
Mailing address: 
Dept of Statistics 
P.O. Box 660 
SE 405 30 Goteborg 
Sweden 

Research Report 
Department of Statistics 
Goteborg University 
Sweden 

Turning point detection using 
non-parametric statistical 
surveillance 

Evaluation of some influential factors 

Eva Andersson 

Fax Phone 
Nat: 031-7731274 Nat: 031-77310 00 
Int: +46317731274 Int: +46317731000 

Research Report 2001:3 
ISSN 0349-8034 

Home Page: 
http://www.stat.gu.se/stat 



TURNING POINT DETECTION USING NON­
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Evaluation of some influential factors 

E. Andersson 
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Goteborg University 

SE 405 30 Goteborg, Sweden 

ABSTRACT 

Turning point detection is important in many areas. One application is forecasting the 
time of the next tum in the business cycle, by detection of a tum in leading economic 
indicators. Another application is detection of a peak in the human menstrual cycle. In 
both these applications we make continual observation of the time series with the goal 
of detecting the turning point in the cycle as soon as possible. At each time, an alarm 
statistic and alarm limits are used in making a decision as to whether the time series 
has reached a turning point. The alarm statistic and the alarm-limit are based on the 
maximum likelihood ratio technique for surveillance. No parametric function is 
assumed for the cycle, but a non-parametric estimation procedure is used. 

The shape of the turning point has an impact on the performance of the method for 
turning point detection. The influence of some turning point characteristics (slopes 
and smoothness of curve) is evaluated both theoretically and by simulation studies. 
The simulations are used to demonstrate the effect of the slopes (both pre-peak and 
post-peak). Results from the simulation study show that the false alarm probability 
increases for a non-smooth curve and that the detection probability is sensitive to the 
shape of the curve just around the turning point. In the theoretical investigation, it is 
shown that the expected delay of an alarm is shorter for a steeper post-peak slope. The 
method is also evaluated by applying it to a set of Swedish data. 

Key words:Turning point detection; Non-parametric regression; Monitoring; 
Monotonic regression; Unimodal regression; Statistical surveillance; Business cycle. 



1 INTRODUCTION 

In analysis of cyclical processes, where the cycles are not periodic, it is often of 
interest to detect the turning points. Examples of areas where turning point detection 
is important are business cycle prediction, see Neftci (1982), Zarnowitz and Moore 
(1982), Jun and Joo (1993), Birchenhall et al. (1999, Hamilton (1989) and peak 
detection in biological cycles, see Royston (1991). In this report the methodology of 
statistical surveillance is used for turning point detection. Even though the technique 
is applicable for several applications, we will use the detection of a turn in a leading 
business indicator as an example in the following. 

With statistical surveillance we mean continual observation of a process with the 
goal of detecting an important change in the underlying process as soon as possible. 
For a general review of statistical surveillance, see Shiryaev (1963), Frisen and de 
Mare (1991), Wetherill and Brown (1991), Srivastava and Wu (1993), Frisen and 
Wessman (1999). Since time is an important issue in surveillance, measures of 
performance which take into account the timeliness are used, rather than ordinary 
forecasting measures. Examples of such measures are the average run length (ARL), 
the expected delay (ED), the probability of successful detection (PSD), see Frisen 
(1992). 

Generally, the problem of detecting a change in the process under surveillance can 
be presented as discriminating between two events, namely C (the change has 
occurred) and D (the change has not occurred). The discrimination is made using an 
alarm statistic together with alarm limits. The construction of the alarm system can be 
made in different ways, depending on the desired properties of the system. One 
method of surveillance is the likelihood ratio method (hereafter the LR method). For a 
fixed false alarm rate and a fixed time, the LR method has the highest probability of 
calling an alarm when the process has changed from one state to another. The LR 
method is optimal for detecting all changes before s (the time of decision) in the sense 
that the expected utility, based on the gain of an alarm and the loss of a false alarm, is 
maximized, see Frisen and de Mare (1991). The properties of the LR method in the 
situation where the process changes from an in-control level to an out-of-controllevel 
have been evaluated by Frisen and Wessman (1999). 

For situations where the parameters of C and D are known, the LR method is 
optimal, but in the turning point detection situation, where the classes of distributions 
under C and D are composite, the LR method cannot be used. Frisen (1994) suggested 
the use of the maximum likelihood ratio as an alarm statistic for detecting turning 
points. This approach includes a non-parametric estimation procedure, see Frisen 
(1986), using only monotonicity restrictions. A surveillance situation where the aim is 
to detect a monotonic level drift from a constant level, using monotonicity 
restrictions, is presented in Arteaga and Ledolter (1997). The alarm statistic, based on 
the maximum likelihood ratio and suggested by Frisen (1994), was evaluated by 
Andersson (1999) for the case of a symmetrical peak with constant absolute growth. 
A turning point has many characteristics: symmetry, smoothness, sharp or non-sharp 
peak. In business cycles the peaks are often characterized by long expansion phases 
and shorter, steeper recession phases. The shape of the turning point has an impact on 
the ability to detect it. Simulations are made for four different peak shapes, where one 
peak is data on the Swedish industrial production and the other three peaks are 
modeled to mimic that peak. The three peaks were modeled using linear functions 
(with a sharp peak) and trigonometric functions (with a non-sharp peak). The median 
delay time, the expected delay time of an alarm and the probability of successful 
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detection are used as measures of the performance of the method based on the 
maximum likelihood ratio for the different peaks. 

The paper is organized as follows: In Section 2 the model and surveillance system 
is presented. Section 3.1 contains a theoretical investigation of the influence of the 
post-peak slope. In Section 3.2 we present the results of a simulation study, 
concerning the influence of the shape of the turning point. Section 4 contains the 
result of an out-of-sample performance on Swedish data and a discussion on different 
measures of performance. Finally, Section 5 contains a discussion. 

2 THE MAXIMUM LIKELIHOOD RATIO BASED METHOD 

2.1 Model 

We start the model discussion by studying some of the models used in previous 
research on turning point detection. The variable under surveillance is denoted by X 

Neftci (1982) assumes the following model for the increments of an observed 
economic time series 

M(t)={Ul+El(t), t<r 
U2 +E2(t), t~r 

where u1 and u2 are constants, 

i - iid, E[i]=o, Var[i] = (J"f ' 
i - iid, E[i]=o, Var[i] = ai, i is independent of i. 

The densities for the two regimes are estimated from previous data. 
The model used by Layton (1996) for the possibly differentiated series is 

y(t)={u
l 

+El(t), t<r 
u 2 +E2 (t), t~r 

where u1 and u2 are constants, 

i - iid N[O, at], 

i - iid N[O, ai], i is independent of i. 

The model used in Lahiri and Wang (1994) for the possibly differentiated series is 

Y(t)={u
l 

+El(t), t<r 
u2 +E2 (t), t~r 

where u1 and u2 are constants, 

i(t) = 011 (t) + {Ou 011 (t-l) + ... + {OrI 011 (t-r), 011 - iid N[O, a12 ], 

i(t) = 012(t) + {O 12 01 2(t-l) + ... + {Or201 2(t-r), 012 - iid N[O, ai]· 

A common model for a stationary series is that the constant mean depends on the state 
(recession or expansion). If the differentiated series, X(t)-X(t-l), has a constant mean, 
then the expected values of the undifferentiated series, X(t), are modeled as linear 
functions 

3 



{

UOl +Ul·t, t<1: 

U02 +U2 ·t, t21: 

where t={ 1,2, ... }. 

The stochastic term of the differentiated series is often assumed to be independent and 
normally distributed. That implies that the undifferentiated series has the following 
stochastic term 

{ ~l (t), t < 1: 

~2(t), t 21: 

qI _ iid N[O, (J"f /2], 

q2 _ iid N[O, (J"i 12], ~I is independent of ~2. 

