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ON SEASONAL FILTERS AND MONOTONICITY 
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ABSTRACT 

Seasonal adjustment is important in for example economic time series where the 
variation can be due to both seasonal and cyclical movements. In a situation where we 
want to detect a turning point of a cyclical process exhibiting seasonal variation, it is 
very important that the seasonal adjustment does not adversely affect the ability to 
detect the turning points. Thus, it is important that the seasonal adjustment does not 
alter the monotonicity. In this report, seasonal adjustment using differentiation and 
moving average methods is analyzed with respect to the effect on turning points. 

Key words: Seasonal adjustment; Moving average; Differentiation; Monotonicity; 
Unimodality; Turning point. 

1 INTRODUCTION 

Timely prediction of a turn in the business cycle is important for government as well 
as industry. The turn is a change from a phase of recession to one of expansion (or 
vice versa). By applying a system for detection of the turning points of a leading 
indicator, we can receive early signals about the future behavior of the business cycle. 
Since quick detection is important, monthly or quarterly observations are used rather 
than yearly data. However, monthly and quarterly data often have seasonal variations. 
Thus data must be adjusted for seasonality in order to distinguish the cycles. The 
problem of seasonality in economic time series and the evaluation of methods for its 
adjustment has for a long time been of great interest, see Grether and Nerlove (1970), 
Granger (1978), Bell and Hillmer (1984) and Ghysel and Perron (1996). The choice of 
method depends on the users' loss function. Grether and Nerlove (1970) use minimum 
mean square error as a criterion of optimality. When it is important that the times of 
the turning points in the cycle are preserved also other criteria such as minimum delay 
are relevant. In research on business cycles, there are many suggested methods for on­
line turning-point detection, where the aim is to detect the next turning point as soon 
as possible, see Neftci (1982), Hamilton (1989), Frisen (1994), Koskinen and Oller 
(1998), Birchenhall et al. (1999) and Andersson et al. (2001). At each new time point 
(e.g. each month) a new observation is made and a new decision has to be made as to 
whether the process has reached a turning point or not. Since this involves repeated 
decisions, the methodology of statistical surveillance is appropriate, see Shiryaev 
(1963), Frisen and de Mare (1991) and Srivastava and Wu (1993). In this paper the 



effect of seasonal adjustment is examined with emphasis on a surveillance situation. 
In a turning point detection context, the problem of whether seasonal adjustment alters 
the turning point times of the cycles is of special interest. Therefore, an important 
aspect of seasonal adjustment is the monotonicity of the adjusted series. The altering 
of the turning point may be due to certain smoothing and/or lagging properties of the 
seasonal adjustment procedure. 

The paper is organized as follows. Section 2 contains a review of different methods 
for seasonal adjustment. Section 3 contains a review on earlier investigations 
concerning the effect of seasonal adjustment on change point analyses. Further in 
Section 3, the effects of seasonal adjustment by moving average methods and 
differentiation are analyzed with regard to their effects on change point detection. The 
monotonicity preserving properties of moving average methods are analyzed. The 
question of whether the seasonally adjusted series preserves the time of the turning 
points in the cycles is treated. The effect of using seasonally adjusted data in a 
surveillance system is investigated, with special emphasis on the delay of a change 
point indication. Section 4 contains a summary and discussion. 

2 MODELS AND METHODS IN SEASONAL ADJUSTMENT 

Seasonal variation in a time series is not often defined rigorously, but Wallis (1974) 
gives examples of some more explicit statements. A common description is that 
seasonal variation is fluctuations that are periodical with a period of one year. 
Monthly or quarterly data often contain seasonal variation, which can be considerable, 
as can be seen from Figure 1. If seasonality is neglected in the modeling and in a 
surveillance situation it could lead to serious wrong conclusions, therefore seasonal 
adjustment must be made. However, when choosing the adjustment method it is 
important to consider the effect on the structure of the original series. Grether and 
Nerlove (1970) express this by requiring that the method should remove the peaks 
which appear at the seasonal frequencies in the original series, but should affect the 
reminder of the spectral densities as little as possible. Granger (1978) expresses this 
by stating that a desirable property of the adjustment procedure is that it should leave 
non-seasonal time series unaffected. 

In Nerlove (1964), economic time series are described in the frequency domain. It 
is shown that a slowly changing seasonal pattern or a stochastic seasonal pattern will 
reveal itself in the spectrum. Several investigated methods for seasonal adjustment 
eliminate more than the seasonality and produce several phase shifts at lower 
frequencies. 
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Figure 1: Industrial production, quarterly data (1970Ql: 1992Q2). 

