HOLS. 

* Edgerton et. al. (1996) and Shukur (1997) argue strongly for the use of 
systemwise misspecijication tests. 
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There may be other useful residuals than these mentioned above (e.g., Theil's 

BLUS residuals (Theil (5» or stepwise residuals (Hedayat and Robson (6), 

Brown et.al. (7». However, because of the simple structure and the ease of 

interpretation of OLS residuals and HOLS residuals, the study will be limited to 

these two types. 

III. NON-NORMALITY TESTS 

When testing for a particular distribution (or rather, for the deviation from an 

assumed distribution), it may seem natural to consider what characterise this 

certain distribution. The normal distribution is characterised by many features, in 

the sense that it possess properties that are unique for its distribution (e.g., Bryc 

(8), Lucaks and Laha (9». Consequently, many of these properties have been used 

to test for normality. For example, the normal distribution maximises entropy 

against any other distribution with the same variance (e.g., Vasicek (10», 

X and S~ are independent iff X follow a normal distribution (e.g., Rao (11», and 

so on. Then, there exist characterisations unique for any distribution, such as for 

example the distribution function and the characteristic function. Empirical 

versions of these have been used to test for non-normality as well (e.g., 

Kolmogorov (2), Epps (12». Conversely, it is not generally true that the moments 

of a distribution uniquely determine the distribution of a random variable. It is 

well known that it is possible to find two distinct distribution functions that have 

the same set of moments (e.g., Heyde (13». A sufficient condition for the moment 

sequence ~k} of a random variable X to uniquely determine the density function 

of X, is that the series 't f.1.k s k converges absolutely for some s > O. That this is 
k=l k! 

indeed true for the normal distribution is well known (e.g., Bryc (8». 

Consequently, it is possible to construct useful statistics that are based on 

functions of moments to test for non-normality. For example, moment ratios are 

defined as 
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A _ ~3~2n+3 
1-'2n+1 - n+3 ' 

~2 

A = ~2n+2 
1-'2n n+l· 

~2 

Especially, we have the well-known quantities 

Y 
_ fA _ ~3 

I -VI-'I -372 ' 
~2 

(2) 

(3) 

which are the skewness and kurtosis respectively (e.g., Kendall and Stuart (14». 

It is important to mention that tests based on skewness coefficients do not reliably 

discriminate between skewed and non-skewed distributions. This has been noted 

by several authors, e.g. Rayner and Best (15), who concludes that "moment ratios 

are not useful for the diagnosis of the type of non-normality". Horswell and 

Looney (16) writes, "The use of skewness tests to discriminate between skewed 

and symmetric distributions lacks theoretical foundation". Churchhill (17) proved, 

by giving a counterexample, that a distribution need not be symmetric even 

though all its odd moments vanish. 

Even though these arguments do not necessarily imply that moment ratios are 

strictly non-diagnostic in all possible situations, we choose to focus on an over-all 

(or "omnibus") test instead. Jarque and Bera (18) suggested such an omnibus test 

for non-normality by considering a density function of the Pearson family 

a f(xJ = (c i - Xj )f(xj )/(co -CIX j +c 2xn, 
ax; 

and specifying the hypothesis Ho: CI = C2 = 0 (Xi is normally distributed). 

By using the Lagrange multiplier approach they suggested the well-known 

statistic 

T = 12 + Y 2 
- ,where N is the number of observations. ,

A2 (A 3YJ 
6 24 

(4) 

The statistic T (some times denoted as JB) is asymptotically distributed X(2) 

under the null hypothesis. 
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Statistics expressing multivariate skewness and kurtosis have been proposed by 

several authors, e.g. Mardia (19), Malkovich and Afifi (20) and Srivastava (21). 

The first of these is defined as follows: 

and (5) 

where 

The population counterparts of (5) are 

Yl.p = E[ (X - J.1) L-1 (X - J.1)J, Y 2.p = E[ (X - J.1) L-1 (X - J.1)T . (6) 

For a location scale variable X p , we have the well known results 

( )_ Y2p -P(P+2) ~ ( ) 
D2 X - ~ N 0,1 . 

8NP(P+2) 

Jarque and Mckenzie, (22) suggested the combination 

L 

D p (x)- X~+P(P+l)(P+2)/6 • * (7) 

The null hypothesis Ho: E - N(O,L) is then rejected at thea-level whenever 

D p (E) > '11 where P ( D p (E) > '111 Y 1.P = 0 (l Y 2.P = P (2 + p) ) = a . This test will be 

the focus of the paper. It can be shown that D p (i) have the same asymptotic 

distribution as D p (E). It should be noted though, that the estimated skewness and 

kurtosis are not unbiased. Huang and Bolch (23) showed that the skewness and 

kurtosis of the residuals are always biased towards their expected values under the 

Ho when Ho is false. 

• Note that when P=l the Dp statistic reduces to the JB statistic in (4). 
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A nice fact is that Dp is invariant to linear transfonnations. This compensates 

the well-known fact that Dl and Di converge very slowly to its asymptotic 

distributions, since modern computers provide us with the possibility of 

simulating empirical critical values with high precision. All together, we find the 

JM test suitable for systems of linear regression models. 

There are several other omnibus tests for nonnality that have been shown to 

perfonn well against a variety of alternative distributions (Horswell and Looney 

(24), Mardia and Foster (25)). Since these tests are based on the same principles 

as the one above, we expect them to behave similar to that of (7). 

IV. THE MONTE CARLO EXPERIMENT 

The design of a good Monte Carlo study is dependent on (a) what factors are 

expected to affect the properties of the test under investigation and (b) what 

criteria are being used to judge the results. We will in what follows look at these 

questions in more details. 

When investigating the properties of a classical test procedure, two aspects are 

of prime importance. Firstly, we wish to see if the actual size of the test (Le., the 

probability of rejecting the null when true) is close to the nominal size (used to 

calculate the critical values). Given that the actual size is a reasonable 

approximation to the nominal size, we then wish to investigate the actual power of 

the test (i.e., the probability of rejecting the null when false) for a number of 

different alternative hypotheses. 

First, we want to study the size property using the asymptotic distribution of 

the statistic. Second, we wish to use the fact that the statistic is invariant to linear 

transfonnations in order to generate empirical critical values, and study the size 

and power properties of this approach. Several factors are expected to affect the 

properties of the JM test. We will here try to cover various combinations of some 

of these in order to examine the properties of the test. In Tables I and II, we 
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present a summary of the Monte Carlo design used in this paper. Relevant factors 

considered in this study are 

i. The nominal size, a . 

ii. The number of equations P. 

iii. The sample size n. 

iv. The alternative distribution HA • 

A number of other factors can also affect the properties of the JM test. The 

impact of the biases in the estimated residual moments due to the M matrix on the 

JM test is unknown. The distribution of X and the stochastic properties of the 

residual are thus obvious candidates to examine. In a later section of this study, 

we will consider these in some more detail. Another relevant feature is to examine 

the robustness of the JM test against autocorrelation (which is frequently 

appearing in economic data). This will as well be treated in the experiment. 

Our primary interest lies in analysis of system wise tests, and thus the number 

of equations to be estimated is of central importance. The number of equations in 

econometrics is rarely larger than 10. Based on this, we examine k = 1, 2, 5, 10. 

Since the test is known to be consistent against any distribution with non-normal 

skewness or kurtosis, and the residuals are also known to be consistent estimates 

of the disturbances, it follows that the whole test is consistent. We will therefore 

focus on small samples. As we are also interested in the interaction between 

sample size and number of equations, the number of degrees of freedom (v) is 

held constant when comparing models with different numbers of equations. As 

previously mentioned, one of the objective of this study is to investigate the 

properties of the JM test in small samples, hence we used values of v ranging 

from 5 to 125 degrees of freedom. 

