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ABSTRACT 

Methods for on-line monitoring of business cycles are compared with respect to the 
ability of early prediction of the next tum by an alarm for a tum in a leading index. 
Three likelihood-based methods for turning point detection are compared in detail by 
using the theory of statistical surveillance and by simulations. One of the methods is 
based on a Hidden Markov Model. Another includes a non-parametric estimation 
procedure. Evaluations are made of several features such as knowledge of shape and 
parameters of the curve, types and probabilities of transitions and smoothing. The 
methods are made comparable by alarm limits, which give the same median time to 
the first false alarm, but also other approaches for comparability are discussed. 
Results are given on the expected delay time to a correct alarm, the probability of 
detection of a turning point within a specified time and the predictive value of an 
alarm. The three methods are also used to analyze an actual data set of a period of the 
Swedish industrial production. The relative merits of evaluation of methods by one 
real data set or by simulations are discussed. 

Key words: Business cycles; Early warning; Monitoring; Optimal; Likelihood ratio; 
Bayes; Markov; HMM; Switching regime; Turning point; Non-parametric. 

1 INTRODUCTION 

Timely prediction of a tum in the business cycle is important for both government and 
industry. The tum is a change from a phase of recession to one of expansion (or vice 
versa). The tardiness of stabilization policies induces unintended effects (see (>Her 
(1987)). Predictions of the turning points can be made by using information from one 
or several time series, which are leading in relation to the actual business cycle. By 
applying a system for detection of the turning points of a leading indicator we can 
receive early signals about the future behavior of the business cycle. For reviews and 
general discussions see e.g. Neftci (1982), Zarnowitz and Moore (1982), Westlund 
and Zackrisson (1986), Hackl and Westlund (1989), Zellner et al. (1991), Jun and Joo 



(1993), Lahiri and Wang (1994), Li and Dorfman (1996) and Birchenhall et al. 
(1999). 

There are two distinct but related approaches to the characterization and dating of 
the business cycle, as pointed out by e.g. Diebold and Rudebusch (1996), Kim and 
Nelson (1998) and Birchenhall et al. (1999). One emphasizes the regime shift and the 
other the common movements of several variables. In this paper the regime approach 
is pursued, as also in the works by Neftci (1982), Diebold and Rudebusch (1989), 
Hamilton (1989), Jun and Joo (1993), Lahiri and Wang (1994), Koskinen and Oller 
(1998) and Birchenhall et al. (1999). The common movement approach is pursued by 
e.g. Stock and Watson (1991) and Stock and Watson (1993) and is briefly discussed 
in Section 5.4 on multivariate approaches. 

In recent years methods based on likelihood or posterior distributions have been in 
focus. In the general theory on statistical surveillance there are proofs for their 
optimality properties (see e.g. Shiryaev (1963) and Frisen and de Mare (1991)). In this 
report the effects of different specifications of likelihood based systems for detection 
of turning points are examined. 

The performances of three methods for turning point detection in leading indicators 
are compared in detail. The methods are denoted PHM, SRlin and MSR. All three 
methods are based on the likelihood, but there are differences in model specifications, 
how much information that is used and parameter estimation. The PHM method is 
based on a regime switching hidden Markov model (HMM) and it is similar in several 
aspects to e.g. the method presented by Koskinen and Oller (1998). HMM is 
suggested for business cycle modeling and prediction by Hamilton (1989) and is used 
by e.g. Lahiri and Moore (1991), Lahiri and Wang (1994), Layton (1996) and 
Koskinen and Oller (1998). The SRlin method is derived here by the Shiryaev
Roberts technique (see Section 2.4) under the assumption of known slopes in the 
respective phases. The MSR method is suggested by Frisen (1994) and evaluated by 
Andersson (1999) and Andersson (2001). The MSR method is a non-parametric 
version of the SRlin method. Simulation studies are made to evaluate and compare the 
three methods. Special concern is given to the different ways to avoid false signals, to 
utilize prior information, to estimate parameters and the effect of assumptions 
regarding i) the shape of a turning point and ii) the distribution of the time of 
transitions. 

The inference situation can be described as one of surveillance, since we have 
continual observation of a time series with the goal of detecting the turning point in 
the underlying process as soon as possible. Repeated decisions are made, the sample 
size is increasing and no null hypothesis is ever accepted. Thus, the inference situation 
is different from that of estimation of the number and locations of structural breaks in 
series with a fixed number of observations. Examples of the latter approach are 
Mudambi (1997) who describes a method based on polynomial regression for 
confirmation of the existence of structural breaks and identification of the number and 
locations of the breaks, and Delgado and Hidalgo (2000), who propose a method 
based on kernel estimators for estimating the location and size of breaks in a non
parametric regression model. 

For general reviews on statistical surveillance, see Shiryaev (1963), Frisen and de 
Mare (1991), Wetherhill and Brown (1991), Srivastava and Wu (1993), Lai (1995), 
Frisen and Wessman (1999) and Frisen (1999). The performance in general 
surveillance is evaluated using measures such as average run length, expected delay, 
probability of successful detection and predictive value of an alarm, as suggested by 
Frisen (1992). 
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The paper is organized as follows. Section 2 contains a description of different 
likelihood based approaches, specifically of the PHM, the SRlin and the MSR 
methods. It also contains theoretical analyses of the effect of some assumptions. In 
Section 3 the choice of models for the simulation study is motivated and results on the 
effects of different assumptions are presented. In Section 4 the three methods are used 
to analyze a period of the Swedish industrial production and the pros and cons of this 
way to evaluate methods is discussed. In Section 5, the special problems of seasonal 
data, auto-correlation, trend adjustment and multivariate processes are briefly 
discussed. Section 6 contains a summarizing discussion. 

2 SPECIFICATIONS OF SOME LIKELIHOOD BASED APPROACHES 

In this section the basic assumptions and specifications used by the three methods are 
given. The assumptions for the three methods and some other important methods are 
summarized in Table 1, presented at the end of Section 2. The implications of some of 
these assumptions are discussed in this section, while some are examined by 
simulation studies in Section 3. Special data problems such as seasonal effects, 
autocorrelation and multivariate problems are treated in Section 5. The variable 
considered in Section 2 and 3 is assumed free from seasonal variation, univariate and 
without autocorrelation (conditional on the regime). 

By monitoring the movements of a leading economic indicator, we have an 
instrument for predicting the turning points of the general business cycle. The aim for 
all methods considered here is to detect a change from expansion to recession (or vice 
versa) in the leading indicator as soon as possible after it has occurred. The inference 
situation is one of surveillance, i.e. continual observation of a time series with the goal 
of detecting a turning point in the underlying process as soon as possible. Some of the 
likelihood based methods use an HMM, to describe the underlying process that 
changes at an unknown time. Apart from just detecting the change from one phase to 
another (from expansion to recession), usually an additional aim when using HMM is 
to determine a whole chain of phases. That additional aim is not treated in this paper, 
only detection of the last change of phases. That means that the vocabulary of 
statistical surveillance is suitable. 

2.1 Model within each expansion- and recession phase 

Denote the process under observation by X and the observations available at time t by 
Xr = {X(t'), ... X(I), X(2), ... , X(t)}. Time t=1 is the first time point in a period of 
special interest. The model discussed here is: 

X(t) = fl(t) + E(t), (1) 
where E(t) -iid N[O; a 2 

] 

and fl(t) is a stochastic process to be described below. 

fl(t) can be regarded as a regression function since it is the expectation of X(t) 
conditional on t. fl(t) can also be described using an HMM with two states. The aim is 
to detect a change in fl, from expansion state to recession state. The assumptions in 
(1) might be too simple for some applications, but are used here to emphasize the 
inferential issues. These assumptions are the ones, which most suggested methods are 
based on. Ways to handle models with seasonal effects, autocorrelation and 
multivariate situations are discussed in Section 5. 
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By the definition of a turning point, the regression Ji is monotonic within each 
regime. That is 

Jit= {
Jl(l) ~ Jl(2) ~ ... ~ Jl(t), t < 7 

Jl(1) ~ ... ~ Jl( 7 -1) and Jl( 7 -1) ? ... ? Jl(t), t? 7 
(2) 

where t=1 is in a period of expansion 
and ris the turning point from the expansion to a recession. 

Observe that the dependency of E(X(t) I t, 1) = Ji(t) on r makes Ji(t) a stochastic 
variable. 

The MSR method uses only the monotonicity restriction, and is not based on any 
other assumptions of the shape of the regression. 

The PHM method, and many other HMM approaches, relies on the additional 
assumption that the regression is linear within each phase with parameters which are 
considered as known. That is 

t<7 Ji(t) = {/30 + /31 . t, 
/30 + /31· (7-1)- /32· (t-7+ 1), t? 7' 

where t ={l, 2, ... }. 

The SRlin method is also based on the assumption of linearity within phases. In the 
derivations in Section 2.4.2 it is in addition assumed that the slopes are symmetrical 
for the two phases. For research on asymmetry of the business cycle, see Neftci 
(1984), Falk (1986), McQueen and Thorley (1993). The effect of a non-symmetric 
turning point on the performance of the MSR method is studied in Andersson (2001). 
One aspect of an asymmetry of the business cycle is possible differences in slopes 
between phases of recession and expansion. The effect of a mis-specification of the 
slope on the performance of the SRlin method is investigated in Section 3.3.3. 

Estimates involved in the alarm statistics are described in Section 2.3 and 2.4. For 
the MSR method the alarm statistic can be constructed directly from the data to be 
analyzed. For the PHM method, the slopes are first estimated by data from an earlier 
period. These estimates are considered as known constants in the derivation of the 
method for surveillance. For the SRlin method the alarm statistic is constructed under 
the assumption of known slopes. 

The standard deviation a can be assumed to be different for recession and 
expansion as in e.g. Koskinen and (mer (1998). Hussey (1992) demonstrates 
difference for one indicator but not for another. Furthermore, macroeconomic time 
series are sometimes considered to have a continuously varying standard deviation. If 
there is evidence of considerable heteroscedasticity, then the observations should have 
different weights in the alarm statistic. Sometimes, as here, the logarithm 
transformation is used for variance stabilization. The observation X is the logarithm 
of the original observation. After this transformation, the variance is here assumed 
equal, as also in Andersson (2001). The surveillance is conducted and evaluated for 
the transformed variable X. 

2.2 Event to be detected 

Some approaches, like that of Birchenhall et al. (1999), discuss both prediction and 
detection of a regime change in a leading index. However, most approaches deal 
solely with the problem of detecting a change in a leading index, which is considered 
to predict a change in the business cycle. Only turning point detection in the leading 
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index will be discussed here. For this problem the detailed specifications differ for 
different approaches. This will now be described. 

For the MSR method we have the following situation. At decision time s an alarm 
statistic is used to discriminate between D(s) = {r> s} and C(s) = {r~ s}, where ris 
the unknown time when the underlying process f.l changes from expansion to 
recession, or vice versa. Knowledge of whether the next turn will be a trough or a 
peak is assumed. The solutions for peak- and trough-detection are equivalent, as 
everything is symmetrical. It is the knowledge per se which is important. For 
simplicity, the turning point will be expressed as a peak in the following. That is, the 
aim is peak detection, i.e. detection of transition from expansion to recession. Thus, 
for the MSR method the aim is to discriminate between the following two events: 

DMSR(S): f.l(1) ~ ... ~ f.l(s) (3) 
CMSR(S): f.l(I) ~ ... ~f.l(r-l) and f.l(r-l) ?f.l(f) ? .. ?.f.l(s), 
where r={ 1,2, ... , s} 
and at least one inequality is strict in the second part. 