Akaike (1980) categorized approaches to seasonal adjustment of time series into three 
classes: methods based on moving averages, methods based on multiple regression 
and methods based on time series models. Sometimes a categorization is made 
between empirical and model-based approaches, where e.g. procedures based on 
moving averages or differentiation are considered empirical as the seasonal 
components are eliminated directly from the data at hand without an explicit model. 
The two latter classes are considered model-based in the sense that they are based on a 
clearly defined model of the time series. 

In seasonal adjustment methods based on multiple regression parametric functions 
are used to model the trend and seasonal components at time t, see Harvey (1993). 

The components of a time series can be modeled as additive, multiplicative or a 
mixture of additive and multiplicative components. When using a completely additive 
(multiplicative) model, one common approach is to assume that the time series 
consists of a sum (product) of components (trend-cycle, season and an irregular term). 
The task is then to separate these three components and to eliminate the seasonal by 
subtraction (division). With an additive model, the components can be estimated using 
for example ordinary regression technique. With a completely multiplicative model 
one common estimation procedure is to make the model additive by a logarithmic 
transformation and then proceed as for the additive model. For a model with both 
multiplicative and additive components, a simple iterative procedure was suggested 
by Frisen (1979). 

2.1 Constant seasonal pattern 

The most commonly used model is 
Y(t) = /1(t) + S(t) + t:(t) 
where c is a stationary stochastic process, 
often assumed to be iid N(O; d). 

(1) 

For the interpretation of S as a constant seasonal component with s seasons, we need 
s 

LS(t + k) = 0, for any integer t, 
k=l 
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while there exists no further decomposition 
fl(t) = X(t) + Z(t), 

with Z(t) :;eO for some t 
s 

and I,Z(t + k) = 0, for all integers t. 
k=1 

Different models can be assumed for Set) and fl(t) in (1). If a constant seasonal pattern 
is assumed along with parametric functions for fl(t) and Set), then linear regression 
can be used to estimate the components. One example of a parametric model for S is 
the trigonometric one 

s/2 

Set) = I, (ai cos(~ . t) + bi sin(lli . t)) , 
i=l 

t = {I, 2, ... }, 
s = # seasons, 
aj, 14, bi are constants. 

This model is sometimes called harmonic regression model. 
Seasonal adjustment of model (1) can be made by 

Y(t) - S(t), where Set) is an estimator. 

Another approach for seasonal adjustment is seasonal differentiating, considered by 
Yule (1926). For recent use of seasonal differentiating, see Oller (1986) and Oller and 
Tallbom (1996). 

Seasonal adjustment can also be made by estimating the Il-component by applying 
moving averages. One method based on moving averages is the well-known X-II 
method, see Shiskin et al. (1967). A moving average can be both centered and non­
centered and the use of moving average techniques are suited for time series where it 
is assumed that the seasonal component is constant over time or at least that any 
possible change is very slow. 

2.2 Stochastic seasonal pattern 

A large class of models where the components are stochastic are structural models, 
see Harvey (1993). Structural time series models start from an additive model where 
all components are stochastic. Engle (1992) gives an example of a structural model 

fl(t) = Plfl(t-l) + /3zfl(t-2) + met), m-iid N(O; 0-
2
1), 

Set) = as(t-4) + ~t), ;-iidN(O; 0-
22), 

c- iid N(O; 0-
23), 

m, ;, care independent of each other, 

where a Kalman filter procedure was used to estimate the regression parameters (a, 
PI, /3z) and the variances. A maximization algorithm was used, which provides a set of 
recursive formulas for calculating the mean and variance of the unobserved 
components at each time, conditional on a particular set of information. 

Young et al. (1999) described time series analysis using dynamic harmonic 
regression, where the phase of the harmonic components can vary: 
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f.1(t) = ¢i...t) + ai..t), mis iid, E[m]=O, Var[m]=d, 
Rs 

S(t) = I. {ai,t cos(Ai . t) + bi,( sin(Ai . t)}, 
i=l 

where a i,t and b i,t are stochastic variables 
and Ai, i = 1, ... , Rs, are the frequencies associated with the seasonality. 

Filtering equations are used in the estimation procedure. 
Time series models where each of the three components, {f.1(t), S(t), c(t)} , are 

assumed to follow an ARIMA process have been suggested. When the stochastic 
structure of the components are known and by imposing certain restrictions on the 
ARIMA models for f.1 and S, Cleveland and Tiao (1976) demonstrated that weight 
functions, W, can be determined and that the components can be estimated as 

A 

Set) = Ws . Y(t) , 

A(t) = W/1 . Y(t). 

If the stochastic structure is unknown a decomposition that uniquely determines S and 
f.1 can be made by putting certain restrictions on the components (Hillmer and Tiao 
(1982)). 