Another purpose of this study is to examine how fast the size of the test 

converges to the actual size. Since the experiment is performed using a finite 

number of replicates, we must be able to distinguish simulation fluctuations from 

biases in the test. One possibility to do this is to calculate an approximate 99% 

confidence interval for the actual size a: 
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~&(l-a) 
a±2.575 R 

where a is the estimated size and R is the number of replicates. To judge the 

reasonability of the results, we require that the estimated size should lie within the 

99% confidence interval of the actual size. For example, if we consider a nominal 

size of 5%, and when we operate 100 000 replications, we define a result as 

reasonable if the estimated size lies between 0,0482 and 0,0518. Even if the actual 

size of a test correctly corresponds to the nominal size, the test will be of little use 

if it does not have sufficient power to reject a false null hypothesis. In the rest of 

this section we will consider this question in some more detail. There are two 

different ways that a distribution can depart from multivariate normal kurtosis: 

i. At least one marginal kurtosis, Ya,b,c,d for a = b = c = d, is different 

from 3. 

ii. Other non-univariate fourth-order moments have non-MVN values. 

Horswell and Looney (24) refer to these departures as "visible" and "invisible" 

kurtosis respectively. In a similar way, the departures from MVN can also be 

visible or non-visible skewness, as well as combinations of the both. In order to 

test for departures of the "invisible" type, we make use of the non-MVN 

distribution of Khintchine. Let Xi = TtiRP, i =1,2, ... P, where 

U - U[O,l], R j - [r(2,p)r and p(TtJ= {0.5 Tt j = 1 . 
0.5 Tt j =-1 

TIte coefficient of kurtosis is then detennined by p, = r(p; 4< )r;) (Johnson 
r +21' 

(26)). Fixating /32 = 3 and choosing an arbitrary value for 1', we can obtain the 

value of p by numerical optimisation. In this study we choose 'ti = 0.1, 't2 = 3.5 

with the corresponding values PI = 0.12757 P2 = 89.507 . 
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The two Khintchine variables will be denoted as KI and K2 respectively. In 

addition, we will examine two cases: Rl = R2 = ... = Rp and Ri * Rj respectively. 

In order to get an idea of the shape of these (marginal) distributions KI and K2, 

500 000 pseudo observations have been simulated for each of them. In addition, 

KI and K2 have the same scale so that 11- = 0, 11-2 = 1, 11-3 = 0, 11-4 = 3 for both of 

them. Their densities are displayed below. 

40000 

30000 

20000 

10000 

·3 ·2 -1 0 
K, 

40000 

30000 

10000 

~ 4 4 4 ·1 0 1 2 3 4 5 
K, 

Note that the K2 distribution would be almost impossible to distinguish from 

the normal distribution by simply studying the histogram. Moreover, since it is 

well known that the disturbances in economic data tend to have "heavy tails", we 

also use marginal t-distributions as alternative distributions. Another purpose of 

this paper is to investigate if the properties of the JM test will be adversely 

affected by an AR(1) or an MA(1) structure in the error terms. These two 

processes will so be included in the experiment. 

TABLE I. 
Values of Factors Held Constant that May Affect the JM Tests 

Factor Value 

Properties of X in repeated samples Stochastic 

Structure of the error terms White noise, AR and MA 

Number of X variables 5 
Mean of X variables 0 
Order of error AR processes 1 
Order of error MA processes 1 
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TABLE II. 

Values of Factors that Vary for Different Models-Size and Power Calculations 

Factor Symbol Design 

Number of equations n 1,2,5,10 
Degrees of freedom V 5,15, ... , 125 
Nominal size a 1%,5% 

AR parameter for errors 4> 0, .3, .5, .7, .95 

MA parameter for e 0, .3, .5, .7, .95 
errors 

Distribution of X variables Normal, t(7), ~5)' ~3)' ~l) 
Distribution of error terms Normal 

only for power calculations) ~7)' ~5), t(3), ~l)' and Kh K2 

v. RESULTS 

In this section, we present the most interesting results along with results of the 

main dominating effects of our Monte Carlo experiment regarding both size and 

power properties of the JM test. Since the experiment is quite extensive this must 

be done in a fairly compact manner, full results are, however, available from the 

authors. 

SIZE PROPERTIES: 

In this subsection, results concerning the size properties of the JM test are 

presented in graphic forms. These plots make it possible and easy to find out 

situations under which the tests may systematically over- or under-reject, or reject 

the null hypothesis about the right proportion of the time. The first four graphs 

show the empirical size of the JM test under ideal premises (i.e., iid errors), while 

graph 5-6 concerns the empirical size when the independency assumption is 

violated. The size has been estimated from 1 million Monte Carlo replicates. 
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Figure 1. The estimated size for the JM test at 1% and 5% levels using 

asymptotic null distribution and N(O,l) regressors. The upper line corresponds to 

the 5% level. 
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In Figure 1, we present the results of the estimated JM test at the 5% and 1 % 

nominal sizes in systems ranging from one to ten equations where the regressors 

follow a N(O,I) distribution. Looking at these graphs for the 5% nominal size, we 

can see that the test does not perform very well, in the sense that it under rejects, 

especially in small samples and large systems. On the contrary, when looking at 

the 1 % nominal size, the test tends to over reject. One possible explanation may 

be that the small sample distribution of Dp is skewed, relative to the chi-square 

distribution. We will, however, not pay any further attention on this problem as 

the empirical critical values are easy to obtain, and performs well (see Fig 2). 
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Figure 2. The estimated sizeJor the JM test at 5% and 1% levels using empirical 
critical values (simulated with 10 million replicates) and N( 0,1) regressors. The 
upper line corresponds to 5% level. 
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In Figure 2 we clearly see that empirical critical values are indeed a good tool 

for controlling the size of the JM test. Even though the empirical critical values 

have been generated from a model with just an intercept, the size level is 

maintained when using a regressor matrix of 5 normally distributed regressors. 

The test performs satisfactorily even in small samples and large systems of 

equations. Also, the fact that the empirical critical values have been calculated 

from a finite number of observations seems to be negligible as the random 

fluctuations are of smaller magnitude than the third digit. 
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Figure 3. The estimated size for the JM test at 5% level using empirical critical 
values and t(l). t(3). t(5). t(7) distributed regressors. The upper line corresponds to 
t(J) , the lowest to t(7)' 
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In Figure 3, we present the results of the estimated size of the JM test, at the 

5% nominal size in systems ranging from one to ten equations where the 

regressors follow t-distribution with different degrees of freedom. The same set of 

empirical critical values have been used as in Figure 2. When considering Figure 

3, we can see the impact of heavy tailed regressors on the JM test. The test 

performs well in small systems of equations or in large samples, while it performs 

extremely badly, in the sense that it over rejects, in small samples and large 

systems. 
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Figure 4. The estimated size for the JM test at the 5% level using empirical 
critical values and t(1) distributed regressors and homogenized OLS residuals. 
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Figure 4 visualises that homogenised regressors is indeed a good remedy for the 

bad effect of the fat tailed distributed regressors (which we previously mentioned 

in Section IT). Again, the same set of empirical critical values as in Figure 2 have 

been used. 
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Figure 5. The estimated size for the JM test at 5% level using empirical critical 
values and AR(1), <l> =0.95, 0.7, 0.5, 0.3 distributed disturbances and 

