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Statistical Test of the Existence of a Turning Point 

By LENNART ANDERSSON 

Department o/Statistics, Goteborg University, SE-40530 Goteborg, Sweden 

ABSTRACT 

A method for testing monotonicity versus unimodality is presented. One specification of 

the problem is treated in detail. It is also discussed how transformations and 

combinations can be used to get solutions for other specifications. A maximum 

likelihood ratio test based on non-parametric regression estimates is derived. A test with 

an upper limit for the size is presented. The power of the test is examined by a 

simulation study. 

Keywords: TURNING POINT; LIKELTIIOOD RATIO; NON-PARAMETRIC; 

MONOTONIC REGRESSION; UNIMODAL REGRESSION. 

1 



1. Introduction 

In several areas of science we can find relations between two variables, which are 

considered to include a turning point. It could be situations where the relations consist 

of a down-phase followed by an up-phase or the opposite. The aim of this work is to 

develop methods, which are useful in such cases. We are going to deal with problems in 

which both the null and alternative hypotheses impose order restrictions. For simplicity 

we focus on a single explaining variable but adjustment for other factors can be made. 

In Section 2, a family of statistical models is described. Most notations and 

specifications are given in this section. In Section 3, a maximum likelihood ratio test is 

derived. Some properties of the test statistic are discussed and some statements about 

the distribution of the test statistic are made. In Section 4, a conservative test is 

constructed and in Section 5, the power of this test is examined. In Section 6, the 

problem of making inference about the monotonicity properties of a continuous curve 

from information at discrete design points is discussed. In Section 7, some concluding 

remarks are given. 

1.1 Some applications 

An example of a case where it is of interest to verify a turning point is the relation 

between the daily consumption of alcohol and health. Earlier it was assumed that the 

risk of bad health increases monotonically with the alcohol consumption. Now, when 

more information is available (Power, Rodgers, & Hope, 1998), it is assumed that the 

risk is decreasing with increasing amount of alcohol up to some consumption value. 

Consumption, larger than this value, then increases the risk of bad health. The question 

whether the regression includes a down-phase followed by an up-phase could be 

answered by the test given here. 
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Another example is the relation between the risk a child having Down's syndrome and 

the age of the woman in confinement. One has earlier considered that the risk that a 

child has Down's syndrome increases with the age of the mother. Lately one has begun 

to suspect that also very young women have increased risk to bear children with Down's 

syndrome. The shape of the relation between the probability of the syndrome and the 

age of the mother could be examined by means of the test described here. 

In a trial, cancer patients are treated with radiotherapy regimes with the aim to reduce 

pain as long as possible. There are several patterns of response. Some patients have a 

quick reduction of pain, some, get the relief later. For some patients the relapse is early 

for others it is late. All of them have a unimodal response curve. For some, the relief 

might be permanent and the response curve is monotonic. It is of interest to classify 

patients according to the monotonic or unimodal pattern. 

Relations in the economic area are often considered to include a turning point. Examples 

of such relations are marginal productivity against the quantity of labour, and demand of 

inferior goods against household income. Also the turning points of business cycles are 

of great interest (Andersson, 1999). 

These examples indicate that there is a need for a statistical test for the existence of a 

turning point. 

1.2 Earlier work 

When investigating a potentially unimodal relationship a common approach is to split 

the axis for the explaining variable into intervals and to plot the average of the response 

for each interval. This is often done for several potential splittings. It thus contains 

arbitrariness and is no base for formal statistical analysis. 

Another common approach is to fit a more or less flexible parametric regression 

function. The most frequently used approach might be to fit a quadratic function and 
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then test if the parameter corresponding to the non-linearity is significantly different 

from zero. This was done in (Samuelsson, Wilhelmsen, Pennert, Wedel, & Berglund, 

1990). 

A more flexible function consisting of two quadratic parts was suggested in 

(Goetghebeur & Pocock, 1995), where several tests based on this model are suggested. 

It is pointed out that the power of this kind of tests is much lower than expected. 

Confidence limits for both the level and the position of the turning point based on the 

estimates in (Frisen, 1986) are given in (Dahlbom, 1994). 

4 



2. Models, notations and specifications 

In this work the class of problem where the relation between the variables is unimodal 

and perhaps monotonic is treated. 