3 THE EFFECT OF ADJUSTMENT METHODS ON TURNING POINTS 

3.1 Seasonal adjustment and change point problems 

The problem of altered change points by seasonal adjustment has been briefly 
discussed, by e.g. Ghysel and Perron (1996) and Franses and Paap (1999). However, 
often the effects of seasonal adjustment have been studied first after additional 
transformations have been applied (Oller (1986) and Oller and Tallbom (1996)). 

A linear approximation of the Census X-ll method (see Young (1968)) based on 
moving averages, was investigated by Ghysel and Perron (1996) in relation to a test 
for structural change in a fixed sample. In the case of an abrupt level shift in a non­
seasonal time series it was found that the magnitude of the discrete jump was reduced 
and a saw-toothed pattern appeared before and after the shift. The effect of the linear 
approximation to the Census X-II method on size and power of the test for structural 
change (MacNeill (1978)) was investigated. The result was that the seasonal 
adjustment filter will give a test that is oversized and where the relative efficiency is 
lower for an early shift. The incorrect size is a result of the so called Slutsky-Yule 
effect (cited in Jorgenson (1964)), where the random component of the original series 
is independently distributed over time, but the random component of a moving 
average of this series is not. If the dependency structure is ignored, one result is an 
incorrect size. When testing for a shift, the sample is divided into one pre-shift sample 
and one post-shift sample and the parameters of pre-shift and post-shift are estimated. 
The small power for early shifts is a result of the small sample from which to estimate 
the pre-shift level. 

In Franses and Paap (1999), a Hidden Markov model (HMM) with two states (1, 2) 
was used to analyze seasonally adjusted data. Prior to the HMM, the linear 
approximation of the Census X-II was applied. The result was a positive bias of the 
estimator of the probability of staying in a particular regime. The dates of the shift 
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between the two states were estimated using both seasonally adjusted data and non­
adjusted data on the same time series. The result was that the estimated dates of the 
break points differed between adjusted and non-adjusted data. 

Ghysels (1997) investigated whether business cycle turning points are clustered 
around certain times of the year, i.e. if the probabilities of transition between phases 
of the business cycle were varying with seasonality. 

Leong (1962) points out that a known property of the moving average is that it 
tends to smooth the turning points. The result is that the turning points are more 
difficult to detect. 

In a surveillance situation, it is relevant that the time of the turning point is 
preserved after the adjustment. 

3.2 Model specifications 

The investigation starts from model (1), with the additional restriction 
Ji(t)E f.J, where f.J is the family of all unimodal functions. 

Since Y contains the component Ji, Y is not a trend stationary series. 
In the following the results and examples are given for the situation when the 

turning point is a peak, but the results are valid also for the opposite case (a trough). 
By the definition of a turning point, the regression Ji is monotonic within each 

regime. That is, for a peak we have the following monotonicity and unimodality 
restrictions 

{
,u(1) ::;; ,u(2) ::;; ... ::;; ,u(t), t ::;; p (2) 

Jit = ,u(1)::;; ... ::;; ,u(p) and ,u(p);::: ... ;::: ,u(t), t > p 

where p is the time of the peak. 

Observe that the dependency of E(Y(f)1 f, p) = Ji(t) on p makes Ji(f) a stochastic 
variable. 

The seasonal adjustment is made in order to distinguish Ji from the other 
components. The part of Y that is investigated contains one turning point at most. No 
parametric assumptions are made about Ji(f) as a function of time, the only 
information is that Ji(t) is unimodal according to (2). In this report the case when the 
accessible data are for a short or moderate time period is studied. Since no parametric 
model is assumed for Ji(f), none of the parametric based estimation methods discussed 
in Section 2 is appropriate. Instead, we adjust for seasonality by applying 
differentiation or moving average. Other adjustment methods than a moving average 
might be more efficient. However, it is important to use a technique that is robust 
against slow changes in the seasonal component over years. It should also be noted 
that the number of available observations might, in many situations, not be very large. 
Another reason for examining the technique of moving average is that this technique 
is frequently used. 

The aim of the seasonal adjustment is to adjust for seasonality without altering the 
turning point time of Ji(t). The properties of seasonal differentiating as well as moving 
average technique are investigated. Since the data consist of monthly observations, the 
twelfth difference and twelve-month moving average are used. 
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The twelfth difference is 
D(t)=Y(t)-Y(t-12) 

and the expected twelfth difference at time t, under the assumptions of model (1), is 
8..,t) = E[D(t)] = f.1(t) - f.1(t-12) . (3) 

A centered moving average will not be suitable in a monitoring situation, since it 
results in an automatic lag of m time points (for monthly data m = 6). In the turning 
point detection situation, the aim is to detect the turning point in f.1 as soon as possible 
and thus a non-centered filter should be considered instead. A monthly centered 
moving average is based on the latest thirteen observations and a consequence of the 
centering is that the centered moving average at time t, per definition, can not be 
calculated until six months later, thus producing a systematic delay. Therefore a non­
centered moving average is considered for the surveillance situation. 