N(O,l)distributed regressors. The upper line corresponds to <l> = 0.95, while the 

lowermost to <l> = 0.3. 
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Figure 5 reveal that the JM test is sensitive to autocorrelation. The AR(1) process 

seems to have a serious effect on the properties of the JM test. For example, if we 

are analysing a system of 5 equations with 80 observations when the disturbances 

follow an AR(1) process with intensity parameter 0.95 (which is not an unrealistic 

case), we will reject the null hypothesis (when the null is true) in 99% of the cases 

in repeated sampling! 
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Figure 6. The estimated size for the JM test at 5% level using empirical critical 
values and MA(1), e =0.95,0.7,0.5,0.3 distributed disturbances and 
N(O, 1) distributed regressors. The uppermost lines corresponds to e = 0.9, while 

the lowermost line corresponds to e = 0.3. 
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In Figure 6, we present the results of the JM test when the error terms follow an 

MA(1) structure with different parameters. The effect of the MA(1) process on 

the properties of the JM test is less than that of the AR( 1) process, but it is still 

serious especially in large systems of equations. For the special case of P = 1 the 

test remain robust though, at least within the examined range of degrees of 

freedom. 
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POWER PROPERTIES: 

In this subsection, results concerning the power properties of the JM test 

against two families of alternative distributions are presented. All the presented 

results here are at the 5% significance level, using empirical critical values. The 

power functions of the JM test were estimated by calculating rejection frequencies 

from 100 000 replications for error terms that follow l(7), l(5), t(3), l(l), and K1, K2 

distributions. 

Figure 7. The estimated power for the JM test at 5% level using empirical critical 

values with t(1), t(3), t(5), t(7) distributed regressors. The uppermost lines correspond 

to t(I), while the lowermost lines correspond to t(7). 
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In the figure above we observe high power against t-distribution with few df. In 

fact, the kurtosis for l(l), t(3) does not exist at all. Still, the JM test seems to detect 

these distributions perfectly. 
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Figure 8. The estimated power for the JM test using empirical critical values and 
KI, K2 distributed disturbances. The two uppermost lines correspond to Kl and 

K2 with identical uniform components, while the lower lines correspond to Kl 

with independent uniform components. 
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Figure 8 reveals some interesting feature. The power against the KI distribution 

with independent gamma generators is literally zero. In fact, the power even 

seems to be lower than the nominal size, which may seem curious. On the 

contrary, the power against the KI and K2 with identical gamma generators is very 

high. In addition, the test appears to be invariant to the value of 't . 
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VI. SUMMARY AND CONCLUTIONS 

In this paper we have studied the properties of system-wise JM test for non­

normality when the error terms follow a normal distribution, t-distribution with 

different degrees of freedom, and non-MVN distribution of Khintchine. 

The investigation has been carried out using Monte Carlo simulations. Several 

models were investigated regarding the size of the tests, where the number of 

equations, degrees of freedom and stochastic properties of the exogenous 

variables have been varied. For each model we have performed 1000,000 

replications and studied two different nominal sizes. The power properties have 

been investigated for using 100,000 replications per model, where in addition to 

the properties mentioned above the distribution of the error terms have also been 

varied. 

Since it is well known that both of the components of the test statistic D p 

converge slowly to their asymptotic distribution, we expect the Dp statistic to 

converge slowly as well. This fact is clearly reflected in the experiment. What 

may seem surprising is that the size is overestimated at the 1 % level while it is 

underestimated at the 5% level. One possible explanation may be that the small 

sample distribution of D p is skewed, relative to the chi-square distribution. When 

using the empirical critical values instead, the test has shown to perform as 

expected. Consequently, we recommend that empirical critical values should 

always be used for the JM test. 

The effect of the heavy-tailed or extremely skewed regressors has shown to be 

substantial, especially in small samples and large systems. However, the 

homogenised OLS residuals have indeed shown to be a good remedy for this 

problem. 

A much more disturbing fact is that the impact of the autocorrelated 

disturbances on the JM test is devastating. For high autocorrelation parameter and 

large systems, the JM test tends to reject 100% of the time under the null 

hypothesis. In fact, the test is not consistent when the auto covariance is non-zero 
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for any lag. This may be a serious problem in using moment-based tests for non­

normality. 

The power of the 1M test seems to be high against most of the treated 

alternative distributions. In general, the power increases with the number of 

equations. The marginal distributions that have non-normal fourth moment, 

results in rather high power, even for relatively normal-close distributions as t(7). 

In stark contrast, the power against the KJ distribution with independent 

gamma generators is literally zero. In fact, the power even seems to be lower than 

the nominal size, which may seam curious. On the contrary, the power against the 

KJ and K2 distributions with independent gamma generators is very high. This is 

an illuminating result, since the power following from performing equation-wise 

tests would be zero. Another interesting feature is that the powers for KJ and K2 

are identical. This suggests that the test is invariant to the value of 't . 

One obvious weakness of the JM test is that it is non-diagnostic. A natural 

question is what to do if a diagnostic test is needed. One possible solution is to try 

to find sufficient conditions, if possible, for the sample kurtosis and skewness to 

be strictly diagnostic. However, the assumption of symmetric distribution is quite 

reasonable, since our variable of interest is indeed noise, and noise should have 

the property f ( I.:: ) = f ( -I.:: ). Still, in order to have power against skewed noise 

due to misspecification, we feel that an omnibus test should be used, rather than 

relying totally on the symmetry assumption. In fact, deviation from normality, as 

well as autocorrelation, can be viewed as misspecification of the model. 

One important issue that is of great relevance is in what situations non­

normality is so serious that it ruins the whole modelling procedure, i.e. when 

should normal-theory be abandoned (in favour for e.g. non-parametrical 

methods)? This question is however beyond the scope of this paper, but we would 

like to stress that this issue is important to consider when judging the result in this 

paper (or performing non-normality test on real data). 
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ABSTRACT 

The problem of testing for non-normality in multivariate regression models when 

non spherical disturbances are present is considered by means of Monte Carlo 

experiments. We give a reason why moment based non-normality tests, e.g. the 

Jarque&Bera test and multivariate extensions, generally fail when the data is not 

independent identically distributed. We propose several possible choices of proxy 

variables to the unobservable errors, which are applicable to non-normality testing as 

long as the structure of the covariance matrix is known. However, simulations reveal 

that even a small misspecification of the covariance structure may well lead to an 

inconsistent test procedure in the sense that the size will limit unity. We argue that the 

use of regular non-normality tests on variables with a complicated data generating 

process, such as in economic applications, is dubious. 
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I. Introduction 

A frequently occurring problem in statistics is that many diagnostic tests are not 

unique, in the sense that tests to one certain specification may be highly sensitive to 

another specification. Thus, the practitioner may be totally misled, trying to re-specify 

hislher model in a wrong direction. One specific example is given in Holgersson and 

Shukur (1), where Monte Carlo simulations reveal that skewnesslkurtosis tests for 

non-normality are highly sensible to autocorrelation, especially in large samples and 

high-dimensional variables. Indeed, the non-normality test appears to be consistent 

against autocorrelation. Also, autocorrelation or heteroscedasticity is well known to 

have the effect of making point estimates of regression parameters inefficient. A 

natural approach is then to handle the autocorrelationlheteroscedasticity first and then 

apply the non-normality test, so that the practitioner may test that the final model is 

not only iid, but also iid normal. We will, in what follows, consider this approach in 

some more detail. 

The main purpose of this paper is to investigate the usefulness of various residuals 

resulting from a generalised least square (OLS) or feasible generalised least square 

(FOLS) estimation to test for non-normality, including the possibility of a small (and 

thus realistic) misspecification of the covariance matrix. 