The differentiation is made in order to separate the trend from the cyclic movements. 
Canova (1998) discusses trend adjustment and evaluates the effect of trend adjustment 
using several different approaches, among them first order differentiating. One 
conclusion from his study is that for some methods for trend adjustment, e.g. a 
polynomial with structural change, the resulting turning points agree with official data 
(The National Bureau of Economic Research, USA), whereas for example linear trend 
adjustment does not result in turning points that correspond to official data. In another 
paper Canova (1999) discusses that previous research has pointed out that trends vary 
over time and may interact in a nontrivial way with the cyclical component and 
therefore are difficult to isolate. Canova (1999) compares twelve methods for trend 
adjustment methods and two dating rules and the general conclusion is that statements 
concerning the turning points are not independent of the statistical assumptions 
needed to extract trends. For the data set that is investigated, first order differentiating 
resulted in a false alarm rate between 25% and 100% (depends on type of turning 
point and dating rule) and a missed-signal-rate between 28% and 100%. 

Surveillance is here made in order to detect the next turning point. This means that 
the part of the series X that is monitored contains one turning point at most. Thus no 
separation of trend from cycle is made. 

The model used in this report for an observation of the time series at time t is 
X(t) = Jl(t) + e(t) (1) 
where Jl(t)E g;J, g;J is the family of all unimodal functions 
and e(t) - iid N(O; (J"2), where (72 is assumed to be known. 
Without loss of generality (J"2 =1 is used in this investigation. 

The major difference between model (1) and the models discussed above, is that the 
only knowledge about Jl that is used in model (1), is the aspects of monotonicity and 
unimodality, which follows from the definition of a turning point in (2). In the turning 
point detection situation the aim at decision time s, is to discriminate between the two 
events C(s)={ r:::; s} and D(s)={ r >s}, where r is the unknown time of the turning 
point i.e. 

C(s): Jl(t) :::; ... :::;Jl(r-1) and Jl(r-1) "C.Jl(i) "C. ... "C.Jl{s) (2) 
where tE {I, 2, ... , s} 
and at least one inequality is strict in the second part, 

D(s): Jl(t) :::; ... :::; Jl(s). 
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The opposite case (i.e. detecting a trough) is handled analogously. 

2.2 Method 

The likelihood ratio method of surveillance has several optimality properties, see 
Frisen and de Mare (1991). Here we use the maximum likelihood ratio. The maximum 
likelihood ratio at time s is generally given by 

maxf{x Ie} 
MLR(s) s >ks 

maxf{xsID} 

where C={ 1'~ s} and D ={ 1'> s} 
and j(xs) is the likelihood function. 

The event D ={ 1'> s} implies 
f.1(t) ~ f.1(t+l), t~1. 

The event C={ 1'~ s} is 
C= {1'~s} = {1'=1, -z=2, ... , -z=s} = {C], C2, .•. , Cs}' 

where Cj implies 
f.1(1) ~ ... ~f.1(j-l) and f.1(j-l) ~f.1(j) ~ ..... 

Thus, in the MLR(s) we have 

max f{xsID} = f{xsl,aD} , 

where ,a D: max f(xs l.u) , 
J.1EFD 

P is the family of f.1 such that f.1(1) ~ f.1(2) ~ ... ~ f.1(s). 

(3a) 

(3b) 

(4a) 

That is, ,a D is the maximum likelihood estimator of f.1 under the monotonicity 

restriction D, see Robertson et al. (1988). 

±(P(T: j)J.(max f{xslC}}J= 
j=l P(T -s) 

±(P(T: j) J. (f{Xsl,aCj }), 
j=l P(T -s) 

where ,aCj: max f(xsl.u), 
J.1EFCj 

p:i is the family of f.1 such that f.1{t) ~ ... ~ f.1(j-l) and f.1(j-l) ~ f.1(j) ~ .... 

(4b) 

That is ,a Cj ,j E { 1, 2, ... , s}, is the maximum likelihood estimator of f.1 under the 

monotonicity restriction Cj, given by Frisen (1986). 
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Thus, fl is estimated using a non-parametric method and the maximum likelihood 
ratio is given by 

~(p(r= j) I ACj ) 
max[r(xsIC)] ~ p(r'5,s)f(x s /1 ) 

MLR(s) = = ""-J=_l __ ---:-___ _ 

max[f(xsID)] f(Xsl,aD) 

where J(x, II' = 1') = (~)' ex{-~ (x(l) -1"(1»2 ) 

and ,aD and,a are defined in (4a) and (4b). 

(5) 

MLR(s) depends on the distribution of r (the turning point time) in such a way that 
the likelihood function, conditional on C, is a weighted sum. In this report the 
Shiryaev-Roberts approach with a non-informative prior (equal weights) is used. This 
corresponds to the limiting distribution of the likelihood when the intensity, 
Vt = P(r = tIr :?: t), tends to zero. Hereafter the method based on the maximum 

likelihood ratio, using the Shiryaev-Roberts approach, is referred to as the MSR 
method. Using the model specified in (1), the alarm statistic at time s can be written 

MSR(s) = texp{(-~ '( i(x(t) - ,aCj(t»2 - i(x(t) _,aD (t»2 )~. 
J=l ~ t=l t=l ~ 

The Shiryaev-Roberts method approximately satisfies the optimality criterion of 
Shiryaev (1963) for small values of the intensity. Frisen and Wessman (1999) 
demonstrated that, using the Shiryaev-Roberts method as an approximation of the LR 
method for detecting a change from one level to another, is quite a good 
approximation, even for as large intensities as 0.20. 

The time of the alarm, tA, for the MSR method is defined as 
tA = min[t: MSR(t) > k], (6) 
where the alarm limit, k, is a constant. 

3 PERFORMANCE OF THE MSR METHOD 

3.1 Theoretical study on the impact of the last observation and the post-peak 
slope 

The delay of an alarm depends on both the method of surveillance and several process 
characteristics. In turning point detection, one characteristic is the post-peak slope. 
We investigate the influence of the post -peak slope, starting with the influence of the 
expected value of the last observation, fl(s). The alarm statistic at time s is written 

MSR(s) = ~ex{- ~ bfJ -Qf ~ (7) 
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s 
where Qfi = L (x(t) - p.f" (t))2 

1=1 

s 
and Qp = L(x(t)_pp(t))2. 

1=1 

For example the alarm statistic for the decision time s=2 is 

MSR(2) =exp( _~[Qfl -Qf ])+exp( _~[Qf2 -Qf ])= 

~p- - * 
( 

(x(I) - pfl (1))2 (x(2) - pfl (2))2 J 
2 2 

exp + + 
(

(X(1) - pf (1))2 (x(2) - pf (2))2 J 
2 2 

exp - - * 
( 

(x(I) - pf2 (1)) 2 (x(2) - pf2 (2)) 2 J 
2 2 

exp +---=---
(

(X(1) - pf (1))2 (x(2) - pf (2))2 J 
2 2 

The alarm statistic MSR(2) includes three quadratic deviations, namely Qfl, Qf2 and 

Qf. These quadratic deviations depend on the intra-relation of the observations 

{x(O), xU), x(2)}. In the general case the alarm statistic at time s is a function of s+1 

quadratic deviations, {Q?, ... , Q;S} and Qs . Their dependencies on the expected 

value of the last observation, f.1(s), are expressed in the following lemmas, with proofs 
in Appendix A. 

Lemma 1.1: Qp is decreasing stochastically as f.1(s) increases. 
Lemma 1.2: QsCl, QsC2, ... ,QsCs-l is increasing stochastically as f.1(s) increases. 
Lemma 1.3: Qscs is independent of f.1{s). 

From Lemma (1.1)-(1.3) the following conclusion can be made regarding how the 
alarm statistic depends on the expected value of the last observation: 

Theorem 1: The alarm statistic MSR(s) is decreasing stochastically as f.1(s) 
increases. 

Proof: From Lemma (1.1)-(1-3) itfollows that 

(QsCj - QP), jE{I, 2, ... , sj, increases stochastically as f.1(s) increases. 
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Therefore, the alarm statistic MSR(s) = ±exp(--l[QP· -QP l)decreases 
j=l 2 

stochastically as J1Cs) increases .• 

The cumulative alarm probability at s, PCtA ::;; s), depends on the expected value of the 
last observation, J1Cs). This dependency is expressed in Corollary 1: 

Corollary 1: P(tA ~ s) is decreasing with J1(s). 

