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Some Aspects of Wavelet Analysis in Time Series 

Abdullah Almasri 

Department of Statistics, Goteborg University, P.o. Box 660, SE-40530 GOteborg, Sweden 

This thesis consists of two papers dealing with the methodology of wavelet and its 

application in time series. 

We give here a brief summary of the contents of the two papers in the thesis. 

The first paper describes an alternative approach for testing the existence of trend 

among time series. The test method has been constructed using wavelet analysis 

which have the ability to decompose a time series into low frequencies (trend) and 

high frequencies (noise) components. Under the normality assumption the test is 

distributed as F. However, the distribution of the test is unknown under other 

conditions, like non-normality. To investigate the properties of the test statistic under 

wide conditions, empirical critical values for the test have been generated using 

Monte Carlo simulations. The results are then compared with those results obtained 

by applying the OLS method for testing the trend. 

A number of cases have been studied regarding the size of the test, where the number 

of observations, long memory parameter, different types of wavelets and the 

distribution of the errors have been varied. For each case 10,000 replications have 

been performed and four different nominal sizes have been studied. For the power 

calculations the strength of the trend parameter has been varied. 

In this study, we find that using the tabulated critical values from the F distributions, 

the test tends to overreject under the null hypothesis, while when using generated 

critical values, the test performs satisfactorily. The Harr wavelet has shown to exhibit 

the highest power among the other wavelet's types, but the power is still lower than 

the OLS under some conditions. 



The methodology here has been applied to real temperature data in Sweden for the 

period 1850-1999. The results indicate a significant increasing trend which agrees 

with the "Global warming" hypothesis during the last 100 years. 

The second paper, Uointly written with Ghazi Shukur), presents an illustration of the 

use of wavelet analysis and the importance of time scale decomposition in 

determining the causality relation between two important macro variables. The 

relation between government spending and revenue has been studied using three 

methods, the conventional test, a bootstrap simulation approach and a multivariate 

Rao's F-test. These test methods have shown different results when using quarterly 

and monthly data. The wavelet decomposition of the time series into different time 

scales of variation helped in determining the causality direction between these two 

macro variables. 
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Paper's titles 

This thesis consists of two papers, which are referred to by their Roman numbers I 

andll. 

I. An Alternative Approach for Testing the Significance of Trend in the Presence of 

Long Memory Process, Using Wavelet Analyses 

ll. An illustration of the Causality Relation between Government Spending and 

Revenue Using Wavelets Analysis on Finish Data 
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An Alternative Approach for Testing the Significance of Trend in the Presence 

of Long Memory Process, Using Wavelets Analysis 

Abdullah Almasri 

Department of Statistics 
University of Goteborg 

P. O. Box 660 
SE- 405 30 Goteborg 

Sweden 

ABSTRACT 

This paper describes an alternative approach for testing the existence of trend among time 

series. The test method has been constructed using wavelet analysis which has the ability to 

decompose a time series into low frequencies (trend) and high frequencies (noise) 

components. Under the normality assumption the test is distributed as F. Using generated 

empirical critical values the properties of the test statistic have been investigated under 

different conditions and different types of wavelet. The results are then compared with those 

results obtained by applying the OLS method for testing the trend. The Harr wavelet has 

shown to exhibit the highest power among the other wavelet types, but the power is still lower 

than the OLS under some conditions. 

In contrast with the OLS estimate the wavelet estimate has a localisation in time and 

frequency property which leaves the estimated trend to vary with time. 

The methodology here has been applied to real temperature data in Sweden for the period 

1850-1999. The results indicate a significant increasing trend which agrees with the "Global 

warming" hypothesis during the last 100 years. 

1. INTRODUCTION 

Most of the time series of aggregated variables exhibit a steadily increasing or decreasing 

pattern, known as a trend. For example, recent concerns about the possibility of climate 

change have focused attention on temperature series. A crucial question raised by these data is 
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whether the temperature rise of around 0.5 CO is the start of a systematic warming or if it is an 

effect of natural variability, for details, see Bloomfield and Nychka (1992). A plausible 

statistical model for such series can consist of a mean level, a possible trend plus a stationary 

time series. (Xt = u + Tt + Zt), where Xt is the annual mean temperature, Tt is the trend due to 

human-made effects and Zt is a (mean zero) random variable expressing the natural variation 

in global temperature. Now, for a stationary Gaussian process, the dependence among the 

random components can be described by the autocovariances, E(Zt 4+h) = y(h). It is this 

dependence between successive values of Zt that makes the identification of the Tt difficult. 

The same is true for the availability of high frequency long time series from e.g. returns of 

speculative asset. Much research has been devoted to the study of long range behaviour of 

financial data. A common finding in much of the empirical literature is that the returns 

themselves contain little dependence, which is in agreement with the efficient market 

hypotheses. 

However, to simplify the interpretation of variability of a trend estimate we assume in this 

paper that the trend (Tr) can be approximated by a polynomial linear trend. The ideas, are of 

course are not restricted to this parametric form. 

The most difficult problem when testing for linear trend is the presence of dependence among 

the residuals. Because the residuals are dependent, tests for trend based on the classical 

ordinary least squares (OLS) regression are inappropriate. Although it is well known that this 

problem exists, estimation and testing for the existence of the trend is still done by the OLS. 

Many economic and physical phenomena are modelled by so called long-memory processes. 

The autocovariance functions for such processes used to exhibit a slow decay. The wavelet 

analysis, however, has been extensively used for such purposes, since it suitably matches the 

structure of these processes. The autocovariance function of the wavelet transformed series 

exhibits different behaviour, in the sense that autocovariance functions of the transformed 

series decay hyperbolically fast at a rate much faster than the original process. In general, the 

series that are correlated in the time domain become almost uncorrelated in the wavelet 

domain, see McCoy and Walden (1996). 

The wavelet estimate has the advantage of the localisation in time and frequency, which 

means that the detail of the estimate is seen to vary with t in contrast to the usual parametric 
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methods or kernel estimates. This property gives us an additional result of variability on 

different scales in the case that we have a long memory process. 

In this study we use the wavelet analysis to construct a test statistic in order to test for the 

existence of trend in the series. Since we are also interested in the presence of the long­

memory process among the data, we study the properties of our test statistic under a variety of 

such conditions. We will compare the results when using the wavelet analysis with results that 

are obtained by applying the OLS method under the same conditions. To demonstrate our 

testing approach seasonally adjusted monthly temperature data for Stockholm during the 

period 1850-1999 are modelled. 

The paper is organised as follows: Section 1 gives an introduction. Section 2 presents the 

methodology. In Section 3 we introduce the wavelet based estimation and testing for the 

trend. Section 4 describes the Monte Carlo design we used, while Section 5 presents the 

estimated results. In Section 6, we present an empirical application. Finally, we give a short 

summary and conclusions in Section 7. 

2. THE WAVELET METHODOLOGY 

The wavelet transform has been expressed by Daubechies (1992) as "a tool that cuts up data 

or functions into different frequency components, and then studies each component with a 

resolution matched to its scale". Thus, with wavelet transform one can analyse series with 

heterogeneous (unlike Fourier transform) or homogeneous information at each scale. Unlike 

the Fourier transform, which uses only sines and cosines as basis functions, the wavelet 

transform can use a variety of basis functions. We hereby will give a brief presentation of this 

decomposition methodology. 
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2.1 The Discrete Wavelet Transform 

Let X=(XO,X2 , ••• ,XN _1 )' be a column vector containing N observations of a real-valued 

time series, where we assume that N is an integer multiple of 2M , where M is a positive 

integer. The discrete wavelet transform (DWT) of level J is an orthonormal transform of X 

defined by 

(1) 

where W IS an orthonormal N x N real-valued matrix, 1.e., W-1 = W' so 

W' W = WW' = IN' and called the wavelet matrix. d j = {dj,k}' j = 1,2, ... , J , are N / Aj xl 

real-valued vectors of wavelet coefficients at level j associated with scale Aj and location k, 

where Aj = 2 j
. The real-valued vector s 1= { S l,k } is made up of N / 21 scaling coefficients. 

Thus, the first N - N / 2 I elements of d are wavelet coefficients and the last N / 2 I elements 

are scaling coefficients, where J ::; M . Notice that the length of X does coincide with the 

length of d (length of dj = 2M
-
j
, and s I = 2M

-
f
). 

The wavelet coefficients tell us how much a weighted average changes from a particular time 

period of effective length A j to the next. The N / 2 I scaling coefficients are associated with 

variations on scales Al and higher. 

In practice, the DWT is applied without exhibiting the matrix W, and we therefore use a fast 

filtering algorithm of order O(n) based on so called quadrature mirror filters that uniquely 

correspond to the wavelet of interest, see Mallat (1989). 

In what follows, we will merely consider the wavelet in terms of filters. Now, let 

{I;} == {I;,o, ... , I;,L-l} denote the wavelet filter coefficients of a Daubechies compactly 

supported wavelet of width L, where L < N, and let {gl}=={gl,O, ... ,gl,L-l} be the 

corresponding scaling filter coefficients, defined via the quadrature mirror relationship, 

hi = (_1)1 gL-I-I for 1 =0, ... , L-l 
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The Haar wavelet, is a filter of width L = 2, that can be defined either by its wavelet 

coefficients ("mother" wavelet filter), 

or, equivalently, by its scaling coefficients ("father" wavelet filter), 

1 
go = gl = .J2' 

The Haar wavelet is special since it is the only compactly supported (zero outside a finite 

interval) orthogonal wavelet that is symmetric. Daubechies (1992) derived other types of 

compactly supported orthogonal wavelets, often called Symmlets (S(L)), which are "least 

asymmetric". The number in the name of the wavelet indicates the width of the filter. 