The paper is organised as follows. In the next section we present the model we 

analyse. In section III we show why standard tests for skewness and kurtosis, e.g. the 

Jarque and Bera (2) test, will not converge to its asymptotic null distribution when the 

variable is non-iid. Section IV is concerned with possible choices of observable proxy 

variables to the unobservable disturbances along with some asymptotic properties. In 

section V we present the Jarque and Mckenzie (3) test and show how an exact size 

can be obtained if the covariance matrix is known. In section VI we present the design 

of the Monte Carlo experiment, while the results concerning size and power are 

presented in section VII. Finally, a brief summary is given together with some 

conclusions in section VIII. 
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II. Model specification 

The model considered in this paper is the multivariate regression model 

(1.1) 

where, by assumption, E[U'] = a 2n, n a positive definite (p.O.) matrix, 

E[ x'n-I, ] = O. Further on, define X: = n-1/2x and let d;'k: = 'L:I xi7, 1= 1,2, ... , k . 

We then assume that plimd;'k = 00 and that plim(X'it is P.O. A frequently made 

assumption of (1.1) is that' is normally distributed. That a variable is normally 

distributed is a somewhat vague property that may lead the practitioner to believe that 

a non-normality test is assessing whether a variable belongs to the family of normal 

distributions or not. This is not the case as most standard tests are under the null 

hypothesis assuming that , is (multivariate) iid normal. Thus we invoke two 

assumptions in the null hypothesis, which is often overlooked. The density function 

of a multivariate normally distributed variable is given by 

Whenever E '# a 21, the errors are said to be nonspherical. Two such cases which will 

be considered in detail are heteroscedasticity and autocorrelation. Apart from 

difficulty with assessing normality (see Section III), the main problem with non­

spherical errors is that the point estimates of the regression parameters will be 

inefficient, and that the interval estimates can be underestimated. If the variables are 

not iid due to autocorrelation, the problem is usually overcome by re-specifying the 

model. However this approach often fails, due to the complexity of the data 

generating process. Heteroscedasticity often arises naturally in a model due to the fact 

that the variance is a function of the regressors. It is well known for example, that the 

variability in savings is larger for those with large income than for those with a small 

income. In such situations the GLS method is commonly used. For multivariate 

regression we can describe the method as follows: 
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Let E[££'] == E == 0"2n. If n is known, we can perform the transformation 

Y = XB+£ ~ n-I/2y = n-1/2x +n-1/2£, so that E[ n-1/2£ (n-1/2£)'] = 0"21. The OLS 

estimates of the regression parameters of the transformed model above are both 

unbiased and efficient. Additionally, the transformed errors n-1/2£ are useful in order 

to make inferences of the true errors, e.g. to test for non-normality as in our case, 

since the covariance is scalar. Unfortunately, n is usually unknown, meaning that we 

have to consider an estimated version and rely on asymptotic properties. Furthermore, 

£ is unobservable, which means that it has to be estimated first, resulting in a three­

stage estimation procedure. It is therefore relevant to examine the small sample 

properties of this approach. We will discuss these problems further in chapter IV. 

III. Failure of skewness and kurtosis testing of non-iid variables. 

The skewness and kurtosis coefficients are frequently used to test for non-normality. 

Particularly popular is the Jarque and Bera (2) omnibus test (JB), with its statistic 

defined as {Ny21/6}+{N(Y2 _3)2 124}, where YI andY2 are the sample skewness 

and kurtosis coefficients. When the target variable is iid normally distributed, the 

standardised statistics above are each asymptotically X(I) distributed. If the 

observations are not independent, i.e. if 0'2n '* 0'21 due to autocorrelation, the JB 

statistic will not converge to its null distribution, as is exemplified in Holgersson and 

Shukur (1). To obtain an explicit reason for the non-convergence of the statistic in this 

case, we use the result of Lomnicki (4): Consider a univariate time series 

XI = thjc/-i' where I,:llhjl<oo and cl - iid N(O, 0"2) with autocorrelations 
j=O 

Pj:=E(XIXI_j)/E(Xn. Lomnicki showed that, for a one-dimensional random 

From that follows immediately that 

Pk ,*O=>{NYI,I/6}+{N(Y2.1- 3f 124}~X(2) 'fiik""o· (3.1) 
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To examine the null distribution of the JB statistic for the case where a 2n,;:. a 21 due 

to heteroscedasticity rather than autocorrelation, we use the result of Kendall and 

Stuart (5), that, given normality: 

and 

The moments of the univariate skewness and kurtosis coefficients for heterogeneous 

observations can then be obtained by assuming that {Xi r=1 are independently 

distributed N (0, cr; ), and that lim --;. L ~_I ~ = o. The numerators of the quotients 
n~oo n 1-

above are given in (5), from where we have (using leading term approximations): 

E[ m;] =--;'E[L;=I X: + (9/n2)(Lx;x;xn-(6/n )(Lx;x;)]+o(n-ll2) = 
n iC¢kC¢i JC¢k 

--;'[15L : 1 cr~ + (9/n2 )(Lcr~cr~crn- (18/n )(L~~cr~)]+o( n-I12 ) (3.2) 
n i"kc¢i Jc¢k 

Following Magnus (6) we have (again using leading term approximations): 

E[ m;J= [(tr(n)r +2tr(n2)J/n2 = L~;cr~/n2+o(n-1/2) 
IC¢J 

(3.4) 

From these expressions it follows immediately that if cr~ ,;:. cri ,;:. ... ,;:. cr; then the 

variance of YI' i.e. (3.2)/(3.5), will in general not limit 6, and the expectation of Y2' 

i.e. (3.3)1(3.4), will not limit 3. Hence, 

(cr~ ,;:.cri ,;:. ... ,;:.cr;)~{NYI.I/6}+{N(Y2.1-3t 124}~X(W (3.6) 
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In addition, measures of multivariate skewness and kurtosis that are extensions of 

those above, e.g. LUtkepohl and Theilen (7), Malkovich and Afifi (8) or 

Jarque&McKenzie (see Section V) will in general not converge to its null distribution 

when the covariance of the disturbance vector is non-scalar. Indeed, it is likely that 

most standard non-normality tests, for example those based on empirical distribution 

functions or empirical characteristic functions, will not converge to their null 

distributions if the data is not iid, as they usually measure the complete distribution of 

the target variable. Consequently, accepted null hypothesis will indicate that the data 

is normally distributed (though not necessarily iid normally distributed, as consistency 

of those tests against heteroscedasticity or autocorrelation remains to be shown). 

However, a rejected null hypothesis may either be due to non-normality or non-scalar 

covariance matrix. Thus standard tests for non-normality are diagnostic only if it is 

known that the target variable is (at least asymptotically) iid. As non-iid data are 

frequently occurring, the impact on these for multivariate non-normality tests is of 

great interest. 

Another issue is how to overcome the problem. There are two obvious possibilities. 

One is to construct tests that are robust to non-iid data (i.e. to construct tests that 

assess the distribution of , ). The second, which we will consider here, is rather to 

assess the distribution of transformed variables with scalar covariance matrixes, e.g. 

0.-1/2, . LUtkepohl and Schneider (9) examined the possibility of using residuals for 

evaluation of the distribution of the random component for the case of pure 

autoregressive processes. In our case with exogenous information, the most natural 

approach is to use GLSIFGLS estimation, thus covering heteroscedasticity as well, 

though residuals from autoregressive processes can also be used. In fact, there exist 

many possible choices of variables that are asymptotically iid, and therefore may be 

used for non-normality testing. For example, one may use residuals from FGLS 

residuals, residuals from iterative FGLS or transformed ordinary least square 

residuals. In this paper we will give a few examples of such useful variables, apply a 

non-normality test on them and compare the size, power and robustness. In the next 

section we present the variables used in the study, along with some asymptotic 

properties. 
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IV. Proxy variables to the unobservable disturbances. 