The non-centered moving average is 
_ 1 0 

Y(t)=- LY(t+ j). 
12 '- 11 J--

and the expected value of Y (t) under the assumptions of model (1) is 
_ 1 0 

TJ(t) =E[Y(t)]=- L,u(t+ j). 
12 j=-ll 

3.3 Change-point preserving properties 

(4) 

The investigation concerns the question whether indicators of turning points are 
timely after seasonal adjustment by differentiating and by moving average. Two 
different cases are investigated namely the case when the trend cycle is monotonic 
and the case of a peak in the trend cycle. 

3.3.1 f.1 is monotonically increasing 

The case when the f.1-vector is monotonically non-decreasing within the entire 
observed section is studied in this section, that is 

f.1(t-l)::::; f.1(t), t ;:::2. 

The question of whether the sign of the slope of a monotonically increasing f.1 is 
preserved after differentiation is analyzed. That is, the correctness in the relation 

8..,t);::: 0, 

is investigated. 

Statement la: If f.1 is monotonically increasing, the expected seasonal difference is 
positive. Correspondingly, if f.1 is monotonically decreasing, the expected seasonal 
difference is negative. 
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The question of whether the monotonicity is preserved when a non-centered moving 
average is used to estimate a monotonically increasing Jl is analyzed. That is, the 
correctness of the relation 

1](t-1) ~ ll(t), 

is investigated. The results are valid also for the opposite case (a monotonically non­
increasing Jl-vector). 

Statement 1 b: If Jl is a monotonic function, the expected value of the non-centered 
12-point moving average is also a monotonic function. 

Details of Statement 1 b are given in Appendix A. 

3.3.2 Jl has a turn 

The case when the Jl-vector is inversely U-shaped with a peak at time p is studied in 
this section, that is 

Jl(1) < Jl(2) < ... < Jl(P) and Jl(P) > Jl(P+ 1) > ... 

The questions investigated in this section are i) whether the sign of the differentiated 
series can be used for indication of turning points and ii) whether the monotonicity 
and the time of the turning point is preserved when a moving average technique is 
used. That is, the correctness of the relations 

lJ...t) > 0, t ~ p, and lJ...t) < 0, t > P 

and 

1](1) < 1](2) < ... < 1](P) and 1l(P) > 1](P+l) > ... 

is investigated 
The seasonal differentiating and the non-centered moving average estimator will be 

studied in three special cases of a peak at time t = p. We study one symmetric turning 
point and two extreme turning points (a peak with a slowly decreasing post-peak slope 
and a peak with a steep post-peak slope). To a large extent economic theory and 
applied work rely on the assumption of symmetric cycles, see Falk (1986). However, 
it was early pointed out by Keynes (1936) that the business cycle appears to have 
abrupt transitions at troughs and smooth transitions at peaks. Neftci (1984) finds 
evidence of different absolute slopes in expansions and recessions for the 
unemployment rate. For research on asymmetry of macroeconomic time series, see 
also McQueen and Thorley (1993). 

In the first case investigated, Jl is symmetric around the peak at time t = p, i.e. 
Jl(P-q) = Jl(p+q), q ~1. 
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Figure 2: Case 1: p at a symmetric peak. 
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The table below shows the result for the two seasonal adjustment methods at a 
symmetric peak. 

Table I: Case 1: Expected twelfth difference, O(t} and expected value of non-centered 
moving average, 1](t}. 

Decision time, t I:!:.(t) ~t) 1](t) 
t~p p(t-l ) <p(t) ~t) >0 1](t-l) < 1](t) 

p+l ~t~p+5 p(t-l» p(t) ~t) >0 1](t-I) < 1](t) 

t=p+6 p(t-l» p(t) ~t) =0 1](t-l) = 1](t) 

t;:;::p+7 p(t-l» p(t) ~t) <0 1](t-l» 1](t) 

s~.---------------. 11 
40 

'0 30 

~ 

,0 

0 

'0 ~ 30 40 50 0 '0 ~ 30 40 50 

Figure 3: Case 1: The expected twelfth difference and the expected value of a non­
centered 12 point moving average for p at a symmetric turning point. 

Table I shows that both the expected difference and the expected estimated trend 
cycle have a delay of six time units for a symmetric peak. 
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The second case considered is where the peak is non-symmetrical with a slowly 
decreasing post-peak slope, that is 

f.1(P+Q) > f.1(P-1), qE {I, 2, ... ,11}. 