Proof: From Theorem 1 it follows that 

P(MSR(s) > kl0 MSR(j) < k) decreases stochastically as J1(s) increases, since 
)<s 

p( 0 MSR(j) < k) is independent of J1(s). Thus pet A = sit A ~ s) decreases as J1(s) 
)<s 

increases. The cumulative alarm probability at time s is 
pet A ::; s) = 
pet A ::; s -1) + P(t A = sit A ~ s)· pet A ~ s) = 
pet A ::; s -1) + P(t A = sit A ~ s)· (1- pet A ::; s -1)). 

P(tA ~ s) decreases as J1(s) increases, since P(t A ::; s -1) is independent of J1(s) and 

P(t A = sit A ~ s) decreases as J1(s) increases .• 

After having examined the influence of the last observation, we use these results to 
investigate the influence of the post-peak slope. We express these results for two 
unimodal vectors, tf and ;l, such that 

tfCl) <···<tfCr-l) andtf(r-l) > tf (1) > ... , 
and ;lCl) < ... < ;l(r-l) and;lC r-1) >;lc 1) > ... , 

where tfCt) = ;l(t),'<:/ t::;; r-l 
and {tf(t-l) - tf(t)} < {;l(t-l) -;l Ct)},V' t? r. 
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To derive results regarding the distribution function for the time of alarm, three 
lemmas are needed, Lemma (2.1.1) - (2.2), which are given in Appendix B. The result 
regarding the distribution function for the time of alarm is presented in Theorem 2. 

Theorem 2: For two unimodal vectors t! and;!, as defined above, we have 
that pB(tA S s) > pA(tA S s), \7' s ;C To 

Proof: Given in Appendix C .• 

The result from Theorem 2 is used to derive the result regarding the conditional 
expected delay, presented in Theorem 3. 

Theorem 3: For two unimodal vectors t! and;!, as defined above, we have that 

E[ (t A -ro* A;::: ro,,u = ,uB)] < E[ (t A -ro* A ;:::ro,,u = ,uA)]. 

Proof: Since tA is a discrete variable, defined only jor non-negative integers, the 
expected value can be expressed as 
E[tA] = 
p(t A = 1) + 2· p(t A = 2) + 3 . P(t A = 3) + ... = 
P(t A > 0) + P(t A > 1) + P(t A > 2) + P(t A > 3) + ... = 

00 

L(l-P(tA ::::;t)) 

1=0 

The difference between the expected values is 

E[ t A l,u = ,u B , r = r 0] - E[ t A l,u = ,u A , r = r 0] = 

00 

LpA(tA ::::;t)_pB(tA ::::;t)< 0, 
1=0 
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The difference between the conditional expected values is 

since pA(tA <'fO)=pB(tA <'fo) 

and pA ((t A -'fo) s j) < pB ((t A -'fo) s j) for j ;?o .• 
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Figure Ib: The conditional expected delay of an alarm (eED) is shorter 
for a vector tl ( ... ) compared to a vector tf ( __ ..). Illustrationfor r= 6. 

Thus, regardless of the parametric shape of the post-peak slope, the MSR method has 
the property that the conditional expected delay is shorter for a post-peak slope that is 
steeper at every time point. 

3.2 A simulation study regarding the impact of the shape of the turning point 

3.2.1 Models for the four simulated turning points 

In Section 3.1 it was showed that the expected delay was shorter for a peak with a 
steeper post-peak slope. A simulation study is made in order to investigate some 
cases, where two factors, the symmetry and smoothness of the vector f.1, influence the 
performance of the alarm statistic. The turning point is modeled using four different 
models, presented below. The first case (hereafter denoted the reference case) is when 
the turning point is modeled as: 
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X(t) = flR(t) + t:(t) 
where flR(t) = flo + /3R·t - 2 ·D1·/3R·(t-r+ 1) 
t E {l, 2, ... } 
/3R = 0.26 
r=36 

Dl = {o,t<r 
1, t2::r 

t:(t) - iid N[O; 1]. 

(8) 

The value /3R = 0.26 is estimated from data on Swedish Industrial Production index, 
whereas Po is of no importance to the surveillance method, since the data can easily be 
transformed by x(t)-x(O). 

106.------------------, 
J..l 

1M h .- -. .. - -.. 
1~ ~ ~ 

•• _ a •• 

. - -. 
100 ••• - •• .. - -.. . . 
98 •• - a •• . . .- -. .... . ... 
96 • • . . 

~ ~ 

94 

92+--_-r--_~-~-_,__-__._-___r_-___l 
10 20 30 40 50 60 70 

Figure 2: The expected value as a function of time. Reference case, 1:=36. 

Andersson (1999) evaluated the performance of the MSR method for the reference 
case by a simulation study. The other three cases investigated here are 

fl is modeled as being symmetric with a non-smooth curve (case A) 
fl is modeled as being symmetric with a smooth curve (case B) 
fl is modeled as being non-symmetric with a smooth curve (case C) 

In the reference case, the model used for fl was a linear trend with a symmetrical 
peak. The absolute growth of fl was constant. In the other three cases, denoted A, B 
and C, the vectorfl has a non-constant growth and a plateau at the peak. 

For case A (symmetric and non-smoothed), the vector flA(t) is based on the 
Swedish Industrial Production index, which has been deseasonalised and smoothed. 
The vector flA is not a linear function. However, the average slope of flA (both pre­
peak and post-peak) is the same as for the reference case, i.e. for the pre-peak slope 
we have 

flA(t) = /3R·t + aCt), t < r (9) 
r-l 

where L a(j) = ° 
j=l 

r=36 
Var[a] = 0.32. 
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The post-peak slope is modeled correspondingly. Thus /1A has the same slope as the 
reference case (fiR) but a non-constant growth (modeled by a in (9)). This 
characteristic (that /1A has a non-constant growth) is hereafter called non-smoothness. 
The non-smoothness in case A results in a higher variance for case A, than for the 
reference case, i.e. Var[XR(t)]=cr =1 and Var[XA(t)]=Var[a]+cr = 0.32 + 1. In the 
reference case, the constant growth of the slope results in a sharp peak. This can be 
compared to case A (Figure 3), where the peak is non-sharp (that is, the growth rate of 
/1A is low just around the peak). 

For case B (symmetric and smoothed) the vector /1B(t) is modeled using 
trigonometric functions, which results in a smooth curve with a non-sharp peak. The 
vector /1B(t) is not a linear function. However, the slope of /1B (both pre-peak and post­
peak) for case B is the same as for the reference case, except at the top. The model 
used is 

/1B(t) = Po + /31 cOS[J1JZ(t+2)] + !h. sin[J1JZ(t+2)]. (10) 

The peak in case B is non-sharp, compared to the peak in the reference case (Figure 
3). 

For case C (non-symmetric and smoothed) the pre-peak vector j1c is modeled 
according to the same model used for case B. The pre-peak slope of j1c is the same as 
for the reference case, except at the top. In order to achieve a non-symmetrical peak 
where the post-peak slope, j1c(t) for t :2: r, is steeper, the modeling is made using 
different trigonometric functions compared to the pre-peak slope. The model used for 
j1c(t) is 

t<r 

t?:.r. 
(11) 

The peak of case C is non-sharp (Figure 3), compared to the reference case. The post­
peak slopes of /1R and f.1c are practically the same for the period 36::;; t ::;;45. When 
comparing case Band C (Figure 3), the pre-peak slopes are identical and case C has a 
steeper post-peak slope. 
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Figure 3: The expected value as a function of time. 
Case A and reference case (left, top), case B and reference case (right, top), 
case C and reference case (left, middle), case A and B (right, middle), 
case Band C (left, bottom). 