The situation is either experimental or non-experimental. If the situation IS 

experimental, we choose levels for the independent variable, according to an 

experimental design. The chosen levels of the independent variable are called the design 

points. In the non-experimental case we might condition on the observed random values 

of the independent variable. Thus the design points could be regarded as non-random in 

both cases. 

All observations are assumed independent. The normal distribution is considered to be a 

good approximation for the distribution of the dependent variable in each design point. 

For the design points i = 1,2, ... ,k, we have the vectors of parameters ~ = {ul,,u2, ... ,,uk} 

of expected values and 0'2 = {a} , 0'; , ... , at} of variances. The means ,ui are unknown, 

but the variances 0'/ are assumed known. We have ni observations at design point i, 1';j 

is thej:th observation of 1';, j = 1,2, ... ,ni , and ~ the mean of those observations. ~ is 

normally distributed with unknown mean ,ui and known variance of the mean, which is 

used as an index of information Wi = nPi-2
. 

Some notations for order restrictions, which will be used, will now be introduced. 

Definition 2.1: The regression is unimodal if 3m;,ul ~ ... ~,urn and ,urn ~ ... ~,uk or 

3m;,ul ~ ... ~ ,urn and ,urn ~ ... ~ ,uk' 

Definition 2.2: The regression is U-shaped if 3m;,ul ~ ... ~,urn and ,urn ~ '" ~ ,uk' 
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Definition 2.3: The regression is inversely U-shaped if 3m; illS ... S Ilm and 

Ilm c. .. .'? Ilk . 

Definition 2.4: The regression is monotonic if illS ... S Ilk or III C ... C Ilk. 

Definition 2.5: The regression is increasing if illS ... S Ilk. 

Definition 2.6: The regression is decreasing if III C ... C Ilk. 

Definition 2.7: The regression has a turning point if it is not monotonic. 

Observe that the Definitions 2.2-2.6 all are special cases of unimodality. Some examples 

of unimodal, in some cases also monotonic, regressions are illustrated in Figure 2.1. 
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Figure 2.1: Examples of unimodal, in some cases also monotonic regression. All 

regressions are unimodal according to Definition 2.1. The regressions in (a), (b), (c), 

(d), (g), (h) and (i) are V-shaped according to Definition 2.2. The regressions in (a), (b), 

(c), (e), (j), (g), (h) and (i) are inversely V-shaped according to Definition 2.3. The 

regressions in (a), (b), (c), (g), (h) and (i) are monotonic according to Definition 2.4. 

The regressions in (a), (g), (h) and (i) are increasing according to Definition 2.5. The 

regressions in (a), (b) and (c) are decreasing according to Definition 2.6. 
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We treat now the case there the monotonicity of one part of the curve is known, while 

uncertainty is prevailing only for the other part. Information is here available according 

to one of the four following descriptions. 

Case i: 

Case ii: 

We are sure about the final part of the curve. The relation there is increasing. 

However, we are uncertain if also the first part of the curve is increasing or 

if the relation, in this part, is decreasing but not constant. 

We know that the first part of the curve is decreasing, but we are not sure 

about the following part. Either the shape of the curve continues to be 

decreasing or it turns up, being increasing but not constant. 

Case iii: We are sure about the final part of the curve. The relation there is 

decreasing. However, we are uncertain if also the first part of the curve is 

decreasing or if the relation, in this part, is increasing but not constant. 

Case iv: We know that the first part of the shape of the curve is increasing, but we 

are not sure about the following part. Either the shape of the curve continues 

to be increasing or it turns down, being decreasing but not constant. 

8 



Figure 2.2 illustrates these four possibilities. 
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Figure 2.2: The four principal cases where the curve might include a turning point. The 

bold lines represent the part with known monotonicity while the dotted lines represent 

parts under question. 
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The following four combinations of hypotheses correspond to the cases described above 

and are of interest in turning point problems: 

Case i: H 0 .' The regression is increasing 

HI: The regression is U-shaped but not increasing 

Case ii: Ho.' The regression is decreasing 

HI: The regression is U-shaped but not decreasing 

Case iii: Ho : The regression is decreasing 

HI: The regression is inversely U-shaped but not decreasing 

Case iv.' Ho.' The regression is increasing 

HI: The regression is inversely U-shaped but not increasing 

We treat Case i in detail, but the other three cases can easily be analysed in an analogous 

way. The hypotheses in Case ii are identical with the hypotheses in Case i for the 

random variable Y/ = Yk+I- i • The hypotheses in Case iii are identical with the hypotheses 

in Case i for the random variable Y;II = - Y; and the hypotheses in Case iv are identical 

with the hypotheses in Case i for the random variable Y;III= -Yk+I - i • 

When there is uncertainty about the whole curve, combinations of the hypotheses treated 

here can be used. The theory of multiple testing can be used to handle this. 
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3. The maximum likelihood ratio test statistic 