Often we want to make some inferences on the disturbance component E of (1.1). As 

this is unobservable we will have to use an observable proxy variable instead, usually 

the residuals i = y - Y . A specifically useful property of these that ensures their 

usefulness in diagnostic testing is that they converge in probability to the true 

p 

disturbances, i.e. IEj,n -Cj l-70. Indeed, it is also well known that i is the best linear 

unbiased estimate to E (the word "estimate" applied to a random variable is 

sometimes subject to debate, the alternative notation being "prediction", but we prefer 

"estimate" in order to stress that we are not interested in guessing future values). 

However, our problem is to estimate n-1/2
E which is a somewhat different task, and 

we will see below that these estimates do not in general converge in probability to 

their unobservable counterpart. In fact, none of the estimates of the unobservable 

variable that we will consider here are residuals in the sense that they are defined as 

i = y - Y , but they are residuals in the sense that they will limit the distribution of 

the disturbances. Rather, they can be thought of as quasi residuals, although we will 

refer to them as residuals anyhow, in lack of a better word. Below we will discuss 

different possibilities of choosing such residuals. As the residual vector cannot 

formally have a limit (because the dimension grows with n) we will state the 

following: 

Definition: 
p. p 

i. Xn -76n: = Xj,n -78p (i = 1,2, ... ,n), i.e. elementwise convergence in 

probability, though the dimension of 6 is allowed to grow with n. 

e. e 
ii. Xn -75n: = Xj,n -75j , (i = 1,2, ... ,n), i.e. elementwise convergence in law, 

though the dimension of 5 is allowed to grow with n. 

This definition will make it possible for us to adequately talk about limiting properties 

of residual vectors in a meaningful way. 
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i. One-step residuals. 

The GLS estimates of the regression parameters are obtained by performing the 

transformation 

Y = XB + £ ~ ,g-1/2y = ,g-1/2X + ,g-1/2£ ,or, Y = XB + i , (4.2) 

so that E[ ,g-1/2£ (,g-1/2£ )] = 0 21. The GLS transformation matrix for a regression 

model with AR(p) disturbances is well known and can be written as ,g = h ( q, ), where 

h(·) is a function given by the autoregression parameters (Gailbraith and Zinde-Walsh 

(10) supply exact and asymptotic expressions for a general stationary ARMA 

process). The transformation matrix for heteroscedastic variables can be of the class 

treated under Subsection ii below. The GLS estimates of B is then the usual OLS 

estimates of the transformed variables: 

B = (X/Xf' X'V (4.3) 

We will then define the estimate of ,g-1/2£ as 

(4.4) 

which can be considered to be one-step residuals as they result from one estimate. It is 

,. I· A [-

shown in Appendix Al that, given normality, il,A ~i, il,H ~i (where subscripts A 

and H denotes autocorrelation and heteroscedasticity). This fact ensures that the 

residuals are useful for non-normality testing. 

ii. Two-step residuals 

Usually ,g is unknown and have to be estimated. As this estimate generally is a 

function of the true unobservable disturbances, this has to be estimated first, hence the 

term two-step residuals. 

Let us consider the situation with heteroscedastisity to begin with, where the structure 

of ,g is a function of a subset of the regressors, i.e., 

Let where 
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illii = v ( Ci,j ) = X2,iO, i = 1,2, .. N, j = 1,2, .. P. Estimates of illii can then be obtained 

from the linear regression model (E 0 E ) = X20 + v (where v is an additive error term 

and 0 is the Hadamard product) by the OLS estimates e = (X;X2 t X2' (E 0 E ) . 

Since 01 = ... = Op by assumption, we can take Q = diag (x2e) , where 

e: = L ;=1 e j / P. With E replaced by E (the OLS residuals), our feasible estimate of 

n will be written as iJ. = diag ( xJ) . Using the estimated covariance matrix we can 

then obtain an estimate of i by 

(4.5) 

" e· 
It is shown in Appendix A2 that, given normality, iU,H -7i. 

The case of autocorrelation will be handled somewhat differently. Consider the AR(q) 

process 

(4.6) 

where Zi,t = [Ei'H + ... +Ei,t-q], CPi = [CPi,i' .. ,CPi,q J' and the roots of (1- L~=ICPi,jZj) lies 

outside the unit circle. The OLS estimate then becomes ~ = (Z~,tZi,t t Z~,tE i,t . Again, 

since Ei,t is unobservable, we use Ei,t to obtain the feasible OLS estimate 

~ = ( Z~}~i,t r Z~ii,t' From this estimate we could achieve an estimated covariance 

matrix, and perform a transformation like that of (4.5). However, another type of 

residuals is frequently used in the literature, namely the so-called auxiliary regression 

residuals. It is therefore relevant to examine them. We define this variable as 

(4.7) 

" /. 
It may be shown that, given normality, iU,i,A -70i (Appendix A2). The argumentation 

above is easily extended to an arbitrary q. Consequently, iII,A:=[Au.I,A AU•2,A ... AII,p,A ] 

can be used to examine the distribution of 0A' As (4.5) and (4.7) result from 

estimating E first from the OLS estimate and then estimating cP and 0 from the OLS 

residuals, we will refer to these as two step residuals, thus the index II. 
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iii. Three-step residuals 

The two-step residuals mentioned above are perhaps not the most intuitive to use, at 

least not for the case of heteroscedasticity. Rather, one may employ the residuals from 

the transformed FGLS model. Using the estimated covariance matrixes treated in 

subsection (ii), we may perform the transformation 

(4.8) 

The estimated covariance matrix for the case of heteroscedasticity is given in (ii). For 

multivariate FGLS to operate in the case of autocorrelation we assume 

cI\ = ~ = ... = q,.,. We then take the mean value of the estimates above as our final 

estimate: ~ = L~=l ~i /p . The residuals of (4.8) is then 

A I- A /. 

Given normality it may be shown that i m•H ~i, iIII,A ~i (Appendix A3). These 

vectors results from first calculating the OLS residuals, then estimating the covariance 

matrix, and finally calculate the FGLS residuals. We will therefore refer to these as 

three step residuals. 

The rate of convergence of the one, two- and three step residuals mentioned above are 

likely to differ. Also, they are all functions of the regressors, so the distributional 

properties of the regressors will affect the distributional properties of the proxy 

variables. In addition one may expect that they are unequally robust to 

misspecifications of the autocorrelation or heteroscedasticity. We will therefore 

explore and compare the properties of the residuals of Section IV by means of Monte 

Carlo simulations, where factors such as distribution of regressors and covariance 

structures are varied. We will discuss this further on in Section VI. 
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V. The Jarque&McKenzie non-normality test. 

Tests of marginal normality do not examine multivariate normality as they ignore the 

correlations between the variables. Consequently, genuine tests for multivariate 

normality are needed in order to assess multivariate normality. As we are merely 

interested in the properties of the residuals' usefulness to test for non-normality, 

rather than the properties of various tests, we will choose one single non-normality 

test with known (good) properties. One such test is the Jarque and Mckenzie (3) test 

statistic (JM), which is the sum of Mardia (11) measures of kurtosis and skewness 

defined as 

Estimates of these measures are 

with 

D = NYl p ~ 2 
1 6 X(p(P+l)(P+2)/6) , 

where N is the number of observations. Jarque and Mckenzie (3) suggested the 

omnibus test 

e 
Dp (X) = Dl (X)+ D~ (X), where Dp (X)-7X~+p(P+1)(P+2)/6' (5.1) 

The null hypothesis Ho: X - N (0,1;,8) is then rejected at thea-level whenever 

Dp(X»fJ where p(Dp(X»fJIY1.p =Ony2,P =P(2+P))=a.. 