Since f.1(1) < ... < f.1(P-2) < f.1(P-1), it follows that f.1(P+m) > f.1(p-m), mE {l, 2, ... , 11}. 
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Figure 4: Case 2: f.1 at a non-symmetric peak with a slowly decreasing post-peak 
slope. 

The table below shows the result for the two seasonal adjustment methods at a non­
symmetric peak with slowly decreasing post-peak slope. 

Table 2: Case 2: Expected twelfth difference, 8(t} and expected value o/non-centered 

moving average, 17(t}. 

Decision time, 1 

p+ 1 ::; 1 ::; p+ 11 

1 :2:p+12 

f.1(/) 
f.1(t -1)< f.1(t) 

f.1(t-1» f.1(t) 

f.1(t-l» f.1(t) 

~/) 
/i...t) > 0 

/i...t) > 0 

/i...t) < 0 

10 

17(/) 
17(t-1)< 17(t) 

17(t-1)< 17(t) 

17(t-1» 17(t) 
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Figure 5: Case 2: The expected twelfth difference and the expected value of a non­
centered 12 point moving average for J1 at a non-symmetric peak with a slowly 
decreasing post-peak slope. 

Table 2 shows that the delay is eleven time units for the expected twelfth difference 
and the expected value of the non-centered moving average at a peak with a slowly 
decreasing post-peak slope. 

The third case considered is where J1 has a non-symmetrical peak with a steep post­
peak slope. It is assumed that 

J1(P+ 1) < J1(P-ll ). 

Since J1(P+l) > J1(p+2) and J1(P-ll) < J1(P-1O) the inequality J1(P+2) < J1(P-1O) must 
hold. From this result it is implicit that J1(p+m) < J1(P-12+m), mE {3, 4, ... , II}. 
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Figure 6: Case 3: J1 at a non-symmetric peak with a steep post-peak slope. 

The table below shows the result for the two seasonal adjustment methods at a non­
symmetric peak with a steep post-peak slope. 
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Table 3: Case 3: xpected twelfth difference, /J(t), and expected value of non-centered 
moving average, 1](t}. 

Decision time, t f.1(t) (!t) 11<t) 
t~p fl(t-1) < fl(t) 8...t) > 0 1](t-l) < 1](t) 

t::::p+l fl(t-l) > fl(t) 8...t) < 0 1](t-l) > 1](t) 

o~r-------------------~ ~ ~.---------.---------~ 

10 ~ 

o ----------- ----------- w 

·10 

.~ ·10 

Figure 7: Case 3: The expected twelfth difference and the expected value of a non­
centered 12 point moving average forfl at a non-symmetric peak with a steep post­
peak slope. 

Table 3 shows that there is no delay for the expected difference, nor for the expected 
value of the non-centered moving average at a non-symmetrical peak with a steep 
post-peak slope. 

Statement 2a: If fl is unimodal, the sign of the expected twelfth difference will not 
always indicate the slope of fl. 

Frisen (1986) proved that if fl is a unimodal function, the expected value of the 
moving average will preserve the unimodality. This means that the turning point itself 
is preserved, but that is not the same as if the time of the turning point is preserved. 

Statement 2b: If fl is unimodal, the expected value of the non-centered 12-point 
moving average will preserve the unimodality of fl (Frisen (1986)) but not always the 
time of the turning point in fl. 

Details of Statement 2b are given in Appendix A. 

3.4 Using moving average and differentiating in turning point detection 

3.4.1 Turning point indication 

In the surveillance situation the aim is to detect a turning point in the cyclical process 
as soon as possible after it has happened. When the non-centered moving average is 
used for seasonal adjustment, a tum in the moving average is used as an indication of 
a turning point. 

12 



The properties of the sign of ~t) as indicator for a turning point will be further 
illustrated. If 

s: {c, if t ~ P 
u(t) = . 

-c, If t > P 
where c is a constant 

then Y, conditional on t, has the following expected value: 
c· t 112, if t ~ P 

- 2c + c . t 112, if p < t ~ P + 12 
J-l(t) = 

- 4c + C . t 112, if p + 12 < t ~ P + 24 

(See Appendix B.) 

To illustrate the effect, the difference to the previous value is given in Table 4. 

(5) 

Table 4: The first difference, J-l(t) - J-l(t-l), in relation to the seasonal difference, 
8{t)=J-l(t)-J-l(t-12). 