3.2.2 The probability of afalse alarm 

Generally in surveillance, the way in which false alarms for turns are controlled is 
important. In the general theory and practice of surveillance, the most common way is 
to control the ARLo, (the Average Run Length to the first alarm if the process does 
not have any tum). Hawkins (1992), Gan (1993) and Andersson (1999) suggest that 
the control is made by a statistic similar to the ARLO, namely the MRLo, which is the 
median run length, which has several advantages, such as easier interpretations for the 
skewed distributions and much shorter computer time for calculations. The approach 
used in much theoretical work e.g. Shiryaev (1963) and Frisen and de Mare (1991) 
and for which optimality theorems are available, is a control of the probability of false 
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alarm, P(tA<tJ. The alarm limit is determined to yield a fix false alarm probability. 
Neftci (1982) and Lahiri and Wang (1994) use this criterion for alarms for turning 
points of business cycles. In this paper the probability of a false alarm, 
P F A36= p& A < TIT = 36), is set equal for all four investigated cases, P FA36 =0.31. The 

standard deviation of an estimate of a value v is hereafter denoted sd[ v] and so 
sd[PFA36 ] =0.0060. The distribution functions of the false alarm for all cases are 

shown in Figure 4. The pre-peak slopes of case Band C are the same, i.e. flB(t) = 
J1c(t), t < r. Therefore, only three functions are presented in Figure 4. 

-;::;- 1.0 
II 
V 

~ 
ii:" .8 
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.2 

A 

0.0 B+C 
0 10 15 20 25 30 35 

Figure 4: The distribution functions for the false alarm: Reference (linear), 
A (symmetric, non-smooth), B (symmetric, smooth), C (non-symmetric, smooth). 

The results in Figure 4 above illustrate that the distribution function of the false alarm 
depends on the smoothness and shape of the pre-peak fl-vector. The non-smoothness 
of flAt) is reflected in the distribution function of the false alarms for case A. For all 
three cases A, Band C, the peak is non-sharp (i.e. the growth rate of fl is decreasing 
continuously around the peak). As a result, the false alarm rate for cases A, B and C is 
increasing just before the peak, which will have an impact on the behavior of MSR 
after the turning point. 

3.2.3 The delay time 

The delay time is measured using both CED(ro) (see Section 3.1) and the conditional 
median delay, CMD(ro) = M[tA -TltA 2::T=TO], where M[e] is the median. The 

variance of the delay time differs between the four investigated peaks, since it 
depends on the post-peak slope of the fl-vector. The number of replicates used to 
estimate CED(36) and CMD(36) are 13 000 (reference case), 33 000 (case A), 30 000 
(case B) and 15 000 (case C). The number of replicates result in sd[ CED(36) ]=0.018 
for all cases. 

The distribution functions of tA (time of alarm) for the case when r= 36 are shown 
in Figure 5. The results concerning the delay are summarized in Table 1. 
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Figure 5: The distribution of the time of alarm (false and motivated), when r=36. 
Left, top: Reference (linear) and A (symmetric, non-smooth). Right, top: Reference 
(linear) and B (symmetric, smooth). Left, middle: Reference (linear) and C (non­
symmetric, smooth). Right, middle: A (symmetric, non-smooth) and B (symmetric, 
smooth). Left, bottom: B (symmetric, smooth) and C (non-symmetric, smooth). 
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Table 1: Conditional expected delay and conditional median delay, 
(sd[.] in parenthesis). 

Case CED(36) CMD(36) 

Reference 4.05 3.51 
(0.018) (0.022*) 

Symmetric and non-smooth (A) 5.35 4.54 
(0.018) (0.023*) 

Symmetric and smooth (B) 5.66 5.29 
(0.018) (0.030*) 

Non-symmetric and smooth (C) 4.06 3.68 
(0.018) (0.024*) 

*: based on a simulation study 

The results in Figure 5 and Table 1 above illustrate that the conditional expected delay 
and the conditional median delay depend on the shape of J1 around the turning point. 
On one hand a non-sharp peak (case A, B and C) results in an increase in the alarm 
statistic just before the turning point. Thereby only a small increase in the alarm 
statistic at s = r is needed to yield an alarm. The result is a decrease in CED and 
CMD. On the other hand, the characteristics of the peak just after the turning point 
(sharpness) will affect the alarm statistic in the opposite direction: CED and CMD are 
longer as a result of the non-sharp peak. An expansion (or recession) phase that is 
non-smooth has a similar effect as an increased variance. In the simulations, the non­
smooth peak has a higher alarm limit, so as to deal with the higher tendency to a false 
alarm. It is shown that, after adjustment for false alarms, the non-smoothness does not 
have a large effect. The longest delay is for peak B (symmetrical, non-sharp and 
smooth), but the difference in delay to peak A (symmetrical, non-sharp and non­
smooth) is not large. 

3.2.4 The probability of successful detection 

The measures of performance presented in Section 3.2.3 are CED(36) and CMD(36). 
The performance of a system of surveillance can be evaluated using other measures, 
see Frisen (1992). The measures of evaluation depend on the application. In 
applications where early warnings are important, such as business cycles, the delay 
time is a relevant measure. In other applications of turning point detection, for 
example natural family planning, see Royston (1991), the success of the surveillance 
depends on the ability to detect the peak within a certain limited time interval, d. 
Hence the probability of successful detection, Frisen (1992), is a relevant measure of 
the performance. The probability of successful detection is defined as 

PSD( r, d) = p{t A -r< dlt A ~r, r=ro) (12) 

The probability of successful detection for d=3, d =5 and d =11 is given in Table 2. 

16 



Table 2: Probability of successful detection (sd[ -] in parenthesis). 

Case 
Reference 

Symmetric and 
non-smooth (A) 

Symmetric and 
smooth (B) 

Non-symmetric and 
smooth (C) 

d=3 
0.23 

(0.0037) 

0.21 
(0.0022) 

0.18 
(0.0022) 

0.25 
(0.0036) 

psn(-r = 36,d) 

d=5 
0.59 

(0.0043) 

0.44 
(0.0027) 

0.36 
(0.0028) 

0.55 
(0.0041) 

Figure 6 shows PSD( 1=36, d) as a function of d. 
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Figure 6: The probability of successful detection, when 'r= 36. 
Reference (linear), A (symmetric, non-smooth), B (symmetric, smooth), 
C (non-symmetric, smooth). 

The PSD measure is a complement to the CED and CMD. The results in Figure 6 and 
Table 2 above illustrate that ranking between the four cases of turning points is 
independent of the measurement time: at all times presented in Table 2, the reference 
case and case C have the shortest time until detection. Case B (symmetric and 
smooth) is the most difficult to find. A non-sharp peak, where the post-peak slope is 
steeper, is detected equally fast as a sharp, symmetrical peak. 

The probability of successful detection, PSD( r, d), is important when only alarms 
within a limited time after the change is of use. For a turning point situation where the 
actual peak is preceded by a plateau, also (false) alarms just before the change might 
be useful. In order to evaluate the detection probability around the peak, the following 
probability is used 

17 



absPSD(ro, d) =P(\tA -ro\<d). (13) 

Bojdecki (1979) gives the solution to a maximization of absPSD( 1'0, d), where d is a 
constant integer. 

The probability of successful detection within d=3 and d=5 time units from the 
peak is given in Table 3. 

Table 3: Probability of successful detection within an interval of absolute length 
(sd{.] in parenthesis). 

Case 
Reference 

Symmetric and non-smooth (A) 

Symmetric and smooth (B) 

Non-symmetric and smooth (C) 

abspsn(36, d) 

d=3 d=5 
0.18 (0.0027) 0.44 (0.0035) 

0.20 (0.0018) 

0.18 (0.0018) 

0.25 (0.0029) 

0.39 (0.0022) 

0.34 (0.0023) 

0.52 (0.0034) 

The function absPSD( 1', d) is presented in Figure 7 for 1'=36, d:::; 5. 
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Figure 7: The probability of successful detection within an interval of absolute length 
d.Reference (linear), A (symmetric, non-smooth), B (symmetric, smooth), 
C (non-symmetric, smooth). 

The results in Figure 7 and Table 3 above illustrate that the probability of detection 
depends on the shape of the J1-vector just around the peak. A non-sharp peak is 
equally easy to detect as a sharp peak, because of the many alarms just before the 
peak. 
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4 OUT -OF-SAMPLE PERFORMANCE FOR SWEDISH DATA 

Official data over two series of the Swedish Import index, Figure 8, are used to 
illustrate the performance of the MSR method. Data are for the period January, 1990 
to December 1994 and are adjusted for seasonality (source: Statistics Sweden). 
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Figure 8: Monthly observations (9001: 9412) on Swedish Import index 
(adjusted/or seasonality),/or two different areas a/metal import. 