Note that wavelets with a small L are narrower and less smooth, while wavelets with a large 

L, are relatively wide and smooth. The scaling coefficients defining Daubechies families of 

wavelet filters of varying length can be found in Daubechies (1992). 

The filters are applied to any sequence a = {aN} through the operators Hand G 

(Hah = LhN - 2kaN ; 

N 

(Ga)k = LgN-2kaN 
N 

(2) 

An application of operator Hand G corresponds to one step in the discrete wavelet 

transformation. The complete discrete wavelet transformation is a process that recursively 

applies equation (2). 

The algorithm starts by applying the filters to the data vector X and obtains the sub-vector of 

wavelet coefficients d 1 = HX together with the corresponding smooth coefficients SI = GX 

at level j = 1. The procedure continues by applying the operators again to 81 to obtain 

d 2 = HS1 = HGX and S2 = G 2X, and so on until reaching the last scale J, noting that d = 

HGJ-1 and SJ = GJ contain only one coefficient. The wavelet decomposition of the vector X 

can be represented as the vector d of the same size, given by 
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In the case that N = 2M
, d1 has N12 coefficients, d j has N/2 j coefficients and s J has N/2 J 

• 

For more details about the wavelet transform in terms of operators, see Strang and Nguyen 

(1996). 

Now, we can write (1) in terms of Hand G at J = 1 as follow: 

ho ~ 0 0 0 0 0 0 

0 0 ho ~ 0 0 0 0 

0 0 0 0 ho ~ 0 0 

W= [~] = 
0 0 0 0 0 0 flo ~ 
go gl 0 0 0 0 0 0 

0 0 go gl 0 0 0 0 

0 0 0 0 go gl 0 0 

0 0 0 0 0 0 go gl 

For more details about W matrix, see Vidakovic (1999). Note that when the length of the 

filter equals 2 (Haar wavelet), the wavelet does not exhibit problems with boundaries. An 

illustrative example of the DWT is given in the appendix of this paper. 

The way of going back to time domain from the wavelet domain is by reconstructing X with 

the inverse wavelet transformation. In matrix form the inverse wavelet transformation is 

performed by X = W'd which is again equivalent to applying a fast reconstruction algorithm 

using mirror filters. 

2.2 MuItiresolution Analysis 

The concept of multiresolution analysis was first introduced by Mall at (1989). The 

multiresolution analysis of the data leads to a better understanding of wavelets. The idea 

behind multiresolution analysis is to express W'd as the sum of several new series, each of 

which is related to variations in X at a certain scale. Now, since the matrix W is orthonormal, 

we can reconstruct our time series from the wavelet coefficients d by using 

X=W/d. 
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We partition the columns of W' commensurate with the partitioning of d to obtain 

where Wj is an NxN 12
j matrix and VJ is an NxN 12J matrix. Thus, we can define the 

multiresolution analysis of a series by expressing W' d as a sum of several new series, each 

of which is related to variations in X at a certain scale: 

J J 

X=W' d=L,Wjdj+VJsJ =L,Dj+S J . (3) 
j=1 j=1 

The terms in (3) constitute a decomposition of X into orthogonal series components 

D j (detail) and S J (smooth) at different scales and the length of D j and S J coincides with 

the length of X (N x 1 vector). Because the terms at different scales represent components of 

X at different resolutions the approximation is called multiresolution decomposition, see 

Percival and Mofjeld (1997). 

The smooth scale S J gives a smooth approximation to X. Adding the detail scale D J yields 

S J-l' a scale 2]-1 approximation to X. The S J-l approximation is a refinement of the S J 

approximation. Similarly, we can refine further to obtain the scale 2 j-l approximations 

S j-l = S j + D j • 

The collection S J' S J-l' ... , SI provides a set of multiresolution approximations of X. 

Analogous to kernel smoothing, which has a parameter called bandwidth or smoothing 

parameter, we called the index J a wavelet smoothing parameter. Increasing the smoothing 

parameter J allows less detail in the smooth approximation of X, while a small J allows 

additional detail in the smooth approximation of X, see Ogden (1997). 

Note that when J = M the S J represents a "final smoothing" in the data and in the Haar case 

this is just the sample mean. An illustrative example of the multiresolution analysis is given in 

the appendix of this paper. 
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3. Wavelet-based estimation of the trend 

A common issue in time series analysis is decomposing the different components of 

variations. In some applications it is important to decompose a time series into low 

frequencies (trend), and high frequencies (noise) components. A multiresolution analysis is a 

convenient setting for decomposing and describing the different scales of variation in the data. 

Yajima (1988) considered a polynomial regression, which consists of a polynomial trend and 

a stationary process with long memory. Based on the decomposition statistics we consider the 

following model for a time series data { X t }: 

t =O, ... ,N -1, (4) 

where It is a constant term, ~ is an unknown deterministic polynomial trend function of 

order r: 

r 

~ = L,al j 
, 

j=O 

In this study, we consider only the first order of the polynomial function. 

Zt is a residual term which is a long-memory process defined by 

(5) 

where, 8 E (0,0.5) is the long memory parameter, {ct } is a Gaussian white noise process with 

mean zero and a; > 0. Here, B , is the backward shift operator, and 

with 

b (8) = (-It rc8+1) 
v r~+nr0-v+n 

The spectral density function of { Zt } is given by 

2 

SCm) = as , 
2° (1- cos(m))O 
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where (j) = 2m , i = O, ... ,N 12 -1, and 0 S 8 < ~. 
N 2 

Based on the 8 two different types of processes can be defined: 

1. When 8 = 0 , the process is a white noise. 

2. When 0 < 8 < 1/ 2 the spectral density has a pole at zero, in which case the process 

exhibits slow hyperbolic decay of the autocovariances and staisfies the long memory 

process. 

The idea of the wavelet estimation procedure is simple: we replace the unknown wavelet and 

scaling coefficients in (1) by estimates, which are based on the observed data. 

Many authors have used the same approach in the last ten years to estimate density functions, 

see Brillinger (1994,1996). 

In section 2.1 it was seen that the DWT coefficients can be written into two different types: 

scaling coefficients { S J ,k }, and wavelet coefficients { d j, k }. 

Now, since 

we can write d: 

where d w is an N x 1 vector containing the wavelet coefficients and zeros at all other 

locations, and d s is an N x 1 vector containing the scaling coefficients and zeros at all other 

locations. Since X = W'd, we can write 

(6) 

The wavelet estimator for X is simply 

x = W'd = W'd + W'd = T + Z 
s w ' 

where T is an estimator of the polynomial trend T at level J, while Z is a tapered 'version' 

ofX. 
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The issue of choosing the level of our estimate depends on the goal of our application. In 

some applications, for example, if we want to "zooming" to local trends and cycles, we 

should choose J to be small. In other applications, we will want to set J to be large, if our aim 

is to detect the global trend. It is important to use a suitable level. 

As we mentioned earlier, the wavelet estimate has the advantage of the localisation in time 

and frequency, which means that the detail of the estimate is seen to vary with t in contrast to 

the usual parametric methods or kernel estimates. This property gives us additional results of 

variability on different scales (different 1) in the case when we have a long memory process, 

because such processes appear to be local trends and cycles, which are, however, spurious and 

disappear after some time, see Hosking (1984) and Beran (1994). 

Note that, in the case of Haar wavelet (L=2), the estimate of the trend at level (J = M-l) will 

be simply the average of the first half series for the first NI2 observations and the average of 

the second half for the second NI2 observations. 

An important issue is how to choose the wavelet filter. A central factor to use a particular 

wavelet is to mach the characteristics of the series we are analysing. The Haar wavelet, which 

is a piecewise constant function, preserves the discontinuities, and therefore it is most suitable 

to identify a structural break in the data. By contrast, other wavelets with L > 2 are smoother 

and tend to blur the discontinuities. 

In general, the wavelets with a wider support (L is big) are smoother but spatially less 

localised, while the wavelets with a narrow support (L is small) are more spatially localised 

but less smooth. 

3.1. ANALYSIS OF VARIANCE 

The DWT decompose the variance of the time series into quantities, that measure the 

fluctuation separately, scale by scale, see Percival and Mofjeld (1997). The orthonormality of 

the matrix W implies that the DWT is an energy preserving transform so that 

N-l 

IIdjj2 =jjXjj2 == LX/2
• (7) 

/=0 

Given the structure of the wavelet coefficients, the energy in X is decomposed, on a scale by 

scale basis, via 
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J 2 

IIX l1
2 

= LIIDjll +IISJI1
2

, (8) 
j=1 

where, liD j 112 represents the contribution to the squared nonn of X due to change at scale Aj' 

whereas liS J 112 represents the contribution due to variations at scale AJ • Now we can write the 

estimated variance of the time series in tenns of wavelet and scaling coefficients: 

where Pi(A) is the estimated variance of the wavelet coefficients at scale Aj' and &~ is the 

estimated variance of the trend. 

3.2. THE TEST STATISTIC 

Let X 0' X I' ... , X N-I be a sequence of independent nonnal random variables with zero mean 

and variance ai = 1. We would like to test the null hypothesis Ho: Trend = O. A test 

statistics that can discriminate between this null hypothesis and the alternative hypothesis 

HI : Trend -:j:. 0 is defined as follows: 

(9) 

j=1 

To detennine the distribution of G we require the distribution of the estimated variance of the 

trend and the distribution of the estimated wavelet variance. Since the distribution of the 

coefficients of dare uncorrelated nonnal random variables with zero means and {rJ j,k } 

variances, where rJ j,k = ai (under H 0)' see Brillinger (1996), then the squared coefficients 

will be distributed as a a; X;. Since the Haar wavelet has no boundary effects the test 

statistics (N - N /2 J -1)/( N /2 J -l)G can be shown to follow an F distributed with ( N /2 J -1) 

and (N -N /2J -1) degrees of freedom. 
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On the other hand, when applying the Symmlets wavelets, there exist boundary effects that 

make the test statistics in (9) be only asymptotically distributed as F with the same degrees of 

freedom as in the case of Haar. 