Decision time, t ~t) /1(t) - J1(t-l) 
c C/12 

t=p+l -c -2c+C/12 

p+2 ~ t~p+12 -c C/12 

t=p+13 -c -2c+C/12 

-c C/12 

An illustration is given in Figure 8. 

o~.-----------------~ ~~.-----------------~ 

20 20 

'0 '0 

-10 -'0 

-20 -20 

-~ !------":C-2 ----:2.,---' ----:36.,---------, .. ::-----:1.., 

Figure 8: The expected value of a differentiated series is 8 in expansion and -8 in 
recession (left panel). Then the expected value of the undifferentiated series, J-l(t), is 
illustrated in the right panel. 
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The implication of defining the turning point as a shift in the series of seasonally 
differentiated data is that the original data is not at a turning point. Instead this 
definition implies that the original post-peak slope has a saw-toothed pattern. This 
problem occurs when seasonal differentiating is used, but not for the first order 
difference. 

3.4.2 Differentiating and moving average in a system of surveillance 

We investigate the consequence of using either the twelfth difference or the moving 
average for seasonal adjustment in a surveillance situation when the peak occurs at 
time p. We want to detect the peak as soon as possible after it has occurred. For that 
purpose we construct an alarm system, with an alarm statistic and alarm limit. We 
compare the probability of an alarm at different time points after the turning point for 
three processes, namely data that are free from seasonality, a moving average series 
and a series of differentiated data. 

For an observation on Y(t) at time t we have 

Y(t)_{F
O

, t ~ P 
Fl, t > p 

where pO and FI are the distribution functions, conditional on 
expansion (0) and recession (1), respectively. 

The turning point is modeled using linear functions 

Y(t)-
{

a + /31 . t + S j (t) + &(t), t ~ P 

a+ /31 . p- /32' (t- p)+Sj(t) +&(t),t > p 

where £- iid N(O; 0'2) 

and SP) is the seasonal component at time t, season}, as given in 1). 

The series that is free from seasonality is modeled as 

X(t)-{ a+/31 ·t+&(t), t~p 
a+ /31' p- /32 ·(/- p)+&(t), t > p 

We want to detect the change from pO to FI as soon as possible without too many 
false alarms. We give examples of two criteria for determining the alarm limits for a 
stochastic variable U(t) which here could be either of the standardized versions of 
X(t), D(t) or Y (t) , where D(t) and Y (t) are the twelfth order differentiated series and 
the moving average series of Y(t), respectively. The standardization is made so that 
E(U(t))=O and Var(U(t)=l. Usually, surveillance systems for different processes are 
made comparable by adjusting the alarm limits to have the same average run length, 
conditional on pO, i.e. the same ARLo. Sometimes the median run length (MRL 0) is 
used instead of the arithmetic average. 

The Shewhart approach (see e.g. Frisen (1992)) for constructing the alarm limit is 
used. Thus an alarm is triggered as soon as U>k. For the Shewhart method of 
surveillance we have the following relation between ARLo and the probability of an 
alarm at any time point, po, given that no tum has happened: 
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lIARLo = Po = P(U> k I UE~) = l-lP(k), 
where l/J is the normal probability function, 
see Frisen (1992). 

Let ARLo=20 and thus Po=0.05. When lP(k) = 0.95 we get the value k = 1.64. We start 
with determining the alarm limit kx for data free from seasonality, X(t). 

U(t)=(X(t)-(a+/31·t))/(J" implies 

kx(t) = a+ Ikt-1.64·O: 

For the differentiated data, D(t), we have U(t) = (D(t) -12/31 )/(~2(J"2), which implies 

kD =12/31 -1.64~2(J"2 
and for the moving average series, f (t) , we have 

U(t) = (f(t)-(a+/31 .t-5.5)){ ~(J"2 112), which implies 

ky (t) =a+ /31 . t -5.5 -1.64· (J" 1.J12 . 

We investigate the case where the alarm limits are adjusted to yield ARLo=20 
(Po=0.05) for all three processes (X(t), D(t) and f (t) ). At time t = P the process is at a 
peak, which means that the earliest possible indication of a turning point comes at 
time t = p+ 1. Three peaks are investigated, namely a symmetric peak {Pl=0.0069, 
/h=0.0069}, a peak with flat recession {Pl=0.0069, /h=0.0051} and a peak with steep 
recession {Pl=0.0069, /h=0.0087}. The variance is set to Var[.e] = 0.00026. These 
parameter values are estimated from Swedish data on logaritmized industrial 
production. 