Note that, according to (3.1) and (3.6), we need 8 = (J2I for (5.1) to hold. As the 

limiting null distribution of any of the residuals i in Section IV equals that of the true 
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disturbances, Dp (i) can be used in order to test for non-nonnality. However, the 

small sample properties of i will depend on X. It is shown in Holgersson and 

Shukur (1) that the size of the JM test might be biased in small samples, due to the 

properties of X. In addition, the JM statistic itself converges rather slowly to its 

asymptotic null distribution. But when Q is known, we can actually do better than 

base the JM test directly on the GLS residuals. As the JM statistic is invariant to linear 

transfonnations, the size may be controlled by Monte Carlo techniques in the 

following way: Let Tbe a statistic such that the null hypothesis, Ho: i - N(0,~,cr2I), 

is rejected when T ~ c, and let G (x) = P [T ~ x] so that G ( c) = a. Then define 

- ( ) }/" rGr (x)+1 . .. Gr x = #fl~ ~ x r, Gr (x) = , where T; (l = 1, 2, ... ,r) IS an mdependent 
r+l 

realisation of T (i.e., a Monte Carlo replicate under the null hypothesis). The 

associated (Monte Carlo) critical region is then defined as Or (To):::; a, so that Or (To) 

may be interpreted as an estimate of G (To). If a (r + 1) is an integer, we have 

p[ Or (To):S a ] = a (see e.g. Dufour, et. al. (12». As E is unobservable, we can use 

the observable linear combination £1:= (I - X (XX) X) i = Mxi, i.e. our one-step 

residuals, to obtain a Monte Carlo critical region for G ( Dp (E)) by simply taking 

To = Mxi and T; = MxOi ' where 0i - N P,N (0, I(I'XP)' I(NXN))' since 0 has the same 

distribution as i under the null hypothesis. The null hypothesisHo: E - N(O,~,E) is 

then rejected at the a-level whenever i.e. 

By using this approach for the GLS residuals we obtain an exact inference procedure 

that will be equivalent to using the true unobservable disturbances in conjunction with 

exact critical values for the statistic. 
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VI. The Monte Carlo design 

In this section we will discuss some characteristics that are involved in the problem of 

testing for non-normality in multivariate regression with non-spherical disturbances of 

known and unknown structures as in the situations mentioned in Section IV. First, we 

wish to see if the actual size of the test (i.e. the probability of rejecting the null when 

true) is close to the nominal size. Since the experiment is performed using a finite 

number of replicates, we need to be able to distinguish simulation fluctuations from 

biases in the test. One possibility to do this is to calculate an approximate 95% 

confidence interval for the actual size a: 

4U(1-a) 
a±1.96 R . 

where a is the estimated size and R is the number of replicates. To judge the 

reasonability of the results, we require that the estimated size should lie within the 

95% confidence interval. For example, if we consider a nominal size of 5%, and we 

operate 10 000 replicates, we define a result as reasonable if the estimated size lies 

between 0.0457 and 0.0543. 

Given that the actual size is a reasonable approximation of the nominal size, we then 

wish to investigate the actual power of the test (i.e. the probability of rejecting the null 

when false). We will therefore consider one skewed and one symmetric alternative 

distribution. The first is defined by X = LY where Y; (i = 1, 2, ... ,P) are iid X(v) 

variates, and LL' = ~PxP' a covariance matrix. We shall write this distribution as 

X(v, ~). As we are examining a test that only uses information of the skewness and 

kurtosis, it is of relevance to consider the power to detect distributions with marginal 

normal skewness and kurtosis. We therefore make use of the Khintchine distribution 

to generate our symmetric distribution. The variable is defined by 

Xj =1tj Rp, i=1,2, ... P, 

( ) _ {0.5 1t j = 1 
P 1t j -

0.5 1t j =-1 

where Rj - [r(A,C;)J and 
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We will denote the Khintchine variable as K('t)' In order to invoke covariance we will 

use R\ = R2 = ... = Rp (and U\ *" U 2 *" .. , *" Up). The coefficient of kurtosis of this 

distribution is determined by the expression (32 = r(~+41:)r~~) (Johnson (13)). In 
r(~+21:) 

this study we choose 1: = 0.1 with the corresponding value ~ = 0.12757 that yields 

(32 = 3 (the marginal kurtosis of a normal distribution). 

In order to examine the effects of autocorrelated noise, we need to choose some forms 

of autocovariances. For simplicity, we consider (marginal) AR processes of low 

orders. As it is not likely that the true data generating process is known, we will 

examine the consequence of misspecifying the autocovariance structure of the 

disturbances. The effects of heteroscedastisity will be examined using covariance 

matrices that are a function of a subset of the regressors, as on page 7. Again, we will 

examine the case where the covariance structure is correct as well as the case when it 

is misspecified. 

An additional aspect of relevance is the consequence of using the observable linear 

combination ME as a proxy to E • In Holgersson and Shukur (1) the.simulation results 

indicate that the biases in the estimated skewness and kurtosis, due to M, are 

negligible when X is close to a normal distribution. However, when the regressors are 

following a heavy-tailed distribution, the rate of convergence to its expectations is 

rather slow. This effect is expected to be worse whenever the disturbances are non­

spherical, as the FGLS residuals are a much more complicated function of X than the 

OLS residuals is. Therefore, the interaction effect of the distribution of X and the 

structure of the autocorrelation is of great relevance and will hence be examined in the 

experiment. In order to obtain such heavy tailed regressors we use a variable defined 

by X = LT, where 1; (i = 1, 2, ... ,P) are iid t(v) distributed variates, and LL' =~Pxp. 

We will write this distribution as T(v, 1:). 

Below we present a table of all the factors treated in the experiment. 
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TABLE 1. Properties of factors in the experiment. 

Factor Symbol 

Test variables " 
EJ 

" 
Err 

" 
Ern 

Numbers of regressors k 

X[I:5] 

Distribution of regressors 
X[6:7] 

Nominal size a 

Number of equations P 

Number of degrees of v 

freedom (P(N-k-l» 

Distribution of disturbances E-

Order of AR process q 

Structure of Heteroscedstisity n 

Value of parameter in the <I> 

AR( 1) processes 

Value of parameters in the [<1\ ~ ~] 
AR(3) processes 

Value of Heteroscedasticity [01 oS 
parameters 

* ~x = toeplitz (5 3 1.8 1.2 0.2). 

** ~£ = toepliz (25 15 7 1 0.5). 

14 

One-step residuals 

Two-step residuals 

Three-step residuals 

7 

T(O, 1, ~x), N(O, ~x) * 
U(I,lO) 

5% 

5 

15,35,75,100,150,200,400. 

N(O, ~£), ~O.l)' X (3, ~£). ** 

1,3 

diag (X[6:7]8(2x1) ) 

0.8 

0.8, 0.08, 0.04 

[2 5f 



VII. Results 

In this section, we present our results of the main dominating effects in our Monte 

Carlo experiment regarding size and power properties of the 1M test. The results will 

be presented in graphical forms in two parts, size properties and power properties 

respectively. All simulations have been performed using R = 10 000 replicates. Each 

graph consists of results of three different test procedures: the one-step residuals of 

IV:i have been used along with Monte Carlo critical region (denoted by), the two­

step residuals of IV:ii have been used with the critical region defined by the 

asymptotic chi-2 distribution (denoted by Y), and finally, the three-step residuals of 

IV:iii as test variable, again using the asymptotic chi-2 distribution (denoted by). 