For the recession phase of both troughs the signal/noise ratio, fJ / a, equals (0.26/1.00) 
and linear transformations, x' (t) = x(t)/ a-, suffice to standardize the observations 
before the MSR method is applied. Evaluation of a statistical method is sometimes 
made on a set of data that has not been used in the model-building process, in order to 
test the out-of-sample performance. The performance of a method of surveillance on a 
specific data set can be evaluated by reporting e.g. the delay, the false alarms or the 
Brier's probability score. The latter is defined as 

~ t(J(S) - p(s»2 , 
s i=l 

h .() {O, if recession 
were] s = 

1, if expansion 

andp(s) = P(J(s)=Olxs )' 

The measures are calculated under different assumptions regarding intensity (see 
Section 2.2), namely V= {0.01, 0.1}. 
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Table 4: The MSR method, investigated for the Swedish Import index. 
ImPI(l) ImPI(2) 

Period of time 

Time oftrough* 

First time point after trough, 
't 

Time of alarm, tA 

False alarm 

Brier's probability score, 
't-Geo(v=O.Ol) 

Brier's probability score, 
't-Geo(v=O.l ) 
*: Using the minimum value 

1990M1: 
1994M12 

1992M7 

1992M8 

1992M12 

4 

No 

0.03 

0.26 

1990M1: 
1994M12 

1992M7 

1992M8 

1993M1 

5 

No 

0.08 

0.17 

In Table 4, different measures are presented, both traditional forecasting measures 
(Brier's probability score, see e.g. Koskinen and Oller (1998» and measures used in 
surveillance. As already pointed out, the time of the alarm is important in surveillance 
and therefore measures which reflect the timeliness must be used in the evaluation. 
This is a drawback with Brier's probability score: since the deviations are squared, the 
same measure is given for false alarms as for delayed alarms. Since Brier's 
probability score does not take the order of the observations into account, it is not a 
suitable criterion in a surveillance situation, where the order of the observations holds 
a large amount of the relevant information. As is seen in Table 4, the different 
assumptions of the intensity have a major impact on Brier's probability score. 

5 DISCUSSION AND CONCLUDING REMARKS 

The influence of the shape of the turning point on the MSR method of surveillance is 
investigated. The theoretical investigation regarding the influence of the post-peak 
slope shows that, regardless of which function that is true for the post-peak slope, the 
conditional expected delay of an alarm decreases as the post-peak slope grows 
steeper, for the same pre-peak slope. That is, if we have two processes, A and B, 
where the pre-peak slopes are the same, but with post-peak slopes such that the 
expected difference between consecutive observations is larger for B at every time 
point, then B has a shorter conditional expected delay. In business cycle theory, as a 
rule the expansion phase lasts longer and is flatter than the recession phase 
OppenHinder (1997). For the situation where the peak is non-symmetrical with steeper 
post-peak slope the result regarding the conditional expected delay indicates that a 
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transition from expansion to recession is quicker detected than the opposite transition, 
if the same alarm limit is used. 

In a surveillance system, the probability of false alarms should be kept on an 
acceptable level, but it must be born in mind that if the probability of false alarms is 
low, the probability of detection is also low. In some applications, a relatively high 
probability of false alarms could be preferred to the risk of missing a motivated alarm, 
whereas in other applications the situation can be the opposite. In this study the 
probability of false alarms is set to 0.31. The study shows that the distribution of the 
false alarms depends on the slope and smoothness (in relation to the standard 
deviation of the observations) of the pre-peak slope, i.e. the slope and smoothness of 
IJ.{t), t<r. For the situation where fl has a constant growth, the false alarm rate is 
approximately constant. The effect of a non-smooth fl-vector is a non-constant false 
alarm rate. A non-sharp peak (i.e. where the growth of fl is decreasing just around the 
peak) results in an increasing false alarm rate just before the peak. This is not a 
disadvantage. 

Preferably, a method of surveillance should have a small false alarm probability 
and a short expected delay of motivated alarms. The effect of the shape of the fl­
vector on the conditional expected delay is investigated for a fixed false alarm 
probability. The study shows that the conditional expected delay decreases as the 
post-peak slope grows steeper. The conditional expected delay is sensitive to the 
shape of the fl-vector just around the peak. The conditional expected delay is shorter 
for a sharp peak (i.e. where fl has constant growth) compared to a non-sharp peak (i.e. 
where the growth of fl is decreasing just around the peak). A non-smooth fl-vector has 
a similar effect as an increased variance namely an increased conditional expected 
delay. 

In some situations it is vital to detect the turning points within a limited time 
interval, for example situations where the time for effective actions is limited. The 
detection probability can be evaluated using the probability of successful detection. If 
only alarms after the turning point are considered, this study shows that the 
probability of successful detection increases for a steeper post-peak slope and 
decreases for a non-sharp peak. For all four cases investigated the probability of 
detection within 10 time units exceeds 0.90. In natural family planning, the aim is to 
detect the interval around the turning point. The most fertile phase of the human 
menstrual cycle occurs in the interval two days before the peak to three days after the 
peak in the oestrogen hormone, see Royston (1991). In this situation alarms around 
the peak is of interest. The evaluation by probability of successful detection showed 
that the detection probability is larger for a sharp peak. But for detection around the 
peak, i.e. alarms around the peak, the study shows that a non-sharp peak is equally 
easy to detect as a sharp peak, because of the many alarms just before the peak. 

The performance of the MSR method was investigated on two sets of real data, 
with a satisfactory result. The evaluation also showed that the Brier probability score 
is very sensitive to assumptions regarding the intensity. 

The MSR method uses a non-informative prior for the time of the turning point. 
Often, see e.g. Koskinen and Oller (1998), the turning point time is assumed to be 
geometrically distributed with a constant intensity. If the distribution of the turning 
point time is used in a posterior probability with a fixed limit (or corresponding 
alarm-condition by the likelihood ratio), it makes the alarm statistic very sensitive to 
the intensity parameter. Therefore, a robust approach with a non-informative prior is 
used here. 
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In many applications of turning point detection, for example business cycle 
prediction using more than one leading indicator and natural family planning using 
indicators like temperature and hormone level, several turning point indicators can be 
used. The conclusions about the process are improved if information from all relevant 
indicators is used for making the decision, i.e. if multivariate surveillance is applied. 
In multivariate surveillance of more than one cyclical time series, several process 
characteristics effect the performance of the surveillance method. Examples of such 
process characteristics are i) the relation between the turning point times of the 
processes, ii) the slopes and standard deviation of the processes and iii) the 
interdependence between the processes, given their change points. Regarding the 
relation between the turning point times, the turning points can either occur at the 
same time (or with known lags) or independent of each other. For a situation where all 
processes change at the same time (or with a known time lag), the sufficient alarm 
statistic can be determined. Then it is possible to reduce the multivariate surveillance 
to a univariate one by a summary statistic. This was done by Wessman (1998). If the 
processes are monitored separately, a decision procedure for multivariate inference, 
for example the method of union-intersection, see Roy (1953), can be used to decide 
when to call an alarm. Another process characteristic in multivariate surveillance of 
cyclical processes is the signal-noise ratio (the slope in relation to the standard 
deviation) of each process. In order for a process to posses any predictive ability, the 
signal noise ratio must not be too small, i.e. there is a limit as to whether the addition 
of one more process will contribute to the detection probability of the surveillance 
system. Yet another important factor to consider is whether the processes, given their 
change points, are independent of each other. Both in the situation of leading 
economic indicators and in the situation of natural family planning, the different 
processes are likely to be dependent. The situation where several dependent processes 
shifted from one level to another, was investigated by Wessman (1999). 
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Appendix A. Proof of Lemma (1.1) - (1.3), used in Theorem 1. 

The following model is used 

Xes) = J.L(s) + c(s), where c(s) - iid N(O; 1) 

Thus Xes) increases stochastically with J.L(s). 

