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Statistical Surveillance 

Exponentially Weighted Moving Average Methods and 

Public Health Monitoring 

By CHRISTIAN SONESSON 

Department of Statistics, GOteborg University, Sweden 

The need for statistical surveillance has been noticed in many different areas and examples of 

applications include the detection of an increased incidence of a disease, the detection of an 

increased radiation level and the detection of a turning point in a leading index for a business cycle. 

In all cases, preventive actions are possible if the alarm is made early. If the change is detected too 

late, this can have severe consequences both at a personal level for affected individuals and to 

society as a whole. In these important situations we must evaluate the evidence value of the 

information we have about the process in order to guide us in the choice of making an alarm or not. 

The aim is to detect the change as quickly as possible and at the same time control the rate of false 

alarms. To do this efficiently we construct alarm systems using the available observations of the 

process, which are taken sequentially in time. (Note the difference from a test of one hypothesis.) 

The theory of statistical surveillance deals with the construction of alarm systems and the evaluation 

of such systems. This licentiate thesis consists of two papers with this common subject. 

The first paper (1) deals with the properties of a special type of surveillance methods called 

EWMA methods. One attractive feature of EWMA methods is the easily interpretable alarms 

statistic, which is an exponentially weighted moving average of all available observations of the 

process. Several ways of constructing alarm limits to this statistic have previously been suggested in 

the literature. In this paper new types of evaluations of the performance of suggested variants are 

made and the results cast new light on both the merits of the variants and the optimality criteria 

commonly used. Methodological issues of general interest in the area of statistical surveillance are 

also treated, such as the definition of comparability between methods. 



The second paper (2) deals with statistical surveillance in the area of public health. A critical 

review with emphasis on the inferential issues is made. The merits of different approaches are 

discussed and a new method is derived. Especially noticeable from the review is the lack of methods 

of surveillance of a spatial pattern, an area that includes many important applications, not only in 

public health. 

Papers included in the licentiate thesis: 

(I) Sonesson, C. (2001) Evaluations of some exponentially weighted moving average methods, 

Research Report 2001 :6, Department of Statistics, Goteborg University. 

(2) Sonesson, C and D. Bock (2001) Statistical issues in public health monitoring- A review and 

discussion, Research Report 2001 :2, Department of Statistics, Goteborg University. 
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Evaluations of Some Exponentially Weighted Moving Average Methods 

By CHRISTIAN SONESSON 

Department of Statistics, Goteborg University, Sweden 

SUMMARY 

Several versions of the EWMA (Exponentially Weighted Moving Average) method for 

monitoring a process with the aim of detecting a shift in the mean are studied both for the one­

sided and the two-sided case. The effects of using barriers for the one-sided alarm statistic are also 

studied. One important issue is the effect of different types of alarm limits. Different measures of 

evaluation are considered such as the expected delay, the ARL I, the probability of successful 

detection and the predictive value of an alarm to give a broad picture of the features of the 

methods. Results are presented both for a fixed ARLo and a fixed probability of a false alarm. The 

differences highlight the essential problem of how to define comparability between surveillance 

methods. The results are from a large-scale simulation study. Special attention is given to the 

effect on the confidence in the final results by the stochastic variation in the calibration of the 

methods. It appears that important differences from an inferential point of view exist between the 

one- and two-sided versions of the methods. It is demonstrated that the method, usually considered 

as a convenient approximation, is to be preferred over the exact version in many respects. 

Key Words: CHANGE POINT, DETECTION, EXPECTED DELAY, EWMA, OPTIMALITY, 

PROBABILITY OF SUCCESSFUL DETECTION, QUALITY CONTROL, SURVEILLANCE 



INTRODUCTION 

In many areas the problem of detecting a change in a stochastic process through sequential 

observations is important. Examples include an increased variation in an industrial production 

process, an increase in the mean radiation level or an increased cancer incidence. The general goal 

is to detect the change in the process, occurring at an unknown time point, as quickly as possible 

after it has occurred and at the same time control the rate of false alarms in order to be able to take 

appropriate actions. Common to the situations mentioned is that a decision of whether the change 

has occurred in the process or not has to be made sequentially, based on the data collected so far. 

This means that traditional hypothesis testing cannot be used, neither can sequential tests, since we 

cannot stop sampling in favour of the null hypothesis. Instead we have to use statistical 

surveillance methods. 

In this paper, the case of a positive shift in the mean of a normal distribution from one constant 

level, )10, to another constant level, )1, at a random change point r is considered. Let the 

stochastic process under surveillance be denoted by X = {X (t); f = 1,2, ... } where X (f), f ~ 1, are 

assumed to be conditionally independent, given the change point, with equal variance. Without 

loss of generality we take )10 = 0 and (J x = 1. Then, X (t) - N( )1(f),1) , where 

)1(t) =)1. f(r ~ t) and f(r ~ f) is the indicator function taking the value 1 if r ~ f and 0 

otherwise. At each time point, s, we want to discriminate between two states of the process, the in 

control state, D(s) = {r > s} and the out of control state C(s) = {r ~ s} . To do this, we use an 

alarm system which consists of two parts; an alarm statistic, p(X s) , where X s = {X(f); t ~ s}, 

and an alarm limit, g(s) . The time of an alarm, fA, is 

fA =min{s;p(Xs»g(s)}. 

There are several ways to construct the alarm system. In this paper we will study different 

kinds of EWMA methods, all with an alarm statistic, which is an exponentially weighted moving 

average of the observations. The use of this alarm statistic was first introduced in statistical 

process control by Roberts (1959). It can be used to detect a positive shift in the mean, or a 

negative, or either of them. If we are only considering shifts in one direction, this is referred to as 

the one-sided case contrary to the two-sided case, where we are interested in shifts in either of the 

two directions. Several ways of constructing alarm limits to this alarm statistic has been proposed 

in the literature. Our focus in this paper will be on the effect of the different alarm limits on the 

performance of the methods. 
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The paper is organized in the following way. In Section 2, the different types of EWMA 

methods included in the study are presented. In Section 3 different ways to achieve comparability 

of methods are discussed. The requirements on the number of replicates in the simulation study for 

sufficient accuracy of conclusion is also discussed in this section. In Section 4 the comparisons of 

the methods for the one-sided case are presented. The one-sided case is compared with the one­

sided case with a barrier and the two-sided case in Section 5. Some important differences are 

examined. In Section 6, some concluding remarks are given. 

2 DIFFERENT TYPES OF EWMA METHODS 

The EWMA method has been widely studied in the literature, mostly for various shifts in the 

mean in a stochastic process of normally distributed variables (Roberts (1959); Robinson and Ho 

(1978); Crowder (1987); Crowder (1989); Lucas and Saccucci (1990); Srivastava and Wu (1993); 

Chandrasekaran, English, and Disney (1995); Srivastava and Wu (1997); Schone, Schmid, and 

Knoth (1999); Steiner (1999); Chan and Zhang (2000) and Frisen and Sonesson (2001». However, 

the EWMA method has also been studied in many other situations. The case of a shift in the 

variance was studied by Chang and Gan (1994), Crowder and Hamilton (1992) and Morais and 

Pacheco (1998). The case of a simultaneous shift in both the mean and the variance has been 

studied by Domangue and Patch (1991), Gan (1995) and Morais and Pacheco (2000). Also shifts 

in other types of processes have been studied. Gan (1998) studied methods to detect a shift in a 

parameter of an exponentially distributed variable. The case of shift in the mean of an 

autocorrelated process was studied by Lu and Reynolds (1999), and the robustness to non­

normality by Borror, Montgomery, and Runger (1999). Multivariate EWMA methods have been 

studied by Tsui and Woodall (1993) and Runger and Prabhu (1996). The EWMA statistic has been 

shown to be useful also in other situations such as forecasting in time series (Box, Jenkins, and 

MacGregor (1974». 

The EWMA methods are based on an exponentially moving average, Z s ' of all accumulated 

observations. The alarm statistic can equivalently be represented by the recursive formula 

Zs = (1- A)Zs-1 + AX (s), 

where the weight parameter A E (0,1]. If A = I only the last observation is used in the alarm 

statistic and the smaller A is, the more equally weighted are the observations. It is well known 

that the standard deviation of Z s is an increasing function of the time s and converges as s 

tends to infinity. The convergence will be slower for small values of A. 
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What differs between the EWMA methods is the way of constructing alarm limits g(s) , the 

starting value Zo and whether or not a barrier for the alarm statistic is used. A barrier, b, 

constitutes a boundary of the alarm statistic. The one-sided version with a barrier, to detect 

positive shifts, uses an alarm statistic of the form max(b, Z s) . In this paper the focus is to compare 

the two most common ways of constructing the limits, both based on the standard deviation of the 

alarm statistic. The first one, here named EWMAe, uses the exact standard deviation of Z s when 

constructing the alarm limits. The time of an alarm, for the one-sided case, is 

tA = min{s;Zs > L·az }. s 

Since the standard deviation is increasing in time, so is the alarm limit of the EWMAe method. 

The second way of constructing the alarm limits, and by far the most studied in the literature, 

here named EWMAa, uses the asymptotic standard deviation of Z s and the time of an alarm, for 

the one-sided case, is 

tA = min{s;Zs > L·az}· 

The EWMAa method was introduced by Roberts (1959) and most of the previous studies have 

been concerned with this method. Robinson and Ho (1978) used an Edgeworth expansion to get a 

recursive technique to evaluate the average run length both in control (ARLo= E~ A I .. = 00]) and 

out of control (ARL1= E~ A I .. = 1]). This was done for both the one-sided and two-sided EWMAa 

in discrete time. Crowder (1987) used integral equations to evaluate the properties of the run 

length distribution in discrete time for the two-sided EWMAa. In Crowder (1989) optimal values 

of the weight parameter A to minimize the ARLI for a fixed ARLo, together with a design strategy 

of the method, was proposed, based on the results in Crowder (1987). Lucas and Saccucci (1990) 

used another approach to find the optimal value of A for the same situation as by Crowder (1989). 

The alarm statistic was represented by a continuous state Markov chain. The properties were 

evaluated by discretizing the infinite-state transition probability matrix. For a comparison between 

these two approaches, see Champ and Rigdon (1991). Srivastava and Wu (1993) examined the 

EWMAa method in continuous time by representing it as a diffusion process. This was done for 

the one-sided case. Optimal values of A to minimize the stationary average delay time, SADT, for 
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a fixed value of ARLo, were derived. After correcting for the overshoot these results were applied 

to the two-sided case for discrete time by Srivastava and Wu (1997), where optimal values of 

It were derived for a fixed ARLo. 