To see whether the distribution of G follows the F distribution, a Monte Carlo simulation with 

10,000 replications has been performed and compared with the related F distribution. Figure 1 

shows quantile-quantile plot for the (N - N /2' -1)/( N /2' -1) G, i.e. (1012/3) G, against F 

distributions with 3 and 1012 degrees of freedom. 

The distribution of the test statistic is unknown, however, in situations when the errors are not 

normally distributed and when they exhibit some form of dependency. It is therefore 

important to generate empirical critical values in such situations in order to investigate the 

properties of the test static. This will be done by means of simulation experiments. 

o 

o 2 4 

sim 

~OO~ 

00 

ocf? 
ocg:J> 

6 

Figure 1. Quantile-quantile plot for the simulated G, using the Haar wavelet filter, against an 
F distribution with 3 and 1012 degrees of freedom. 
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4. MONTE CARLO DESIGN 

In the absence of exact results it is necessary to investigate the finite sample performance of 

the statistics by means of simulation experiments. The design of a good Monte Carlo study is 

dependent on (i) what factors are expected to affect the properties of the tests under 

investigation and (ii) what criteria are being used to judge the results. The first question will 

be treated directly below, and we will return to the values used in our experiment shortly in 

Table I. However, the second question will be dealt with later. 

Factors That Affect the Properties of the G Test 

A number of factors can affect the size and/or power of the G test. The sample size (N), the 

long memory parameter (8), the type of wavelet, and the trend coefficient (a j) are four such 

factors. In this paper we will study the consequences of varying these factors. 

A number of other factors can also affect the properties of the G test. The distribution of Zt 

(and thus Xt) is an obvious candidate to examine. We have chosen first a normal distribution 

in our experiment, but using a fat-tailed distribution could affect the properties of the tests. 

However, regarding the possibility of climate change, we do not have any reason not to 

accept a normal approximation. On the other hand, evidence of fat-tailed distributions can 

often be found in empirical econometrics and / or time series, e.g. finance, demand analysis, 

price expectations. If a test performs well under these conditions (i.e., when the underlying 

assumption that the error terms are normally and identically distributed may not hold), then 

it is usually referred to as robust. It is hence important to study the effect of fat tailed and/or 

the combined effect of fat tailed and dependent errors on the properties of the G test. The 

class of non-normal or contamination distributions is fairly large, and the effects of these 

distributions mostly render the error terms heavy-tailed. More specifically, the error terms 

in this study will also be generated by the t-distribution with degrees of freedom equal to 

three and five. Proceeding in this manner we cover a reasonable degree of the fatness in the 

tails of the errors. 

A similar point is our assumption of stationary errors; if Zt is generated by a random walk, 

this could also affect the results, but this is out of the scope of this study at present. 
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Note that the distribution of the test statistic we use is either known only asymptotically or 

not known at all (e.g., in situations when the errors are not normally distributed and when 

they exhibit some form of dependency). As a result, the test can very likely not exhibit the 

correct size and inferential statements and judgements based on them might be misleading. 

The same is true even when using the OLS regression. Using the tabulated critical values, 

the t-statistic for testing the significance of the trend coefficient can also very likely not . 
exhibit the correct size, especially under conditions of non-normally distributed errors or 

when they exhibit some form of dependency. However, by using the Monte Carlo 

simulations we can produce our critical values in different situations so that the true size of 

the test approaches its nominal value. Here, we use 10,000 replications for the calculation of 

the critical values. 

In a Monte Carlo study we calculate the estimated size by simply observing how many 

times the null is rejected in repeated samples under conditions where the null is true. The 

Monte Carlo experiment has been performed by generating data according to (4), using the 

wavelet decomposition on the data, and calculating the test statistic defined in (9) and then 

reject the null hypothesis if the test exceeds the respective simulated critical value. For each 

model we have performed 10,000 replications for the calculation of the sizes and the power 

functions. In Tables I we present a summary of the experimental design we used in this 

paper. 

TABLE I. Values of Factors that Vary for Different Models - Size and Power Calculations 

Factor Symbol Design 

Number of observations N 256,512,1024 

Nominal size 7l'o 1 %, 5%, 10%, 20% 

Long parameter for the errors 8 0, .15, .30, .45 

Trend parameter for X a IIN,31N,51N 

(only for power calculations) 

To judge the reasonability of the results, we require that the estimated size should lie within 

the 95% confidence interval of the actual size. Note that this bound is rather wide, but here 

we are trying to get at the difference between a test which grossly over- or under-rejects, 

and one that only deviates by about .5% or less. For example, if we consider a nominal size 
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of 5% we define a result as "no bias" if the estimated size lies between 4.56% and 5.44%. 

An approximate 95% confidence interval for the actual size (n), however, can be given as 

n±2 
n(1-n) , 

NR 

(10) 

where Ii is the estimated size and NR is the number of replications. However, since we are 

mainly interested in the behaviour of the distributions in the tails, only results using the 

conventional 5% significance level have been analysed. 

Note that most of the factors we discussed earlier are shown to affect the performances of 

the test. In the following section we display some important results regarding the estimated 

size of the test in our tables. As regards the estimated power of the test we have mainly 

compared them graphically. 

5. RESULTS 

In this section we present the results of our Monte Carlo experiment concerning the size and 

power of the G test. The G test has been performed to test for the existence of trend. We use 

different types of wavelets (i.e., the Haar and the Symmlets: S4, S6 and S8) for constructing 

the G test. The results are then compared with results obtained by applying the OLS method 

for the same purpose. 

5.1. ANALYSIS OF THE SIZE 

Here we present our most important results along with results of the main dominating effects 

of our Monte Carlo experiment regarding the size of the G test. Using the tabulated critical 

values from the t and F distributions, the test methods have shown to reject correctly under 

the null hypothesis and when there is no dependence among the errors. The tests overreject, 

however, when there is some form of dependency among the errors. When applying the G 

statistic and the t statistic (by applying the OLS method), these tests have shown to overreject 

under the null hypothesis by about 20% when the dependency parameter is equal to 0.15, and 

about 40% when it is equal to 0.45. On the other hand, when using the simulated critical 

values the results show that all the methods perform well regarding the size of the tests. 
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The simulated limits have shown to be robust when the errors are generated from normal 

distributions with different means and variances and even when they are generated from the t 

distribution. However, the limits have shown to be very sensitive to the existence of 

dependency among the errors. We find that higher dependence among the errors causes the 

limits also to be higher, see Table II. 

To summarise, our analysis revealed three factors that affect the performance of the size of 

the G and t test statistics, namely 

1) The choice of the critical values. 

2) The strength of the dependency structure in the series (only affects the critical limits). 

3) The sample size (only when using the tabulated critical values). 

4) Type of wavelet. 

Table II. The simulated critical limits, 10,000 replications. * 

N= 256. 
S4 S6 S8 Haar OLS 

8=0 .0317 .0319 .0316 .0327 1.66 
8=.15 .0873 .0885 .0873 .0841 2.96 
8=.30 .2290 .2263 .2302 .2262 5.29 
8=.45 .5985 .5830 .5974 .6272 7.92 

N = 512. 
S4 S6 S8 Haar OLS 

8=0 .0159 .0159 .0156 .0161 1.62 
8=.15 .0526 .0553 .0557 .0524 3.21 
8=.30 .1751 .1813 .1756 .1854 5.99 
8=.45 .4671 .4679 .4745 .4717 10.85 

N= 1024. 
S4 S6 S8 Haar OLS 

8=0 .0077 .0077 .0075 .0077 1.64 
8=.15 .0336 .0347 .0352 .0325 3.68 
8=.30 .1251 .1225 .1256 .1292 7.69 
8=.45 .4440 .4355 .4476 .4284 14.60 
* In the case of wavelets, the critical limits are based on J = 6, 7 and 8 for the N = 256,512 
and 1024, receptively. 
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5.2. ANALYSIS OF THE POWER 

In this sub-section we discuss the most interesting results of our Monte Carlo experiment, 

which regards the power of the G test using different types of wavelets. The results are also 

compared with those obtained by applying the t statistic. The power results of the tests are 

estimated by calculating rejection frequencies from 10,000 replications for trend parameters 

given by lIN, 31N and 51N and different sample sizes, 256, 512 and 1024, See Tables ill - VI. 

Even if a correctly given size is not sufficient to ensure well performance of a test, it is a 

prerequisite. As we mentioned in the previous sub-section, when the errors are dependent the 

different tests accurately estimate the size only when we use the appropriate simulated critical 

limits. Hence, all the estimated powers in this paper have been calculated using critical values 

estimated from the size experiments, i.e. the powers have been size corrected. 