Symmetric 

Pest flat 

Post steep 
2 4 8 10 12 14 16 18 20 

Figure 9: The expected value of the process, exemplified for p= 11. The pre-peak slope 
and the post-peak slope are modeled using linear functions: {Pl=O.0069, P2=O.0069}, 
{Pl=O.0069, P2=O.0051}, {fJl=O.0069, fJ2=O.0087}. 
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We calculate the measure probability of successful detection 
PSD(t; d) = P&A -r<dltA ~r=ro) 
where 'ZO = time of change (here p+ 1) 
and tA = min[t: U(t) > k] 

for the time points {p+ 1, p+2, ... , p+ 12}, that is d = { 1, 2, ... , 12}. 
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Figure 10: The probability of successful detection, using Shewhart limits. ARLo = 20, 
fJj= 0.0069, fJ2 = 0.0069. 
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Figure 11: The probability of successful detection, using Shewhart limits. ARL 0 = 20, 
fJj= 0.0069, fJ2 = 0.0051. 
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Figure 12: The probability of successful detection, using Shewhart limits. ARLo = 20, 
fJJ= 0.0069, [32 = 0.0087. 

We have demonstrated that if transformed data are used, then the probability of 
detecting a change from expansion to recession is reduced. We also see that the 
reduction is the greatest for requirements of very quick detection (d<4) by the moving 
average, whereas for cases where more time is acceptable (d>4) the reduction is the 
greatest for the differentiated series. The difference is based on two observations, 
whereas the moving average is based on twelve observations. For example, at time t = 
p+ 1 we have, for D(p+ 1), 

Y(p-lI) E [/1 
Y(p+l)E Fl 

and for Y (t) we have 

{Y(p-lO), Y(p-9), ... , Y(p)} E [/1 
Y(p+l) E Fl. 

Thus, a majority of the observations in YCt) is in the in-control-state, [/1. However, 
for detection at later time points, the variable D(t) still consists of only one 
observation from the out-of-control state, whereas in YCt) more and more information 
from the out-of-control state is included. Therefore the PSD at later time points is 
larger for the moving average. As we can see when comparing Figure 10-12, the 
symmetry of the peak has no major influence on the relation between the PSD-
functions for X(t), D(t) and Y Ct) . 

4 CONCLUDING REMARKS 

Moving average techniques and differentiating have been investigated as possible 
methods of adjusting a time series for seasonality. A centered moving average does 
produce a systematic delay in the timeliness and therefore a non-centered moving 
average is considered. The properties of the non-centered moving average and the 
seasonal differentiating have been evaluated for a monotonic trend cycle and for a 
turning point in the trend cycle. 
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When using differentiating for seasonal adjustment, the issue is whether the sign of 
the slope is an indicator of a turning point, i.e. if the expected difference is positive for 
an increasing trend cycle (and negative for a decreasing trend cycle). The study 
showed that if both observations, yet) and y(t-12), are within a monotonic section, then 
the expected difference will be positive for a monotonically increasing trend cycle and 
negative for a monotonically decreasing trend cycle. 

Seasonal differentiating was investigated for three different peaks. It was shown 
that the sign of the expected difference will not always indicate the slope of the trend 
cycle at a turning point. The result is a delay in indication of a turning point. 

If differentiating is used for seasonal adjustment, the peak (i.e. change in 
monotonicity) is sometimes defined as a change in level, from a positive level to a 
negative one. This study shows that defining the turning point from differentiated data 
implies that the undifferentiated data display a saw-toothed pattern (i.e. several 
turning points). 

It has been shown that if all observations of the moving average are within a 
monotonic section of the time series, the non-centered moving average will preserve 
the monotonicity. 

The non-centered moving average was investigated for three different kinds of 
peaks. For a unimodal section of the trend cycle, the non-centered moving average 
will preserve the unimodality. However, it has been shown in this investigation that 
the non-centered moving average does not always preserve the monotonicity of all 
parts in the unimodal case. Thus, the time of the turning point is not always preserved. 
In some cases the use of the moving average technique results in a delayed indication 
of a turning point. 

The non-centered moving average as a method for seasonal adjustment is 
conservative in the sense that it does not give any false indications of a turning point. 
This moving average performs well at monotonic sections, but because of the possible 
delay at a turning point, it is important to try to use other methods. One possibility, if 
it agrees with the structure of the data on hand, is to use a large historical data set to 
estimate the seasonal components. 

The assumptions of a constant (or slowly changing) seasonality used in this report 
might be too strong for many applications. However, some problems with the 
monotonicity evaluation of the seasonal adjustment were demonstrated even for a 
model with these assumptions. 

Most data-driven transformations can have serious effects on the possibility to 
detect change points in a time series. Canova (1999) evaluates different methods for 
trend adjustment (including first order differentiating) ability to identify turning points 
of the business cycle. One conclusion is that the change point times of the trend­
adjusted series may differ substantially compared to the official dating of the change 
points. Thus, information from historical data or other prior know ledge on the 
seasonal pattern is very valuable. 
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Appendix A. Details regarding Statement Ib, 2b 

Statement Ib: If fl is a monotonic function, the expected value of the non-centered 
12-point moving average is also a monotonic function. 