For the SRlin method the aim is to discriminate between D and C, such that 
DSRlin(S): f.l(s) = /30 + /31·S (4) 

CSRlin(S) = {u C( f)}, 
where C(f): f.l(s) = Po + /3dr-l) - /3ds-r+l), 
and r={ 1,2, ... , s} and /30 and /31 are known constants. 

For the PHM method, the situation is such that at decision time S an alarm statistic is 
used to discriminate between 

DpH~S) : f.l(s-l) ~ f.l(s), (5) 
CPH~S): f.l(s-l) > f.l(s). 

The difference between the events for SRlin and MSR is only the assumptions on f.l(t). 
However, for the PHM method the events are different also in another aspect. The 
apparently simpler event in the PHM approach is combined with a more complicated 
situation for the information of previous states. No knowledge of previous states is 
utilized in the PHM expression for the posterior probability. Thus, the probabilities 
for the history on those earlier states will have an effect. Both the events DpH~S) and 
CPH~S) correspond to families of histories of states. Because of Markov dependence, 
the earlier observations carry information of the history of states. Thus, CMSR(S) and 
CSRlin(S) only concern the last turning point, whereas CPH~S) includes a family of 
series of turning points. The effect on knowledge of the type of the next turn will be 
further examined in Section 2.6. 

2.3 Transition probabilities 

2.3.1 Assumptions 

The probability of a transition from recession to expansion (or vice versa) are, in most 
approaches in the HMM framework, assumed to be constant with respect to time, see 
e.g. Layton (1996). But the transition probability can also be assumed time varying, as 
by Neftci (1982), Diebold et al. (1994) and Filardo (1994). The assumption of a time 
invariant transition probability is made for all three methods investigated in this paper. 
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For the PHM method, the information about the time and type (peak or trough) of 
the last turning point is not utilized. Thus, besides the inference about whether the 
turning point has occurred, a probability statement has to be made regarding the type 
of the next turning point. For this purpose, it is necessary to consider all previous 
possible turns. Therefore, two intensities are needed. 

The intensity parameters can be given as Markov transition probabilities (P12 and 
P21) from state 1 to state 2 and vice versa, where state 1 denotes expansion and state 2 
denotes recession. This approach is used by Koskinen and Oller (1998). Contrary to 
the assumption of the PHM method, both the MSR and SRlin method assume that the 
type of the next turn (peak or trough) is known. This is also assumed by e.g. Neftci 
(1982). When information about the type of the next turning point is used, it is 
sufficient with one measure of intensity, V12, if surveillance is made in order to detect 
a peak or V21 if surveillance is made in order to detect a trough. This single transition 
probability can be written as 

v = P(C(t)ID(t -1» = p(r = * 2:: t). (6) 

The duration of a cycle can vary greatly. In order to achieve an estimated transition 
probability with small enough standard deviation, a very long time series is required. 
The assumption of a constant transition probability and thus a geometric distribution 
for the turning point time, 1; is not very realistic in the business cycle application. The 
lengths of the cycles vary more than for a geometrical distribution and the probability 
of small values of the time for the turning point is much smaller for the business cycle 
than for a geometrically distributed variable. Kim and Nelson (1998) investigate 
duration dependence, that is if the tendency to switch state depends on the time spent 
in the current state. A test is carried out on four economic indicators in the US 
economy and the result is that there is a tendency to duration dependence. 

The SRlin and MSR methods use the approach of a non-informative prior for the 
turning point time. Since the likelihood method is optimal for the intensity that is 
used, the approach with a non-informative prior means that SRlin and MSR are not 
optimal. However, the non-informative prior also means that these methods are not 
sensitive to assumptions regarding the intensity. 

The transition probabilities might be time dependent. If reliable information about 
this was known, then very accurate decisions could be achieved. However, the risk is 
that errors in assumptions would override the information from the data. All 
approaches described in this paper use transition probabilities which do not depend on 
time. 

The transition probability from one phase to another is estimated from an earlier 
period and treated as known constants by the PHM method. The transition 
probabilities will have an effect on the weight that different observations will have in 
the test statistic. This can be assumed to have a minor influence as long as the 
estimates are fairly close to the true values. Greater influence can be expected on the 
alarm rate. By (8) in Section 2.4 we can see that if we have a constant alarm limit 0.5 
for the posterior probability, then the alarm limit for the likelihood ratio will depend 
on P(D)lP(C), which in turn depends on the transition probabilities. Thus, the PHM 
method is sensitive to the values of the transition probabilities. 

A non-informative prior is used by the MSR approach and therefore the transition 
probability does not need to be estimated. When the distribution of r is unknown, this 
approach is not optimal, but the approximation works well, even for intensities as high 
as 0.20 (see Frisen and Wessman (1999) where the Shiryaev-Roberts approximation is 
used to detect a change from an in-control level to an out-of-control level). The 
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Shiryaev-Roberts approach is robust but not exactly optimal. The robustness reduces 
the risk of systematically wrong inference. Since SRlin and MSR make a minimum of 
assumptions about the distribution of r, the methods are not optimal in this respect. 
However, this also means that the risk of errors due to erroneous assumption or 
uncertain estimates or assumptions is avoided. 

Below the observed sample density function from the estimation period 
(1970Q 1: 1987Q 1) is compared to geometric density functions using different 
intensity estimates (see Section 2.3.2). 
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Figure 1: Left: density for peak with observed sample density function (- - - .J 
compared to geometric density functions with intensities 0.07 ( .. . J and 0.13 (----). 

Right: density for trough with observed data (- - -.J compared to geometric density 
functions with intensities 0.53(· . . J and 0.10 (----). 

The geometric distribution is often assumed for 1: When comparing the observed 
sample density to different geometric distributions above, one can see that the 
observed density is far from geometric. However if a prior based on observed data, for 
example with a high weight for a turning point after 10 quarters, was used in the PHM 
method, the influence of data would be reduced and the probability of an alarm after 
10 quarters would be very high. 

The approach by Birchenhall et al. (1999) is similar to that of Hidden Markov 
Models and the LR approach for surveillance in the respect that it is based on Bayes 
theorem and likelihood and that it models the probability of the type of regime. 
However, a major difference is that the regime dynamics are not modeled. The model 
is not based on any known or estimated transition probability between the states. 
Instead, the likelihood approach is used to derive a logistic classification model in 
which the parameters for different leading indices are estimated. The classification 
into different regimes is based on explaining variables but not on the earlier state. No 
dependence between successive events is thus included in their model. One 
implication of that is that the information on earlier regime types, which by their 
approach is assumed known, is not fully utilized. 

2.3.2 Estimation 

Simultaneous maximum likelihood estimation of all parameters in the model is an 
obvious choice. However, it is pointed out by Lahiri and Wang (1994) and Koskinen 
and Oller (1998) that if the whole parameter set is estimated using maximum 
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likelihood the result can be that the rareness of turning points makes large errors 
around turning points compensated by high accuracy within phases. For that reason, 
the transition probabilities are sometimes estimated using some other criterion than 
maximum overall likelihood. 

Maximum likelihood estimates based only on the events of transitions are a natural 
choice. For the data on the Swedish Industrial production, the transition probabilities, 
Pl2 and P2J, are estimated using 

Pl2 = nl2 =_5_=0.13 (0.054), (7) 
nll + nl2 34 + 5 

P2l = n2l =_4_=0.10 (0.047), 
n2l +n22 4+36 

where nij is the number of transitions from regime i to regime j and the 
standard errors are given in parenthesis. 

When the posterior probability for PHM is calculated in the simulation study the 
maximum likelihood estimates P12 = 0.13 and P21 = 0.10 of (7) are used. 

Some authors, e.g. Koskinen and Oller (1998), use smoothing (see Section 3.3.4) to 
reduce the stochastic error. Both the transition probabilities and the smoothing 
parameter are estimated simultaneously from historical information. Koskinen and 
Oller (1998) suggest that this is done by minimizing a cost-function based on the sum 
of two measures of error, namely the Brier probability score and an error count 
estimate. The Brier probability score is the mean square error for the posterior 
probability, i.e. the average squared deviation between the true state (0 or 1) and the 
posterior probability. The error count estimate is the proportion of wrongly classified 
states. From data on the Swedish Industrial production, the resulting transition 
probabilities are PII=0.93 and P22=0.47. The value P21=0.53 implies that the expected 
length of a recession, i.e. the expected length before a transition from recession to 
expansion, is two quarters, which seems unreasonably short. The estimated values 
PI2=0.07 and P21=0.53 can be compared to the maximum likelihood estimates, based 
on the same set of data, which are PI2=0.13 and P21=0.1O. The result of the ML 
estimation of P21 is very different from the result of the cost function estimation of the 
same probability. One explanation is that the cost function is used to simultaneously 
estimate the smoothing parameter (It, discussed in Section 3.3.4) and the transition 
parameters PI2 and P21. The smoothing is made for the purpose of reducing the false 
alarms. However, a low false alarm rate leads to a low alarm rate generally and a 
consequence is that also the motivated alarms are delayed by the smoothing. 
Therefore, if the smoothing parameter is very small (much smoothing), then the 
transition probability must be very high, in order to reduce the delay. Another 
explanation to the difficulty to interpret these estimates of the transition probabilities 
is that the Brier probability score does not take the order of the observations into 
account. However, the order is crucial for transition probabilities. Thus, the use of the 
Brier probability score makes the interpretation of the resulting estimates hard. 

2.4 Alarm statistics 

In all methods discussed here the alarm statistic is based on the likelihood ratio. The 
likelihood ratio method (LR) has several optimal properties, see Frisen and de Mare 
(1991). The expected utility, based on very general functions of the gain of an alarm 
and the loss of a false alarm, is maximized. The expected delay of an alarm is 
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minimized for a fixed probability of false alarm. Also other properties of the 
likelihood ratio method are evaluated and compared with other methods such as the 
Shewhart method and the CUSUM method, for the case of a shift from an in-control 
level to an out-of-controllevel, by Frisen and Wessman (999). 

The LR method gives an alarm for the first time s for which 

LR(s) = f(xsIC) >k 
f(xsID) s, 

where lis the likelihood function, 
and ks =(k/O-k) . (P(D(s))/P(C(s))). 

It is shown, by Frisen and de Mare (991), that the posterior probability approach is 
equivalent to the likelihood ratio approach for the situation where P(C) = I-P(D), i.e. 

{ . p(CI ) > k}= { . f(xsIC) > P(D)· k } (8) 
xs' Xs - XS' f(xsID) - P(C).(1-k) , 

where k is the alarm limit for the posterior probability. 

The choice of k in (8) is discussed in Section 2.5 on control of false alarms. 

2.4.1 PHM 

For the PHM method, the alarm statistic at time s is the posterior probability, P(CIXs). 
The posterior probability is suggested as alarm statistic by many authors, e.g. Neftci 
(1982), Hamilton (989) and Kim and Nelson (998). 