Table ill. Estimated powers 

N = 256, trend = lIN. 
S4 S6 S8 Haar OLS 

0=0 .89 .85 .86 .97 1 
0=.15 .40 .33 .37 .60 .80 
0=.30 .16 .15 .15 .23 .34 
0=.45 .09 .09 .09 .11 .22 

N = 256, trend = 31N. 
S4 S6 S8 Haar OLS 

0=0 1 1 1 1 1 
0=.15 1 1 1 1 1 
0=.30 .82 .74 .77 .96 .99 
0=.45 .31 .26 .27 .50 .76 

N = 256, trend = 51N. 
S4 S6 S8 Haar OLS 

0=0 1 1 1 1 1 
0=.15 1 1 1 1 1 
0=.30 .99 .98 .99 1 1 
0=.45 .64 .53 .58 .91 .99 
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Table IV. Estimated powers 

N = 512, trend = lIN. 
S4 S6 S8 Haar OLS 

0=0 1 .99 .99 1 1 
0=.15 .60 .51 .55 .80 .95 
0=.30 .19 .152 .184 .25 .50 
0=.45 .11 .10 .10 .11 .20 

N = 512, trend = 31N. 
S4 S6 S8 Haar OLS 

0=0 1 1 1 1 1 
0=.15 1 1 1 1 1 
0=.30 .92 .83 .87 .99 1 
0=.45 .40 .31 .35 .58 .74 

N = 512, trend = 51N. 
S4 S6 S8 Haar OLS 

0=0 1 1 1 1 1 
0=.15 1 1 1 1 1 
0=.30 1 1 1 1 1 
0=.45 .77 .61 .67 .95 .98 

Table V. Estimated powers 

N = 1024, trend = lIN. 
S4 S6 S8 Haar OLS 

0=0 1 1 1 1 1 
0=.15 .85 .75 .79 .94 .99 
0=.30 .25 .22 .24 .35 .54 
0=.45 .08 .07 .08 .11 .20 

N = 1024, trend = 31N. 
S4 S6 S8 Haar OLS 

0=0 1 1 1 1 1 
0=.15 1 1 1 1 1 
0=.30 .98 .95 .97 1 1 
0=.45 .34 .27 .30 .58 .88 

N = 1024, trend = 51N. 
S4 S6 S8 Haar OLS 

0=0 1 1 1 1 1 
0=.15 1 1 1 1 1 
0=.30 1 1 1 1 1 
0=.45 .75 .60 .66 .95 .99 
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Looking at Table Ill, i.e. when the sample size is equal to 256 observations and when the 

trend parameter is equal to lIN (i.e. low power), it is clear that the OLS method exhibits the 

highest power when compared with the different wavelet methods. However, the Haar 

wavelet has shown to have higher power than the other Symmlets types. The power of the 

Haar is almost close to the OLS in the case of no dependency and, in general, the power 

deteriorates when the dependency structure becomes stronger. 

When the trend parameter is equal to 3IN (i.e. medium power), all the methods exhibits high 

power (almost equal one) when there is no or low dependency. With very high dependence, 

the OLS is still best, but the power is lower. Finally, when we have high power (i.e. trend 

parameter equal 5IN), the OLS and the Haar perform very similarly with powers equal to one, 

even in such situations when the dependence structure is very high. 

This is almost the case when the sample size is equal to 512 observations. The estimated 

powers become somewhat higher in general except in the case of the OLS, with medium trend 

parameter. The power in this case was a bit lower than in the case of 256 observations (see 

Table IV). 

Finally, in Table V we present the estimated powers when the sample size is equal to 1024 

observations. The powers were also a bit higher in this case. With lIN trend parameter the 

results of the Haar are almost similar to those of the OLS, except with high dependency 

structure in the error, in this case the OLS has higher power than the Haar but it is still around 

20%. On the other hand, when the trend parameters are equal to 3IN and 5IN, with no, low or 

medium dependence in the error structure, all the methods exhibit the highest power value of 

one. 

Regarding the fat tailed distribution, we in Table VI present results of the estimated power 

when the errors are generated from the t(3) distribution. When the errors are generated from 

the t(5) distribution, the results have shown to be fairly similar to those in the case of normally 

distributed errors, and are hence not included in this paper. Looking at Table VI, we can see 

that almost all the methods exhibit an estimated power value equal to one in all situations. The 

only exception is when the sample size equals 256 and 512 and when the trend parameter 

equals lIN. The OLS and the Haar have shown to exhibit higher power than the others, and 
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the powers are generally rather low when comparing with those obtained when the errors are 

generated from the normal distribution with zero dependency. 

Table VI. Estimated powers using the t(3) distribution, 

N=256 
S4 S6 S8 Haar OLS 

Trend = lIN .48 .40 .43 .69 .86 
Trend = 31N .99 .99 .99 1 1 
Trend = 51N 1 1 1 1 1 

N=512 
S4 S6 S8 Haar OLS 

Trend = lIN .73 .65 .69 .88 .98 
Trend = 31N 1 1 1 1 1 
Trend = 51N 1 1 1 1 1 

N= 1024 
S4 S6 S8 Haar OLS 

Trend = lIN .97 .94 .96 .99 1 
Trend = 31N 1 1 1 1 1 
Trend = 51N 1 1 1 1 1 

The factors that affect the power of the G and t test statistics proved to be rather similar to 

those that affect the size. The number of observations and the strength of the dependency 

structure in the series had a considerable effect on the estimated powers. Using the t(3), the 

power is rather low in the case when the trend parameter is equal to lIN, i.e. very low trend. 

Generally, we find that when using the Haar wavelet, the G test exhibits more power than 

when using the Symmlets type wavelets. The OLS exhibits the highest power among the other 

methods when the trend is very low, while for medium and high trends the G test based on the 

Haar and OLS exhibits fairly similar power. All methods perform similarly in large samples 

and high trend. Note that the good performance of the OLS method is almost expected since 

this method is known to be best when testing for linear trends. However, in the near future we 

intend to investigate situations with non linear trends which may give another picture of the 

test's performances. 
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6. EMPIRICAL STUDY 

In this section we apply our approach to real data. Knowledge of natural climatic variations 

on century scales is essential to the search for a man-made or a natural activity on the global 

climate. The foremost question is whether there is evidence for global warming. Statistically, 

global warming can be interpreted as an increasing deterministic trend. However, the 

interpretation of trends in observed temperature data is complicated, because the measured 

trends are different for different time periods. 

Smith (1993) showed that the global temperature data have a steady rise from about 1910 to 

1940, but there followed a period when temperatures were static or even decreasing until 

1975, which could mean that the temperature data follow a long memory process. Such 

dependency can very likely affect the trend estimates and, therefore, should be taken into 

account when estimating and testing for trends. 

Our data set consists of 1792 observations of seasonally adjusted monthly temperatures for 

Stockholm during the years 1850-1999. The global temperature series is plotted in Figure 2 

and suggests the possible presence of an increasing trend (global warming). Using the 

maximum likelihood method we get an estimated value of the long memory parameter 8 

equal to 0.15. 

We now apply the methodology developed in Section 3 to Stockholm's temperature data. The 

critical values of the temperature data have been calculated by means of Monte Carlo 

simulations using 10,000 replications with sample size equal to the real series (i.e., 1792 

observations) and g = 0.15. We applied the DWT at J = 7 and 8, using the Haar wavelet 

filter and the Symmlets wavelet filter (L = 8). We then calculated the wavelet based test 

statistic G and the OLS based test statistic t, and compared them with the respective simulated 

critical values, see Table VII below. The tests results indicated the existence of the trend 

among the data at least at the 10% and 5% levels confirming the hypothesis of the "global 

warming". Figure 3 shows the wavelet-based estimation of the trend for the temperature data, 

for J = 7 and J = 8. 
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Table Vll: Result for the G and t test statistics, along with their simulated critical limits. 

Test statistics 10% 5% 1% 

Haar 
1=7 0.056 0.041 0.046 0.057 
1=8 0.036 0.026 0.031 0.039 

S8 
1=7 .046 0.042 0.048 0.060 
1=8 .038 0.026 0.031 0.043 

OLS 7.42 3.09 3.90 5.69 
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1850 1900 1950 2000 

Figure 2. Stockholms temperature data. 

1850 1900 1950 2000 
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1850 1900 1950 

1850 1900 1950 

1850 1900 1950 

Figure 3. The estimates of the trend from a Haar and S(8) based on the DWT at J = 7 and 8, 
respectively. 
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7. CONCLUSIONS 

In this paper, using the wavelet analysis, we introduce an alternative approach for testing for 

the existence of trends. Under the normality assumption the tests can be shown to be 

asymptotically distributed as F. The distribution of the test is unknown, however, under other 

conditions, e.g. non-normality. We therefore generated empirical critical values in order to 

investigate the properties of the test. The investigation has been carried out using Monte Carlo 

simulations. A number of cases were studied where the number of observations, long memory 

parameter and the distribution of the errors have been varied. For each case we have 

performed 10,000 replications and studied four different nominal sizes. The power properties 

have also been investigated using 10,000 replications per case, where in addition to the 

properties mentioned above the strength of the trend parameters has also varied. We then 

compared the results from the wavelet based test statistic with the OLS method for testing for 

linear trend. 

When using the tabulated critical values from the F or t distributions, the tests have shown to 

overreject the null hypothesis when it is true. On the other hand, when using the simulated 

critical values both the test's methods perform well regarding the size of the test. 

Regarding the power of the tests, the OLS has shown to have higher power than the wavelet 

based test when the trend parameter is very low and the long term parameter is high. The 

powers in these cases, however, are only around 20% even for the OLS based test. The power 

of the tests became higher with large samples, larger trend parameter and low long memory 

parameter. Under such conditions, almost all the methods behave similarly. 

When the errors are generated from a fat tailed distribution we found that the Haar wavelet 

and the OLS have very similar and very high powers, but somewhat less than in the cases 

when the errors are normally distributed without dependency. 

The methodology in this paper has been applied to an empirical study regarding the 

temperature data in Sweden for the period of 1850-1999. The results indicate a significant 

increasing trend in the temperature data which agree with the hypothesis of the "global 

warming" during the last 100 years. 