In this section we derive and discuss the maximum likelihood ratio test statistic for the 

model specified in Case i in Section 2 for testing Ho: The regression is increasing 

versus HI: The regression is U-shaped but not increasing. As was demonstrated at the 

end of Section 2 the results can easily be used for the other cases. 

The hypotheses are not simple but composite. Thus, a full likelihood ratio test cannot be 

achieved. The way chosen here to handle the nuisance parameters is to construct the 

maximum likelihood ratio test. 

As the information about the shape of the curve is limited to order-restricted relations 

only, no parameters of some assumed function has to be estimated. Hence the analysis 

method will be based on non-parametric regression analysis. Let Ofii be the maximum 

likelihood estimate of f-li under Ho. The maximum likelihood estimator under the 

restriction that the regression is increasing is given in e.g. (Barlow, Bartholomew, & 

Brunk, 1972). It is not possible to express the estimator explicitly. The "Pool-Adjacent­

Violators" algorithm described by e.g. (Robertson, Wright, & Dykstra, 1988) groups the 

adjacent design points into "level sets". For each level set the common estimator is the 

weighted mean of the observations corresponding to the set. 

Further let fii be the maXImum likelihood estimate of f-li under Ho u HI' The 

maximum likelihood estimator under the restriction that the regression is U-shaped is 

given in (Frisen, 1986). The likelihood for each of the finite number of partitions in one 

decreasing phase followed by an increasing one can be determined. The maximum of 

these values corresponds to the maximum likelihood estimator. 

Theorem 3.1: The maximum likelihood ratio test of Ho versus HI rejects Ho for large 

k k 

values of the statistic, T= L wi(~-ofii)2 - L Wi(~ - fii)2. 
i=l i=1 
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Proof: The specifications in Section 2 implies that the likelihood function, L(l-l) , is 

Ho will be rejected for large values of T= 2lnA = -:t Wi [(r; -,ui Y -(r;-O,ui Y]= 
i=1 

i=1 i=1 

Now we will look at the test statistic under the family of linear transformations of ~. 



Theorem 3.2: T is invariant under the family of linear transformations of 1;, 

Y;' = a + bY;, ifb>O. 

k k 

P .~ T' ~ I (y-I A/)2 ~ I (y-I A/)2 rooJ: = L.J Wi i-OJii - L.J Wi i - Jii 

i=l i=l 

By Y;'= a+bY;, Lemma 3.2.2 and Lemma 3.2.3 we have 

Lemma 3.2.1: Linear transformations of 1;, Y;'= a+bY;, b>O, do not change the level 

sets determining the ML-estimator under Ho. 

LW)l; 
Proof: If the level sets determining 011 are As, s=1,2, ... ,t, then ofii = iEi and if the 

Wi 

Lw;yl 
level sets determining 011' are A;, s= 1,2, ... , t', then 0 rt; = _iE--,A;,--_ 

L,W; 
lEAs 

We study the subset {c-1,c,c+1} of the set {1, ... ,c-1,c,c+1, ... ,k} ofkdesignpoints. 

( 
c-l J (C J (C+l J Let Pc-1 = ~-l , B Wi ' Pc = ~, B Wi and Pc+1 = ~+l ' B Wi . According to the 

"Pool-Adjacent-Violators" algorithm (Robertson et aI., 1988) the design point c is a 

violator if the slope between Pc-l and Pc is stronger than the slope between Pc and Pc+l 

i=l i=l i=l i=l 
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Now, consider the linear transformation y':' = a + bY,:, and the same subset of design 

points. Then, c is a violator if 
a+bJ: -(a+bJ:_J a+bJ:+1-(a+bJ:) 

1 c c-1 > c+1 c ¢:::? 

LW~-LW~ LW~-Lw; 
i=l b i=l b i=l b i=l b 

Thus, ifb>O then m' = m and A; = As 'rI s=1,2, ... ,t. 