Although the types of limits used in EWMAe and EWMAa are the most common, other types 

have been proposed in the literature. Lucas and Saccucci (1990) suggested the use of the EWMAa 

method with a head start, that is Zo :f:. o. This approach assures a fast initial response to start-up 

problems in the process. Steiner (1999) proposed another type of fast initial response for the 

EWMAe method, where the usual alarm limit was multiplied by an exponential function, which 

lowered the alarm limit in the start. In Frisen and Sones son (2001) the alarm limits were chosen to 

make the EWMA method a good approximation of a linearized version of the likelihood-ratio 

method for the one-sided case (see also Frisen (1999)). The likelihood ratio method gives an alarm 

as soon as the posterior probability of the process being out of control exceeds a fixed value. The 

latter two papers, Frisen (1999) and Frisen and Sonesson (2001) discussed the minimal expected 

delay, ED, for a fixed probability of a false alarm. The use of barriers for the EWMA alarm 

statistic has previously been studied in Gan (1998), where evaluations of ARLI were made for 

different values of the barrier for a fixed value of ARLo for the EWMAa method. This was done in 

the case of exponentially distributed observations. 

Two-sided versions of the EWMA methods can be constructed in different ways. The most 

common way is to use symmetrical control limits in which case the alarm limit is constructed in 

the same way as for the one-sided case but instead using I Zs I as the alarm statistic. This is the 

approach analyzed in Section 6. Non-symmetrical alarm limits, or two parallel one-sided versions 

with barriers using a lower (and upper) bound of the alarm statistic, are also possible. 

3 COMPARABILITY BETWEEN METHODS 

3.1 Choice of measure offalse alarms 

When evaluating the effectiveness of different types of alarm systems, one has to face a trade 

off between false alarms and short delay times for motivated alarms. The way to handle this is 

usually in the same way as in a hypothesis-testing situation, where the type 1 error is fixed and 

evaluations of the power is made for various situations. The translation to the surveillance 

situation has traditionally been to characterize the type 1 error by the in control average run length 

to a false alarm, denoted by ARLo. Then different types of methods have been compared for a 
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fixed value of the ARLo. Another way of characterizing the type 1 error is by the probability of a 

false alarm, denoted by P(t A < r) . 

~ 

P(tA <r)= 'LP(r=t)P(tA <r!r=t) 
1=1 

The difference between these approaches is discussed by Frisen (1999) and Frisen and 

Sonesson (2001). In this paper evaluations of the different types of EWMA methods are carried 

out for both approaches. Comparisons are made for a fixed ARLo of 50 and 100 and also for a 

fixed value of P(t A < r) when r is assumed to be geometrically distributed 

(P(r = t) =v(1-V)I-1 for t = 1,2, ... ) with v = 0.05 or 0.01. The fixed values chosen for 

P(t A < r) corresponds to the values for the likelihood ratio method when ARLo=100 as given by 

Frisen and Wessman (1999). In Section 4.1 the effects of the choice of approach will be further 

discussed. Results will be presented for values of IL in the interval [0.001,0.40]. Small values of 

IL result in run length distributions with heavy right tails (for some of the situations studied here) 

and are therefore too computationally time consuming. Therefore only values of IL larger than or 

equal to 0.001 were chosen. 

3.2 Effect afuncertainty infalse alarms measure 

In order to fix either the ARLo or the probability of a false alarm, one has to choose the 

constant L in the alarm limit. This can be done in several ways. In several of the earlier studies of 

EWMA methods the ARLo has been approximated as a function of L. The formulas achieved 

have then been used to determine the appropriate L to get a certain desired ARLo (Crowder 

(1989); Lucas and Saccucci (1990) and Srivastava and Wu (1997)). In this paper the appropriate 

value of L is determined by simulations. Whatever method used to determine L, careful attention 

to the closeness to the desired ARLo or the desired probability of a false alarm is needed. 

The main focus in many studies, including this one, is to evaluate different methods with 

respect to some measure, e. For comparability this is done under the restriction that another 

measure, A, has a specified value. The measure e is usually a function of the out of control run 

length distribution, which depends on the constant L. The measure e could be for example the 

ARLI for different values of IL for the EWMAa method under the restriction that A (ARLO or 

P(t A < r)) has a specified value. Other examples of possible measures e would be the 

conditional expected delay, CED(t) = E& A - r ! t A ~ r = t], or the expected delay, 
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ED = 2..";.1 Per = t)· CED(t) . The aim is to study the accuracy of f), but to do that, we start by 

studying the accuracy of A. 

Assume that the evaluation of f) should be done for some desired value A * of A. We aim to 

determine L* such that A(L*) = A *. The procedure here to estimate L* is to choose 

LI ' L2 , ... , Ln and use simulations, with the same number m of replicates for each value of L to 

estimate the values of A(LI),A(~), ... ,A(Ln)' We approximate A(L) with a linear function 

locally, A(L) = GI + bl L, and choose L' accordingly to give A(L') = A * . A confidence interval 

for L * can be constructed by considering the test of H 0 : A(L) = A *. The model for our 

2 

observations is A(L) = al +bIL+e, where e - N(O, (j IRL) and (j2IRL is the variance of the in 
m 

control run length, assumed to be constant locally within the range of values of L considered for 

the regression. First we estimate (j2IRL with such a precision that we are able to neglect the 

standard error of this estimate and proceed as if (j2IRL was known. For the estimation of al and 

bl we use OLS. Then for the estimator A(L) we know that 

E [ A(L) ] = A(L) 

2 ( - 2 ) V(A(L))=(j IRL!+ (L-L)_ . 
m n "'I} (L. _L)2 

""'1=1 1 

To test the hypothesis H 0 : A(L) = A * we use the test statistic K(L) = A(L) - A * - N(O,1), 
~V(A(L)) 

which can also be used for the construction of confidence intervals for L*. We denote the p :th 

percentile in the N (0,1) distribution by z p. Then, included in a two-sided confidence interval 

[ L[ , Lu] for L * of confidence level (1- a) will be those L for which K 2 (L) ~ Z 21_a /2 where 

we have 

-2 
L[ = L'- ZI-~/2 (j IRL !+ (L[ -L) 

bl m n "'I} (L-L)2 
""'1=1 1 
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From the confidence interval [LJ , Lu] for L * we can also construct a confidence interval for 

L'-L* as 

[ 

ZI-a/2 (J'IRL -------
bl m 

What we are interested in is 8(L*) and our aim is to construct confidence intervals for the 

difference 8(L')-8(L*). However, we do only have an estimate, L', of L*. After choosing a 

constant L', we have an estimate eeL') of 8(L'), and knowledge about its stochastic properties 

for this fixed value of L. 

To construct a confidence interval for 8(L')-8(L*) we approximate 8(L) by a linear 

function, 8(L) = a2 + b2L locally around L' . Simulations of 8(L) using values LI, L2 , ... , Ln' of 

L around L' can achieve confidence intervals for b2' For each value of Li , i = 1, ... , n' , let m'i 

be the number of replicates that the estimate e(Li ) is based on. (For several possible 8, for 

example the CED(t), the evaluation is based on the alarms for which t A ;;:: 'f . The reason for the 

number of replicates to be unequal is due to the difficulty of dimensioning the simulations to 

achieve the same number of alarms at or after the change point for each value of L. Note though 

that for 'f = 1 this problem does not arise.) The regression parameters a2 and b2 will be 

estimated using WLS since the number of replicates for each value of L i , i = 1, ... , n' is not the 

. (J'20RL 
same. Our observations follow the model 8(Li ) = a2 +b2Li +Di, where Di - N(O, , ) and 

m· I 

(J' 20RL is the variance of the out of control run length (only considering the alarms for which 

t A ;;:: 'f ). Also in this case we regard (J' 20RL as known after estimating it with high precision. The 

WLS estimate of b2 has the properties 

E [b2 ] =b2 

A 2 n' 
V (b2 ) = (J' ORL 2 . 

,,,,n' 'L2. (",n' ~L) 
n ""i=1 mil - ""i=1 V mi· i 
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b2 -b2 We can then construct confidence intervals for b2 using that ~ - N(O,I) . 
VV(b2 ) 

Let the constructed confidence interval, A, for (L'-L *) be of confidence (I-a!) and the 

constructed confidence interval, B, for b2 be of confidence (l-a2) . Then we can combine these 

intervals to construct a confidence interval of confidence at least (I-a! )(l-a2) for 

8(L')-8(L*) = b2 (L'-L*) taking min{b·l,bEB,IEA} to be the lower limit and 

max{b ·l,b E B, I E A} to be the upper. 

Confidence intervals for 8(L')-8(L*) constructed in this way for some cases studied in the 

paper can be found in Table 1. Included are those situations where the variances in the in control 

run length distributions are the largest. These confidence intervals indicate that the determination 

of L' is good enough to guarantee reliable comparisons between the methods. The conclusion is 

that the numbers of replicates in the simulations are enough (but not unnecessary) for the present 

purposes. 

Table 1. ConfidenceintervalsforCED(L')-CED(L*) when f.1=I,ARLo=50, n~lO, n'=10, 

m = 500000. Level of confidence= O. 9025. 

-r =1 -r =20 

( m' = 1000000) (m'~ 143500) 

Method Lower limit Upper limit Lower limit Upper limit 

EWMAa(O.OOI), 1 sided -0.0008 0.0012 -0.0008 0.0013 

EWMAe(O.OOI), 1 sided -0.0008 0.0008 -0.0055 0.0056 

EWMAa(O.OOI), 2 sided -0.0009 0.0029 -0.0009 0.0029 

EWMAe(O.OOI), 2 sided -0.0023 0.0023 -0.0044 0.0045 

4 COMPARISONS FOR THE ONE-SIDED CASE 

We start by the comparisons between the EWMAa and the EWMAe methods for the one-sided 

case. In Section 5, the focus will be on the difference between constructing the methods for the 

one-sided case, the one-sided case with a barrier and two-sided case. Our main interest is to see the 

effect of the different alarm limits on the performance of the methods, both when the process is in­

and out of control. 
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4.1 On the difference between a fixed ARLo and a fixed probability of a false alarm 

The only thing that differs between the EWMAa and the EWMAe methods is the alarm limits. 