24 



Wavelets estimates have been found to take on a simple form in the Haar wavelet, and the 

advantage of the localisation in time and frequency leaves the estimate to vary with time in 

contrast to the OLS. This property gives us additional results of variability on different scales, 

and testing the significance of trend on different scales. 
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APPENDIX 

• The Discrete Wavelet Transform (DWT): 

Figure 4 shows a simple 4 elements data set X = {6,2,4,3} and their decomposition 

algorithm at level J = 2, using the Haar wavelet (ho= 1/ -fi , hJ=-1/ -fi , and 

gO=gl=1/ -fi ). 

X 6 2 4 3 

~H I 
111 1 1 1 

6x--2x-=4- 4x--3x-=-
-fi -fi -fi -fi -fi-fi 

~~ 
1 1 1 1 1 1 1 1 

6-x-+2x-=8- 4-x-+3x-=7-
-fi -fi -fi -fi -fi -fi -fi -fi 

H ~ I 
1 1 1 1 1 d2 8-x--7-x-=-

-fi -fi -fi -fi 2 

G~ 
1 1 1 1 1 

8-x-+ 7-x- = 15-
-fi -fi -fi -fi 2 S2 

Figure 4. An illustration of a decomposition procedure. 
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Alternatively, we can represent d1 and Sl in Figure 4 in term of matrices as follows: 

d = W X 

4_1_ 1 1 
0 0 

J2 J2 -J2 
1 1 1 6 

J2 
0 0 

J2 -J2 2 
= (11) 

8_1_ 1 1 
0 0 

4 

J2 J2 J2 3 

7_1_ 0 0 
1 1 

J2 J2 J2 

We call (11) the discrete wavelet transform at level 1 (i.e. 1=1). 

Traditionally, only the detail coefficients at all scales, and the smooth coefficients at the 

last scale are considered a complete set of wavelet coefficients. In our example of Figure 

4, the complete set is db d2 and S2. 

The discrete wavelet transform at level 2 (i.e. 1=2) which are d 1, d2 and S2 in Figure 4, 

can be presented as follows: 

d = W X 

4_1_ 1 1 
0 0 

J2 J2 -J2 
1 1 1 6 

J2 
0 0 

J2 -J2 2 
= (12) 

1 1 1 1 1 4 
-

2 2 2 2 2 3 

15~ 1 1 1 1 
-

2 2 2 2 2 
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• The MultiResolution Analysis (MRA): 

X=W'd (W is an orthonormal matrix, i.e. W-1= W\ A multiresolution analysis for (11) is: 

1 
0 

1 
0 4_1_ 

J2 J2 J2 
6 1 1 1 

-J2 0 
J2 

0 
J2 2 

= (13) 4 1 1 8_1_ 0 
J2 

0 
J2 3 J2 

0 
1 

0 
1 7_1_ -J2 J2 J2 

WI d1 VI SI Dl 81 

1 
0 

1 
0 

J2 J2 4 
1 4_1_ 1 8_1_ 2 4 

-J2 0 
J2 

0 
J2 J2 -2 7 = + = + (14) 

0 
1 1 

0 
1 7_1_ 1 2 

J2 J2 J2 J2 -1 7 

0 
1 

0 
1 2 

-J2 J2 

We call (14) the multiresolution analysis at level 1 (i.e. 1=1). 

We now have two series Dl and 8 1 and the Sll and S12 are the averages of the first two 

observations while the S13 and S14 are the averages of the last two observations. 

In the same way we can compute the multiresolution analysis at level 2 (i.e. 1=2) from 

(12). Note that the S21, S22, S23 and S24 are the average of the X. 
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Revenue Using Wavelets Analysis on Finish Data. 
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ABSTRACT 

Quarterly data for the period 1960:1 to 1997:2, conventional tests, a bootstrap simulation approach and 
a multivariate Rao's F-test have been used to investigate if, the causality between government 
spending and revenue in Finland have been changed at the beginning of 1990 due to future plans to 
create the European Monetary Union (EMU). The results indicated that during the period before 1990, 
the government revenue Granger caused spending, while the opposite has happened after 1990, which 
agrees better with Barro's tax smoothing hypothesis. However, when using monthly data instead of 
quarterly data for almost the same sample period, totally different results have been noted. 

The general conclusion is that the relationship between spending and revenue in Finland is still not 
completely understood. The ambiguity of these results may well be due to the fact that there are 
several time scales involved in the relationship, and that the conventional analyses may be inadequate 
to separate out the time scale structured relationships between these variables. Therefore, to 
empirically investigate the relation between these variables we attempt to use the wavelets analysis 
that enables to separate out different time scales of variation in the data. We find that time scale 
decomposition is very important for analysing these economic variables. 

Key words: Wavelets; Timescale; Causality tests; Spending; Revenue; EMU 
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1. INTRODUCTION 

Wavelet is a fairly new approach in analysing data (e.g. Daubechies 1992) that is becoming 

increasingly popular for a wide range of applications (e.g. statistics, time series analyses). 

This subject is not really familiar in econometrics, however, and very few studies have used 

the wavelets in econometric applications (e.g. Ramsey and Lampart 1998, Goffe, W.L. 1993). 

Ramsey and Lampart (1998) have used the wavelet analysis and found it useful in studying 

the relationship between money and income. The idea was based on the fact that the time 

period (time scale) of the analysis is very crucial for determining those aspects of decision 

making that are relatively more important, and those that are relatively less important. 

Moreover, they stated that in econometrics one can envisage a cascade of time scales within 

which different levels of decisions are being made. Some decisions are taken with long 

horizons, others with short horizons. The authors used the US Federal Reserve Board as an 

example to show that the choice of the time scale determines not only the length of the period 

over which one requires forecasts of future events, but also the very choice of the variables 

that are to be the focus of the decision maker's processing of information. They empirically 

investigated the relation between money and income by using wavelet analysis that enables to 

separate out different time scales of variation in the data. Shortly speaking, they investigated 

the role of time scale in economic relationships in terms of money and income relationship. 

In this paper we use the wavelets analysis in studying the relationship between government 

spending and revenue in Finland. There is some controversy about the nature of the 

relationship between spending and revenue and the extent to which the relevant theory is 

supported by the empirical evidence. 

The issue of curtailing budget deficits is one of the central themes of economic policy in 

many member countries of the European Union (EU) and is one of the key convergence 

criteria of the European Monetary Union (EMU) membership. Correcting fiscal imbalances is 

a necessary precondition for the EMU membership. As a matter of fact, government spending 

has often exceeded government revenues in almost all member counties of the EU. 

The question of interest focuses on the causal nexus of government spending and revenue in 

the new member countries of the ED. Hence, it is important to investigate whether the 
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political system first decides how much to spend and then decides how much to bring in as 

revenue. In other words, we are investigating whether the decisions regarding the amount of 

spending in these countries precede the decisions regarding the amount of taxes, or if 

connection is the other way around, or if these decisions are taken simultaneously. 

Another question of interest is how the convergence criteria of the EMU affect the causality 

nexus? That is, has the causality changed at the beginning of 1990 because of the future plans 

of creating the EMU. 

Shukur and Hatemi-l (1998), and Hatemi-l and Shukur (1999), investigated this subject and 

tried to answer analytically these questions regarding government financial policy in Finland. 

In Shukur and Hatemi-l (1998), the authors applied a V AR model and a VECM on quarterly 

data and found that only government revenue Granger causes spending for the sample period 

1960:1 to 1997:2. This result did not accord with Barro's (1979) tax smoothing hypothesis, 

which assumes that causality runs from government spending to revenue. This hypothesis 

takes the path of government spending to be exogenous and taxes are adjusted to minimise 

distortion, while the budget is balanced intertemporarilly. However, in order to answer the 

question whether the causality changed at the beginning of 1990 because of the future plans of 

creating EMU, the authors split the sample into two subsamples, before and after 1990, and 

separately performed tests for Granger causality between spending and revenue in each 

subsample. They found that the causality nexus proved to exist from spending to revenue in 

the last subperiod, which agrees better with Barro's tax smoothing hypothesis. That is, the 

causality has changed direction at the beginning of 1990. One can, of course, think about this 

result as if the change might have happened due to the future plans of creating the EMU. 

In Hatemi-l and Shukur (1999) the authors used different test methods for the same purpose. 

In addition to the single equation Likelihood Ratio (LR) test for causality they used two other 

tests, the systemwise Rao's F-test (Rao, 1973), developed by Shukur and Mantalos (2000), 

and the bootstrap test developed by Mantalos (1998). The results from this study have been 

shown to be similar to those found by Shukur and Hatemi-l (1998). The Rao's F-test has been 

found to work very well in integrated cointegrated V AR systems, while the bootstrap test 

proved to work well even in such situations where the systems are not cointegrated. Note that 

in the Shukur and Mantalos test (2000) the authors use the Ordinary Least Squares (OLS) 

method, while we in this study use Zellner's Iterative Seemingly Unrelated Regression (ISUR) 

3 



method. The ISUR technique provides parameter estimates that converge to the maximum 

likelihood parameter estimates which are unique. 

In this paper, however, when using monthly data instead of quarterly data for almost the same 

sample period different results have been noted. The results obtained by using the monthly 

data have shown that there exist feedback relations (i.e. in two directions) between these 

variables over the entire sample period, 1960:01 to 1998:09. When splitting the data into two 

subsamples, 1960:01 to 1989: 12 and 1990:01 to 1998:09, similar results have been noted. 

These results are obtained by applying the three different test methods, i.e. the LR test, 

systemwise Rao's F-test and the bootstrap test. 

Therefore, the general conclusion is that the relationship between spending and revenue in 

Finland is still not understood completely. The ambiguity of these results may well be due to 

the fact that there are several time scales involved in the relationship, and that the 

conventional analysis may be inadequate to separate out the time scale structured 

relationships between the variables. 