Lemma 1.1: QsD is decreasing stochastically with J.L(s) 

Proof: It follows from the results in Barlow et al. (1972) that the estimation 

procedure for the vector fl p can be described as first partitioning the time points j 

E {1, 2, ... , s} into m(s) sets, {Lf, L~, ... , L~(s) }, where 
D Ll = {l, ... ,kd 
D L2 ={k1 +1, ... ,k2 } 

D 
Lm(s) = {km(s)-1 +l, ... ,s}. 

Then, for V j E L~, 

LXU) 
° LD 

~ D ( 0) _ _ IE----"-h __ 

fls ] - k k ' 
h - h-l 

where the partitioning ensures that fLP (q) < fLP (r) if qE L~ , rE Lf" h<h '. 

The ML-estimator fL P (s) has the property that either 

fLP (s) = X(s) 

or 
s 

LX(j) 
~D j=km(s) -
fls (s)= =X(km(s)'s), 

s-km(s) +1 

where km(s):::;(s-1) and X(s) < X(k,s). 

km(s) is denoted k in the following. 
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s-I ( )2 s-I 
At time s-l we have QR-I = L X(j) - fiR-I (j) = LQR-I (j) 

j=1 j=1 

where fiR-I (j), jE {I, 2, ... , s -I}, are the maximum likelihood estimates 
for time points j. 

The dependence of QP on X(s) can be shown through the maximum likelihood 

estimate of fiP (s): 
s-I s-I 

fiP(s)=X(s) => QP(s) =0 => QP=LQP(j)=LQR-I(j)=QR-I 
j=1 j=1 

s s-I 

fiP(s)=X(k;s), X(s) < X(k,s) => Qp = LQP(j) =LQP(j) + QP(s) 
j=1 j=1 

The inequality Qp > QR-I holds since 
s-I s-I 

LQP(j) > LQR-I(j) and QP(s) >0. 
j=1 j=1 

s-I s-I 

The inequality L Qp (j) > L QR-I (j) follows since 
j=1 j=1 

s-I 

L QR-I (j) is the least square sum under the monotonicity restrictions 
j=1 

and 3j E {I, ... , s-l}: Q~(j)"* Q~l (j). 

Thus min[ QP] = Q;:"I is obtained for fiP (s) = X(s). 

D -
For fts (s) = X(k;s) we have 

k-I ( )2 s-I _ 2 - 2 
Qp = L X(j)- fiP(j) + L(X(j)-X(k;s») +(X(s)-X(k;s») . 

j=1 j=k 

k-I( )2 
The first term, L X(j) - fiP (j) ,is independent of X(s). 

j=1 

The mid-term can be written as 

~(X(j)-X(k;s»)2 = ~(X(j)- (s-k)X(k;s-l) _ Xes) )2 =/(X(s» 
j=k j=k s - k + 1 s - k + 1 

For each fixed k 
a/eXes»~ - . a = CI (X(s) - X(k;s -1», where ellS a constant. 

!X(s) 
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For Xes) < X(k;s -1) we have a/exes)) < 0, thus, j(X(s» is increasing as Xes) is 
aXes) 

decreasing. 

The last term, (X(s)-X(k;s»)2, can be written as 

s-k - 2 

( )

2 

(X(s)-X(k;s-1») . 
s-k+1 

The term (X(s) - X(k;s»)2 increases as Xes) decreases, since Xes) < X(k;s -1) . 

Thus the quadratic deviation Qp decreases with Xes). 

Since Xes) increases stochastically with fl(s) , it follows that Q~ decreases 

stochastically with fl(s) .• 

L 1 2 Q CI Q C2 Q Cs-I·· . h· all . h () emma .: s , s , ..• , s IS mcreasmg stoc ashc y WIt fl S 

Proof: The proof of Lemma 1.2 is made correspondingly to the proof of Lemma 
1.1 and only summarized below. 

From Frisen (1986) it follows that the ML-estimator of p;j, jE {1,2, ... ,s-l} has 

the property that either 

rli (s) = Xes) 

or 
s 

LX(i) 

/l;j (s) = i==b = X(bj,s) and Xes) > X(bj,s) , 
s-bj +1 

for some hj E {j,j+l, ... , s-l} andj E {l, 2, ... , s-I}. 

/l;j (s) = Xes) ~ QCj =QCj 
s s-l 

s-l 

/l;j(s)=X(bj;s) , X(s»X(bj,s) ~ Q;j = LQfj(i)+Q;j(s). 
i==l 

The inequality Q;j > Q~l holds since 

s-l s-l 

LQ;j (i) > LQ~l (i) and Qfj (s) > o. 
i==l i==l 

For /lfj (s) = X(bj;s) we have 

bj -1( s-l 
Qfj = L X(i)-/l;j(i») + L(X(i)-X(bj ;s»)2 +(X(s)-X(bj ;s»)2. 

i==l i==bj 

26 



bi -l( ) 
The term 'L X(i) - j1fi (i) 2 is independent of Xes) and the terms 

i=1 
s-1 
'L(X(i)-.i\bi ;s»)2 and (X(s)-X(bi ;s»)2 are respectively decreasing as Xes) IS 

i=bi 

decreasing. 

Thus the quadratic deviations Qfi, j E {I, 2, .. , s-l} increases with Xes) and since 

Xes) increases stochastically with pes), it follows that Q;i ,j E {I, 2, .. , s-l} increases 

stochastically with p(s) .• 

Lemma 1.3: Qscs is independent of pes) 

Proof: From Frisen (1986) it follows that j1fs (s) = X(s) , i.e. the quadratic 

deviation Qscs is independent of X(s) .• 

Appendix B. Lemma (2.1.1) - (2.2), used in Theorem 2 

In the Lemmas, the following notations are used: 

QfB and QfiB denotes the quadratic deviations for case B 

and Q: and QfiA denotes the quadratic deviations for case A. 

pA(tA ~s) denotes P(tA ~sl,u=,uA) 

and P (t A ~ s) denotes P(t A ~ sl,u = ,uB). 

pA( MSR(s) > kli~r;_1 MSR(i) < k) denotes 

P(MSR(S) > kl. (J MSR(i) < k,,u =,uA) 
l~s-1 

and pB(MSR(S) > kl. (J MSR(i) < k) denotes 
l~s-1 

P(MSR(S) > kl. (J MSR(i) < k,,u =,uB). 
l~s-1 
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Lemma 2.1.1: For two unimodal vectors fl A and tl, as defined in Section 3.1, we 

have that E[,aP-1(s -1) - ,afJ (s -1)] <I1 A (s)-I1 B (s), \Is ~ r. 

General description of the consequences of the non-parametric estimation 
procedure 

It follows from the results in Barlow et al. (1972) that the estimation procedure for the 

vector ,aRp-2 at time r+p-2 can be described as first partitioning the time points j = 

{I, 2, ... , r+p-2} into L(r+p-2) sets, {br+
p
-

2
, ... , bI1i:-:-2)}, where 

br +p - 2 - {I k} I -, ... , 1 

bI1i;}-2) = {kL(t+p-2)-1+1, ... , r+p-2}. 

l:X(u) 

Th J: \-I. bHp- 2 . h ld hAD (.) uEbt
p

-
2 

en, lor vJE i ,It 0 stat flHp-2 J = -'-----
k· -k· I 1 1-

where the partitioning ensures that 
AD (bHp-2) AD (bHp-2) AD (bHP-2) 
I1Hp-2 I <I1Hp-2 2 <···<I1Hp-2 L(Hp-2) . 

At time r+p-1, the time points j = {I, 2, ... , r+p-1} are partioned into L(r+p-1) sets. It 

follows from Barlow et al. (1972) that ,a£'p-I (r + p -1) is a weighted average of 

X(r+p-1) and (hHp- 1 +1) of the sets from time r+p-2, where 0 :::;; (hHp- 1 +1) :::;; 

L( r+p-2). That is ,a£'P-1 (r + p -1) = 

Hp-I ( 1) Hp-I AD (b Hp- 2 ) 
W_I ·XT+p- +Wo ·I1Hp-2 L(Hp-l) + 

Hp-I AD (bHP-2) Hp-I AD (bHp-2 ) 
WI ·I1Hp-2 L(Hp-2)-2 + ... +Whz. ·l1r+p-2 L(Hp-2)-hz.+p-l' 

where w~?-I + ... + w~+p-I = l. 
"r+p-l 

E[hHp- l ] depends onX(r+p-1), so that 

E[ hH p-I ] increases as E[X( r+p-1)] decreases. 