As already mentioned, the variance of the alarm statistic is an increasing function of time and 

converges as the time tends to infinity. This means that in order to fix the in control run length or 

the probability of a false alarm, the value of L in the alarm limit will be larger for the EWMAe 

than for EWMAa method, for a fixed value of A. . Since the convergence is slower for small values 

of A. the difference in L will be most pronounced for small values of A.. The difference in the 

alarm limits between the methods will effect their relative performances at different time points, 

both with respect to their false alarm distributions as well as the ability to detect the change at 

different time points as will be shown later. 

An important thing is to notice the difference between using a fixed ARLo compared with a 

fixed probability of a false alarm. Since the in control run length distributions are different, an 

equal ARLO does not imply equal probability of a false alarm and vice versa. In Figure I the values 

of ARLO for a fixed value of the false alarm probability are presented. 

For moderate values of A. , the value of ARLO is fairly constant if we have fixed the probability 

of a false alarm for both methods. There is only a slight difference between the EWMAa and 

EWMAe methods for these values of A.. However the required ARLo to fix the probability of a 

false alarm is much larger for smaller values of A.. This means a larger L for the case of a fixed 

probability of a false alarm for both methods. For small values of A. there is a large difference 

between the methods. We will therefore expect both the in control as well as the out of control 

performance to differ depending on the choice of a fixed ARLo or a fixed probability of a false 

alarm. We also expect different results for different values of A.. The difference in performance 

depends on our choice of v . This can be seen comparing Figure la and lb. 
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The difference in ARLO for a fixed P(t A < r) reflects the importance of defining what is 

meant by comparability between methods of surveillance. The choice of fixing ARLo or 

P(t A < r) and at what level will affect the constants in the alarm limits. For the situations of a 

fixed P(t A < r) studied here, and shown in Figure 1, the adjustments needed in the value of L 

(measured as the increase in the ARLo) when choosing a fixed P(t A < r) compared with a fixed 

value of ARLo=100, is larger for EWMAe than for EWMAa and larger for small than for large 

values of A . The values of P(t A < r) , for which the methods have been fixed, are the ones, which 

result in a value of 100 for the ARLo for the likelihood ratio method (Frisen and Wessman (1999)), 

which can be used as a benchmark. From Figure 1, we can expect that the EWMAa method will 

perform relatively better than EWMAe and large values relatively better than small values of A if 

we chose to fix P(t A < r) instead of ARLo. If this pattern is true in general with other values of 

P(t A < r), or another distribution of r, is not examined here. The reason for expressing the 

difference between the cases in terms of the increase in ARLO in the case of a fixed P(t A < r) 

here is the fact that ARLo is the conventional measure of in control behavior and results expressed 

in this form can be easily interpreted. We can also consider how the alarm probabilities at different 

time points are affected. This comparison can be found in Figure 2 and 3. 

In some cases there has been argued that ARLo is the only necessary in control characteristic 

with the motivation that the in control run length distribution is approximately geometric. The 

results here indicate that this is not the case, as will be seen in the figures displaying the in control 

run length distributions. What is clear though is that the difference between the methods in both in 
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control features as well as detection abilities will depend on our choice of in control characteristic. 

The most common way is to fix the ARLo. However, one should be aware of the consequences of 

such a choice. 

4.2 In control features for the one-sided case 

No matter whether the ARLo or the probability of a false alarm is fixed, the alarm limit for 

EWMAe will be lower than the one for EWMAa for early, but larger for later time points, for a 

fixed value of )." due to the difference in time dependency of the alarm limits. The time point at 

which the alarm limits cross is later for small values of )., reflecting the slow convergence of the 

variance. 

In Figure 2 we can see the effect of the different alarm limits on the in control run length 

distributions when ARLo=100. The EWMAe method has a higher probability of a false alarm than 

the EWMAa method for a fixed value of )., at early time points since the alarm limits are lower. 

We can also notice a deviation from a geometric distribution, especially for the EWMAa method. 

P a p b 

0.025 0.20 
~ 

0.020 • __ EWMAa(0.20) , 
- - -. - - - EWMAe(0.20) 0.15 , 

0.015 --s-- EWMAa(0.40) 

- - -0- - - EWMAe(0.40) 0.10 --EWMAa(0.01) 
0.010 (;, 

- - -0- - - EWMAe(0.01) " 

0.005 0.05 0, 

0.000 0.00 

0 5 10 15 20 0 5 10 15 20 

FIG 2: In control run length distribution when ARLo =100. In the figure, the value of )., is 

indicated in the parentheses. 
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FIG 3: In control run length distribution when pet A < r) = 0.4877 for v =0.01. 

The in control run length distribution, when instead the probability of a false alarm is fixed, is 

illustrated in Figure 3 for the case when v =0.01. We note especially the decreased probability of a 

false alarm at the first time point, comparing Figure 2b with Figure 3b, for the EWMAe when 

A =0.01 as a result of an increased value of L. 

4.3 Detection of a true change for the one-sided case 

There are several ways suggested in the literature to compare the performances of different 

surveillance methods with respect to true changes in the process. In the area of statistical process 

control the focus has traditionally been on the ARL' with optimality defined as minimal ARL' for 

a fixed value of ARLo. This criterion has also been the common one when designing the EWMA 

methods (Crowder (1989); Lucas and Saccucci (1990) and Srivastava and Wu (1997)). However, 

as an optimality criterion, this is not without critics (Frisen (1999) and Frisen and Sones son 

(2001)). Gan (1993) considered instead the median out of control run length due to the skewed run 

length distributions. However, also in this case only shifts at the first time point were considered. 

This approach might be reasonable in an industrial manufacturing process, where one suspects 

various start-up problems. However, in the overwhelming majority of applications the possibility 

of later shifts should also be taken into account. One example of this is the monitoring of the foetal 

heart rate during labour (Frisen (1992)), where the foetus can suffer from a lack of oxygen. This 

can happen at any time point during the labour, which normally takes many hours, and thus in this 

case we must also take into account possible late shifts. Other examples include the surveillance of 

radiation levels (Jarpe (2000)) and the surveillance of diseases (Sones son and Bock (2001)). Since 

the false alarm probabilities at different time points differs between the methods, so will the 
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detection ability of a true change. Only considering shifts at the first time point will favour 

EWMAe over EWMAa with respect to the detection ability. This is because the false alarm 

distributions are different, as could be seen in Figure 2 and 3, where EWMAe gives more false 

alarms at early time points than EWMAa for the same value of A . 

In this paper we will use several kinds of measurements in order to get a broad picture of the 

ability of the methods to detect a true shift. Here we will consider the ARLI, the conditional 

expected delay, the expected delay, the probability of successful detection and the predictive value 

of an alarm. 

4.3.1 A change at the first time-point for the one-sided case 

As expected, due to the difference in the false alarm distributions, the EWMAe method has 

shorter ARLI compared with the EWMAa method for the same value of A as can be seen in 

Figure 4, where J.1 = 1 for ARLo=50 and 100. Results for J.1 = 0.5 can be found in Section 5. 
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FIG 4: ARLI as afunction of A for J.1 =1 when ARLo=50 and ARLo=JOO. 

Figure 4 indicates that in order to minimize the ARLI for a fixed value of the ARLo A should 

approach zero (although the studied values of A only covered the interval [0.001,0.40]) both for 

EWMAa and EWMAe independently of the value of ARLo. Then, old and new observations have 

the same weight in the alarm statistic, and thus one of the necessary conditions given in Frisen 

(1999) for minimizing the ARLI is fulfilled. This will further be elaborated in Section 5, when 

comparing the results for the one-sided case with the two-sided case. 
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4.3.2 Detection of later changes for the one-sided case 

The ability to detect changes at later time points, t, can be evaluated with respect to the 

conditional expected delay, CED(t) = E& A - 1" I t A ~ 1" = t]. In the case of a change at the first 

time point, CED(1) = ARLl_1. By considering the conditional expected delay, we are no longer 

limited to changes occurring at the first time point. 

In Figure 5, the characteristics of the CED as a function of the time of the change can be 

examined. The EWMAe method has low delay times if the change occurs in the first time points. 

However the delay time increases with the time of the change. The results in Figure 5 clearly 

indicates that it is not enough only to consider changes at the first time point when evaluating 

EWMA methods since the time point ofthe change plays a crucial role in the detection ability. The 

increase in the observed values of CED is the largest for small values of Il . This holds both for the 

EWMAa and the EWMAe method and is the price to pay for the low delay times for early 

changes. 
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FIG 5: CED as afunction of1" for J.l =0.5 when pet A < 1") = 0.4877 for V =0.01. 

To summarize the CED values for different time points different approaches can be taken. Two 

ways will be described here. The first one focuses on minimax properties of the methods with 

respect to the CED for various time points. The other way is to average the CED with respect to 

the distribution of the change-point 1" • 

Minimax criteria can be defined in various ways. Focus is on the maximum value of the 

conditional expected delay, which should be minimized. This type of evaluation has been studied 
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extensively in the literature (Lorden (1971), Pollak (1985), Moustakides (1986)). One surveillance 

method known to possess optimality characteristics when the minimax criterion is expressed as 

minimal maximal conditional expected delay with respect to 'l" and the worst possible outcome of 

X,,_I for a fixed value of the ARLo is the CUSUM method (Moustakides (1986)). In general, the 

CUSUM method is defined by the stopping rule 

tA =min(s;ws- min Wj >K), 
05.j5.s 

where Ws = IJ=IYt, Yt = log(fJ(X(t))/ fo(X(t))) and fo and fl denotes the in control and out 

of control distributions. 

For the case studied in this paper, the time of an alarm for the CUSUM method can also be 

written recursively as 

tA = min{s;Ss > h}, 

where S t = max(O, S I-I + X (t) - J1 / 2) and So = 0. Thus, the alarm statistic for the CUSUM 

method has a lower boundary of zero. For EWMA based methods, not much attention has been 

drawn to minimax evaluations. In Gan (1995) and Gan (1998) this has been discussed for the 

detection of different types of changes in exponentially distributed variables. 
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FIG 6: Maximal CED as afunction of A whenARLo=JOO. 
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In Figure 6 we see the effect of the different alarm limits on the maximum value of CED (with 

respect to the time point of the change) for a fixed value of the ARLo=100. In the case when 

It ~ 0.01 (where CED(t) is still increasing with t when t = 100) the values of CED(100) are 

presented. In this sense, the EWMAa method is superior to the EWMAe. However, the difference 

between the methods is smaller if f.l is large. 