Here we attempt to shed light on this issue by separating the empirical analysis of the 

relationship between the variables into that between the variables after separation into time 

scale components. Instead of considering the net relationship over all time scales as in the 

conventional analysis, we (as in Ramsey and Lampart, 1998) consider a set of relationships, 

one for each time scale. 

The paper is organised as follows: Section 1 gives an introduction. In Section 2 we introduce 

the wavelets analysis, while in Section 3 we present the data used in this study. In Section 4 

we present the model and the methodology. Section 5 describes estimation and testing 

procedures, and Section 6 presents the estimated results. Finally, we give a short summary 

and conclusions in Section 7. 
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2. WA VELET ANALYSIS 

The wavelet transform has been expressed by Daubechies (1992) as "a tool that cuts up data 

or functions into different frequency components, and then studies each component with a 

resolution matched to its scale". Thus, with wavelet transform one can analyse series with 

heterogeneous (unlike Fourier transform) or homogeneous information at each scale. Unlike 

the Fourier transform, which uses only sins and cosines as basis functions, the wavelet 

transform can use a variety of basis functions. 

The wavelet decomposition in this paper is made with respect to the so called Symlets basis, 

and we will hereby give a brief presentation about this decomposition methodology. Let 

X = (XO,X2 , ... ,XT- 1)' be a column vector containing T observations of a real-valued time 

series, and assume that T is an integer multiple of 2M , where M is a positive integer. The 

discrete wavelet transform of level J is an orthonormal transform of X defined by 

where W is an orthonormal TxT real-valued matrix, i.e. W-1 = W' so W' W = WW' = IT . 

d. = {d. k}' J' = 1,2, ... , J , are T / 2 j x 1 real-valued vectors of wavelet coefficients at scale j 
j j. 

and location k . 

The real-valued vector S J is made up of T / 2 J scaling coefficients. Thus, the first T - T / 2 J 

elements of d are wavelet coefficients and the last T / 2 J elements are scaling coefficients, 

where J :::; M . Notice that the length of X does coincide with the length of d (length of dj = 
2M-J, and S J = 2M

-
J
). 

In practice, the discrete wavelet transform is applied without exhibiting the matrix W, and 

we therefore use a fast filtering algorithms of order O(n) based on so called quadrature 

mirror filters that uniquely correspond to the wavelet of interest, see Mallat (1989). In what 

follows, we will merely consider the wavelet in terms of filters. 

5 



Now, let {1tr} == {1tr,Q"'" 1tr,L-1} denote the wavelet filter coefficients of a Daubechies 

compactly supported wavelet of width L, where L < T, and let {g1}=={g1,Q, ... ,g1,L-1} be the 

corresponding scaling filter coefficients, defined via the quadrature mirror relationship, 

for 1 =O, ... ,L-1. 

It is important to note that the first kind of wavelet filter is called the Haar wavelet, (Haar 

1910), which is a filter of width L = 2, that can be defined either by its wavelet coefficients, 

or, equivalently, by its scaling coefficients, 

The Haar wavelet is special since it is the only compactly supported (zero outside a finite 

interval) orthogonal wavelet that is symmetric. 

However, Daubechies (1992) developed a finite number of filter coefficients that are not only 

orthonormal, but also have compact support, i.e. the Daublets 'D(L)' and the Symmlets 

'S(L)'. Note that the Daublets are quite asymmetric while Symmlets were constructed to be as 

nearly symmetric as possible. 

The filters can be applied to any sequence a = {aT} through the operators Hand G 

(Ha)k = Lhr-2kaT ; (Ga)k = L gT-2k aT . 
T T 

An application of operator Hand G corresponds to one step in the discrete wavelet 

transformation. The complete discrete wavelet transformation is a process that recursively 

applies to the above equation. 

The algorithm starts by applying the filters to the data vector X and obtains the sub-vector of 

wavelet coefficients d 1 = HX together with the corresponding smooth coefficients 8 1 = GX 

at level j = 1. The procedure continues by applying the operators again to 81 to obtain 
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d 2 = HS 1 = GHX and S2 = G 2X, and so on until reaching the last scale J. The wavelet 

decomposition of the vector X can be represented as the vector d of the same size, given by 

For more details about the wavelet transform in terms of operators, see Strang and Nguyen 

(1996). The multiresolution analysis of the data leads to a better understanding of wavelets. 

The idea behind multiresolution analysis is to express W'd as the sum of several new series, 

each of which is related to variations in X at a certain scale. 

Now, since the matrix W is orthonormal we can reconstruct our time series from the wavelet 

coefficients d by using 

X=W/d. 

We partition the columns of W' commensurate with the partitioning of d to obtain 

where Wj is a TxT 12 j matrix and VJ is a TxT 12J matrix. Thus, we can define the 

multiresolution analysis of a series by expressing W' d as a sum of several new series, each 

of which is related to variations in X at a certain scale: 

J J 

X=W' d= LWjdj+VJ sJ =LDj+SJ • 

j=1 j=1 

The terms in the previous equation constitute a decomposition of X into orthogonal series 

components D /detail) and S J (smooth) at different scales, and the length of D j and S J 

coincides with the length of X (Txl vector). Because the terms at different scales represent 

components of X at different resolutions, the approximation is called a multiresolution 

decomposition, see Percival and Mofjeld (1997). 

As we mentioned earlier the wavelet decompositions in this paper will be made with respect 

to the Symlets basis. This has been done by using the S-plus Wavelets package produced by 
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StatSci of MathSoft that was written by Bruce and Gao (1996). Figure 2 and Figure 3 show 

the multiresolution analysis of order J = 6 based on S(8) wavelet filter. 

When choosing a specific kind of wavelets several factors should be taken into consideration. 

Two such important factors are the smoothness and the spatial localisation of the wavelet. In 

general the wavelets with a wider support (L is big) are smoother but spatially less localised, 

while the wavelets with a narrow support (L is small) are more spatially localised but less 

smooth. To get a reasonable degree of smoothness without loosing the property of spatial 

localisation we use quite a moderate size of L, i.e. L = 8. The Wavelet filter coefficients for 

the Symmlets of length 8, i.e. S(8), are given as follows: 

ho =0.07576571, hI = -0.02963553, h2 = -0.4976187, h3 = 0.8037388, 

h4 = -0.2978578, hs = -0.09921954, h6 = 0.01260397, h7 = 0.0322231. 

Recall that the scaling filter is related to the wavelet filter via the quadrature mirror filter 

relationship given by equation (1). 

Note that Ramsey and Lampart (1998) have used L = 10. Here, to investigate whether the use 

of other sizes of L has any impact on the results of the study, L = 6 and L = 10 have been used 

in some experiments, but we did not find any noticeable effects on our inferential statements. 

3. DATA 

The investigation of the causal relationship between government spending (S) and 

government revenue (R) is performed by using monthly data that are drawn from the 

International Monetary Found (IMF), and cover the period 1960:01 through 1998:9. The 

variables are chosen to be in logarithmic form, and hereafter will be referred to as lnS and lnR, 

respectively. 

As mentioned in Section 2 wavelet can help us in decomposing the original series into a set of 

orthogonal series components that provide representations of the original series. Usually a 

series is decomposed into six different components, e.g. D1, D2, ... , D6, that stand for 

different frequency intensities in the original series, and a last component (S6) which stands 
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for the long run trend in the series. To explain, the time scale D 1 stands for the finest level in 

the series and represents the highest frequency that occurs at the one-month scale. In the same 

manner, the D2 can stand for the next finest level in the series and represents the two-month 

scale, D3 for the four-month-scale, D4 for the eight-month scale, D5 for the sixteen-month 

scale and finally, D6, which may stand for the 32-month scale. 

In addition to the monthly data we examined the relationship between the revenue and 

spending when the variation in each variable has been restricted to a specific scale, i.e., when 

the variables are transformed by wavelet transformation into the different time scales, Dl to 

D5 (see Figures 1 and 2). We did not use the D6 scale since it was difficult for us to find a 

useful interpretation of a 32-month scale. Note that the S6, in these figures, stands for the log 

term trend and has not been considered in our causality analysis. 

Using wavelet, we reconstructed the above mentioned time series by time scales and the 

relations between the variables at each time scale. We then examined and illustrated how the 

extent to which an allowance for different effects by scale and variations in the relationships 

over time leads to insight into the total variation of the signal over time. 
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Figure 1. Time series plots of data for LnR and their different scales. 
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4. MODEL SPECIFICATION AND TESTING METHODOLOGY 

By causality we mean causality in the Granger (1969) sense. That is, we would like to know if 

one variable precedes the other variable or if they are contemporaneous. The Granger 

approach to the question whether inS causes inR is to see how much of the current value of 

the second variables can be explained by past values of the first variable. inR is said to be 

Granger-caused by inS if inS helps in the prediction of inR, or equivalently, if the coefficients 

of the lagged inS are statistically significant in a regression of inR on inS. Empirically, one 

can test for causality in Granger sense by means of the following vector autoregressive (VAR) 

model: 

k k 

InRt = ao + :L,.a i InRt_i + :L,.bi InSH + elt ' (1) 
i=l i=l 

k k 

In St = Co + :L,. ci InRt_i + :L,. h InSt_i + e2t ' (2) 
i=l i=l 

where elf and e2f are error terms, which are assumed to be independent white noise with zero 

mean. The number of lags, k, will be decided by using the Schwarz (1978) information 

criteria, the Hanna and Quinn (1971) criteria and the systemwise likelihood ratio (LR) test. In 

order to see if the variables are cointegrated (i.e. if there exists any long run relationship 

between the variables) we first test for integration of each variable. A variable is integrated of 

order d, denoted led), if it must be differenced d times to achieve stationarity. We use the 

augmented Dickey-Fuller (1979, 1981), in what follows referred to as ADF, tests for deciding 

the integration order of each aggregate variable. The distinction between stationary I (0) and 

non-stationary I (1) processes is a first step in analysis of time series. Several authors take the 

first difference to remove nonstationarity, while others are restrictive against differencing 

believing that information will be lost. Note that, to achieve stationarity, Ramsey and Lampart 

1998 have used the data in logarithmic differenced form. Hence, to avoid any eventual loss of 

information, we in this study use the original series but in logarithmic form. 