Lemma 3.2.2: Linear transformations of Y;, y':' = a + bY,:, b>O, implies oft: = a + b Ofti. 

Proof: By Lemma 3.2.1 we have A; = As 'rI s= 1,2, ... ,t and thus: 

b2 

Multiplying numerator and denominator with --- gives 

Lemma 3.2.3: Linear transformations of Y;, y':' = a + bY,:, b>O, implies /1: = a + b/1i. 

Proof: As the unimodal regression estimator is constructed by a choice of combinations 

of independent monotonic parts, it follows by Lemma 3.2.2 that /1: = a + b/1i since all 

the monotonic parts are transformed in that way. 
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4. A test with an upper limit for the size 

With the aim to construct a conservative test, we elucidate the least favourable 

k k 
'" - A2'" - A2 configuration under Ho for the test statistic T = L.J wtCY;-O,ui) - L.J Wi 0'; -,ui) , 
i=1 i=1 

which was derived in Theorem 3.1. 

Theorem 4.1: Using the critical value ta, from the distribution of T, when f.li = f.l, 

i= 1,2, ... ,k, makes the test conservative for all other members of Ho. 

k k 

Proof: We introduce the notations oQ = L wiC.Y;-O,u)2 and Q = L w/f;" - Pi. 
i=1 i=1 

T= 0 Q - Q is stochastically increasing with f.ll since 

1) oQ is stochastically increasing with f.ll by Lemma 4.1.1. 

2) Q is stochastically decreasing with increasing f.ll given Q:;t.o Q by Lemma 4.1.2. 

3) Pr(Q=oQ) decreases with increasing f.ll by Lemma 4.1.3. 

The largest possible value of f.ll under Ho is f.llo which implies f.li = ,uk' i=l, ... ,k-1. Thus 

Pr(T > ta I Ho)::; PrCT > ta I f.li =,u, i = 1,2, ... , k). 

Lemma 4.1.1: 0 Q is stochastically increasing with f.ll. 

k k 

Proof: In this lemma we use the notations oQk = L oQt = L Wi(~-O,u:)2 and 
i=1 i=1 

k k 

Qk = L Qt = L Wi c.Y; - ,u:)2 , where the super-index k denotes that the statistic is based 
i=1 i=1 



on the design points 1,2, ... ,k. Corresponding notations with super-index k-l denote that 

the statistic is based on the k-l design points 2,3, ... ,k. 

We then write 0 Qk = 0 Q; + [t, 0 Q: - t, 0 Q,'-J ]+0 Q'-J . The first term has its minimum 

zero when oP: -.r; is zero and is increasing with this difference when it is negative. 

k 

The same is true for the middle term since L 0 Q;-l is the minimum deviance based on 
i=2 

k-l design points and the larger .r; the larger deviation from this minimum. The last 

term is independent of .r;. Thus, 0 Qk is stochastically increasing with Ill. 

Lemma 4.1.2: Q is stochastically decreasing with increasing III given that Q:f.o Q. 

Proof: Let m Q be the quadratic deviation when the maximum likelihood estimation is 

done under the restriction" III ~ ... ~ Ilm and Ilm ~ ... ~ Ilk'" where 1 Q=o Q . By the same 

technique as in Lemma 4.1.1 it can be proved that the deviation mQ is stochastically 

decreasing with increasing III if m> 1. Given that Q:f. 0 Q we have Q = min 0 Q. Since 
m>l 

each m Q, m> 1, decreases with III also the minimum decreases. Thus, Q is 

stochastically decreasing with increasing III given that Q:f.m Q . 

Lemma 4.1.3: Pr(Q=oQ) decreases with increasing Ill. 
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Proof: Pr(Q=oQ)= Pr( min mQ=oQ), where mQ is defined in Lemma 4.1.2 , is 
m=/,2, ... k 

decreasing with increasing /11, since 0 Q is stochastically increasing with /11, while m Q, 

m> 1 is decreasing with increasing /11. 

Theorem 4.1 is valid for all vectors w. However, the distribution of T depends on how 

uneven information we have at different design points. From now on we only treat the 

case of equal information in all design points, that is Wi = w for all i. 

4.1 The distribution of the test statistic for the worst case under Ho 

For the worst case with equal expected values and for the case of equal information in 

all design points the distribution of T under Ho does not depend on any parameters 

besides the number, k, of design points. The distribution has been studied by means of 

simulation for this situation. The cumulative density function is illustrated for k = 5 and 

k = 20 in Figure 4.1.1. 
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Figure 4.1.1: The distributionfor k=5 and k=20, respectively. 
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The distribution of the test statistic is mixed. It consist of a discreet part where T=O and 

a continuous part, where T >0. 