Detailed description: 
We have that the difference between two consecutive expected estimates of the trend 
cycle is 

1 
1](t) -1](t -1) = -[u(t) - ,u(t -1-11)]. 

12 

For the difference fl(t) - fl(t-1-11) we have 

fl(t) - fl(t-12) ~ 0, all t ~ 12, 
according to the assumption of a non-decreasing fl. 

Therefore 1](t) - 1](t-l) ~ 0 and 1] is a non-decreasing function for all t ~ 12. 

Statement 2b: If fl is unimodal, the expected value of the non-centered 12-point 
moving average will preserve the unimodality of fl (Frisen, 1986) but not always the 
time of the turning point in fl. 

Detailed description: 
For Statement 2b the description is divided into the three cases that have been 
investigated. For each case the description for the different time intervals, denoted i), 
ii), iii) and iv), are given separately. 

Case 1 (a symmetric peak) 

i) 1](P-i) - 1](P-1-i) > 0, for o~ i ~ (p-2). See proof of Statement lb. 

ii) 1](P+i) - 1](P+i-1) = (l112)*«(J1(P-i)-fl(P-i-12». 

Since (J1(P-i)-fl(P-i-12» > 0 for i = { 1,2, ... , 5}, it follows that 
1](P+i) - 1](P+i-1) > o. 

iii)1](P+6) - 1](P+5)=(l/12)*(J1(P+6)-fl(P-6» = (l112)*(J1(P-6)-fl(P-6» = 0 

iV)1](P+i) - 1](P+i-l) = (1I12)*(J1(P+i)-J1(p-(i-2») = (l112)*(J1(P+i)-fl(P+i-2». 

Since (J1(P+i)-fl(P+i-2» < 0 for i~7, it follows that 
1](P+i) - 1](P+i-l) < o. 
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Case 2 (non-symmetric peak with a slowly decreasing post-peak slope) 

i) 1](P-i) - 1](P-1-i) > 0, for 0::;; i. See proof of Statement lb. 

ii) 1](P+i) - 1](P+i-1) = (l112)*((.u(P+i)-Jl(P+i-12». 

Since ( ... < Jl(P-11) < ... < Jl(P-l) and Jl(p+i) > Jl(P-1), i = {I, 2, ... , II}, it follows that 
1](P+i) - 1](P+i-1) > O. 

iii)1](P+i) - 1](P+i-1) = (1I12)*(.u(P+i)-Jl(P+i-12». 

Since (Jl(P+i)-Jl(P+i-12» < 0, i ~ 12, it follows that 
1](P+i) - 1](P+i-1) < O. 

Case 3 (non-symmetric peak with a steep post-peak slope) 

i) 1](P-i) - 1](P-1-i) > 0, for 0::;; i. See proof of Statement lb. 

ii) 1](P+i) - 1](P+i-1) = (l112)*((.u(P+i)-Jl(P+i-12». 

Since ( ... < Jl(P-ll) < ... < Jl(P-2) < Jl(P-1» and Jl(P+l) < Jl(P-ll), it follows that 1](P+i) 
- 1](P+i-1) < 0, for i ~l. 

Appendix B. Expected value ofY(t). 

Since E[Y(t)-Y(t-12)] = c, t ::;; p, it follows that E[Y(t)] = ~ ·t, t ::;; p. 
12 

c 
Therefore E[Y(p-11)] = -·(p-ll). 

12 
We have that 

E[Y(p+1)-Y(p-ll)] = -c, 
i.e. E[Y(p+1)] = -c + E[Y(p-ll)], 

i.e. E[Y(p+l)] = -c + ~.(p-ll), 
12 

i.e. E[Y(p+1)] = -2c + ~.(p+l). 
12 

Analogical results holds for E[Y(p+2)], ... , E[Y(p+ 12)], so that 

E[Y(p+j)] = -2c + ~.(p+j),j = {2, 3, ... , 12}. 
12 
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We have that 
E[Y(p+13)-Y(p+l)] = -c, 
i.e. E[Y(p+13)] = -c + E[Y(p+l)], 

i.e. E[Y(p+13)] = -c + (-2c) + ~.(p+l), 
12 

i.e. E[Y(p+13)] = -4c + ~.(p+13). 
12 

Analogical results holds for E[Y(p+ 14)], ... , E[Y(p+24)], so that 

E[Y(p+j)] = -4c + ~.(p+j), j = {14, 15, ... ,24}. 
12 
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