In the rest of this section we will present the different approaches tests for causality that we 

use in this study, i.e. the conventional singlewise (LR) test, and the two recommended, Rao's 

F-test and the Bootstrap test mentioned in Shukur and Mantalos (2000) and Mantalos (1998), 

respectively. 
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4.1. Conventional Causality Test (singlewise LR test) 

According to Granger and Newbold (1986) we can test for causality in the following way: 

We construct a joint F-tests for the inclusion of lagged values of InS in (1) and for the lagged 

values of InR in (2). The null hypothesis for each F-test is that the added coefficients are zero 

and therefore the lagged InS does not reduce the variance of InR forecasts (i.e. bi in (1) are 

jointly zero for all i), or that lagged InR does not reduce the variance of InS forecasts (i.e. Ii in 

(2) are jointly zero for all i). If neither null hypothesis is rejected, the results are considered as 

inconclusive. On the other hand, if both of the F-tests rejected the null hypothesis, the result is 

labelled as a feedback mechanism. A unique direction of causality can only be indicated when 

one of the pair of F-tests rejects and the other accepts the null hypothesis. 

4.2. The Systemwise Rao's F-test 

In this subsection we present the Granger-causality test by using the multivariate Rao's F-test. 

Consider the following V AR(p) process: 

(3) 

I 

where C I = (c ll , ... , C kl ) is a zero mean independent white noise process with nonsigular 

1 1

2+'1" 
covariance matrix Le and, for j = 1, ... ,k, E C jl < 00 for some 't > O. The order p of the 

process is assumed to be known. Now, by portioned YI in (m) and (k-m) dimensional sub­

vectors Y: and Y; and A; matrices portioned comformably then Y; does not Granger-cause 

the y: if the following hypothesis: 

Ho = A 12,j = 0 for = 1, ". , p-1. (4) 

is true. 

Let us define: 

Y: = (YP"" YT) (k x T) matrix, 

B: = (v,Al'".,A p ) (k x (kp+ 1)) matrix, 
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1 

((kp + 1) x 1) matrix, 

Yt-p+l 

Z: = (ZO,,··,ZT-l) ((kp+1) x T) matrix, and 

8: = (cp ... ,cT) (k x T) matrix. 

By using these notations, for t = 1, ... , T, the V AR (p) model including a constant term (v) 

can be written compactly as: 

Y = BZ + 8. (5) 

We first estimate model (5), equation by equation, using the OLS method. The whole VAR 

system is then estimated using Zellner's Iterative Seemingly Unrelated Regression (rSUR) 

method. As we previously mentioned, the rSUR technique provides parameter estimates that 

converge to the maximum likelihood parameter estimates which are unique. 

Let us denote by 8u , the (k x T) matrix of estimated residuals from the unrestricted regression 

(3), and by 8R the equivalent matrix of residuals from the restricted regression with H6 

imposed. The matrix of cross-products of these residuals will be defined as Su = 8u '8u and 

SR = 8R '8R respectively. The Rao's F-test can be then written as: 

RAO = (f/J/q)(Ul/s -1) (6) 

where s= <I>=~s-r, ~ =T-(k (kp+1)-Gm)+Y2 [k(G-l)-I], 

r = q/2 -1, and U = detS R /detSu . q = Gm2 is the number of restrictions imposed by Ho ' 

where G is the p restriction in (3) and m is the dimension of the sub-vector y~. RAO is 

approximately distributed as F(q, f/J) under the null hypothesis, and reduces to the standard F 

statistic when k = 1 . 
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4.3. The Bootstrap Testing Approach 

In this subsection we present the Bootstrap testing procedure (Efron, 1979). Generally, the 

distributions of the test statistics we use are known only asymptotically, which means that the 

tests may not have the correct size, and inferential comparisons and judgements based on 

them could be misleading. However, several studies (e.g. Horowitz, 1994; Mantalos and 

Shukur, 1998; and Shukur and Mantalos, 1997), have shown the robustness of the bootstrap 

critical values. 

From regression (5), a direct residual resampling gives: 

y* = HZ' +8* (Sa) 

where 8' are i.i.d. observations 81*, ... , 8T', drawn from the empirical distributions (Po) putting 

mass liT to the adjusted OLS residuals (8i -"8), i = 1, ... , T. The basic principle of the 

Bootstrap testing is to draw a number of Bootstrap samples from the model under the null 

hypothesis, calculate the Bootstrap test statistic (~*). The Bootstrap test statistic (~.) can 

then be calculated by repeating this step Nb number of times. We then take the (a):th quantile 

of the bootstrap distribution of ~* and obtain the a-level "bootstrap critical values" (c;a). We 

then calculate the test statistic 0: ) which is the estimated test statistic. Finally, we reject the 

null hypothesis if rr: ::; c;a. 

As regards Nb, the number of the bootstrap samples used to estimate bootstrap critical value, 

Horowitz (1994) used the value of Nb=100. In this study we follow the recommendation in 

Davidson and Mackinnon (1996) and use Nb=1000 to estimate the P-value. 
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5. ESTIMATION AND TESTING PROCEDURES 

In this paper, we intend to study the causal nexus of government spending and revenue in 

Finland by constructing a vector autoregressive (V AR) model that allows for causality test in 

the Granger sense. For this purpose, we propose a simple strategy for how to select an 

appropriate model by successively examining the adequacy of a properly chosen sequence of 

models, using both single equation and systemwise tests. Note that the methodology used for 

misspecification testing in this paper follows the ideas described in Godfrey (1988). We apply 

his line of reasoning to the problem of autocorrelation, and then extend it to other forms of 

misspecification. Systemwise Rao's F-test have been adopted to test the adequacy of the 

model. If the systemwise misspecification tests lead to rejection, single equations tests will be 

conducted to identify specific equationls that may lead to misspecification. 

Our aim is to find a well-behaved model, which satisfies its underlying statistical 

assumptions, and which at the same time agrees with theoretical restrictions of economic 

theory. Given such a model, we then test for the presence and direction of the causality, and 

draw some conclusions about the study. In this study we use the standard program packages 

EViews, RATS, CATS, S-plus, and Gauss. 

In Figure 3, we present an outline of our strategy for how to solve issues regarding 

specification of models and choice of proper ways to tackle situations that can arise with non­

stationary series. 

In order to construct a model to fit a specific data set, model builders make use of prior 

information derived from economic theory and previous experiences. In our study of the 

relationship between government spending and revenue in Finland we try to construct, 

estimate, test, and analyse a V AR model that adequately represents the relationship and mimic 

the true data-generating process. Given that such a model exists, we will then study other 

theoretical restrictions imposed by economic theory, and draw some important inferential 

statements. 
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Figure 3: Model Selection and Testing Strategy Outline 

If not I(d) 

Sign. 

Economic theory, past 
experiences, other studies 

Formulate a model or 

Testing the integration 
order of the variables 

IfI(d), d;?: 0 

Specify the order of V AR model: 
Schwarz, HQ and/or LR-test 

Diagnostic tests and test for 
structural change 

Non sign. 

I(d), d = 0, i.e. 1(0) I(d), d> 0 

Test for Granger causality 
LR , Rao and bootstrap 

tests 

Test for Granger causality 
by bootstrap test 

First, we use the ADF test to consider the integration nature of the variables included in the 

VAR model. If the variables are stationary, i.e. 1(0), we then apply the VAR model and carry 

out our estimation procedure. If the variables are non-stationary, any regression between them 

may be spurious. Accordingly, a test for cointegration has to be performed. Note that, 

according to the Granger (1969) representation theorem, the variables that are cointegrated 

have an error correction model (ECM) representation, and vice versa. Hence, another 

possibility for estimation is also available, i.e. the VECM. In this study, however, we only 

concentrate on applying the V AR model. 
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Second, we determine the suitable degree of the V AR process by considering a number of 

VAR models. We begin by estimating these models equation by equation using the OLS 

method.! We will then specify the order of the V AR model. There are two common ways, to 

do that, either using the LR test, or using some model selection criteria (e.g., the Schwarz 

(1978), Hannan and Quinn (1979) information criteria, in what follows referred to as SC and 

HQC respectively). The model that minimises these criteria will be selected. 

Third, we apply a battery of diagnostic tests to ensure the appropriateness of the model and if 

the statistical assumptions are indeed satisfied. Now, if a model is subjected to several 

specification tests, one or more of the test statistics may be so large (or the p-values very 

small) that the model is clearly unsatisfactory. At that point one either has to modify the 

model or search for an entirely new one. For example, if the residuals appear to be 

autocorrelated, then we can reestimate the model using lag lengths that yield serially 

uncorrelated residuals. Hence, we may face a sequence of candidate models that are almost 

free from autocorrelation. In this case we recommend starting from the beginning, using the 

models selection criteria, and to perform other diagnostic tests to choose the proper model. 

Fourth, if the chosen model is shown to be fairly adequate, we reconsider the integration 

nature of the included variables and proceed as follows: 

When the variables are stationary, we will continue our procedure by testing the variables 

included in the selected VAR model for causality, in the Granger sense, using any of the 

previously mentioned tests. Here, we can verify if there is any causal nexus between the 

variables. On the one hand, if the variables are not stationary, we test for cointegration 

between them using the Johansen (1988) procedure. If there is indication of cointegration, we 

can still use any of the tests to investigate the causality relationship between the variables. On 

the other hand, in the case of non-cointegration between the variables, then only the bootstrap 

test approach can support us with reliable results for causality. By following the strategy 

outlined here, one can avoid inadequate models that might lead to misleading results and 

inferences. 