Koskinen and Oller (998) give the computational formula for the alarm statistic as 
p(C(t)IX(t -1) = x(t -1»· f(x(t)IC(t» 

f(x(t)lx(t -1» 
which equals 

p(C(t)IX(t) = x(t),X(t -1) = x(t -1» . 

At decision time s, the formula above is used recursively until we have the alarm 
statistic 

p(C(s)IX(s) = x(s), X(s -1) = x(s -1), ... ,X(l) = x(I» = p(C(s)lxs )' 

If it is assumed that more than one change can occur in the time interval {I, s}, the 
recursive formula, used by the PHM method, is suitable. However, if only the first 
change during the evaluation period is of interest and it is known a priori if the next 
turn will be a peak or a trough, then it is advantageous to utilize this information e.g. 
by the SRlin and MSR methods. 

2.4.2 SRlin 

First we derive the LR method which has several optimality properties according to 
the results of Frisen and de Mare (991). We derive it for a slightly more general 
situation than for CSRlin(S) and DSRlinCS) in (4). First we do not require the slopes to be 
symmetrical, but the events to be discriminated are: 

D(s): p(s) = flo + PI'S 

C(s) = {u C( 1)}, 
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C( '0: Ji(s) = /30 + Ik( r-1) - <> ds-r+ 1), 

where /30, /31 and <>lare known constants. 

The optimal alarm rule LRlin for discriminating between D(s) and C(s) above gives 
an alarm for the first time s where 

LRlin(s) > ks, 
where LRlin(s) = 

I Vj .exp[(~ 12 (-81 - PI) I.(X(U)'U)+481 . I(x(u)'(j -l))+Wj J~ 
J=1 2(J" ~ U=J U=J ~ 

with Wj = 

(fJl-;;h Ii"' +4;;l'(j -1{~(U- j+l)} 

s s 

2Po . (PI +81), Lu-4P081 . L(j-l) 
U=j U=j 

and Vj = Per = j), ks =(k/(1-k) . (P(DSRlin(S))/P(CSRlin(S))), where k is a constant. 
Per 5, s) 

(Details are given in Appendix 1.) 

The LRlin(s) statistic is a function of the transition probability 11= Per = tlr;;::: t). 
The Shiryaev-Roberts approach by Shiryaev (1963) and Roberts (1966) avoids a 
choice of this value by using equal values of P( r =t) for all t. This approach can be 
motivated either by the limiting distribution when v tends to zero or by a non
informative prior for r. 

The Shiryaev-Roberts method for discriminating between CSRlin(S) and DSRlin(s) is 
given below. The Shiryaev-Roberts approach implies equal weights for the partial 
likelihood ratios and a constant alarm limit. The alarm rule SRlin for the case of a 
symmetric turning point with linear functions, using the Shiryaev Robert approach, 
gives an alarm for the first time s where 

SRlin(s) = texp[(~ '( 4Pl . I(X(u).(j-l-U))+W j J~ >L 
J=1 2(J" ~ U=J ~ 

where Wj = (4. pl·(j-l)+4. Po' PI)' I(u- j+l), 
U=j 

and L is a constant alarm limit. 

The SRlin(s) can be compared to the corresponding Shiryaev-Roberts method 
(SRcon) for detecting a change from an in-control level (Ji0) to an out-of-controllevel 
(~): 

s [(pI_JiO) s] 1 0 
~exp (J'2 ~x(U) 'Wj(s,1l ,Ji »k', 

where W;(S, pI, JI) = ex{( 2~2 }s -j + 1) . (pO) 2 - (pI) 2 ))] 

and k' is a constant alarm limit. 
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One major difference between SRlin and SRcon is that the weights for late 
observations are larger for the SRlin method, which is expected as these will have a 
greater difference to the D-alternative than those just after the change. 

2.4.3 MSR 

The maximum likelihood ratio statistic at time s is 

MLR(s) = max f{xsIC} > ks' 
max f{xsID} 

where C={ r~ s}={ -z=l, ... , -z=s} and D={ r> s}. 
The event D=DMsR implies a monotonically increasing J1-vector 

{J1(t) ~ J1(t+ 1) }, t~ 1. 

The denominator of MLR(s) is 

max f{xsID} = f{xs\.a D
}, 

where fl D is the estimated parameter vector which corresponds to 

max f(xsl,u) , 
fJ-EF

D 

where FD is the family of J1-vectors such that J1(1) ~ J1(2)~ ... ~ J1(s). This means that 

flD is the maximum likelihood estimator of J1 under the monotonicity restriction D. 

This estimator is described by e.g. Robertson et al. (1988). 
For the event C=CMSR we have C = {C], C2, •.• , Cs }, where Cj implies 

{J1(l) ~ ... ~ J1(j-l), J1(j-l) ~ J1(j) ~ .... }, j E {I, 2, ... , s}. 

In the numerator of MLR(s) we have 
max f{xsIC} = 

±(p(r: j)).(max f{Xs 1Cj})= 
j=l P(r - s) 

±(p(r: j) ).(f{xs\.aC) }), 
j=l P(r - s) 

where flC} is the estimated parameter vector which corresponds to 

max f(xsl,u) , 
fJ-EFCj 

where ~j is the family of J1-vectors such that 
J1(1) ~ ... ~ J1(j-l) and J1(j-l) ~ J1(j) ~ .... , wherej = {I, 2, ... , s} 
and where at least one inequality is strict in the second part. 

This means that fl C} ,j E { 1, 2, ... , s}, is the maximum likelihood estimator of J1 under 
the monotonicity restriction Cj. This estimator is given by Frisen (1986). 

Thus, J1 is estimated using a non-parametric method and the maximum likelihood 
ratio at decision time s is 

MLR(s) = ± P(r= j) f(xs;.aC}) . 
j=lP(r~s) f(xs;.a D ) 
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The MLR statistic is a function of the distribution of To This is avoided by using the 
Shiryaev-Roberts approach, as described in Section 2.4.2. The MSR method gives an 
alarm for the first s for which 

S j( ACj) 
MSR(s) = L xs;f.l 

j=l j(xs;flD) 

exceeds a fixed limit. The method is suggested in Frisen (1994) and evaluated by 
Andersson (1999) and Andersson (2001). 

2.5 Control of false alarms 

The way in which false alarms for turns are controlled is important. The constants in 
the alarm rules of Section 2.4 have to be determined. In the general theory and 
practice of surveillance, the most common way is to control the ARLo, (the Average 
Run Length to the first alarm if the process does not have any tum). Hawkins (1992), 
Gan (1993) and Andersson (1999) suggest that the control is made by a statistic 
similar to the ARLo, namely the MRLo, which is the median run length. This has 
several advantages, such as easier interpretations for the skewed distributions and 
much shorter computer time for calculations. Here, the median, M[fA], is defined to be 
ml + (0.5-Pl)/(P2-Pl), where P(tA ~ ml) = Pl,Pl < 0.50 and P(tA ~ ml+l)= P2,P2 > 0.5. 

The time of the alarm, fA, for the SRlin and MSR methods are 
fA = min [f: MSR(f) > k MSR] (9) 

and 
fA = min [t: SRlin(f) > k SRlin ] (10) 

respectively, where k MSR and kSRlin are constant alarm limits, determined to yield 
M[tA l-z=oo]=MRLo for both methods, where MRLo is a chosen constant. 

A more direct Bayesian approach, which is often used, is to control the limit for the 
posterior probability. This approach is also used for PHM. The time of the alarm, fA, 
for the PHM method is defined as 

fA=min[s: p(CIXs ) >0.5]. (11) 

The limit 0.5 for the posterior probability is used also by other authors, e.g. Hamilton 
(1989) and Koskinen and Oller (1998). Zellner et al. (1991) discuss the limit value of 
the posterior probability in the context of loss functions. If the loss of a false alarm 
equals that of a missed alarm, then the expected total loss would be minimal if the 
limit 0.5 is used for the posterior probability. However, Birchenhall et al. (1999) 
describe the limit 0.5 as reflecting lack of prior information. They discuss the use of 
an estimated prior probability instead of 0.5 and give results for an "uncertain region" 
where the posterior probability is between these values. 
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The approach used in much theoretical work e.g. Shiryaev (1963) and Frisen and de 
Mare (1991) and for which optimality theorems are available, is a control of the 
probability of false alarm 

00 

P(tA<i)= LP(r = i). P(t A < iID). 
i=l 

The alarm limit is determined to yield a fixed false alarm probability. Neftci (1982) 
and Lahiri and Wang (1994) use this criterion for alarms for turning points of business 
cycles. 

Chu et al. (1996) advocate monitoring methods for structural change, which have a 
fixed (asymptotic) probability of any false alarm during an infinite long surveillance 
period without change. For some applications, this might be important because a strict 
significance test is in fact the goal. In that case, ordinary statements for hypotheses 
testing can be made. However, Frisen (1999) demonstrates that the price is high. The 
ability to detect a change will be very low if it happens a long time after the 
monitoring has started. 

2.6 Assumptions on knowledge of the type of the next turn 

Knowledge of whether the next tum will be a peak or a trough makes it possible to 
use only data during the evaluation period. The likelihood ratio statistic of the 
surveillance approach can then be used. In fact, for the MSR approach, nothing will 
be gained by including earlier time points in the analyses. However, without this 
information, the last observations contain little information and it is important to 
utilize also information from earlier times. This is a major difference between the 
HMM approach on one hand and the surveillance approach on the other. The former 
approach is used for the PHM method and by e.g. Koskinen and Oller (1998). The 
latter approach is used for the SRlin and MSR methods and by e.g. Neftci (1982) and 
Diebold and Rudebusch (1989). By comparisons between the differences between the 
complete methods and the differences induced by different specific effects above, we 
conclude that the knowledge of the type of the next tum is important information. 

If information about the type of the next tum is used in the surveillance, it means 
that the surveillance can be designed for detecting that particular type of tum. Instead 
of trying to detect both peaks and troughs, the method is designed for just detecting 
peak, thereby simplifying the surveillance situation and improving the detecting 
ability. 

When the type of the next tum is known, the events D and C to be discriminated 
between are identical for the surveillance methods (e.g. SRlin) and the HMM methods 
(e.g. PHM.) if the same assumptions are made about the other features such as the 
shape of the regression. It is demonstrated by Frisen and de Mare (1991), that the 
likelihood ratio method and the posterior probability approach give the same result as 
soon as the events D and C are the same and D is the complement to C. Thus, for a 
known type of the next tum, the HMM approach is identical to the surveillance by the 
likelihood ratio method. An illustration of this by a demonstration of how the 
knowledge about the type of the next turning point is implemented in the HMM 
approach for decision time s=3 is given in Appendix 2, where also the effect on the 
posterior probabilities for recession or expansion is demonstrated. 
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2.7 Assumptions on knowledge of the regime of all earlier observations 

Past periods with known regime characteristics carry valuable information. Several 
authors utilize this information for estimation purposes. 

Birchenhall et al. (1999) assume knowledge about earlier regimes. However, as 
was seen above, one implication of their approach is that the information on earlier 
regime types is not used. In their work, data from earlier time points are used for 
selection and estimation of the weights for the different leading indicators of the 
classification rule. Koskinen and Oller (1998) model the dynamics of the transitions 
but still use the knowledge of the regime of prior observations only for estimation 
purposes. We will now demonstrate that a Shewhart type of method (only the last 
observation is used) will be optimal for the PHM setting in this situation. 