When summarizing the conditionaIIy expected delay at different time points with respect to the 

distribution of the change-point r , the standard procedure is to assume that r is geometricaIIy 

distributed with parameter v . This implies a constant intensity of a shift, v = P(r = t I r > t -1) . 

However, this assumption might be questioned in many applications. Assuming a distribution for 

r , the expected delay is defined as 

ED=E't"~A -ritA ~r]= IP(r=t).CED(t). 
1=1 

The use of minimal expected delay for a fixed probability of a false alarm has been suggested 

as an optimality criteria and leads to the likelihood ratio method (Frisen and de Mare (1991)). This 

method is equivalent of making an alarm as soon as the posterior probability of an alarm exceeds a 

fixed value. The assumption made with respect to v will determine the method and parameters 

which minimize the expected delay in the class of EWMA methods. If v is large, methods with 

low CED(t) for early time points will be preferable. If on the other hand v is close to zero, 

methods with low values of CED(t) at late time points will be preferred. Specifically, the value of 

v will determine which of the EWMAa or EWMAe alarm limits that will be preferable as well as 

what value of It that will minimize the expected delay. The expected delay can also be considered 

if the ARLo is fixed as is done in Figure 7. 
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FIG 7: ED(v =0.01) as afunction of A., for J.1 =0.5 when ARLO=lOO. 

For the case illustrated in Figure 7, the EWMAa method has lower expected delay than the 

EWMAe method. However, if v is large enough, the EWMAe method has lower expected delay 

for all cases studied here. Consider for example the case when v =1, in which case only a shift at 

the first time point will be of interest and ED = ARe-l and then EWMAe will have a lower 

expected delay as could be seen in Figure 4. However, a value of v =0.01 is not large enough for 

the EWMAe method to have a lower expected delay than the EWMAa method. In the majority of 

applications we expect that the EWMAa method will be preferable to the EWMAe method with 

respect to the expected delay. The suggested versions of the alarm limits to insure a fast initial 

response to start-up problems (Lucas and Saccucci (1990) and Steiner (1999)) can be expected to 

have even larger expected delay than the EWMAe method for cases with small values of v . The 

difference between the EWMAa and the EWMAe method is larger, in absolute value, for a smaller 

change (not illustrated). This is in accordance with results in Frisen and Wessman (1999) (in that 

case regarding likelihood-based methods) that methods are alike if the change is large. 

If instead we use a fixed value of the probability of a false alarm, the difference between the 

EWMAa and the EWMAe method is larger than for the case of a fixed ARLo, which is presented 

in Figure 8. 
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Common to the measures of performance for detection of a true shift considered so far (ARLI, 

CED and ED) is that they focus on the mean of the out of control run length distribution 

conditioned on the time point of the shift. However, as in the in control case discussed previously, 

the mean does not account for all information in the out of control run length distribution. One 

alternative measure is the median delay time, considered in Gan (1993) for a shift at the first time 

point. 

In some cases, the application considered calls for other types of evaluations than the mean 

delay time, for example the case where a limited time for actions exists. An example is the 

outbreak of an infectious disease where an epidemic starts if no actions are taken, or the case of 

surveillance of a foetus heart rate. For those cases, the expected value of the delay is of less 

interest. Instead the probability of successful detection, PSD, defined as the probability of 

detecting a change within a certain time interval, d , after a true change, is more important (Frisen 

(1992)). 

The PSD is thus a function both of the time of the change and the length of the interval in 

which the detection is defined as successful. In Figure 9, the PSD is presented as a function of d 

for a fixed value of -r for the case of a fixed probability of a false alarm when V =0.01. 
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For the case in Figure 9, the EWMAa is preferable to the EWMAe if the change occurs at a 

later time point. However, if the change occurs at the first time point the relationship is reversed. 

4.4 The confidence to put in an alarm in the one-sided case 

One factor, which is often neglected in the evaluation of surveillance methods, is most 

important when applying the method, namely what to do if an alarm is triggered. The answer to 

this question depends of course on the application considered. However, when constructing a 
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method of surveillance, this should be kept in mind. Of major importance is what degree of belief 

to put in an alarm. In Frisen (1992), the predictive value, PV (t) = P( C(t) ItA = t) of an alarm was 

suggested as an evaluation criterion. The motivation is that an alarm with low predictive value 

should not cause the same actions as one with high predictive value. For the coordination of the 

actions to follow an alarm, it is preferable if the predictive value is approximately constant over 

time. 
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PVas afunction of time for V =0.10, 11 =1, when ARLo=IOO. 

One effect of the short delay times for early changes for the EWMAe method is a low 

predictive value of an alarm at early time points, especially for small values of It, as illustrated in 

Figure 10. The EWMAa method has more attractive predictive value features for this case. When 

It = 0.20, the predictive value is not far from constant. 

5 TWO-SIDED CASE AND BARRIERS 

In this section we will first focus on the different optimal values of It to minimize the ARLI 

for a fixed value of ARLO between the one- and two-sided versions. Secondly, we will consider the 

minimax properties and also include the one-sided version with a barrier for comparison. 

The two-sided version is used in order to detect both positive and negative shifts. Here we 

study the case of symmetrical alarm limits around 0 using I Zs I as the alarm statistic. The most 

obvious difference from the one-sided case is that the value of the alarm statistic at each time point 
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(conditioned on no alarm) is bounded downwards by the lower alarm limit. This is also the case 

when using a barrier for the one-sided version. In the usual one-sided version no lower boundary 

exists. The one-sided version with a barrier to detect positive shifts uses an alarm statistic of the 

form max(b, Z s)' where b constitutes the barrier or the lower bound of the alarm statistic. 

Barriers have important consequences, as will be explored below. 

In simulations, we will consider fixed values of ARLo of 50 and 100. The constant, L, in the 

alarm limit will be larger when using a barrier or two-sided alarm limits than for the one-sided 

version for the same value of A.,. However, the difference depends on the value of A., and also on 

the kind of alarm limits used. The extent to which L is altered will impose a difference in the 

appearance between the one-sided, the one-sided with a barrier and the two-sided versions of the 

methods. Worth noting is the agreement of the values of L in this study with those given in 

Crowder (1989) for the two-sided version of the EWMAa method and thus, these simulations 

confirm the values given there. 

5.1 Differences in the in controlJeatures 

In Figure 11, the in control run length distributions are presented both for the one- and two­

sided case when ARLo=50. 
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The common feature is that the probability of an early false alarm for the two-sided case is 

lower than for the corresponding one-sided case. The error spending has thus been shifted towards 

later time points, due to a change in the dependency structure between successive decisions. 

A difference between the EWMAa and the EWMAe method is the mode of the in control run 

length distribution. For the EWMAe method, the mode is 1 for both the one- and two-sided case. 

For the EWMAa method, the mode is larger for the two-sided case, especially for small values of 

It. This indicates a change also in the ability to detect a true change for the EWMAa method with 

small values of It. 

5.2 The differences in detecting a true change 

We now focus on the detection of a true change and explore the differences between the one­

sided, the one-sided with a barrier and the two-sided versions of the EWMA methods. 

5.2.1 A change at the first time-point 

When we are in a surveillance situation only considering the ARLl, all we have to decide is 

whether all observations are from the in control or out of control distribution. For the one-sided 

case, with fixed value of the ARLo, this implied equal weight to all observations in order to 

minimize the ARLl. We can compare this situation with a hypothesis test, using a fixed sample, 

and a sequentially hypothesis testing situation. Both for the hypothesis test and the sequential 

hypothesis test we want to decide which of the two possible distributions all sampled observations 

come from. 

In a one-sided hypothesis test situation with a fixed sample, equal weight will also be given to 

all observations for the optimal method. In that case, optimality is usually defined as maximal 

power for a fixed significance level, as in the Neyman-Pearson Lemma. For a one-sided test with 

specified means and known variances (simple null and alternative hypotheses) the reSUlting test 

statistic is the mean of the observations. This is also the test statistic of the uniformly most 

powerful test in the case of a composite alternative hypothesis )1 > )10 . For the two-sided case 

though, the situation is not that simple. No uniformly most powerful test exists. 

In a sequential test situation optimality is often defined in terms of minimal expected sample 

size, both under H 0 and HI, among all tests having no larger error probabilities. In the case of 

simple null and alternative hypothesis, the resulting test is the SPRT, sequential probability ratio 
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test. In the case of two normal distributions with specified mean and known variance, the SPRT 

also results in an optimal test statistic that is the mean of the sampled observations. In this case no 

uniformly most powerful test exists in the two-sided case. 

Therefore, the result in the one-sided case that the value of A, that minimizes the expected 

number of sampled units, gives equal weight to all observations in the alarm statistic, independent 

of the ARLo for both the EWMAa and the EWMAe method, should not be surprising. 

Many of the previous studies of EWMA methods have been determined to minimize the ARLI 

for a fixed value of ARLo for the two-sided case. In Figure 12, values of the ARLI are given for a 

fixed value of ARLo. The simulations support the results by numerical approximations in Lucas 

and Saccucci (1990), Crowder (1989) and Srivastava and Wu (1997) concerning the two-sided 

EWMAa method with respect to the optimal weighting, A, of the observations. However, the 

values presented here suggest that the approximations used in the previous papers overestimate the 

value of the optimal ARLI slightly. 
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An interesting feature is that the optimal value of A differs considerably between the EWMAa 

and EWMAe method for the two-sided case, which was not the case in the one-sided situation. For 

the EWMAe method the optimal A still implies equal weight to all observations in the two-sided 

case. This is no longer the case for the EWMAa method. The difference between the one-sided and 

two-sided EWMAa is the result of the different error spending as a result of the lower boundary 

that the two-sided alarm limits imply, which could be seen also in Figure 11 of the in control run 
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length distributions. However, using a value of A, not equal to zero to distinguish between the in 

control and out of control distribution, when all observations come from either of them, violates 

fundamental inference principles. 