Since ,aRp-2(T+ p-2) is independent ofX(r+p-1), it follows that 

E[hHp- l ] increases as E[P£"p_2(T+ p-2) - fl(r+p-1)] increases. 
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The estimates J2-£-Ap _1 (r + p -1) and J2f/P-l (r + p -1) are expressed as 

~+P-l 
A,r+p-l. A (r + -1) +" A,r+p-l . flA DA (b A,r+p-2 ) 

W -1 X P L..J Wi r+p-2 L(r+p-2)-i 
i=O 

hf+p-l 
B,r+p-l B 1" B;r+p-l AD (b B,r+p-2) 

W_l ·x (r+p- )+ L..J Wi ·f.1r+p-2 L(r+p-2)-i' 
i=O 

h ::J'. A,r+p-l B,r+p-l. - { 1 0 1 } were ::J 1. wi "* Wi ' 1 - -, , ,... • 

In order to make the comparison easy, J2f:p -l (r + p -1) and 

J2f/P-l (r + p -1) are expressed using the same weights: 

.uf~-l (r+ P -1) = 

~+P-l 
A,r+p-l. A (r + -1) +" A,r+p-l . flA DA (b A,r+p -2 ) 

W -1 X P L..J Wi r+p-2 L(r+p-2)-i 
i=O 

~+P-l 
A,r+p-l B " A;r+p-l A DB (bA,r+p-2 ) 

w_l ·x (r+p-1)+ L..J wi ·f.1r+p-2 L(r+p-2)-i +gr+p-l' 
i=O 

where gr+p-l = 

(W~t'+ p-l - w~t·+ p-l ). x B (r + p -1) + 
B 

h;:~-l ( B,r+p-l _ A,r+P-l). /i DB (b B,r+p-2 ) 
L..J \Wi wi l""r+p-2 L(r+p-2)-i' 
i=O 

The expected difference between the two estimates equals 

E[J2-£-Ap _1 (r+ p -1) - J2f/P-l (r + p -1)] = 

w~t+P-l .E[XA(r+ p-1)-XB (r+ p-1)] + 

~+P-l 
" A;r+p-l E[ ADA (b r+p-2 ) A DB (b r+p-2 ) ] 
L..J wi . f.1r+p-2 L(r+p-2)-i - f.1r+p-2 L(r+p-2)-i - gr+p-l . 
i=O 
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Look at the sum 

r¢+p-l 

L W:,Hp-l .E[pf:p-2(blti:~-2)-i) - pf/P-2(blti:~-2)-i)]· 
i=O 

The estimation procedure is such that for every P'£'p_2(b;+p-2) , only observations 

from time point 1 up to the last time point of the set b;+p-2 can be included in 

AD (br+p-2) 
f1Hp-2 j . 

Since 

(f1A (r + p -1) - f1B (r+ p -1») increases as p increases, p ~1 

it follows that the largest possible expected difference in the sum is 

E[ADA (b Hp- 2 ) ADB (bHp-2 )] 
f1Hp-2 L(Hp-2) - f1Hp-2 L(Hp-2) . 

Therefore the following inequality holds for the expected difference: 

E[p,£.Ap_1 (r + p -1) - pf/P-l (r+ P -1)] ~ 

w~t+p-l ·E[XA(r+ P-1)-XB(r+ p-1)] + 

r¢+p-l 

E[pf:p-2 (blti:~-2) - pf/P-2 (blti:~-2)]· L W:,Hp-l - gHP-l 
i=O 

i.e. 

E[P'£'~-l (r + p -1) - pf/P-l (r + p -1)] ~ 

A,Hp-l f.. ) 
w_l ·VLA(r+p-1)-f1B(r+p-1) + 

E[ ADA (b Hp- 2 ) ADB (b Hp- 2 )] (1 A,HP-l) f1Hp-2 L(Hp-2) - f1Hp-2 L(Hp-2) . ~ - w -1 - gHp-lo 

gHP-l depends on the relation between h:+p- 1 and h:+P_1o 
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F h A - hB h B,Hp-1 - A,Hp-1 . - { 1 0 1 } d h ~ or 'r+p-1 - r+p-1, t en wi -Wi ,1- -, , , ... an t erelore 

~+P-I 
A;r+p-1 . (r + -1) + ~ A,Hp-1 . t,DB (b A,Hp-2 )-

W_1 xB P £. wi r'Hp-2 L(Hp-2)-i -
i=O 

l4+p-I 
B,Hp-1. B(r+ -1)+ ~ B,HP-1. t,DB (b A,Hp-2 ) 

W -1 x P £. Wi r'Hp-2 L(Hp-2)-i 
i=O 

and then 

gHp-1 =0. 

F h A hB h::J '. A,Hp-1 B,Hp-1· - { 1 0 1 } d h ~ or r+p-1 < Hp-1' t en.:::J 1. wi '* Wi ,1- - , , ,... an t erelore 

l4+p-I 
B,Hp-1. B(r + -1) + ~ B,Hp-1 . /i DB (b B,HP-2 ) > 

W -1 x P £. Wi r'Hp-2 L(Hp-2)-i 
i=O 

~+P-I 
;r+p-1. B(r+ -1)+ ~ ,Hp-1. "DB (b ,Hp-2 ) 

W -1 x P £. Wi r'Hp-2 L(Hp-2)-i 
i=O 

and then 

gHp-1 >0. 

Proof Lemma 2.1.1: 

Here starts the proof of Lemma 2.1.1. We use induction to prove that 

E[PP-1 (s -1) - PPJ (s -1)] < t/'\s) - ;!(s), for s ;::: 1". 

The estimation procedure is such that 

E[ hr+ p-1 ] increases as (pft. p-2 (r + P - 2) - p( r+p-1)) increases. 

Induction: if Lemma 2.1.1 is valid at time s=r+p-1, then the following holds 

and then 

since 

E[P£.~_2(r+ p-2) -XA(r+ p-l)] < 

E[pp~_2(r+ p-2) _XB (r+ p-l)]. 
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The largest possible expected difference is 

E[pf':p-1Cr+ p-l)-pf~-lcr+ p-1)]:::; 

A,Hp-1f,,( 1) w_1 "\}LA r+p-1)-flB(r+p-) + 

E[ ADA (b Hp- 2 ) ADB (b Hp- 2 )] (1 A;r+P-1) 
flHp-2 L(Hp-2) - flHp-2 L(Hp-2) "\ - w -1 - gHp-1' 

i.e. E[jI£.Ap_1 (r + p -1) - jlf~-l (r + p -1)] :::; 

Again, if Lemma 2.1.1 is valid for s="C+p-1, then the following inequality holds 

E[jI£.Ap_2 (r + p - 2) - jlf~-2 (r + p - 2)] <flA (r+ p -1) - flB (r+ p -1) 

and then the following inequality holds for the expected difference: 

E[ jlf:p-1 (r + p -1) - jlf~-l (r + p -1) ] :::; 

w!t+p
- 1" ~A(r+ p-1)-fl B(r+ P-1)) + 

~A(r+ p-1)- flB (r+ p -1))' (1- w!t+P- 1) - gHP-1' 

where gHp-1 > 0, if Lemma 2.1.1 is valid at time s=r+p-1. 

For gHP-1> 0, the following inequality holds for the expected difference: 

E[jI£.~-l (r + p -1) - jlf~-l (r + p -1)] :::; 

w!t+p- 1 . ~A(r+ p-1)-fl B(r+ p-l)) + 

~A (r+ p -1) - flB (r + p -1»). (1- W!jHP-1). 

Since w!t+P-
1

:::; 1, the following inequality holds for the expected difference: 

E[jI£.~-l (r+ p -1) - jlf~(r+ p -1)] :::; flA(r+ p-1) - flB (r+ p-1). 