The alarm rule for the PHM method is 
p(C(s)ly(s -1))· f(y(s)IC(s)) 

I 
> k, where k= 0.5. 

f(y(s) yes -1)) 

This is equivalent to 
p(C(s)ly(s -1))· f(y(s)ICCs)) 

I I 
>k, 

P(C(s) yes -1))· f(y(s)ICCs)) + peDes) yes -1))· f(y(s)ID(s)) 

where the following calculations are used: 
p(CCs)ly(s -1))= (P12 . peDes -1)ly(s -1)) + P22 . P(C(s -1)ly(s -1))) 

and 
p(D(s)ly(s -1))= (Pll . peDes -1)ly(s -1)) + P21 . P(CCs -l)ly(s -1))), 

where P12,P22,Pll,P21 are transition probabilities. 
If the regime of the previous observation, y(s-l), was known and equal to C, i.e. if 

P(C(s -l)ly(s -1)) = 1 

then 
P21=P(D(s)ICCs -1)) = peDes)) and P22=P(C(s)ICCs -1)) =P(C(s)) 

and therefore the alarm rule for the PHM method is reduced to 
p(C(s)ly(s)) > k . 

Analogously, it can be shown that if the regime of the previous observation, y(s-l), 
was known and equal to D, then the alarm rule for the PHM method is again reduced 
to 

p(C(s)ly(s)) > k . 

Thus, for the situation where the regimes for all past time points are known, the 
optimal alarm statistic is based only on the last observation, yes). 
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Table 1. Summary 0 f"the assumptions usedjor some methods. 
Neftci Hamilton Birchenhall PHM SRlin MSR 
(1982) (1989) (1999) 

Type of next turn Yes No No No Yes Yes 
used 
Parametric E(Xlt) E(Xlt) P(CiX) E(Xlt) E(Xlt) No. 
function logistic 
Equal slopes for No No - No Yes No 
the two phases 
Equal variances No Yes - No Yes Yes 
for the two phases 
Equal slopes over Yes Yes - Yes Yes No 
time 
Alarm rule P(Clx» 1- P(Cix) >0.5 P(Cix»O.5 P(CiX) > 0.5 P(CIX) > P(CiX) > k MSR; 

P(tA<'t) and kSRIin; MRLo fix 
P(Cix» p MRLofix 

"Informative" Yes Yes - Yes No No 
distribution of 
transitions 
Time dependent Yes No - No No No 
transition 
probability 
Auto No Yes No No No No 
Correlation 

--
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3 MONTE CARLO STUDY ON THE EFFECTS OF DIFFERENT 
SPECIFICATIONS 

3.1 Model for the evaluation period 

The investigation of the effects of different specifications is made for the detection 
of a tum in an evaluation period with one tum. In this Monte Carlo study the 
comparisons are made for a situation similar to that of the Swedish industrial 
production (IP), after seasonal adjustment. For a description of IP, see Oller and 
Tallbom (1994). The time series is illustrated in Figure 2, raw data and after 
adjustment for seasonality. A large part of the IP series is used in the estimation 
process for the PHM method and a part of the IP series that contains one turning point 
is used in the evaluation. 

Ln IP 

11.3 

11.2 

11.1 N 
11.0 

10.9 

10.8 

10.7 

1 0.6+---.,----:':"--::r---::r:--:r-:.......,.:-::'":"-'::r-~~ 
o 8 16 24 32 40 48 56 64 72 80 88 96 

Time (quarters) 

Ln IP' 

11.3 

11.2 

11.1 

10.7 

10.6J.--,.~~~~~~L.--~--,J 
o 8 16 24 32 40 48 56 64 72 80 88 96 

Time (quarters) 

Figure 2: Industrial production, quarterly data (1970Q1: 1992Q2). The evaluation 
period starts at 1987Q2, marked with a dashed vertical line. Left: raw data, 
right: seasonally adjusted data. 

The expansions and recessions are dated using the records of the National Institute of 
Economic Research (1992). In the evaluation study a model is used that resembles 
quarterly seasonally adjusted data on IP for the period 1987Q2:1992Q2, which 
includes one peak and where the date 87Ql is defined as a trough by the National 
Institute of Economic Research. The seasonal adjustment is made using regression on 
seasonal dummies. Whether the evaluation period starts at the last tum in the 
estimation period, or a few quarters after the last turning point, has a great impact on 
the false alarm probability of the PHM method, especially for the first time point. This 
effect is investigated in Section 3.3.2. In a realistic situation, the knowledge that a 
time point is a turning point cannot be confirmed directly. It is reasonable to think that 
the confirmation can come after 3 or 4 quarters. Therefore, in the simulation study, 
unless anything else is specified, the evaluation period (t=l) starts 4 time points after 
the last turning point of the estimation period. 

The procedure to determine the models, used in the simulation study, will now be 
described. 

3.1.1 Modelfor event D (no turn) 

In order to evaluate the false alarm properties, the event D (no tum) has to be 
specified. In this case, we need a model of expansion for the whole evaluation period. 
A linear function was fitted to the expansion phase of the evaluation period (1987Q2: 
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1989Q3). The observations on X, under event D, are simulated using the same 
variance as for event C. The model used is 

x.D(t) = tF(t) + c(t), (12) 
where Jl D(t) = 11.194 + 0.0069·t, 
and c(t) - iid N[O; 0.016]. 

11.4-r--------------------, 

11.3 

11.2 

11.1 

11.0+--_---r-_ ........... __ ..,...-_~-____,~------l 
o 4 8 12 16 20 24 

Figure 3: The regression line (---) for event D (no turn) and one realization (*). 

3.1.2 Modelfor event C (a turn) 

The aim is to find a model which mimics the actual behavior of the turning point in 
the evaluation period (l987Q2:1992Q2), which starts at a trough. A regression curve, 
which is piecewise of the third degree and piecewise of the first degree, is found to fit 
well. The seasonal effects are included as seasonal dummies when the parameters of 
the regression curve and the standard deviation are estimated. Thus, the model for the 
variable X is 

f(t) = Jlc(t) + c(t), (13) 
where 

Jlc(t) = {11.194 + 0.0066· t - 0.00017 . t 2 
- 0.000015· t3

, 1::::; t ::::; 13 

11.340 - 0.0089 . t, t ~ 14 

c(t) - iid N[O; 0.016]. 

The regression has a peak at time t= 10 and thus, for this model we have '£ = 10. This 
model is used in some of the simulations where the properties for the rounded curve 
are illustrated. 

The rounded curve described above is not suitable for a study of the effect of 
different values of r, since the growth of the slope is not constant. The different slopes 
in different parts of the curve will also have an influence when the value of '£ is 
varied. Thus, for examination of the influence of different values of r, an 
approximation of the rounded smooth curve is used, where the slopes are constant and 
equal before and after the peak. 
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~(t) = ,P'(t) + t:(t), (14) 
where ,F1:(t)=11.194 + 0.0069·t - 2Dj"0.0069·(t-r+ 1) , t = {I, 2, ... }, 

{
I, t;:::: r 

andD1= 
0, otherwise 

and t:(t) - iid N[O; 0.016 ]. 

11.4,-------------, 

11.3 

~* 11.2"1t *** ~ 

* 
11.1 

11.0+--~-~-~~-~~ 
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Time (quarters) 
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Figure 4: The regression curve (--) for a turn at 10 and one realization (*). 

Left: the rounded curve. Right: the piecewise linear curve. 

3.2 Other specifications needed for the simulation procedure 

3.2.1 Specifications for the estimation period 

Observations not only in the evaluation period, but also in previous expansions and 
recessions are used by most methods (see e.g. Neftci (1982), Hamilton (1989), Lahiri 
and Wang (1994) and Koskinen and Oller (1998)) and here also by the PHM method. 
One object in our simulation study is to study the effect of estimation of parameters in 
the regression function. It is often suggested that also other parameters, e.g. the 
transition probabilities are estimated. The effects of errors in the estimated values are 
discussed but no simulation study is made for those parameters. 

The PHM method estimates its parameters (j..l and (j for recession and expansion, 
respectively) from an estimation period. In order to incorporate the variation 
introduced by this use of previous stochastic data, also these values are simulated. The 
estimation period is 1970Ql to 1987Ql, see Figure 2. This period includes several 
peaks and troughs. The dates of these turning points, given by the National Institute of 
Economic Research (1992), are used in developing a simulation model for the 
estimation period. Regression curves that are similar to those of the estimation period 
are determined by fitting one regression model, including seasonal dummies, to each 
expansion- and recession phase respectively. The intercept of the regression models is 
adjusted to avoid jumps. The resulting chain of polynomials, without the seasonal 
components, and with the estimated standard deviation, is used as a model for the 
simulations. Observations on X are thus simulated according to 
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Xj(t) = f.lltJ + Ci(t) , (15) 

{ 

f.llj (t), j = {1, 2, 3} 
where f.liCt)= ) 

f.l2j (t, j = {1, 2, 3, 4} } 

d ) 
.. {N(O; a'lj ), j = {I, 2, 3} 

an ciCt -lld 2 . 
N(O; (J"2j)' } = {I, 2, 3, 4}}. 

The function f.llj{t) and parameter (}lj represent the expected value and the standard 
deviation in expansion phase j and f.l2j{t) and (}2j represent the expected value and the 
standard deviation in recession phase j. The f.l-function used in the simulation of the 
estimation period is given in the Appendix 3 and is illustrated in Figure 5. 
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Figure 5: The expected value (--) and one realization (*), for the model used to 

simulate the estimation period (1970Ql: 1987Ql). 

3.2.2 Control offalse alarms 

For the PHM approach, the alarm limit is the threshold probability 0.5 for the 
posterior probability. For the expansion situation, D, when there is no tum, the result 
from the simulation study is that this alarm limit will result in a median run length 
MRLo = 17 with a standard error of 0.13. 

The alarm limits of the MSR and SRlin methods are determined by an iterative 
procedure to yield the same MRL 0, 17. The standard error of the last estimate of 
MRLo is 0.11 for MSR and 0.12 for SRlin. The standard errors are estimated in a 
simulation study, using the empirical distribution. 

3.3. Evaluation of the effect of different specifications 

The evaluation and comparison of the methods is made using the probability of false 
alarm, the expected delay of an alarm, the probability of successful detection and the 
predictive value, see Frisen (1992). 

19 



3.3.1 Comparison between the three specific methods 

One main difference concerns the assumption of regression on time. Two of the 
methods, SRlin and PHM, assume knowledge about the shape of the regression. The 
comparisons are first made for the case when the actual function is linear (which is 
assumed by SRlin and PHM) and has parameter values PI = 0.0069, (5= 0.016 (which 
is assumed by SRlin). A study on the effect of errors in these assumptions is 
conducted in Section 3.3.3. In the following sections we will examine which of the 
other differences in specifications that have a major impact. 

3.3.1.1 17alse alarm 

.6 
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.4 

.3 

.2 

o 10 20 30 40 50 60 70 80 90 

Figure 6: The distribution of the time of an alarm conditional on event D (no turn). 
PHM (--), MSR (- - -), SRlin (0 0 0). 