! Note that the OLS estimates are both consistent and asymptotically efficient and that the Seemingly Unrelated 
Regressions (SUR) do not add to the efficiency of the estimation procedure since each equation in the V AR 
model contains the same right-hand-side variables. The Iterative Seemingly Unrelated Regressions (ISUR) 
method should be used, however, if cross-equation restrictions are imposed. In such case the ISUR technique 
provides parameter estimates that converge to the maximum likelihood parameter estimates, which are unique. 
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6. RESULTS 

In this section we present the estimation results of applying the following testing and 

estimation procedure. Firstly, we test the variables (i.e. those of the monthly data and those 

that are produced by the wavelets transformation) for stationarity by applying the ADF test. 

Secondly, we determine the order of the V AR process by using the SC, HQC information 

criteria and LR test. Thirdly, cointegration analysis, according to the Johansen (1988) 

procedure, is performed. Fourthly, and finally, tests for Granger causality are carried out on 

the selected V AR model. Note that this procedure has been applied once for the entire sample 

period, i.e. 1960:01 to 1998:9, and then separately for each of the two subperiods, 1960:01 to 

1990:01 and 1990:02 to 1998:9, respectively. 

When looking at the whole sample period of the monthly data, the ADF test results indicate 

that each variable is integrated of the same order one, i.e., 1(1). For the time scales that are 

produced by the wavelet transformation, the test results indicate that all the series are to be 

considered as stationary variables. This is even the case for the separated sample periods. 

Using the above mentioned SC, HQC information criteria and LR test, we find the selected 

orders of the V AR process for each time scale. Repeating this procedure for each subsample, 

we find that the order of the VAR process remain the same. The same is right even when 

testing for the cointegration between the variables. The results from the Johansen test 

procedure have shown that the V AR systems for the integrated variables in the monthly data 

are cointegrated for all the sample periods. 

When determining the manner of presentation, some account has to be taken to the results 

obtained. Our original intention was to present the results for the three time periods 

separately, but since the stationarity and cointegration results have shown to be the same for 

all the periods, and also, to make it easier to follow all the results from the study, we present 

our results in one overall table, Table I. The results from the different causality tests have 

shown to be fairly similar, and are also presented in this table. In what follows, we analyse the 

results starting by the monthly data and then the different wavelet's time scales. 

When looking at the entire sample period and using the monthly data, the evidence indicates 

strongly feedback effect between the variables, i.e., that LnS and LnR are shown to strongly 
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TABLE 1. Overall Estimated Results, P-values. 

1960-1998 1960-1990 1990-1998 

VAR Nature of Test methods Results Null Hypotheses Results Null Hypotheses Results Null Hypotheses 

Time scale LIIS LnR order VAR for causality LnS # LnR LnR #LnS LnS #LIIR LnR #LnS LIIS #LnR LnR #LnS 
Single-LR: InS ¢::} InR 0.0000 0.0010 InS ¢::} InR 0.0000 0.0063 InS ¢::} LnR 0.0004 0.0173 

Monthly data l(l) 1(1) (5) Cointegrated Rao F-test: LnS ¢::} LnR 0.0000 0.0004 LnS ¢::} LnR 0.0000 0.0025 LnS ¢::} LnR 0.0020 0.0009 
Bootstrap: LnS ¢::} LnR 0.0000 0.0006 LnS ¢::} LnR 0.0000 0.0004 LnS ¢::} LnR 0.0023 0.0016 
Single-LR: LnS=}LnR 0.0012 0.0687 inconclusive 0.1565 0.0753 LnS=}LnR 0.0000 0.0981 

01 1(0) 1(0) (6) Stationary Rao F-test: LnS=}LnR 0.0018 0.0653 inconclusive 0.1565 0.0653 LnS=}LnR 0.0001 0.0671 
Bootstrap: LnS=}LnR 0.0020 0.0630 inconclusive 0.1490 0.0680 LnS=}LnR 0.0000 0.0820 
Single-LR: inconclusive 0.0700 0.9529 inconclusive 0.2980 0.9333 LnS=}LnR 0.0166 0.8855 

D2 1(0) 1(0) (4) Stationary Rao F-test: inconclusive 0.0719 .9500 inconclusive 0.2988 0.9334 LnS=}LnR 0.0155 0.7579 
Bootstrap: inconclusive 0.0710 0.8900 inconclusive 0.2960 0.9380 LnS=}LnR 0.0160 0.7930 
Single-LR: inconclusive 0.7520 0.5292 inconclusive 0.7705 0.6953 inconclusive 0.3298 0.6021 

03 1(0) 1(0) (2) Stationary Rao F-test: inconclusive 0.8672 0.4599 inconclusive 0.7710 0.6960 inconclusi ve 0.6954 0.5153 
Bootstrap: inconclusive 0.7080 0.5290 inconclusive 0.7910 0.7230 inconclusive 0.7140 0.5910 
Single-LR: inconclusive 0.1556 0.3736 inconclusive 0.3631 0.5758 LnS=}LnR 0.0141 0.3869 

04 1(0) 1(0) (4) Stationary Rao F-test: inconclusive 0.1300 0.3491 inconclusive 0.3638 0.5765 LnS=}LnR 0.0149 0.5153 
Bootstrap: inconclusive 0.1360 0.3340 inconclusive 0.3630 0.5660 LnS=}LnR 0.0110 0.4750 
Single-LR: inconclusive 0.5296 0.3714 inconclusive 0.1311 0.5279 inconclusive 0.9733 0.4320 

05 1(0) 1(0) (5) Stationary RaoF-test: inconclusive 0.5299 0.3717 inconclusive 0.1314 0.5283 inconclusive 0.3463 0.8320 
Bootstrap: inconclusive 0.5900 0.5090 inconclusive 0.1660 0.5080 inconclusive 0.8720 0.7110 
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Granger cause each other. We obtained similar indications even for the separate subperiods, 

1960:01 to 1990:01 and 1990:02 to 1998:9. This may mean that the decisions regarding the 

amount of spending and the decisions regarding the amount of taxes are taken simultaneously. 

Looking at the very finest time scale, Dl, the evidence from the whole sample period, 

indicates that LnS strongly Granger cause LnR. When analysing the first subperiod, however, 

the results indicate inconclusive causality nexus between the variables. When analysing the 

second subperiod, however, the results have shown that causality nexus may exist from LnS to 

LnR, which agrees better with Barro's tax hypothesis and those results found by Shukur and 

Hatemi-J (1998), using the quarterly data. 

At the next finest time scale, D2, when looking at the entire period and the first subperiod, the 

results indicate inconclusive causality relation, while we find that LnS strongly Granger cause 

LnR during the second subperiod. The results from the second subperiod support those of D 1 

that are obtained from the same subperiod. 

At the first intermediate time scales, the second intermediate time scales and the highest level 

of time scale, i.e., D3, D4, and D5, respectively, the results indicate inconclusive causality 

relation between the two variables in almost all cases. The only exception is for D4 during the 

second subperiod, the results in this case have shown that only LnS Granger causes LnR. 

Note that when considering Figure 1 and 2, we can see how the wavelet transformations can 

successfully and clearly zoom out the high frequency variations in the data, which is not so 

clear when considering the original monthly data. A clear consideration of, for example, the 

second subperiod of the time scales D 1 and D2 can show that the variations in the LnS series 

are much higher than the variations in the LnR series. This may give an alternative indication 

of the influence of the LnS on the LnR. 

The results are fairly plausible. When analysing the monthly data, the relation between these 

variables indicate a feedback mechanism in all cases, which can imply that the decisions 

regarding the amount of spending and the decisions regarding the amount of taxes are taken 

simultaneously. On the other hand, when looking at the finest, and second intermediate scales, 

Dl, D2 and D4, respectively, we generally find that strong causality nexus may exist from 

LnS to LnR during the second time period. This can imply that the decisions regarding the 
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amount of spending precede the decisions regarding the amount of taxes, which agrees with 

Barro's tax hypothesis. In other words, at those time scales or at low frequencies, the political 

system in Finland, during the second subperiod, first decides how much to spend and then 

decides how much to bring in as revenue by taxes. This can be a result of the future plans of 

creating EMU. 

7. CONCLUSIONS 

In this paper, we empirically investigate the relation between government spending and 

revenue by using wavelet analysis that enables to separate out different time scales of 

variation in the data, i.e. we investigate the role of time scale in economic relations in terms of 

government spending and revenue. 

When investigating the causal nexus of government spending and revenue in Finland, using 

monthly data and quarterly data, different results have been obtained. This may be due to the 

fact that there are several time scales involved in the relationship, and that the conventional 

analysis may be inadequate to separate out the time scale structured relationships between the 

variables. 

Hence, we used the wavelet analysis in investigating the causal nexus of government 

spending and revenue in Finland during the period 1960:01 through 1998:09. Different test 

methods have been used to investigate the causality nexus between these variables. The most 

interesting result is that when looking at the finest, and second intermediate scales, Dl, D2 

and D4, respectively, tests results indicate that strong causality nexus may exist from LnS to 

LnR during the second time period, i.e., 1990 to 1998. This can imply that the decisions 

regarding the amount of spending precede the decisions regarding the amount of taxes, i.e. the 

political system in Finland, first decides how much to spend and then decides how much to 

bring in as revenue by taxes. The above result agrees with Barro's tax hypothesis and can be a 

result of the future plans of creating EMU. 
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