5.2.2 Detection of changes at later time-points 

The use of the lower bound for the alarm statistic will also affect the conditional expected 

delay of the methods. Here, we focus on the small values of A, and in Figure 13 results are given 

for A, =0.01. For the one-sided case, CED is increasing with time both for the EWMAa and the 

EWMAe method. For the two-sided case, CED is approximately constant but slightly decreasing 

over time for the EWMAa while for the EWMAe, CED is increasing with time also for the two­

sided case. For both methods, the dependency on time for CED is similar for the two-sided version 

and the one-sided version with a barrier. Both these versions have a bounded alarm statistic. 
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figure. 

a. EWMAa(O.Ol), b. EWMAe(O.Ol). 

The lower boundary of the alarm statistic for the one-sided case with a barrier and for the two­

sided case will also affect the maximum value of CED of the methods. Figure 14a illustrates the 

maximum value of the CED for the one-sided and two-sided cases when ARLo=50 and J1 = 0.5. In 

the case when A,::; 0.01 for the one-sided versions, as well as for the two-sided EWMAe (where 

CED(t) is still increasing with t when t = 100), the values of CED(100) are presented. An 

interesting difference can be seen between the EWMAe and the EWMAa method. For the 

EWMAa method the two-sided version has considerably lower maximal CED for small values of 
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A, than the one-sided version. For the EWMAe method this is not true. For the two-sided EWMAa 

method, the maximal CED is attained at the first time point for all values of A, (see also Figure 

13a). In Figure 14b the same situation is illustrated for the EWMAa method with different values 

of the barrier. Note that the one-sided version is equal to a barrier at -00. As indicated in Figure 

14b, different values of the barrier will be preferred for different values of A, . 
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6 CONCLUDING REMARKS 

The surveillance of a random process to detect a shift in the process has wide-spread 

application possibilities. To be able to make correct decisions about the state of the process at each 

time point the help of a properly designed surveillance system is needed. In this paper we have 

studied different EWMA methods. The focus has been on the effect of different types of alarm 

limits. 

To the EWMA statistic various forms of alarm limits have been suggested in the literature. The 

most common ones are the EWMAa and the EWMAe. However, the comparative studies between 

these have only considered shifts at the first time point. In that case, the EWMAe method is 

preferable to the EWMAa method with respect to the average delay time. However, the predictive 

value of an early alarm is low for the EWMAe method. When considering also shifts at later time 

points, as is the natural choice in most applied situations, the picture is changed. In that case the 

EWMAa method will perform better, both with respect to the conditional expected delay, the 

expected delay and the probability of successful detection. This shows the importance to consider 

the performances of methods for shifts at different time points in every surveillance situation. 
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When comparing the detection ability of surveillance methods a common way is to fix the 

ARLo. Another approach is to compare methods for a fixed probability of a false alarm. Here, it is 

shown that when comparing the EWMAa and the EWMAe method with respect to the delay time 

of detecting a true change measured by the expected delay, this is a crucial choice. Choosing to fix 

the ARLo will favour the EWMAe method. If instead the probability of a false alarm is fixed, the 

EWMAa method performs relatively better. 

There are several important differences between the one- and the two-sided versions of the 

methods. The most striking is the optimal value of A for minimizing the ARLl for a fixed value of 

ARLo. For the one-sided case, A should approach zero. This is true both for the EWMAa and the 

EWMAe method. However, this is not the case for the two-sided version of the EWMAa method 

where the optimal value of A is larger, thus confirming results in Crowder (1989), Lucas and 

Saccucci (1990) and Srivastava and Wu (1997). This is somewhat surprising since the 

minimization of ARLl means minimizing the number of observations needed to distinguish 

between two possible distributions for all observations. To use different weights for different 

observations violates fundamental inference principles. 

Another important difference concerns minimax-properties with respect to the delay time as a 

function of the time point of the shift. For the two-sided EWMAa method, the alarm limits will act 

in the same way as when using a one-sided version with barriers, and considerably alter the 

minimax properties of the method. This is especially apparent for small values of A. The same 

pattern is not the case for the EWMAe method. 
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Statistical Issues in Public Health Monitoring- A Review and Discussion 
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SUMMARY 

A review of methods, suggested in the literature, for sequential detection of changes in public 

health surveillance data is presented. Many authors have noticed the need for prospective methods 

and there has been an increased interest in both the statistical as well as epidemiological literature 

on this type of problem in the recent years. However, most of the vast literature in public health 

monitoring deals with retrospective methods. This is especially apparent dealing with spatial 

methods. Evaluations with respect to the statistical properties of special interest for on-line 

surveillance are rare. The special aspects of prospective statistical surveillance as well as different 

ways of evaluating such methods are described. Attention is given to methods including only the 

time domain as well as methods for detection where observations have a spatial structure. In the 

case of surveillance of a change in a Poisson process the likelihood ratio method and the Shiryaev­

Roberts method are derived. 

Key Words: DETECTION; EXPECTED DELAY; INCIDENCE RATE; MONITORING; 
PUBLIC HEALTH SURVEILLANCE; SEQUENTIAL METHODS; SPATIAL CLUSTER 
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INTRODUCTION 

An important issue in public health is the timely detection and prevention of various types of 

adverse health events. An example of this is an increased birth rate of babies with congenital 

malformations. This was especially apparent during the thalidomide tragedy in the early 1960's. 

An increased incidence rate of diseases, such as asthma or influenza is another example. Other 

examples include, the increase in bacterial resistance to antimicrobial agents, the spatial clustering 

of various forms of cancer and different side effects of drugs newly released on the market. In all 

of these examples, quick detection and prevention is beneficial both at an individual level as well 

as to society, for example in terms of reduced medical expenditures. Public health surveillance is 

defined as the ongoing, systematic collection, analysis, and interpretation of out-come specific 

data essential to the planning, implementation and evaluation of public health programmes, closely 

integrated with the timely dissemination of these data to those responsible for prevention and 

control (Thacker and Berkelman, 1988). The need for this type of systems is reflected in the vast 

and diverse literature of the subject. For example, Blindauer et al. (1999) discuss the need for a 

nationwide surveillance system for the prevention and control of pesticide-related illness and 

injury. The risk for adverse health outcomes related to chemical exposures is discussed in Hertz­

Picciotto (1996) where the use of an environmental health surveillance system is suggested. 

Thacker et al. (1996) propose a framework to enhance the practice of surveillance in the United 

States and discusses current and future surveillance needs. 

To be able to control various adverse health events, large amounts of data are collected in 

various nationwide public health programs such as the National Notifiable Diseases Surveillance 

System (NNDSS) in the United States controlled by the Centers for Disease Control and 

Prevention (CDC). In this case 52 different diseases (as of 1 January 1999, Centers for Disease 

Control and Prevention, 1998) are tracked and data are reported weekly both at state and national 

level. In England and Wales, the Communicable Disease Surveillance Center (CDSC) and the 

Public Health Laboratory Service (PHLS) handle these issues. In Hannoun and Tumova (2000), a 

survey of influenza surveillance systems in 24 European countries is reported. An example is the 

Groupe Regional d'Observation de la Grippe (GROG) in France, described in Hannoun et al. 

(1989). Salmonella is also under surveillance in many countries including France and the National 

Salmonella Reference Centre (NSRC) at the Pasteur Institute in Paris. Another example is 

bacterial food borne infections. In the United States, collaboration between CDC, Food and Drug 

Administration (FDA) and the US Department of Agriculture (USDA) has led to the Foodborne 

Diseases Active Surveillance Network known as FoodNet (Stephenson, 1997). Another type of 

surveillance system concerns with the safety of marketed drugs. Different type of regulations 

controls the reporting of drug-related adverse events. 
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Two examples of this is the Guideline for post marketing reporting of adverse drug experiences 

by the FDA in the United States (Food and Drug Administration, 1992) and the SAMM Guidelines 

by the Medicines Control Agency in the UK (Medicines Control Agency, 1993). 

Also international networks of centers are in use. An example of this is the World Health 

Organization (WHO) network of influenza surveillance, FluNet. Other examples include European 

collaboration of influenza surveillance described in Fleming and Cohen (1996). The International 

Clearinghouse for Birth Defects Monitoring Systems (ICBDMS) (Erickson, 1991) and EUROCAT 

are two networks for surveillance of birth defects. For salmonella surveillance an example is the 

Enter-Net network founded by the European Union under the BlaMED 2 programme. These are 

only a few examples of the various systems in use today. Further reading can be found in Flahault 

et al. (1998). In Thacker and Berkelman (1988), a general review of the history and development 

of public health surveillance in the United States can be found. 

The total amount of data collected in these systems is enormous. The data collected can be 

handled in different ways in order to use the provided information. Common to all applications 

mentioned and to all public health surveillance systems is that a decision of whether to take 

preventive actions or not has to be made sequentially based on the data collected so far. From a 

statistical point of view, this is a much more complicated situation than in a fixed sample situation. 

For example, traditional hypothesis testing cannot be used. Instead sequential methods such as 

statistical surveillance should be used. 

Different definitions and use of the term surveillance exist in different types of literature. In 

most of the literature it is not necessary to declare that the term surveillance is used for a 

prospective situation where observations are gathered sequentially. This is in opposite to a 

retrospective or fixed sample situation were observations are not accumulating over time. For 

clarification, by statistical surveillance we mean the prospective or online observation of a 

stochastic process X = {X (t); t = 1,2 ... } with the aim of detecting an important change in the 

process at an unknown time-point 't, as quickly as possible. Much of the research on statistical 

surveillance was originally done with focus on applications in industrial production control. How 

commonly these methods are used in practice in public health surveillance systems today can be 

questioned. For example, Hilsenbeck (1990) reported that none of the examined cancer registers in 

North America used any statistical control procedure. Instead some informal process control was 

used. However, the usefulness of statistical surveillance methods also in public health related 

settings are reported in many papers. 
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The context of public health surveillance implies specific problems not generally present in the 

case of an industrial production control. Stroup et al. (1993) notes the problems of seasonal effects 

and reporting delays in the National Notifiable Diseases Surveillance System. Thacker and 

Berkelman (1988) discuss problems of incomplete or inaccurate reporting. In Lui and Rudy (1989) 

and Hillson et al. (1998), the problem of how to handle time lags in case reporting is discussed. 