As is seen in Figure 6, the PHM method has more frequent false alarms at early time 
points, but low alarm probability later compared with that of the SRlin and especially 
MSR. The curves cross at run length 17. This is due to the construction of 
comparability: for all three methods the median run length to the first false alarm is 
set to be MRLo = M[tA 1 'Z=oo]=17. The curve for the SRlin method is between the 
other two. 

The conditional probability of a false alarm, P(tA < rl r = 10), for the rounded 
curve in Figure 4, is 0.46 (0.0035) for PHM and 0.41 (0.0033) for MSR. For the 
corresponding piecewise linear case in Figure 4, P(tA < rl r= 10) is 0.33 (0.0023) for 
PHM, 0.27 (0.0022) for MSR and 0.29 (0.0023) for SRlin. The higher false alarm 
probability for the rounded curve in Figure 4 is due to a decreasing slope just before 
the tum. The conditional probabilities of a false alarm for different values of r are 
summarized by the total probability of a false alarm, P(tA < r), which is the expected 
value of P(tA < rl r= t). P(tA <r), as a function of v, is presented in Figure 7 for the 
case when rhas a geometric distribution with intensity v. 
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Figure 7: The probability of a false alarm when r is geometrically distributed with 
parameter v. PHM (--), MSR (- - -), SRlin (0 0 0). 

When comparing PHM, MSR and SRlin we see that the false alarm probability is the 
smallest for the MSR and the largest for the PHM for every value of the intensity, v. 
As a result of the assumption of a geometric distribution for 1", the alarms at the 
beginning have a great influence on P(tA < 'Z). The large false alarm probability for 
PHM for all v is a result of the error-spending curve of PHM, with many early alarms. 
The dramatic decrease as v tends to one is because the expected value of r decreases 
and most of the alarms are thus triggered after the expected turning point. 

3.3.1.2 Delay of a motivated alarm 

To illustrate how the probability of an alarm is changed at the turning point, the run 
length distributions when -z=1O are given in Figure 8 for the three methods below. 

21 



P(tA $; t, 10) 

1.0..----------:---.. ,.....,.,=r-~--., 
. 

.7 

/1 

f 
" 

. 9 

.8 

.6 

.5 

Figure 8: The distribution of the time of an alarm for the piecewise linear curve, 
r=iO. PHM (-~, MSR (---), SRlin (0' 0). 

The evaluation of the ability to detect an event C (a peak) is made using the 
conditional expected delay time of an alarm, CED( 1) =E[ t A - rlt A ;::: r], and the 

conditional median delay, CMD( 1) = M[ t A - rlt A ;::: r ]. 

Table 2: Conditional expected delay and conditional median delay for a turn at i O. 
r= 10 

PHM 
MSR 
SRlin 

Rounded 

CED 
1.50 (0.012) 
1.64 (0.011) 

CMD 
0.86 
1.05 

Piecewise linear 

CED 
1.79 (0.0065) 
1.65 (0.0068) 
1.23 (0.0048) 

CMD 
1.30 
1.08 
0.70 

The delay times for the piecewise linear case in Figure 4 are summarized by CED( 1) 

and CMD( 1) in Figure 9 and 10, respectively. For r :::;; 20 we have 

sd[ CED( r) ]:::;;0.0079 for PHM, sd[ CED( r) ]:::;;0.0087 for MSR and 

sd[ CED( r) ]:::;;0.0059 for SRlin. 
The conditional expected delay is further summarized under the assumption of a 

geometric distribution for r, by 
00 

ED = ICED(r).P(r =i). 
i=l 

Using v-=0.1O in the geometric distribution, ED is 1.79 (0.0024) for PHM, 1.99 
(0.0026) for MSR and 1.26 (0.0018) for SRlin. 
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Figure 9: Conditional expected delay for the piecewise linear curve with turn at To 

PHM (-- -), MSR (- - - -), SRlin (- - - -). 
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Figure 10: Conditional median delay for the piecewise linear curve with turn at To 

PHM (-- -), MSR (- - - -), SRlin (- - - -). 

When comparing PHM, and MSR we see that both the conditional expected delay and 
the conditional median delay is worse for MSR, for small values of 1', r<4. After that, 
the delay is slightly shorter for MSR, compared to PHM. The effect of r is large for 
MSR for small values of r. However, an asymptote is reached at about -z=1O. For 
PHM, the effect of ris very small. A very slight increase in both conditional expected 
delay and conditional median delay can be observed in Figure 9 and 10, as r 
increases. The SRlin method has the shortest delay for every r. Both SRlin and PHM 
reach their respective asymptote already at 2. The reason is that both these methods 
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assume the correct parametric function for the tum (a piecewise linear function). The 
MSR method needs more observations in the beginning to have enough evidence of a 
tum. 

3.3.1.3 Probability of successful detection 

The probability of successful detection within d time points, PSD = 
p( (t A - r) :s; d\t A > r = r 0)' is given in Figure 11 for 1:= 1 O. For the rounded curve in 

Figure 4 we have that sd[PSD]:S;0.0048 for PHM and sd[PSD]:S;O.0044 for MSR. For 
the piecewise linear curve in Figure 4 we have that sd[PSD]:S;0.0030 for PHM, 
sd[PSD]:S;0.0029 for MSR and sd[PSD]:S;0.0029 for SRlin. 
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Figure 11: Probability of successful detection within d time points for r= 10. 
Left: the rounded curve, PHM (--~, MSR (- - -). Right: the piecewise linear curve, 

PHM (-~, MSR (---), SRlin (- - -). 

The PSD curves are very similar for the PHM and MSR methods. For MSR it is 
showed that the PSD increases as the post peak slope grows steeper (see Andersson 
(2001)). The effect of the rounded curve, compared to the piecewise linear curve, is 
twofold: A rounded peak results in an increase in the alarm statistic just before the 
peak. This means that only a small increase in the alarm statistic is needed to call an 
alarm at the time points just after the peak. The result is an increase in the PSD. On 
the other hand, the characteristics of the peak just after the turning point (rounded or 
linear) will affect the alarm statistic and the PSD in opposite direction, thus resulting 
in a decreased PSD for a rounded peak. The SRlin method has the best PSD. 

3.3.1.4 Predictive value of an alarm 

Another evaluation measure is the predictive value of an alarm at time t, PV(t)=P( r:S; 
t I tA = t). This reflects the trust you should have in an alarm. In Figure 12 the 
predictive value for t = {I, 2, ... , 12} under the assumption of a geometric distribution 
with intensity v =0.1 is presented. For t = 1 the exact value is used and for t = {2, ... , 
12}, simulated values are used. From Figure 12 it is evident that the price for the high 
alarm probability in the first point for the PHM method is that those alarms are of 
little value. Since the predictive value is only 0.2, an alarm would hardly motivate any 
action. PV (1) is very high for MSR, as a result of the very low false alarm rate at t= 1. 
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Figure 12: Predictive value of an alarm at time t for V = 0.1. PHM (--- -), 

MSR (- - - -), SRlin ( ... -). 

Both SRlin and PHM reach their respective asymptote early. The development for 
MSR is a little different. The predictive value of MSR increases until t = 6, after that 
the predictive value decreases slightly and reaches the same asymptote as SRlin at 
approximately t = 10. The MSR method places no parametric restrictions on the 
turning point curve. All information about the curve comes from data. For small 
values of t the number of observed data is very small and thus the data have to be very 
extreme in order to call an alarm. However, as t increases (and the number of 
observations increases) the information about the curve is improved and at t = 10, 
MSR has the same predictive value as SRlin. 

The conclusion is that wrong assumptions about slopes may give very bad 
properties and that the MSR method gives a safe way to avoid this. 

3.3.2 Start of the evaluation period 

For the methods MSR and SRlin it does not matter for the false alarm probabilities if 
the evaluation period is started directly after a regime shift or a little later. However, 
for the PHM method this has a great influence. The reason for this is the difference in 
the knowledge of the type of the next tum. The probability of classifying the state as a 
continued recession is very high just after a through if you do not have the 
information that the change of regime has already happened. The run length 
distribution and particularly the probability of a false alarm at the first time point is 
highly dependent on where the evaluation period begins in relation to the last change. 
To begin the monitoring at a turning point results in a large false alarm probability at 
t= 1 for the PHM method. 
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Figure 13: The distribution of the time of an alarm conditional on event D (no turn) 
for the PHM method. The evaluation period starts h={O, 1, 2, 4, 6} time points after 
the latest turningpoint,h=O (-), h=1 (- - -), h=2 (---), h=4 (---), h=6 (-). 

The false alarm probability at the first time point depends highly on the start of the 
evaluation period, as illustrated in Table 3 below. 

Table 3: False alarm probability, at the first time point, as a function of the start of 
the estimation period, h. Standard errors are given in parenthesis. 

o 0.22 (0.0029) 
1 0.15 (0.0025) 
2 0.10 (0.0022) 
4 0.064 (0.0012) 
5 0.057 (0.0016) 
6 0.054 (0.0016) 

The starting time h=4 was used in the simulations if not otherwise stated. 

3.3.3 Effect of the estimation procedure for the regression coefficients 

If a short period of estimation of the parameters is used, then a considerable variation 
by the use of these parameters will be introduced. Thus, estimation from short periods 
will introduce an extra variability and should be avoided. If the pattern is not stable, 
then even a long period for estimation will result in estimates that are not very useful 
without information about the natural variation of the pattern. However, if a very long 
and stable period is used for estimation of the parameters, then the parameters can be 
considered as known. The estimation procedures described in Appendix 4 will result 
in a stochastic deviation from the relevant values. Neither SRlin nor PHM 
incorporates this uncertainty in the methods. If a large set of previous data is available 
and if it can be assumed that the period to be analyzed has the same pattern as the 
previous periods, then the regression coefficient can be considered known. The effect 
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of wrong specification of the regression coefficient is investigated for the SRlin 
method for two situations, namely an expansion and a turn at time r. Here we allow 
for unsymmetrical turning points. The models for the observations are presented in 
(12) and (14). 

3.3.3.1 Only the post-peak slope is incorrectly specified 

We start with the situation when only the post-peak slope is incorrectly specified. The 
likelihood ratio 

LR(s) = f(xs Ie) 
f(xsID) 

is stochastically smaller the greater the difference between the events D and C, if the 
event D is true. 

We will now look at the situation in detail. The correct regression is 

( ) { 
/30 + /31 . t, t < r 

f1 t = /30 + /31 . (r -1) - /31 . (t - r + 1), t ?:. r 

but the specified regression, used in the alarm statistic, is 

M(t) = { /30 + /31 . t, t < r 
/30 + /31 . (r -1) - (/31 + r) . (t - r + 1), t ?:. r. 

We will give results for the specific situation where PI =0.0069, sd[ PI ]=0.0009 and r 
= {0.0018, -0.0018}. These examples of mis-specification are chosen since they 
represent values between which approximately 95% of the expansion estimates would 
be, with the estimation procedure described in Appendix 4. Observe that the mis
specification is small, for early times, compared with the stochastic variation 0=0.016 
around the curve. The correct case and the two mis-specifications are illustrated in 
Figure 14. 
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Figure 14: The piecewise linear regression curve for a turn at 10. The post-peak slope 
is correctly specified (- - -), too flat (---) and too steep (- - -). 
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At decision time 1 we have that the SRlin statistic, using /31, is 

SRlin(l) =exp[(2~2 ]4PoP, -X(lH4P,»)] 

whereas the SRlin statistic, using (/31 + r), is 

SR(I) = exp [( 2~2 }Pop, - y2 - 2P,y+ 2PoY- x(l)· (4P, + 2Y)lj. 
The statistic is decreasing with ras soon as X(I»(/3o - /31). This is in agreement with 
the general result that a likelihood ratio is stochastically smaller for the D event if the 
difference between the events is great. However, when the alarm limit is adjusted to 
give the same MRL 0, the situation changes. For this case, (but not the next that will be 
studied) the adjustment is minor. 