The lines will thus represent the exact critical region conditioned on X, while the 

lines marked by Y and will represent critical regions unconditioned on X, although 

applied to two different test variables. The Monte Carlo critical region is decided from 

r = 59 Monte Carlo replications. Finally, the autoregressive processes have been 

generated using 30 "start-up" values. 

Size properties 

In this subsection we present our results concerning the size properties of the 1M test 

when applied to the various residuals of section IV. Figure 1 shows the size properties 

of the JM test when the regressors are following a heavy tailed distribution. There is a 

clear distinction between the variables in the sense that the two-step residuals 

converge much slower than the three-step residuals. Figure 2 suggests that a small 

misspecification of the autoregressive order does not alter the size properties of the 

test materially for the two- and three-step residuals. In fact, the size seems to limit the 

nominal size, regardless of the misspecification. Figure 3 visualises the impact of a 

small misspecification of the autoregressive order in conjunction with heavy-tailed 

regressors, which is a fairly realistic situation. On comparison with Figure 2, we see 

that the distribution of the regressors causes the test to diverge for the auxiliary 

regression residuals, while the behaviour of the FOLS residuals remains unchanged 

from Figure 2. This indicates that even though the two types of residuals are 

asymptotically equivalent under correct specifications, they may have totally different 
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properties when there is a small misspecification. In figure 4 we see that the two- and 

three step residuals causes the test to overreject, though the test based on the two-step 

residuals are more close to its nominal size, a result in line with that of Figure 2 and 

Figure 3. When we impose a misspecification of the heteroscedasticity, as in Figure 5, 

the size clearly diverges. As for the autocorrelation case, heavy tailed regressors seem 

to worsen the performance according to Figure 6. In general, the three-step residuals 

perform better than the two-step residuals, especially for misspecified autocorrelation 

in conjunction with heavy-tailed regressors, in which case the test diverges. 

From Figure 1-6, we see that it is indeed possible to obtain exact size by using the M 

matrix when determining the critical region, whenever on is known. Since on = I is a 

special case of a known covariance matrix, this Monte Carlo technique is more useful 

than it may seem, as scalar covariance matrixes do exist in some situations (indeed, 

this is the situation examined in most empirical studies of non-normality tests). 
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Figure 1. The estimated size for the JM test at 5% level, disturbances defined by 

EI = 5t' though specified as EI = q,E1_ 1 +81 (i.e., over specified autocorrelation) and 
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Figure 2. The estimated size for the JM test at 5% level, disturbances defined by 

EI =0.8E1_ 1 +0.08EI_2 +0.04EI_3 +81' though specified as EI =q,E1_ 1 +81 (i.e., under 

specified autocorrelation) and X - N (0, :tx ). 
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Figure 3. The estimated size for the JM test at 5% level, disturbances defined by 

E, =0.8Et-l +0.08E,_2 +0.04E,_3 +~" though specified as E, =q,Et-l +~, (i.e., under 

specified autocorrelation) and X - T(O, 1, ~x). 
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Figure 4. The estimated size for the JM test at the 5% level based on the FGLS 

residuals, where Q = diag ( [X6.7 ] [2 5 r ), specified as Q = diag ( [X6•7 ] [81 82 r ) 
(i. e., correct specified heteroscedasticity) and X - N (0, 1, ~x ) distributed 

regressors. 
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Figure 5. The estimated size for the JM test at the 5% level based on the FGLS 

residuals, whereQ = diag ([X6 X7 ][2 5f} specified as Q=diag(X681 ) (i.e., miss-

specified heteroscedasticity) and X - N (0, I:x ) distributed regressors. 

0.5 ,--------------------, 

0.4 

0.3 

0.2 

0.1 

-.~: . _. --. ----. -------­. ........- ----. / ....... .. / 
.~.-,,-.-y-y-----­• 

0.0.J..............,-----,-------,----,----...--' 
o 100 200 

OF 
300 400 

Figure 6. The estimated size for the JM test at the 5% level based on the FGLS 

residuals, where Q = diag ( [X6 X7 ] [2 5f} specified as Q = diag (X681 ) (i.e., miss-

specified heteroscedasticity) and X - T (0, 1, I:x ) distributed regressors. 
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Power properties 

In this subsection we present our results concerning the power properties of the JM 

test under various situations that are likely to appear in applied studies. Figure 7 

reveals that the power of the test is fairly high for all three types of residuals when the 

target variable E is following the skew distribution. As expected, the one-step 

procedure performs better in a comparison between Figure 7 and Figure 8; the effect 

of underdimensioned order of the autoregressive process causes the power to be 

lower. Also, the test based on the one-step residuals have slightly better power as 

compared to that of the three-step residuals, which in tum is more powerful than that 

of the two-step residuals. Figure 9 shows the power of the test for the Khintchine 

variable, which is fairly high for all three residuals, higher for the one-step residuals 

though. A comparison between Figures 9 and 10 shows that an under specification of 

the heteroscedasticity does not appear to lower the power markedly. Moreover, the 

heavy tailed regressors do not seem to cause a serious reduction of the power. Thus, 

estimating the covariance matrix matters in small samples in the sense that it will lead 

to a power reduction. 
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Figure 7. The estimated power for the JM test at the 5% level, disturbances defined 

by £1 =~I' though specified as £1 = <j)£I-1 +~I (i.e., over specified autocorrelation) 
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Figure 8. The estimated power for the JM test at the 5% level, disturbances defined 

by £1 =0.8£1_1 +0.08£1_2 +0.02£1_3 +~I though specified as £1 = <j)£I-1 +~I (i.e., under 

specified autocorrelation) with X - N(O,~x)' ~I - X2 (3, ~Ii). 
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Figure 9. The estimated power for the JM test at the 5% level based on the FGLS 

residuals, where 0 = diag ( [X6.7 J[2 51). specified as 0 = diag ( [X6•7 J[81 821) 
(i.e., correct specified heteroscedasticity) and X - T(O, 1, ~x) distributed regressors 

and 0 - K(O.I). 
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Figure 10. The estimated power for the JM test at the 5% level based on the FGLS 

residuals, where 0 = diag ( [X6 X7 ][2 51). specified as 0 = diag (X681 ) (i.e., miss-

specified heteroscedasticity) and X - T (0, 1, ~x ) distributed regressors and 

o -K(O.I). 
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VIII. Conclusions and summary 

In this paper we have studied the effect of using the JM test for non-normality in the 

presence of autocorrelation or heteroscedasticity (i.e. identically dependent distributed 

disturbances and independent heterogeneously distributed disturbances) when applied 

to multivariate regression models. We have motivated why moment based tests in 

general will not be valid for heteroscedastic or autocorrelated variables. A number of 

models were investigated in order to enlighten the effect of some frequently occurring 

properties of real data, such as heavy-tailed regressors along with known/unknown 

autoregressive order or known/unknown heteroscedasticity. In addition we have 

shown that for the case of known covariance matrix (GLS), a simple Monte Carlo 

method can be used in order to obtain a test with exact size, regardless of the number 

of observations, equations or properties of the regressors. For each model we have 

performed 10 000 replications, varying sample sizes ranging from 15 to 400 degrees 

of freedom. In addition, the power properties have been examined for one skewed and 

one symmetric distribution. The simulations revealed that even a small 

misspecification of the autoregressive order or the heteroscedasticity may ruin the test 

if the regressors are heavy-tailed, in the sense that the size will be far above the 

nominal size, as the effect increases with increasing sample size. Thus the use of 

regular non-normality tests on variables with a complicated data generating process, 

such as in economic applications, is dubious. However, it may still be informative to 

apply the JM test (or other non-normality tests) in non-experimental situations. 