Farrington et al. (1996) also address these problems and point out the need for a statistical 

surveillance system with properties suitable for dealing with problems common in epidemiological 

data such as bias, delay, lack of accuracy and seasonality. In Thacker et al. (1995), the surveillance 

of chronic diseases and the requirements for the surveillance system are discussed. It is argued that 

the characteristics of chronic diseases make the surveillance situation in many aspects different 

from the one of infectious diseases. In Morabia (1996), the question of what to monitor is raised 

and the author argues that not only the cases of disease, but also rather the risk factors should be 

monitored. This type of questions is not exclusive for public health surveillance. The problem of 

seasonality and delays in reporting was discussed in Andersson et al. (2001) in the case of 

surveillance of economic time-series. The need for leading indicators was discussed in Andersson 
'k 

et al. (2001) for business cycle surveillance and in Royston (1991) and Andersson (2000) for the 

use of leading indicators in natural family planning. Although these questions are crucial for a 

successful statistical surveillance method in a public health context, these issues will not be further 

discussed here. The review is instead focused on the inferential aspects of proposed statistical 

surveillance methods. We limit the discussion to the methodological and quantitative part of the 

surveillance problem and exclude further review of the epidemiological discourse. 

Many authors have addressed the problem of constructing methods suitable for public health 

surveillance. The literature of this subject is found both in statistical as well as in epidemiological 

journals. The purpose of many papers has been the development of an online monitoring system. 

However, many of the studies have not taken into account the special statistical aspects of 

prospective surveillance. Instead the problem has been treated in as if fixed sample situation where 

data are not accumulating over time. These types of papers are not reviewed here. Some reviews of 

surveillance methods are already available (Barbujani, 1987) and Farrington and Beale, 1998). 

However, in Barbujani (1987), the focus is narrowed to methods suggested for surveillance birth 

effects. In Farrington and Beale (1998), much attention is on key problems when using large 

surveillance databases. Instead we focus on the inferential part of the surveillance problem 

including methods for evaluating surveillance methods. A notable feature of many of the methods 

suggested in the literature is the lack of evaluation by other means then in different case studies. 

The main purpose of this paper is thus to summarize the current position of surveillance methods 

in public health related settings and to enhance the use of proper evaluation of methods for 

surveillance. 
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The paper is organized as follows. First, in Section 2, some general concepts of statistical 

surveillance are described. Also different ways of evaluating such a system is presented. In Section 

3, the problem of detection of an increased incidence rate is discussed and reviewed. The use of 

the LR method and the Shiryaev- Roberts method is suggested and the alarm criteria are derived 

when it is assumed that a Poisson process generates data. In Section 4, the problem of detection of 

a change in a spatial structure is discussed and reviewed. The current situation is summarized and 

some concluding remarks are given in Section 5. 

2 GENERAL CONCEPTS OF STATISTICAL SURVEILLANCE 

By statistical surveillance we mean the online monitoring of a stochastic process 

X = {X (f); f = 1,2 ... } with the aim of detecting an important change in the process at an unknown 

time-point 't, as quickly and as accurately as possible. At each time-point, s, we want to 

discriminate between two states of the monitored system; the in-control and the out-of-control 

state, here denoted by D(s) and C(s) respectively. To do this we use the accumulated 

observations Xs={X(t);f:S:s}to form alarm sets, A(s), such that if XsEA(s), this is an 

indication that the process is in state C(s) and an alarm is triggered. Usually this is done by using 

an alarm function, p(X s), and a control limit, g(s) , where the time of an alarm, fA, is written 

as: 

fA =min{s;p(Xs»g(s)} 

Different types of in- and out-of-control states are used depending on the application. The most 

frequently studied case is when D(s) = {'t > s} and C(s) = {'t :::; S } • The change to be detected 

also differs depending on the application. Often a change in a parameter in the distribution of X 

will be of interest. For example, a change in a parameter can correspond to a changed level, a 

changed variation or possibly a combined change in the level and variation at the same time. 

Mostly studied in the literature is the step change, where a parameter changes from one constant 

level to another constant level. Different types of changes are of interest in different applications. 

Other type of changes includes a gradual, linear change or an exponential increase. 

The alarm function together with the alarm limit constitutes a statistical surveillance method 

that is a method that tells us when to trigger an alarm, based on the accumulated observations. 

Thacker et al. (1995) used the term 'surveillance system' to describe a system which include a 

functional capacity for data collection, analysis and dissemination linked to public health 
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programmes. Here, we concentrate on the statistical issues of how to handle the information in the 

data collected, while the term surveillance system is used in a broader sense. For the evaluation of 

a method of surveillance, different types of measures are used to characterize the behavior both 

when the process is in- and out-of-control. When the process is in-control, all alarms are false 

alarms. The distribution of the false alarms is often summarized in the average in-control run 

length, denoted by ARL 0= E& A I r = 00]. Another common measure is the probability of a false 

00 

alarm, P(t A < r) = I, P(r = t)P(t A < r I r = t). However this requires an assumption of the 
t=1 

distribution of 't, which often is assumed to be geometric. This assumption is suitable when the 

probability of a shift at each time point conditioned on no shift before is constant for each time­

point. 

When evaluating the effectiveness of different types of surveillance methods, one has to face a 

trade off between false alarms and short delay times for true alarms. The way to handle this is 

usually in the same way as in a hypothesis-testing situation, where the type 1 error is fixed and 

evaluations of the power is made for various situations. The translation to the surveillance 

situation has traditionally been to characterize the type 1 error by the ARLo. Then different types 

of methods have been compared for a fix value of the ARLo. Another way of characterizing the 

type 1 error is by the probability of a false alarm. 

The measures of evaluation with respect to a true shift can be made in many different ways. In 

the vast literature on quality control the average out-of-control run length, ARLl= E& A I r = 1] is 

usually used. This implies that the change occurred at the same time as the surveillance started. 

This can be useful in a manufacturing process where one expects various start-up problems. 

However in a public health situation this is in general not an appropriate approach. In this case one 

should focus on other measures of evaluation, which takes into account also the possibilities of 

later changes, since the ability of detection depends on the time-point of the change. One such 

example is the conditional expected delay as a function of the change point 't: 

Assuming a distribution of't, one could also consider the expected delay: 

00 

EDr = I,P(r = t)·CED(t) 
1=1 
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In some applications only a limited delay-time can be tolerated. An example is the outbreak of 

an infectious disease, where an epidemic could be prevented if the outbreak is detected within a 

given time-interval. In this case we can consider the probability of successful detection: 

PSD(d,t) =P(tA -'t ~dltA ~'t=t) 

If an alarm is triggered various preventive actions should be taken. To be able to choose what 

actions to take, it is desirable to know how much trust to put in an alarm. Different surveillance 

methods have different false alarm distributions as a function of time. Therefore, the proportion of 

false compared to justified alarms at a specific time point will differ between the methods, that is 

the trust of an alarm will differ between methods. For choosing what actions to take if an alarm is 

triggered, the predictive value of an alarm can be used: 

PV(s) = P(C(s) ItA = S) 

In Chen et al. (1993), the same type of problem was handled and a method for confirming or 

rejecting alarms was suggested based on data subsequent to an alarm. However, knowledge of the 

predictive value could solve this problem without the extra data and thus shorten the time for 

actions. In general a constant predictive value would be desirable since it would imply that the 

same actions would be taken whenever the alarm is triggered. 

These kinds of measures of evaluation concern the on-line features of the surveillance method. 

In CDC's guidelines for evaluating surveillance systems (Centers for Disease Control and 

Prevention, 1988) the timeliness is mentioned as one important aspect when evaluating a 

surveillance system. It is stated that the timeliness of the surveillance system should be evaluated 

in terms of availability of information for disease control. This includes both the delay in reporting 

as well as the time required for the identification of outbreaks. However, no specific measurements 

for the timely evaluation are provided in the guidelines. Some measures of evaluation are stated, 

such as the sensitivity and the predicted value positive. These kinds of measures concerns with the 

ability of correct classification of cases and requires an external source of correct classifications 

which can be used to validate the data collected by the system. German (2000) gives a review of 

the use of such measures. These measurements concerns with the quality of the data collected by 

the surveillance system and do not address the effectiveness of the system to detect adverse events. 

Therefore they cannot be used as substitutes for the measures of evaluation suggested above. 
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Further reading on general statistical surveillance can be found in various papers (Shiryaev, 

1963; Shiryaev, 1978; Pollak, 1985; Moustakides, 1986; Frisen and de Mare, 1991; Frisen, 1992; 

Srivastava and Wu, 1993; Siegmund and Venkatraman; 1995; Lai, 1995; Frisen and Wessman, 

1999 and Frisen, 1999). 

In the following sections, a review of articles covering the topic of statistical surveillance in a 

public health context is presented. The intention is to summarize the current situation for online 

surveillance, thus excluding papers dealing with the problem retrospectively. Often the data 

collected in public health surveillance is represented by counts of cases for example of a disease. 

This type of data is less studied in most areas of surveillance, where continuous variables are more 

common. One example though is the case of monitoring the fractions of non-conforming products 

in an industrial process. A review of methods suggested in this situation can be found in Woodall 

(1997). 

3 DETECTION OF INCREASED INCIDENCE RATES 

One major field of research in environmental epidemiology concerns incidence rates. A vast 

literature covers the production of maps of incidence rates as well as various retrospective tests 

(Marshall, 1991; Lawson et aI., 1999 and Lawson and Cressie, 2000). The literature is rather 

sparse when it comes to prospective methods of surveillance. 

When constructing a surveillance method for detection of an increased incidence rate, different 

assumptions concerning the underlying process can be made depending on the setting and the data 

collected. Often, a Poisson process for the cases of disease is assumed. In the case when this 

assumption has not been considered appropriate, more complex time dependent processes have 

been used to model the cases of disease. A critical aspect for the system is also whether the base­

line rate of the disease is assumed known or not. Based on these assumptions and the type of 

available data, different types of methods have been suggested for the surveillance, such as the 

Poisson CUSUM, the Exponential CUSUM, the Sets method and different window methods, 

which will be further discussed in the coming sections. However, common to all these situations is 

the sequential decisions to be made at each time point, which make the inferential situation the 

same. 

FIGURE 1 GOES HERE 
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3.1 Detection of a Changed Intensity in a Poisson Process 

If a Poisson process for the cases of an adverse health event is assumed, an increased incidence 

rate corresponds to an increased intensity of the Poisson process. The possibility of detecting such 

an increased intensity depends both on the way the process is observed as well as the surveillance 

method used to monitor the process. 