The exact alarm probabilities at time 1, using the alarm limit from the simulations, 
are given in Table 4, for the cases { r= oo} and {r= I}. The value of /30 corresponds to 
a translatation and has no effect on the probability. 

Table 4: Alarm probability at t = 1, conditional on no turn (r=oo) and 
turn at 1 (r=1). 

P(alarm at time 1) 
PI = 0.0069, a= 0.016 

y=O y= 0.0018 r= - 0.0018 

r=oo 0.0026 0.0062 0.0009 

r= 1 0.0268 0.0495 0.0107 

The densities for the alarm time, when there is still expansion (event D) is shown in 
Figure 15 below. 
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Figure 15: The density of the time of an alarm conditional on event D (no turn). The 
post-peak slope is correctly specified (- - -), too flat (--) and too steep (- - -). 

We see that the alarms have a tendency to come later when the methods are optimized 
to detect a small change with a fixed MRLo. This is in agreement with the results by 
Frisen and Wessman (1999) for a shift in level and a fixed ARLo. For the values r-={O, 
0.0018, -0.0018} no great differences are seen except at the first time points. 

The likelihood ratio is optimal for the value of the slope that is used, that is when 
using ([31+n the LR method is optimal for detecting a recession with slope ([31+n. 
You would expect that it is wise to save the alarm power until you have gathered 
much information if you have a hard case (small change) to detect. The result agrees 
with this. In Frisen and Wessman (1999) the effect of wrong specification in the 
situation of a change from an in-control level to an out-of control level is investigated. 
They prove that when the change, for which the method is optimized, tends to infinity 
then all examined methods tend to the properties of the Shewhart method, which has a 
geometrical false alarm density. 

The expected delay for different values of Tis given below. 
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Figure 16: Conditional expected delay for a turn at 1: The post-peak slope is correctly 
specified (-- 0), too flat (-- II) and too steep (- - - x). 

No dramatic difference can be detected for the conditional expected delay, when 
comparing r-=O and y,tO. For the case of too steep a post-peak slope the CED(l) is 
slightly smaller than for a correctly specified slope. The deviation is of about the same 
size but of opposite sign for the case of too flat a post-peak slope. The difference 
between a correctly and incorrectly specified slope is small at the beginning of the 
recession. Since the delays are expected to be small, the mis-specification in slope has 
a minor effect. For that reason we would not expect any large differences between 
SRlin with a correctly specified slope and SRlin with an incorrectly specified slope. 
We have that sd[ CED(T) ]::;0.0059 for r-=O, sd[ CED(T) ]::;0.0056 for r-=0.OO18 and 

sd[ CED(T) ]::;0.0054 for r-= -0.0018. 
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Figure 17: Predictive value of an alarm at time t for v = 0.1. The post-peak slope is 
correctly specified (-- 0), too flat (-- II) and too steep (- - - x). 
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The predictive value is very similar between ]CO and ]C{0.0018, -0.0018}, except at 
t=l. The difference is due to the difference in the error-spending curve. For ]C-

0.0018, the alarm statistic is optimized to detect a smaller change (flatter post-peak 
slope) and therefore the alarms are located later on. The result is few alarms at early 
time points, which results in a high predictive value for t=l. The opposite holds for ]C 

0.0018. 

3.3.3.2 Both the pre-peak slope and the post-peak slope are incorrectly specified 

Now we look at the situation when both the pre-peak slope and the post-peak slope 
are incorrectly specified so that the correct regression is 

fl(t)= { 
fJo + fJl . t, t < r 
fJo + fJl . (r -1) - fJl . (t - r + 1), t? r 

but the specified regression, used in the alarm statistic, is 

M(t) = { fJo + (fJl + y). t, t < r 
fJO+(fJl +y)·(r-1)-(fJl +y)·(t-r+1), t?r 

where j31=0.0069 and Y= 0.0018. 

This case is not self-evident for an investigation of the effect of incorrect specification 
in both D and C. However the case will suffice to demonstrate the dramatic difference 
compared with the earlier case with incorrect specification only in C. 
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t 
Figure 18: The piecewise linear regression curve for a turn at t = 10. Both pre-peak 
and post-peak slopes are correctly specified (- - -), too steep (--). 

If the same alarm limit that was used in the correctly specified case would be kept, 
there would be a great increase in false alarms. The probability of a false alarm WOUld, 
for the studied case, increase with time as the difference to the true D-state will 
increase. The limit will be determined so that the MRLo = 17. At that time the 
difference between the states are enormous. Thus the limit will be changed much, to 
compensate for this (from 7 to 960). The change of the alarm limit will create a 
completely new situation, as is seen below. 
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The low false alarm probability for small t for the incorrect specification (r = 
0.0018) in Figure 19 is due to the increasing difference between the true and specified 
states. For small t the difference is small. However, as t increases, so does the 
difference. Thus, the likelihood for the specified D-state decreases and therefore, the 
alarm probability increases. 
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Figure 19: The distribution of the time of an alarm, conditional on event D (no turn). 
Both pre-peak and post-peak slopes are correctly specified (- - -j, too steep (--~ . 
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Figure 20: The probability of a false alarm when 7: is geometrically distributed with 
the parameter v. Both pre-peak and post-peak slopes are correctly specified (- - -), 

too steep (--). 

The false alarm probability is the smallest when using the incorrect specified slopes 
for every value of the intensity, v. The low false alarm probability is a result of the 
error-spending curve with few early alarms, in contrast to using correctly specified 
slopes that result in many early alarms. 
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Figure 21: The density a/the time of an alarm, conditional on event D (no turn). Both 
pre-peak and post-peak slopes are correctly specified (- - -), too steep (--). 
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Figure 22: Conditional expected delay for a turn at To SRlin correctly specified slopes 
(- - - -), SRlin too steep slopes (- -), MSR(-- 0). 

For small values of r, the conditional expected delay is longer if both slopes 
(expansion and recession) are over-estimated, as seen in Figure 22. As rincreases, the 
conditional delay decreases towards an asymptote, zero. Thus for the situation where 
both slopes are mis-specified (too steep) the resulting delay is large if the turning 
point occurs early. If the turning point occurs late, the CED is zero (all alarms are 
false alarms). We also see that although the non-parametric approach, MSR, has a 
long delay time for early turns, it quickly reaches a reasonable asymptotic value of 
CED. We have sd[ CED(r) ]~O.OO59 for SRlin (correct), sd[ CED(r) ]~O.OO46 for SRlin 

(wrong) and sd[ CED(r) ]~O.OO87 for MSR. 
The predictive value of an alarm, under the assumption of a geometric distribution 

with intensity v is shown in Figure 23. 
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Figure 23: Predictive value of an alarm at time t for V = 0.1. SRlin correctly specified 
slopes (- - - -), SRlin too steep slopes (-- -), MSR(--- 0). 

The predictive value is high for small values of t, as a result of the small false alarm 
probability. For larger values of t the predictive value decreases. We also see that the 
PV for MSR is lower than that of SRlin (correct) for small values of t, but the 
asymptotic PV (which is the same as for SRlin (correct)) is reached quickly. 

3.3.4 Effect of smoothing 

In the paper by Koskinen and Oller (1998) the recommendation is that the 
observations should be smoothed after differentiation, see also Oller (1986). Koskinen 
and Oller (1998) state that the objective of the smoothing is both reduction of white 
noise and lagging of the turning point. The latter purpose is motivated by the use of 
multivariate data, where the turning points of the different processes are not always 
synchronized. The differentiated observations yet) are smoothed according to 

i\t) = AY(t) + (1- A)Y(t -1), 

where AE {a, 1}. 

Smoothing by kernel estimators is used by e.g. Hall et al. (1995). The smoothing of 
observations reduces the variance and hence reduces the false alarm probability. 
However, there are also disadvantages. The smoothing will introduce an auto
correlation and reduce the distinctness of the turning point. Alternatives to the 
smoothing are discussed in Section 5.2. The effect of smoothing on the PHM method 
is shown below for adjusted alarm limits to give the same MRLo. 
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Figure 24: The distribution of the time of an alarm, conditional on event D (no turn). 
PHM method, A= 1 (- 0 0) and A=O.3 (--). 

The common value of the MRL ° is 17. For the case when A.= 1 we have that sd[MRL 0] 
=0.13 and when A.=0.3 we have that sd[MRLo] = 0.15. The differences seen in Figure 
24 are due to different skewness of the density of the time of the alarm. This 
difference in skewness is due to differences in autocorrelation and variance. 
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Figure 25: The distribution of the time of an alarm for the piecewise linear curve, 
'['=10. PHMmethod, A=1 (00 oj and A=0.3 (-). 
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Figure 26: Probability of successful detection within d time points for the piecewise 
linear curve, r=10. PHMmethod, A=1 (00 oj and A=0.3 (--). 

For the case when A.=1 we have that sd[PSD]::;0.0030 and when A.=0.3 we have that 
sd[PSD]::;0.0029. The reduced distinctness of the turning point, due to smoothing, 
decreases the probability of successful detection for 1:=10. 

4 EVALUATION BY ACTUAL DATA ON THE SWEDISH INDUSTRIAL 
PRODUCTION 

The most common way to evaluate methods for detection of turning points in business 
cycles is by using one set of data. We will now use that approach and use the actual 
data set on quarterly Swedish data on industrial production, presented in Section 3.1, 
to evaluate the three methods, PHM, MSR and SRlin. The evaluations made in 
Section 3.3 were made for a large number of realizations. Now we will use one 
specific realization, namely the real one. In the end of this section, we will discuss the 
relative merits of evaluation by simulation studies or by one example of real data. 

According to official records (The National Institute of Economic Research 
(1992)), the peak occurs at time t = 10, implying that the time of change is 1:=11 (see 
Figure 27, where the evaluation period is presented in detail). This official time is not 
only based on the data on IP. Some other information might make this official time 
different than it should have been if only the IP data were used for this specific 
realization. The methods evaluated here only use the IP data. Figure 27 indicates that 
the turning point in the data is earlier than the official time. Thus, the methods could 
not be expected to be good at indicating the official time for this realization. All three 
methods give alarms earlier than the official times for this set of data. 
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Figure 27: Seasonally adjusted logarithm of the industrial production, quarterly data 
(1987Q2:1992Q2) for the evaluation period. The official time of change (11) is 
marked with a solid vertical line. The alarm times 4, 7 and 10 for the MSR, P HM, and 
SRlin respectively are marked with dashed vertical lines. The J..l-curve for the 
piecewise linear model (14) with r= 11 is marked with a solid curve. The 2.5th and 
97. 5th percentiles of values of the observations according to the model is marked as 
dotted curves. 