Indeed, if we do not reject the null hypothesis of multivariate normality, it is plausible 

that the disturbances are not just normally distributed, but iid normal, which in tum is 

a strong indication that our modeling is successful. On the contrary, if we reject the 

null hypothesis, this may very well be due to other causes than non-normality. In 

addition, the power properties seem to be reduced when there is a small 

misspecification of the autoregressive order. This indicates that even though the two 

types of residuals are asymptotically equivalent under correct specifications, they may 

have totally different properties when there is a misspecification. 
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Appendix: Asymptotic distribution of I, II and III-step residuals. 

Before we examine the asymptotic properties of our residuals of Section IV, we will 

list some properties of the so-called hat matrix that are crucial for our analysis. 

Consider a regression model Y = ZI3 + E • The hat matrix of a regression estimate is 

defined as H:= Z(Z'zt Z'. The OLS residuals can then be expressed as 

i := Y - Y = (I - H)E . As H is symmetric and idempotent it follows that h(H) = k , 

o ~ hjj ~ 1 . Assuming that V (E) = 0'21 , i.e. that the variance is scalar, the variance of 

the difference between the residuals and the disturbances can be expressed as 

V(;):=V(i-E)=0'2H, or, V(;j)=V(Ej-cj)=0'2h;;. By Chebychev's inequality 

p(l;j -E(;j)l~v)= P(lEj -Cjl~v)~ hjj~2. Thus~(h;;)-70=>IEj -cjl~O. The 
v IS/Sn 

event ~ (h;; ) -7 0 is known as the Huber (14) condition. Since the i:th diagonal 
IS/Sn 

element of H can be written as hjj = (Xii' ... ' X jk )(X'xt (Xj!' ••• , X jk ), and k is a 

fixed finite number, it follows that plim(X'Xt = 0 suffices for the Huber condition 

to hold. It can be shown that our assumptions in (1.1) implies plim(X'Xt = 0 

(Judge, et. al. (15». 

We will apply these properties of the hat-matrix in order to analyse the asymptotic 

properties of our residuals of Section IV. 
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AI. Limit of one-step residuals. 

The one-step residuals are i I := ( Y - y) = (I -H(X) ) i for Hx: = X (X'X) X'. The 

limiting properties of these will be analysed separately for the autocorrelated and the 
heteroscedastic disturbances: 

Heteroscedasticity: 

The variance of the difference of the one-step residuals and the transfonned 

disturbances are v(il •H -i)=cr2H(xr Thus ~~(h(X)ii)---70 suffices for fi~Ei to 

hold, which we have from our assumptions of (1.1) p.2 and from p.24. Finally we 
p p e "e 

have from Rao (16) IXn -Ynl---7O, Yn ---7Y=>Xn ---7Y, hence Ei,J.H---7Ep so that 

Autocorrelation: 

We study the special case with AR( 1) process. Recall that by assumption 1<1>1 < 1. Let 

Unlike the case of heteroscedasticity, it does not make sense to assume that t = QI/2B 
where B is some iid variable. Rather, we consider t as generated from the model 

t, = CPt'_1 +B, so that E[tt '] = Q, which means that convergence in probability 

cannot be shown as above. To detennine the asymptotical distribution of i l •A we 
" examine the limiting moments of i I.A - B under the null hypothesis of nonnality: 

ii. i.e. As 

{Bi,j_s} S E Z is nonnally distributed, cij will be nonnal as well, though with other 

moments. Because the nonnal distribution is completely specified from its first two 
A e A e. 

central moments it follows from above that Eij ---7Bij' or, i ---7B. 
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Appendix A2: Two-step residuals. 

Heteroscedasity: 

A sufficient condition for the residuals to converge in law to the disturbances is that 
their difference converges in probability to zero. This difference can be written as 
~ - A -1/2 -1/2 
ElI,H-E=o. M(X)E-o. E,or, 

[ ~ll 0 "'J[~I J-[~ll 0 "'J[EI J-[ ~~~~I J-[ o)~~EI J • &22 E2 • 0)22 E2 - 0) E2 0) E2 

.. ... . . . ... . . . ... . 

where O)ii is the i:th diagonal element of 0.-1/2. Since 0; is consistent (e.g. Amemiya 
A 

(17», it follows that e is consistent as well, and from the Slutsky theorem we get 
1"P .. p.. P 

X2.;8 ~ X2.;8 = O)i' i.e. &" ~ 00", and from p. 24 we have E; ~ E;. Thus 
A •• "" •• p.... A e A e. 
r.~lIc._r.~lIc.-----"r.~lIc._r.~lIc. =0, l' e c -----"c and so E- -----"E-
\M "', \M "', --"7 \M "', \M "', • • "'; --"7 "'; , --"7 • 

Autocorrelation: 

That the limiting distribution of these residuals equals that of ~ in (4.6) can be seen 

by expanding A;.A for the special case q = 1 (for an AR(1) process): 

~I -AI =~I -(i;., -i;., )=~I -Mx,E;., +MX'_IE;.I-I~= 

~I - Mx, [E;.'_Icj)+~;.,]+ MX,_IEu-1 [(,;./-1';.1-1 t ,;.1-1,;.1] = 

~I - Mx, E ;.I-Icj) - Mx, ~;.I + MX'_1 E ;./-1 [ (E;.I_IMX,_1 E ;./-1 r E;.,-IMxt-l Mx, {E;.,_Icj) + ~;.I} ] = 

MX'_IE;.I_1 (E;.,-IMxt-lE;.t-1fl E;.t-1Mx'_IMx,~;.1 = 

(I-Mx, )~;.I -(I-Mx,_IEu-1 «I-IMX,_IE;.I-lr E;.t-1MX'_1 )Mx,E;.,_Icj)+ 

(A2.1) 
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Lemma: 

Let X(nxk) and Z(nxP) be random matrices such that E[X'Z] = 0 and 

M(x):=(I - X (X'xt X')=:(I - H(x)) where plim (X'Xt = Q-l , a P.D. matrix. Then 

As E[XtOt]=E[Xt_lOt]=E[XtEt]=E[XtEt-l]=E[X,_IE,]=O, it follows from our 

lemma above the three last terms of (A2.1) have p. limit 

0+( I -tH (tH' t'~l r t,~: }'~l.+( I -t'~l (t,~: t'~l r t,~: }'~la, =0, 
A p. A e· 

i.e. 0Il,i,A -Oi --70, hence i/l,A --7i. 

Appendix A3: Three-step residuals. 

According to "One-step residuals" above, max(h(x_) .. )--70~fIA~i, fIH~i. 
ISiSn II ' , 

Applying the same argument here, we need max( h( 0 ) •. J --7 0 (i.e. we use g-1/2X 
ISiSn X II 

A t. ..... e. p 

rather than n-1
/
2X) for illl,A --7i, illl,H --7i to hold. But as &ij --7(Oij' it follows that 

"'" m A -1/2 2 P "'" m -1/2 2 "'" m -2" 11 ff" tl all th H L.J j=l O)i Xijl --7 L.J j=l (Oi Xijl = L.J j=l Xijl lor a m su lClen y sm er an n. ence 

max(h(o)J --7 0 and fill A ~i, fill H ~i . 
ISiSn X ' , 
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