3.1.1 Using the Time between Events to Study the Poisson Process 

In some cases the intervals between the adverse events have been of focus. These intervals can 

be measured by either the continuous time between the events, which are exponentially 

distributed, or by using a discrete time scale measuring the number of acceptable events between 

adverse events. Both these ways includes no loss of information about the process. The increased 

intensity would then be recognized as shorter intervals between the adverse events and fewer 

acceptable events between adverse events respectively. 

Using the continuous, exponentially distributed time between adverse events, methods like the 

Exponential CUSUM and the Exponential EWMA can be used. The CUSUM and EWMA 

methods are two standard methods in statistical process control. Their names come from the way 

the alarm statistic is formed. For CUSUM, the alarm statistic is based on the cumulative sum of 

differences between the observations and their expected values. The alarm statistic of the EWMA 

method is based on an exponentially weighted moving average of the observations. These methods 

for exponentially distributed variables have not been used in a public health context, but studies 

have been made in other areas (Vardeman and Ray, 1985; Gan and Choi, 1994; Gan, 1994 and 

Gan,1998). 

Within the area of surveillance of congenital malformations, the Sets method was proposed in 

Chen (1978). It focuses on the lengths of the intervals between successive births with malformed 

babies, measured by the number of healthy babies born between malformed babies. The lengths of 

these intervals will be geometrically distributed. The method signals an alarm if n consecutive 

intervals are shorter than some threshold value. In various papers, the Sets method has been further 

studied (Chen, 1986; Gallus et aI., 1986; Radaelli and Gallus, 1989; Sitter et aI., 1990; Gallus et 

aI., 1991; Lie et aI., 1991; Arnkelsdottir, 1995 and Chen et aI., 1997). In Arnkelsdottir (1995) 

evaluation was made with respect to the probability of successful detection and the predictive 

value. In Wolter (1987) and Radaelli (1992), the Cuscore method was studied. In this method a 

score is assigned of + 1 or -1 to each interval between adverse events depending on whether it is 

longer or not then some threshold value. The alarm statistic is formed from the cumulative score. 
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However, this type of reporting of the observations means a direct loss of information and a sub 

optimal method can be expected. 

3.1.2 Using the Number of Events in Fixed Intervals to Study the Poisson Process 

If the number of events is recorded for fixed time intervals, information of the process will be 

lost and the resulting surveillance method will be sub-optimal for detecting the change in the 

process as quickly as possible. Therefore, using fixed intervals could be motivated only by 

practical restrictions of the reporting system. For fixed time intervals a commonly used method is 

the Poisson CUSUM method. It compares the actual number of events in each time period with the 

expected number and uses the cumulated sum of deviations to form an alarm statistic. A general 

review of the Poisson CUSUM method can be found in Lucas (1985). The Poisson CUSUM was 

early applied to congenital malformations in England and Wales (Hill et a!., 1968 and Weatherall 

and Haskey, 1976). In many papers the method has been used to compare and evaluate the 

performance of alternative methods, for example the Sets method in the previous section 

(Barbaujani and Calzolari, 1984; Pollak and Kenett, 1983; Gallus et a!., 1986; Chen, 1987 and 

Radaelli, 1992). In Barbujani (1987), these comparisons are reviewed and further described. A 

sequential binomial likelihood ratio test of the probability that an infant has Down's syndrome was 

proposed in Lie et a!. (1993). In this case the alarm limits were chosen to yield a certain ARLO 

instead of a certain <x-level. Comparison with the Poisson CUSUM method was also made with 

respect to the ARLI. In Radaelli (1992), the Poisson CUSUM was compared with the Cuscore 

method. As an alternative to the Poisson CUSUM, Rossi et a!. (1999) evaluated different normal 

approximations to a Poisson process, in order to improve the method. Other articles discussing the 

Poisson CUSUM includes Praus et a!. (1993) for the use in post-marketing surveillance of adverse 

drug reactions and Hutwagner et a!. (1997) for the case of Salmonella outbreaks. In Bjerkesal and 

Bakketeig (1975), an early application of the Poisson Shewart method for the case of congenital 

malformations in Norway can be found. 

3.1.3 Observing the Process in a Moving Window 

An approach discussed in a retrospective setting in Stroup et a!. (1989) and Stroup et a!. (1993) 

was a window-based method. In this case the number of events in a moving window of fixed 

length is compared with an expected number based on the previous years. This method was 

suggested for prospective use in Wharton et a!. (1993) using data from the National Notifiable 

Diseases Surveillance System for a four-month period and in Rigau-Perez et a!. (1999) for dengue 

outbreaks in Puerto Rico. Shore and Quade (1989), proposed the SM-method which is based on a 

10 



moving window and compared it with the Poisson CUSUM method. However, window based 

methods are known to be sUb-optimal. For example, if one compares two consecutive moving 

windows of fixed lengths, the ability of detecting a gradual change is low (Sven!us, 1995). Using 

moving windows will severely reduce the information about the observed process. If the window 

is wide it will smooth over possible shifts in the process. If, on the other hand, the windows are 

narrow, the information lost will be larger since only a small amount of the observations are used 

at each time point. One way of motivating the use of it would be if the base-line rate of the disease 

were completely unknown. 

There are several examples of window-based methods being used in practice. A window-based 

method was previously in use by the FDA to detect increased frequencies of adverse events related 

to drugs. In this case the number of reported adverse events in a "report interval" was compared 

with those of a "comparison interval" and reported to the FDA (Food and Drug Administration, 

1992). Recently this type of reporting was revoked (Food and Drug Administration, 1997) with the 

motivation that the expedited increased frequency reports had not contributed to the timely 

identification of safety problems. This might be due to the use of a window-based method for 

detection. Another example of the use is the detection of increased gamma radiation levels in 

Sweden where two consecutive 24-hour periods are compared by the Swedish Radiation 

Protection Institute (Kjelle, 1987). 

3.1.4 The Likelihood Ratio-Methodfor a Poisson Process, an Optimal Surveillance Method 

The observation of times between events for the Poisson process is preferred to the observation 

of number of events in fixed intervals if the situation allows for it. However, for the construction 

of a surveillance method also the alarm statistic and the alarm limits must be considered. The 

choice of alarm statistic and alarm limits determines the characteristics of the system. The way to 

choose these is guided by the desired properties of the system, often expressed in terms of an 

optimality criterion. 

In a public health situation, optimality of a surveillance method is not easily determined, due to 

the complex epidemiological discourse. In our view, the minimization of the expected delay for a 

fixed probability of a false alarm is a natural choice. Further discussions of optimal surveillance 

can be found in Frisen and de Mare (1991), Frisen (1999) and Frisen and Sonesson (2000). 

Consider the case where we want to distinguish between the states D(s) = {'t > s} and 

C(s) = {'t :s; S } for the case of a shift in the intensity of the process from Ao to AI' Then this 

optimality criterion leads to the likelihood ratio method (Frisen and de Mare, 1991). This method 
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has been studied in some papers, for the case of a positive shift in a normal distribution (Frisen and 

Wessman, 1999). The time of an alarm for the likelihood ratio method can be expressed as the first 

time the posterior probability of a change exceeds a constant: 

An equivalent way is the first time the full likelihood exceeds an alarm limit: 

tA = min{s; fxs (xs I C(s)) > P('r > s) .~} 
fxs (xs I D(s)) P('r ~ s) 1- K 

. { ~ P('r = t) L( ) P('r > s) K} = rmn s· £. . s t > ._-
't=!P('r~s) , P('r~s) l-K 

where L(s, t) is the conditional likelihood at time s for the case when 'r = t . 

The limitation of the likelihood ratio method is that it requires knowledge of the distribution of 

the change-point, 'to Often a geometric distribution has been used for other situations. If the 

intensity of a shift is low, that is, the parameter in the geometric distribution is close to zero, the 

Shiryaev-Roberts method can be used as an approximation of the likelihood ratio method. This 

was demonstrated in Frisen and Wessman (1999) to be a good approximation for intensities up to 

0.20 in the case of a change in the mean of a normal distribution. The Shiryaev-Roberts method 

can also be regarded as one, which use a non-informative prior for the time of change. 

The time of an alarm for the Shiryaev-Roberts method is: 

s 
tA = min{s; I,L(s,t) > K} 

t=! 

where K is a constant. 

The likelihood ratio method and the Shiryaev-Roberts method have been suggested in other 

situations, and the extension to a positive shift in a Poisson process is straightforward. The 

construction of these methods can be done both in the case when data is represented by the time 

between events and when data is represented by the number of events in fixed intervals. In both 

cases, the likelihood ratio and the Shiryaev-Roberts method will be preferable to the previously 

suggested methods for these situations in the sense that the expected delay will be shorter for a 

fixed value of the probability of a false alarm. In the case with exponentially distributed time 
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intervals denoted by X , the time of an alarm for the likelihood ratio method is, for some constant 

L: 

For the Shiryaev-Roberts method an alarm will be given at: 

tA =min{s;Iexp (-AI +Ao)~X(i) . _I >L} { } (

A )S-t+1 
1=1 1=1 Ao 

In the case where the observed data consists of number of events, X, recorded in fixed 

intervals of length k , for the likelihood ratio method, an alarm will be given at: 

s 

fA = min{s; L P(r = t)·exp{(-AI +Ao)·k ·(s-t+l)}· _I 1=1 > L·P(,r > s)} 
s (A )LX(i) 

1=1 ,1,0 

For the Shiryaev-Roberts method the time of an alarm will be: 

s 

tA =min{s;exp{(-AI +Ao)·k·(s-t+l)}· L _I =1 >L} 
s (A ).L X (i) 

1=1 ,1,0 

If the counts are recorded for intervals of different length, a slight modification has to be done, 

but again this is straightforward. 