Since CIlAC"C+p-1) - IlBC"C+p-1)) < C/1AC"C+p) - IlBC"C+p)), the following inequality holds 

Thus, Lemma 2.1.1 holds for s=r+p if it holds for s=r+p-1. 

Lemma 2.1.1 holds for s=rby Lemma 1.1, thus it holds for {s=r+1, s=r+2, ... }, all 

s~t:. 
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Lemma 2.1.2: For two unimodal vectors f1 A and;!', as defined in Section 3.1, we 

have that (QfB - Qfl) is stochastically larger than (QfA - QP-1), for s :2:r. 

Proof Lemma 2.1.2: 

As written in Lemma 1.1, the ML-estimator has the property that 

when Xes) > fJP-l (s -1) , then Qf = QP-l 

and when Xes) <fJP-l (s -1), then Qf> QP-l' '\I s. 

This could be expressed as 

when fJP-l (s -1) - Xes) > 0, then Qf> QP-l' 

From Lemma 1.1 it follows that 

Qf increases as Xes) decreases, 

i.e. Qf-l + (Qf - Qf-l) increases as Xes) decreases, 

i.e. Qf-l + (Qf - Qf-l) increases as (ftf-l (s -1) -Xes)) increases, \j s. 

Since Qf-l and ftf-l (s -1) are independent of X(s) , it follows that 

Xes) decreases ~ 

(fJP-l (s -1) -Xes)) increases ~ 

(Qf - QP-l ) increases. 

The following inequality was proven in Lemma 2.1.1: 

E[ fJP-1 (s -1) - fJP-f (s -1) ] < f.1A (s) - f.1B (s), 

i.e. E[fJA_1 (s -1) _XA(s)] < E[fJ -1 (s -1) _XB (s)]. 

It follows from Lemma 1.1 that 
Xes) decreases ~ 

(fJ -1 (s -1) -Xes)) increases ~ 

( Q - Q -1) increases. 

It follows from Lemma 1.1 that (Q - Q -1) increases stochastically with 

E[fJ _1(s-l)-X(s)]. 

Since E[fJA_1 (s -1) _XA(s)] < E[fJ~1 (s -1) _XB (s)], it follows that 

(QB _ Q~1 ) is stochastically larger than (QA - QA_l ) .• 
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Lemma 2.2: For two unimodal vectors J1 A and,l', as defined in Section 3.1, we 

have that (Q;jB - Q~f) is stochastically smaller than (Q.f:'A - Q;!1), j={1, 2, 

... , s-I}, for s~r. 

Proof Lemma 2.2: 
The proof is made correspondingly to the proof of Lemma 2.1.1 and 2.1.2 and 
therefore is not given here. 

Appendix C. Proof of Theorem 2. 

Theorem 2: For two unimodal vectors J1 A and,l', as defined above, we have that 
pB(tA :S:S»pA(tA :S:s), V S~'t. 

General description of the alarm statistic, MSR(s). 

The alarm statistic at time s is a sum of s components 

First we give a general description of the dependence between MSR(s-l) and MSR(s). 

MSR(s-l) is a sum of (s-l) components, denoted MSRl(S-I), ... , MSRs_l(S-I), so that 

MSR(s-I)=MSR1(s-l) + ... + MSRs-1(s-l) 

and MSR(s) is a weighted sum of the (s-l) components of MSR(s-I), plus one 
additional component: 

MSR(s) = 

34 



Q D QCs 
and s s b ~ Y US' 

2 

By the notation above MSR(s) is expressed as 

MSR(s) = exp(¢1 ). MSR1 (s -1) + ... + exp(¢:-l ). MSRs_1 (s -1) + exp(8s). 

Analogically, MSR( r+p), p={ 0, 1, 2, ... }, can be expressed as a weighted sum of the 
components of MSR( r-1) plus p additional components. 

MSR(r+p) = 

exp(¢i + ... + ¢i+ p). MSR1 (r -1) + ... + exp(¢i-l + ... + ¢i~b)' MSR r- 1 (r -1) + 

exp(¢:+l + ... + ¢i+p )' exp(8r )+ exp(¢::i + ... + ¢i:b)· exp(8H1 )+ ... + 

exp(¢i::-l ).exp(8HP- I )+ exp(8Hp ). 

From Lemma 2.1.2 and 2.2 we have that, for s'?r, 

( QfB - QP-f) is stochastically larger than (QfA - QP-1 ) 

and (QfjB -Q2f) is stochastically smaller than (QfjA -Q2t),j ={ 1, ... , s-1}. 

From this it follows that, for s '? r, 

( Qs - Qs-I )-( Qf." - Q21 ) is stochastically larger than 

(Q: - Q:-I )-( Qf
jA - Q2t),j ={ 1, ... , s-1} 

I.e. 

¢j is stochastically larger than ¢jA ,j ={ 1, ... , s-1}, s '? To 

The estimation procedure is such that Qfs = QP-I . Therefore 

8 - QD QCs _ QD QD s - s - s - s - s-l' 

By Lemma 2.1.2, we have that, for s '? r, 

(Qf - QP-I ) is stochastically larger than (Qf - QP-I ) 

i.e. 

8: is stochastically larger than 8: , s '? To 
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Proof Theorem 2: 

Induction: if Theorem 2 is valid for s= r+p-l, then the following inequality holds 

that is 

This is equivalent to the event that the alarm statistic, at no time point, has exceeded 
the alarm limit, i.e. 

pA( II MSR(i) < k» pB( II MSR(i)<k). 
i:S;r+p-1 i:S;r+p-1 

We will start from the following conditional probability 

P(MSR('C+ p) < kl. n MSR(i) < k). 
l:s;r+p-l 

Denote 

{ n MSR(j) < k} by M l:j. 
iE(I:j) 

The conditional probability 

p(MSR(r+ p) < kIM1:r+P-I) 

is expressed as 

P { n MSR( 'C + i) < k}I{M1:r - l } . P(M1:r- l ) 
iE{O:p} 

Look at the event { n MSR( 'C + i) < k} . 
iE{O:p} 
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The alarm statistic MSR( r + i), i = {O, 1, ... , p} is expressed as 

MSR(r+i) = 

exp(¢i + ... +¢i+i ).MSR1(r-l)+ ... +exp(¢i-1 + ... + ¢i;l)· MSRr-1(r-l) + 

exp(¢i+l + ... +¢i+l)·exp(8r )+ exp(¢::i + ... +¢i:1)·exp(8H d+ ... + 

exp(¢i::-1 
). exp(8Hi- 1)+ exp(8Hi )· 

From the results in Lemma 2.1.2 and 2.2 it follows that 

¢fA is stochastically smaller than ¢fB ,j = {1, ... , s-1}, s?r, 
and 

8: is stochastically smaller than 8:, s?r. 

Therefore it follows that the alarm statistic MSR( r+i), at every time i={ 0, 1, ... , p}, is 
stochastically smaller for case A than for case B, i.e. 

pA(MSR(r+i) < k» pB(MSR(r+i) < k), i = {O, 1, ... ,p}. 

From this it follows that the event { n MSR( r + i) < k} is stochastically smaller for 
iE{O:p} 

case A than for case B, i.e. 

pA({. n MSR(r+i) < k}]> pB({. n MSR(r+i) < k}]. 
E~~ E~~ 

Since pB (M1:r- 1) = pA (M1:r - 1) we have 

pA({. n MSR(r+i)<kll{Ml:r_l}]> 
ZE{O:p} f 

pB({. n MSR(r+i) < k 11{Ml:r_l}] 
ZE{O:p} f 

and further that 

p ({. n MSR(r+i) < k}n{M1:r- 1}]> 
ZE{O:p} 

pB({. n MSR(r+i) < k}n{M1:r- 1}]. 
ZE{O:p} 

The inequality above is equivalent to 

pA(. n MSRU)<k»pB(. n MSR(i)<k) 
z5.r+p z5.r+p 
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i.e. 

pA(tA >r+p»pB(tA >r+p) 

i.e. 

pB(tA 5,r+p»pA(tA 5,r+p). 

Thus Theorem 2 holds for s=r+p if it holds for s=r+p-1. 

It holds for s=rby Corollary 1, thus it holds for {s=r+1, s=r+2, ... }, all s?r. • 
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