The piecewise linear model fits less well at the turning point as we have a plateau. 
McQueen and Thorley (1993), argues that it is reasonable that recessions tend to be 
preceded by plateaus. A plateau will result in a tendency to false alarms just before 
the tum. It can be discussed whether this is a drawback or not. An early indication of a 
coming recession is a plateau. In this light, the early alarms can be considered to be 
good, since they can be seen as warnings. 

For PHM and SRlin it is assumed that all the parameters (slopes and standard 
deviations) are known or possible to estimate with great certainty. Here we use the 
observed data from the estimation period 1970Ql:1987Ql and the estimation 
procedure described in Appendix 4 to estimate the parameters. The resulting signal-

noise ratios are /31/ al = 0.47 for the expansion phase and /32/ a2 = 0.40 for the 
recession phase. These estimates are used for the PHM method when calculating the 
posterior probability for this realization. For the SRlin method we use a pooled (by 

their frequency) common estimate of the absolute value /3 / a= 0.41 when calculating 
the likelihood ratio. The parameter values agree fairly well with the actual ones for 
this realization and with the one used in the simulation study, see Appendix 4. 

A drawback with a simulation study based on a model is that the model might not 
be representative of the process we want to study. An actual data set is certainly 
representative of the specific time period and situation at hand. However, it might 
have stochastic deviation from the process of interest. The properties of the process 
are what is important for a method, when the method is intended to be used on future 
data. We will now study how often we should expect to get realizations as extreme as 
the one just described, if the model used in the simulations is true. 

For the MSR method, the probability of such a large difference (for these specific 
times) as the dip from t=3 to t=4, which causes the alarm, is only 0.06. 

The cumulative probability of an alarm for the situation of a turning point at t = 11 
is presented in Figure 28. 
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Figure 28: The distribution of the time of an alarm, r = 11. P HM (--), MSR (- - -), 

SRlin (0 0 0). 

For PHM and SRlin we expect a false alarm rate of over 25% at their respective alarm 
times, 

PHM: P(tA:::; 7 I r= 11) = 0.27 
SRlin: P(tA:::; 10 I r= 11) = 0.32. 

Evaluation of the properties of a method by one sample of real data is difficult, as 
demonstrated above. One difficulty is the definition of the turning point time with 
which to compare the results of the evaluation. Another difficulty is to know whether 
the turnout of the sample is a result that could be expected or if it is extreme. This 
difficulty has been avoided here. We can compare the results of the real-data 
evaluation with the results of the large-sample simulation study and thereby draw the 
conclusion that, in approximately one fourth of the cases, the SRlin and PHM 
methods will call an alarm at the same time as in this sample. 

Evaluations by several real data sets (instead of just one) would decrease some of 
the stochastic variation in the measures of evaluation. However, if these analyses are 
not totally independent (for example if the same parameter estimates are used) then 
some of the stochastic components would keep their variance. Also, if the number of 
data sets is small, the essential disadvantages to the simulation study would remain. 

5 SPECIAL DATA PROBLEMS 

The discussion so far has been concerned with inferential problems relevant for all 
studies of detection of turning points in business cycles. However, for a specific 
application, there are many important problems before you have the ideal data sets to 
be analyzed. Some such problems will now be briefly mentioned. 
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5.1 Seasonal variation 

Monthly or quarterly observations often contain seasonal variation, which could 
complicate the monitoring. The seasonal variation can be considerable, as is seen in 
Figure 2. If seasonality is neglected in the modeling and in the monitoring, it could 
lead to serious wrong conclusions. It is important that the structure of the original 
series is not disturbed by the seasonal adjustment. In a monitoring situation it is 
important that the time of the turning point is preserved after the adjustment. 

The effect of using different filters is analyzed in Andersson and Bock (2001) and 
it is demonstrated that in a surveillance situation, using a Shewhart approach, the 
detection is delayed when a data transformation such as differentiating or moving 
average is used. The lowest probability for quick detection (d<4) is caused by the 
moving average, whereas when more time is allowed for the detection to be 
considered "successful" (d>4) the lowest probability is for the differentiated series. 
Most data-driven filters can have serious effects on the monotonicity. Thus, 
information from historical data or other prior knowledge, which makes the seasonal 
adjustment independent of the data to be analyzed, is very valuable. 

5.2 Autocorrelation 

Autoregressive models are often highly relevant when modeling economic time series. 
However, most suggested approaches for the detection of turns in business cycles 
assume that this is not a problem. Lahiri and Wang (1994) evaluate the performance 
of models of the form 

yet) = pet) + ~ ·c(t-l) + '" + ¢4·c(t-4) + c(t), 
where pet) = {PI, P2} and c(t) -N[O; a], 

and fitted models with autocorrelation of order r={O, 1,2,3, 4}. They find that, using 
the same alarm limit in all five models, the introduction of autocorrelation in the 
errors leads to a smaller forecast error within phases (Brier's probability score) but 
increases the risk of wrong inference concerning turning points, as pointed out in 
Section 2.3.2. Ivanova et al. (2000) argue that the effect of the autoregressive 
parameters will largely be captured by the probabilities of remaining in the current 
state. The effect of autocorrelation can be dealt with by adjusting the alarm limit. 
Also, in the analysis in the earlier sections in this paper we have the assumptions for 
the model that the stochastic term £ is independent over time. The consequence of 
autocorrelation in the process is examined in the general theory of surveillance where 
also remedies are suggested. For a review, see Pettersson (1998) and Frisen (1999). 

5.3 Adjusting for trend 

Many macroeconomic variables can be characterized as cyclical movements around a 
trend. In order to distinguish the movements and make the time series stationary, it is 
sometimes necessary to adjust for the trend. In model (1), no separation between the 
trend and the cycle is made. This issue is treated differently in the PHM method and 
SRlin and MSR. In the PHM method differentiation is used, whereas in SRlin and 
MSR no adjustment is made. 

The choice of a method for adjustment should depend on the assumptions 
regarding the trend-component. Whether the trend is assumed to have components 
that are deterministic, stochastic or both, has implications for the appropriate method, 
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see e.g. Enders (1995), p. 176. Adjusting for trend implies a data transformation, 
which may result in a distortion of the characteristics of the original series. Gordon 
(1997) studies the effect of trend removal for predictive densities of the US GDP and 
warns against using other information from the data than that which is directly 
associated with the business cycle turning points. Canova (1998) discusses trend 
removal and evaluates the effect using several different approaches, among them first 
order differentiating. One conclusion from the study is that linear trend removal does 
not result in turning points that correspond to the official turning point times of the 
National Bureau of Economic Research, USA. In another paper Canova (1999) points 
out that previous research has shown that the trend may interact with the cyclical 
component and is therefore difficult to isolate. The general conclusion is that 
statements concerning the turning points are not independent of the statistical 
assumptions needed to extract trends. 

When analyzing short time series removing of the trend has less effect on the 
possibility to distinguish the turning points. The SRlin and MSR methods are applied 
to a part of the time series that contains one turning point at most. Thus, no attempt to 
separate the trend from the cycle is made. 

5.4 Multivariate problems 

By the common movement approach, a business cycle is characterized as the cyclical 
movement of many economical activities. This demonstrates that important 
information is contained in the relation between the turns of different indices. This 
information can be utilized, either by transforming the problem to a univariate one by 
using a composite index of leading indicators or by applying a multivariate method of 
surveillance. 

Stock and Watson (1991) and Stock and Watson (1993) model the common 
movements of coincident variables as arising from an unobservable common factor 
that can be thought of as the overall state of the economy. The key element is the 
selection of variables and the estimation of the common factor. Leading indicators are 
added to the model to help predict future values of the common factor (overall state of 
economy). The probability that the economy will be in a recession six months hence is 
estimated. 

Diebold and Rudebusch (1996) discuss the relation between the common 
movement approach and the regime approach and attempt to encompass both 
approaches by considering the common movements of coincident variables where the 
common factor depends on a hidden Markov chain with two states. 

Kim and Nelson (1998) use the same approach as Diebold and Rudebusch (1996), 
but estimation is here made by Gibbs sampling in a Bayesian framework. They find 
that the ability to capture the common movement among several variables instead of 
just one, was the main cause of increase in forecast accuracy, whereas the prior 
assumptions concerning the transition probabilities had a minor influence. Hamilton 
and Perez-Quiros (1996) compare the accuracy 
(measured by the Brier probability score) in predicting the phases of U.S. real gross 
national product using univariate and bivariate linear models, where the latter 
included a composite leading index (CLI), and corresponding HMM. It is found that 
adding a CLI to the linear model results in the greatest increase in accuracy whereas 
using HMM makes no substantial increase in accuracy. 

Birchenhall et al. (1999) exploit the feature of a business cycle, of common 
movements across variables, by extracting a business-cycle index from a vector of 
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time series. As in the works by Stock and Watson, the selection of variables is an 
important element. 

Koskinen and Oller (1998) utilize multivariate information by monitoring a joint 
vector of leading indicators with a common time of tum. When used for turning point 
detection in the Swedish business cycle, the following three series are used: the 
Swedish Industrial Production, the Swedish Business Tendency Survey and 
Stockholm Stock Exchange Index. When the method is applied to the U.S. economy, 
the following two series are used: The first difference of Gross National Product and 
the Composite Index of Leading indicators. 

Wessman (1998) demonstrates that the minimal sufficient alarm statistic, for 
changes in several variables with the same change point (or known time-lag), is 
univariate. The simulation study here has been made for the turning point of one 
leading index, possibly constructed as a function of many different indices. This is, in 
fact, the situation also for most of the earlier studies since a reduction to a univariate 
statistic is possible. However, procedures that are more efficient might be constructed 
by using the indices separately in the method of surveillance. 

For reviews on multivariate surveillance, see Wessman (1999) and Frisen (1999). 
To use more of the theory of optimal multivariate surveillance for building a system 
for multivariate monitoring of business cycles might be a topic for future research. 

6 DISCUSSION 

Similarities between apparently different approaches are demonstrated. This might be 
a base for combining knowledge from several areas. Different approaches are 
expressed in different ways but are equivalent when the assumptions are the same. 

The effect of knowledge of the type of the next tum has a major impact on the test 
statistics if this knowledge is utilized in the likelihood expressions. As is 
demonstrated by the simulations, there is a high risk of false alarms soon after a tum if 
the knowledge of the type is not utilized. In practice, there should be no doubts about 
the type of the next tum as soon as the previous one is verified. 

The control of false alarms by the average time to a false alarm or by the 
probability of a false alarm is commonly used in surveillance. In the comparisons b6' 
simulations, all methods are adjusted to have the same median run length, MRL , 
when no turning point occurs. 

The Bayesian requirement that an alarm should be called whenever the posterior 
probability is greater than 0.5, is commonly used in the literature on hidden Markov 
models. When the limit for the posterior probability is fixed, the assumed transition 
probability has a major impact on the false alarm tendency. Another drawback is that 
the fixed limit 0.5 might not give the appropriate false alarm rate for all applications. 
To lower the false alarm rate, approaches such as smoothing are sometimes used. 