For use in an epidemiological context also other properties of these methods needs to be 

examined properly. A desirable property, which was demonstrated by Frisen and Wessman (1999) 

to be fulfilled for the Shiryaev-Roberts method, at least in the case of a normal distribution, is that 

the predictive value is almost constant as a function of time. This would be particularly useful in 

an epidemiological context and the investigations to follow an alarm as this implies that an alarm 

could be interpreted in the same way regardless on whether it is late or early. If that is the case also 

for a shift in a Poisson process could be expected but remains to be verified. 
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3.2 Processes with Time Dependencies 

If the assumption of a Poisson distribution for the cases of disease cannot be motivated, 

another approach must be taken. Noting that time series of a number of diseases exhibit time 

dependence (autocorrelation, seasonality etc) a series of papers have been devoted to model these 

time series. Properly modelled, deviations from the modelled series can be thought as an indication 

of a change in the disease pattern. Watier et al. (1991) propose an ARIMA type model based 

warning system where the alert threshold value is a function of the upper side of the prediction 

interval. The idea was applied to data for Salmonella in France. Nobre and Stroup (1994) use the 

forecast errors to calculate a probability index function to detect deviation from past observations 

applied to data for measles cases reported through the NNDSS. In Farrington et al. (1996) a 

regression algorithm was developed to assist in detecting outbreaks of infectious diseases reported 

to the CDSC. A threshold for the number of cases was constructed by using prediction intervals 

for the modeled base-line rate. Evaluation of the detection probability was made. The timely 

modeling of diseases was also the focus in Williamson and Hudson (1999), where ARIMA models 

were used on data for various diseases both on national and state level from the NNDSS. The 

residuals from one-step-ahead forecasts were suggested for surveillance. In VanBrackle and 

Williamson (1999) this idea was further investigated and the average run length was investigated 

applying the Shewart, the moving average method and the EWMA method to these residuals for 4 

different types of shifts. Other examples of time series modeling can be found in Healy 

(1983),Ngo et al. (1996), Simonsen et al. (1997), Quenel and Dab (1998) and Cardinal et al. 

(1999). Reviews of different inferential approaches to the surveillance of processes with 

autocorrelation or with regression on time or on other variables are found in Frisen (1999). 

Other medical problems include kidney failures with various possible changes studied in Smith 

and West (1983) in a Bayesian framework. Representing the problem as a state space model, the 

multiprocess Kalman filter was used to calculate on-line posterior probabilities for the different 

states. Some discussion of how to construct alarm systems based on these probabilities was 

included. Further reading can be found in Smith et al. (1983) and Gordon and Smith (1990). In 

Whittaker and Fruhwirth-Schnatter (1994), the same approach was used for detecting the onset of 

growth in bacteriological infections. An alarm was triggered if the posterior probability of a 

change exceeded a fix constant. The use of a Shewart-Cusum chart applied to recursive residuals 

from a continuous time first-order autoregressive, CAR(1), model, where the parameters of the 

model was continuously updated using a Kalman filter can be found in Schlain et al. (1992). In 

this case the method was applied to a tumour biomarker. Another examples of this approach can 

be found in Schlain et al. (1993) and Stroup and Thacker (1993). 
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4 DETECTION OF A CHANGE IN A SPATIAL STRUCTURE 

In most public health surveillance programs, measurements are made at various locations both 

in space and in time, not only in time. For example, the cases of disease reported to the CDC 

through the NNDSS are collected at various places all over the US. The data on birth 

malformations reported by the ICBDMS consists of data from 35 different countries as of 1 

January 2000. This leads to a multivariate situation, with possible spatial dependence between the 

locations of observation. To deal with this multivariate situation, methods of multivariate 

surveillance must be used. A multivariate version of the Sets method, using data of malformations 

from multiple sources, has been proposed (Chen, 1978 and Chen et aI., 1982). In this case, fixed 

time periods was used contrary to the univariate one which uses the time between events. Here the 

number and size of terminated sets within the time period is used. In Stroup et al. (1988) the 

possibility of using multiple time series for detection of excess deaths from pneumonia and 

influenza was discussed. Here, one-step-ahead forecasts were used. 

In many cases the methods used to analyse data from surveillance systems prospectively 

ignores the spatial structure of the data. All of the surveillance methods discussed so far are 

examples of this. One of the main purposes of the surveillance systems in use is to detect changes 

in the data observed. If the spatial structure of the data is ignored, this will lead to insufficient and 

sub-optimal surveillance methods due to loss of information of the observed process. The spatial 

component in infectious diseases, such as influenza, is clear. An example is the joint collaboration 

of different European countries during the winter of 1993-1994 (Fleming and Cohen, 1996) where 

the epidemic started in Scotland and spread south to the rest of the countries via England and 

France. A considerable time lag in influenza peeks was evident, which could be used for 

preventive actions. 

In many cases the key issue of the public health surveillance itself includes detection of 

changes in spatial patterns, not only average changes in the case when the data collected are 

spatially correlated An example of this is various forms of clustering of diseases of which the case 

of child leukaemia has been the topic in many retrospective studies. In Dolk (1999) the role of 

assessing spatial variation and clustering of birth defects is treated. As in the area of detection of 

increased incidence rates, the area of cluster detection is dominated by different type of 

retrospective analysis methods, not designed for surveillance (Knox, 1964; Stone, 1988; Besag and 

Newell, 1991; Lawson, 1993; Waller and Turnbull, 1993; Waller and Lawson, 1995; Tango, 1995; 

Kulldorff and Nagarwalla, 1995 and Kulldorff, 1997). Papers on the detection of elevated risk due 

to possible putative sources include Diggle and Rowlingson (1994) and Lawson et al. (1999). 

However, in many of these situations there would have been an interest also in studying the 

development prospectively. 
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To construct surveillance methods for spatial processes is a complicated problem. In previous 

sections, which only included the time domain, we considered different assumptions of the 

observed process and different ways of observing and modelling this process. In the spatial 

domain the same questions are raised. General theory of statistics for spatial data can be found in 

Cressie (1993). In Lawson (2001) a discussion of how to generalize various kinds of spatio­

temporal models to allow for prospective surveillance is given. In the case of spatial surveillance, 

a change in a parameter of the distribution of the observations can have a clear spatial 

interpretation, for example, a stronger tendency of clustering. 

When confronted with a problem involving both spatial as well as temporal components, which 

is the case in surveillance of spatial structures, different approaches can be used. One example is 

the surveillance, in time, of a purely spatial statistic, which describes the spatial pattern for each 

time-point. This is the case when using a univariate test statistic designed for a retrospective test 

and following it through time using some surveillance method. This approach was used in 

Rogerson (1997), where a modification of the retrospective test suggested in Tango (1995) both 

for general and focused clustering was used prospectively and sequentially with a CUSUM 

method. The proposed system was evaluated using the ARL and the median run length. The same 

approach was used in Rogerson (2000) based on the Knox statistic suggested in Knox (1964). 

In Raubertas (1989), the spatial structure of the reporting units is taken into consideration, 

leading to a multivariate surveillance situation. It is argued by the author that when the incidence 

of a disease is positively correlated between neighbouring reporting units, the sensitivity of the 

Poisson CUSUM method may be improved by pooling within neighbourhood observations, using 

closeness as weights. For each reporting unit a Poisson CUSUM is used. For the whole system an 

alarm is triggered as soon as any of the individual CUSUM schemes signals an alarm. ARLo and 

ARLI are suggested as measures of performance. 

Another approach is to focus on the spatial model assumed for the observations and to make a 

sufficient reduction of the spatial structure at each time-point. In this case no information about the 

spatial structure will be lost. This approach was used in Jarpe (1999) in the case of surveillance of 

clustering in a spatial log-linear model with a fixed lattice. Here the sufficient reduction resulted in 

the surveillance of a univariate statistic involving the sufficient spatial components for each time. 

A complete separation of the spatial and the temporal components was possible. The expected 

delay of an alarm for a fixed false alarm probability was examined for some examples. In Jiirpe 

(2000), a shift process spreading spatially as time increased was considered. Here a likelihood 

ratio statistic was suggested, including a sufficient reduction of the spatial structure. In this case, 

though, a complete separation of the spatial and temporal components was not possible due to the 
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nature of the problem. Different ways of treating the multivariate structure in the spatial 

surveillance situation was discussed. As an application, the problem of an increased rate of 

radiation was investigated. Some evaluation and comparison with the system currently in use in 

Sweden, which is based on a moving window was made. The situation with a spreading shift 

process would correspond well to the surveillance of influenza, where the disease spread across 

Europe from Scotland (Fleming and Cohen, 1996). 

As pointed out also in Lawson (2001), the possibility of development within this area is bright 

since there are a number of possible applications of statistical surveillance in a spatial context. 

5 DISCUSSION AND CONCLUDING REMARKS 

The usefulness of properly designed statistical surveillance methods cannot be exaggerated and 

many authors point out the need for such a system in various public health settings. Except for 

several practical issues such as the collection of data and the epidemiological investigations to 

follow an alarm, a surveillance system also raises a number of statistical challenges. Due to the 

nature of such a system with respect to the sequential type of decision situation, the common 

retrospective analysis methods are not useful. Many papers have addressed the problem of on-line 

surveillance but the mistake of not noting the sequential type of decision situation is quite 

common. In many of the papers, which deal with the inferential aspects correctly, lack of proper 

statistical evaluation of the suggested methods is evident. Usually, the only measures considered 

are the ARLO and ARL 1. However, in public health surveillance the event to be detected is not 

probable to occur at the same time as the surveillance starts. This means that the ARLI is not a 

suitable measure of evaluation. Instead other types of measures should be used, which takes into 

account also possible later shifts, since the performance of a surveillance method depends on the 

time of the change. 

When constructing a surveillance method theoretically, often the intention is the fulfillment of 

some optimality criteria. The minimization of the ARL1for a fixed value of ARLO is the common 

criteria. The logical drawbacks of this criterion and the advantages of other ones, such as the 

minimal expected delay for a fixed value of the probability of a false alarm, are discussed in Frisen 

(1999) and Frisen and Sones son (2000). In many applications, including public health 

surveillance, only one measure of performance is not enough. Therefore one should aim at a 

complete and thorough evaluation of proposed systems. We suggest using measures such as the 

conditional expected delay, the expected delay, the probability of successful detection and the 

predictive value. 
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In practice, data is collected from many different sources, for example in the National 

Notifiable Diseases Surveillance System. This means that the observed process is multivariate. 

When discussing the coordination of disease data in different databases, this is a recognized fact 

(Levy, 1996 and Thacker et aI., 1996). However, the proposed surveillance methods in public 

health, mainly treats the problem as a univariate one. In that way, the dependence between the 

different observations is not taken into account, which leads to loss of information. Instead, the 

surveillance situation should be handled as a multivariate one (Wessman, 1998a; Wessman, 1998b 

and Jarpe, 2000). 

It is our hope that research within this area is continued since there remains numerous 

problems to be solved and prospects for development are bright, which will be of great importance 

for society. In the case of a Poison process, the properties of the proposed likelihood ratio method 

and Shiryaev-Roberts method have to be examined properly. 
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