The smoothing of the observations before the use of a method of monitoring will 
reduce the variation and hence reduce the false alarm probability. However, the 
smoothing also makes the turning points less pronounced and increases the expected 
delay of a desired alarm (for the same MRLo). This is demonstrated by the simulation 
study. Also, the smoothing will introduce an autocorrelation. This will also introduce 
an extra dependency between successive decisions. Another way to reduce the effect 
of the variation of the observations, but keep control of the properties of the 
monitoring method, is to use a monitoring method that in itself is based on a moving 
average. The EWMA method uses exponential weights and is considered to have 
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good properties, even though it is not exactly optimal, as discussed by Frisen and 
Sonesson (2001). 

As is seen in Figure 6, the PHM method has frequent false alarms at early time 
points, but low alarm probability later. This is due to the lack of utilization by the 
HMM approach of the knowledge of the type of the next turn. This allocation of the 
alarm probability to the beginning also implies short delay for alarm for early 
changes, but long delays for changes that occur late (see Figure 9 and 10). However, 
the value of these early alarms can be questioned, as the predicted value is very low 
(see Figure 12). The probability that a shift has occurred is only 0.2 when an alarm is 
made at the first time point. Observe that this is the case in spite of the fact that the 
posterior probability of a shift was above 0.5. We have thus two different measures of 
the trust in a shift. Which of these that is most easily interpreted, by those who make 
the actual economical decisions, can be discussed. 

Most studies in this area assume a constant transition probability, which implies a 
geometric distribution for the time of the turn. A geometric density has the highest 
values at the early times. This is not in accordance with reality for business cycles. If 
evaluated with historical data, we would get the best predictors by using the density 
that agrees with history. Technically this is easily done by the likelihood ratio 
methods. However, an important task is to make an alarm for turn also when this 
happens at an unexpected time. Thus, here we prefer to use a non-informative prior 
for the time of the shift in the suggested SRlin and MSR methods. 

Parametric models contain information, which should be used whenever it is 
reliable. It is demonstrated that if the model for the process without turn is wrongly 
specified, this can have a great impact. A wrong specification of the process after a 
turn has less impact. One advantage of the non-parametric approach is that it works 
also when such reliable information on the parametric function is not available. Also 
important is that the non-parametric method does not assume that all phases of the 
same type have the same level and parametric shape. In practice, this varies a lot. The 
MSR method only uses the monotonicity change and not the level. The wrong 
specifications of the slope used in the analysis are such that they could very well 
happen in practice just by stochastic variation. Thus, the very bad properties 
demonstrated for wrong specification of the slope give a warning. The safe way by the 
MSR method might be preferred. 

Not all differences between the methods have been examined here. Hopefully, the 
ones that are analyzed will give some insight into the influence of assumptions used in 
some papers. 

In Section 4 the three methods are used to analyze a period of the Swedish 
industrial production. A comparison between this evaluation of the methods and that 
of the simulation study is used to discuss the pros and cons of the two approaches. 

An important issue for future research is to examine which characteristic of the 
leading index is the best predictor for a turn in the business cycle. The question 
remains whether it is the level as in Birchenhall et al. (1999), transition and level as in 
Hamilton (1989) and Koskinen and Oller (1998) or transition and change in 
monotonicity as in Frisen (1994) and Andersson (1999) that is most useful. The 
techniques of multivariate surveillance might be useful for this. 
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Appendix 1. The optimal alarm rule for linear functions, LRlin 

The alarm rule, for discriminating between events C and D, which fulfills several 
optimality conditions according to Frisen and de Mare (1991) is 

f(xsIC) k -P(D) _ 
Xs: I > oreqUlvalently P(Clxs»k, 

f(xs D) (1-k)-P(C) 

where k is a constant. 

When C is a composite event, the alarm rule is 
s 

~>J" f(xsIC j ) 
j=1 k-P(D) "'----.,----- > ---'--'--

f(xsID) (1- k) -P(C) , 

where Vj = P( q) / P( C). 

The events C={ C I , C2, ___ , Cs} and D are here expressed in terms of Ji-vectors and by 
Cj = { -z=j}, C = { 'XSs'} and D = { 'Z>s} the alarm rule is 

s 

LV j - f(Xsl,u =,uCj) 
j=1 

I 
>ks' 

f(xs ,u = ,uD) 

h k 
k-P(r>s) 

were s =-----
(1-k)-P(r::S;s) 

Under assumption of normal distribution the alarm rule is 

i v j -exp[(~ '[ i(x(t) -,uD (t»2 - i(x(t) -,uCj (t»2)~ > ks. 
j=1 20" ~t=1 t=1 ~ 

Since JiCj(t) = tP(t) for t < r,j = {I, 2, ... , s}, the alarm rule can be written as 

With 

tP=/30 + PI-t 
and 

JiCj=/30 + Pdj-l) - &·(tj+l) 
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we have the alarm rule 

LRlin(s) > k· Per > s) , 
(l-k)·P(r::=;s) 

For the symmetric case, /31 = lSi, we have 

47 



Appendix 2. Knowledge of the type of the next turn 

We will here illustrate the effect of knowledge of the next type of tum by giving 
details for the case of s=3. We start by expressing the alarm rule (11) in Section 2.5, 

P(C(3) I x3»k, 

as a ratio of two conditional probabilities 
f(X3IC(3)). P(C(3)) k 

f(X3ID(3)).P(D(3)) > l-k' 

which is true as soon as D(3) is the complement to C(3). 
In the following, the variable J(t) denotes the state at time t, so that 

J(t) = {I 
2, 

where state 1 is the expansion state and state 2 is the recession state. 
In the HMM approach, the event CHMM(3) is consistent with the following 23

-
1 

possible combinations for J(1), J(2), J(3): 
{J(1)=2, J(2)=2, J(3)=2} denoted CI

, 

{J(1)=I, J(2)=2, J(3)=2} denoted CII
, 

{J(l)=l, J(2)=1, J(3)=2} denoted CIll
, 

{J(1)=2, J(2)=I, J(3)=2} denoted CIV
, 

and the event DHMM(3) is consistent with the following 23
-
1 combinations: 

{J(1)=I, J(2)=1, J(3)=I} denoted DI
, 

{J(1)=2, J(2)=I, J(3)=1} denoted DII
, 

{J(1)=2, J(2)=2, J(3)=1} denoted DIll, 
{J(1)=1, J(2)=2, J(3)=1} denoted DIV. 

An illustration of C\ ... , CIV and D I
, •.• , DIV is given i Figure lA below. 

The probabilities P( Ci
) and P(Di

), i = {I, II, III, IV}, are functions of the transition 
probabilities. For example 

P(CI
) = 

P( J( 1 )=2) . P(J(2)=21 J( 1 )=2) . P(J(3)=21 J(2)=2) = 
P( J(1)=2) . P22 . P22. 

Analogously we have 

and 

P(CII
) = P( J(I)=l) . PI2 . P22, 

P(CIll) = P( J(1)=l) . Pll . P12, 
P(CIV

) = P( J(1)=2) . P21 . P12, 

P(DI
) = P( J(1)=I) . Pll . Pll, 

P(DII
) = P( J(1)=2) . P21 • Pll, 

P(DIll) = P( J(1)=2) . P22 . P21, 

P(DIV
) = P( J(I)=I) . PI2 . P21. 
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If we know that the next turn is a peak, then we have no transitions from recession to 
expansion, that is P21=0, and hence P22=1. Then, 

P(CN
) = P(DII

) = P(DIII
) = p(DIV) = 0, 

k --'---'--------"---:----"--::-----"-----"---- > - . 
l-k 

This is equivalent to the alarm rule in the surveillance approach (with knowledge of 
type of next turn), 

since 

3 

,L!(X31,u =,uCj). P(C j) 
j=l k 
""------;------->--

!(X31,u=,uD).P(D) (l-k) 

el ={J(l)=2, J(2)=2, J(3)=2} = C1 = {-z=l}, 
eII ={J(l)=l, J(2)=2, J(3)=2}= C2 = {-z=2}, 
eIII ={J(l)=l, J(2)=1, J(3)=2}= C3 = {-z=3}, 
DI ={J(l)=l, J(2)=1, J(3)=1}= D ={ r>3}. 

~ 13,------------, ~ 14 

12 13 

11 12 

11 

9 10 

8 9 

7 8 

7 
o 2 3 4 0 2 3 4 

Figure lA: Illustration of the different possible paths of fl-vector for s = 3. To the left 
are examples consistent with eHMM (C

I 
(- - - x), CII 

( ••• _), CIII 
( •.• v), CV 

(--- 0)). 

To the right are paths consistent with DHMM (Di 
(- - - x),DII 

( •• '0), d lI (.·.v), 

d V 
(---)). 
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Appendix 3. Regression functions used to simulate the estimation period. 

For each expansion and recession phase, a second degree polynomial regression 
function with seasonal dummy variables is fitted to data on the In(IP). After that, the 
polynomials are intercept-adjusted, not to expose any jumps. 

Results are given in Table 1A for each of the four recession phases and each of the 
three expansion phases, according to the model (without seasonal variation) 

Yij (t) = BOij + Blij . t + B2ij . t 2 + cij (t), 

where i = {expansion} or {recession} 
andj = {I, 2, 3,4}. 

For the dating of recession and expansion phases, official records are used (National 
Institute of Economic Research (1992)). 

Table 1A 
i j ~ Bt fh. sd[c(t)l 
Exp 1 10.707 0.02315 -0.000172 0.003618 

2 11.056 -0.0188 0.0004724 0.0235 
3 12.678 -0.0753 0.0008423 0.0131 

Rec 1 10.920 0.008721 -0.000938 0.00667 
2 10.550 0.04589 -0.00103 0.0183 
3 8.426 0.117 -0.00132 0.01255 
4 11.615 -0.0163 0.0001473 0.01983 
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Appendix 4. Estimation of slopes during the estimation period 

For the PHM method, the regression 

J1(t) = {Po + PI . t, 
Po + PI . (r -1) - P2 . (t - r + 1), 

t<r 
t? r' 

where t ={ 1,2, ... }, 

is estimated using data of the estimation period. The estimation procedure is 
described below. 

Each time point is classified as being either expansion or recession by the same 
procedure as in Koskinen and (mer (1998) where the following definition of a turning 
point is used: 

The seasonally differentiated series has kept the same sign for at least two 
consecutive time points when it changes sign. If the new sign is kept during at 
least the next time point, then a turning point is said to have occurred. 

The method for estimating {PI, /32, a'[, ai} from quarterly data, described below, is 
one component in the estimation procedure used by Koskinen and Oller (1998): 

and 

A d1 1 ~ PI =-=--L..Jdli' 
4 4· nl i=1 

1 n2 

A2_ "(d d)2 
(}2 - 2.(n2 -1)~ 2i - 2 , 

1=1 

where nl = # time point classified as expansions, 
and nz = # time point classified as recessions, 
and dl and dz is the seasonally differentiated series classified as belonging to 

expansion and recession, respectively. 

The resulting PI and fh with standard errors are presented below along with cTl and 

cT2· 
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Figure 2A: The frequencies for the estimates of the parameters /3], /32, (J'], (J2 for the 
estimation period used in the simulation study (see Section 3.2.1). 

The mean and standard deviation for each parameter is given below. 

Table 2A: Mean and standard deviation of parameters 

Mean 
Standard 
deviation 

Expansion Recession 

0.0092 
0.0009 

0.020 
0.0019 

52 

-0.0071 
0.0012 

0.019 
0.0033 
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