Theorem 4.1.1: When fJ,i = fJ" i=1,2, ... ,k we have: for k=2,3, Pr(T=O)=llk, for larger 

values ofk we have Pr(T=O)<llk. 

Proof: T=O if and only if the maximum likelihood estimates are equal under the two 

restrictions, that is oP, = p,. This can happen only when the first design point has the 

least observed value. 

For k=2 and 3, the estimators are equal if the first design point has the least observed 

value. The probability of this is 11k. Thus Pr(T=O)=llkfor k=2 and 3. 

For k> 3, there are other possibilities, with probability larger than zero, than that the 

two estimators are equal, when the first design point has the least observed value. Thus 

Pr(T=O) <11k. 

0,25 ~ 

0,2 ~ 

0,15 
~ 
~ 

0,1 

0,05 

° 
° 20 40 60 80 100 

The number, k, of design points 

Figure 4.1.2: Comparison of Pr(T=O) estimated by simulations (symbol x) and 11k 

(symbol 0). 



4.2 Critical values of the test statistic 

By simulations, critical values that guarantee that the size of the test is less than 0.05 

and 0.01, respectively, have been estimated and the results are presented in Table 4.2.1 

and Figure 4.2.1. 

The critical values given in Table 4.2.1 are percentiles in the empirical distribution of 

100 000 replicates of T for each situation. Thus, an approximate 95% confidence 

interval for the true value of a at the nominal value a=0.05 is 0.05:1: 0.00136. The 

corresponding confidence interval at the nominal value a=0.01 is 0.01:1:0.00062. 

Table 4.2.1: Critical values, I:x, such that Pr(I> TaJ ~ a 

k a=0.05 a= 0.01 k a=0.05 a= 0.01 
2 2.70018 5.38288 18 11.5505 16.0376 
3 4.21823 7.33161 19 11.7670 16.4073 
4 5.25369 8.58753 20 11.9503 16.5436 
5 6.13142 9.54701 21 12.2048 16.9065 
6 6.80475 10.2967 22 12.3617 17.0355 
7 7.38956 11.2040 23 12.5750 17.2640 
8 7.97443 11.7000 24 12.8106 17.3623 
9 8.48308 12.2560 25 12.8652 17.7199 
10 8.85470 12.6842 26 13.1571 17.9440 
11 9.18725 13.1183 27 13.3429 18.0701 
12 9.58137 13.6551 28 13.4254 18.1562 
13 9.96327 14.1130 29 13.5763 18.1734 
14 10.3419 14.5143 30 13.7376 18.5098 
15 10.6497 14.9969 50 16.0418 21.0389 
16 10.9210 15.2197 100 19.3402 24.5410 
17 11.2215 15.6325 
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Figure 4.2.1: The relation between Ta and k for a=0.05 (symbol x) and a=0.01 

(symbol 0). 
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5. The power of the test 

In this section the power of the test is estimated for some examples of the alternative 

hypothesis. The estimation is done by simulations. Critical values for the least favourable 

configuration for the test statistic under Ho are used. As for the determination of critical 

values in Section 4, only the case of equal information, w, at all design points is treated. 

The shape of the regression can be expressed by the successive differences, J.1i+J - J.1i ' 

i=1,2, ... ,k-1. When these differences are standardised we have Yi = W(J.1i+J - J.1i), 

i=1,2, ... ,k-1. The vector Y={YJ""'Yk-l} thus contains all necessary information. The 

location of the turning point is important and is determined by m, where YI , ... , Y m-l ~ 0 and 

Y m , ... , Y k-J ;? 0 . At least one of the inequalities for YI ,. .. , Y m-l is strict. Under HI the value 

of m can be any value between 2 to k. 

We want to make statements on how the following factors influence the power: 

the total number of design points 

the number of design points corresponding to the part under question and the 

part with known monotonicity, respectively 

the slope of the regression in the part under question and the part with known 

monotonicity, respectively 

By means of some examples we now investigate how the factors above influence the 

power. The examples come from the class of problems where Y J ,. .. , Y m-l = y' and 

Ym""'Yk-J =y". We start by examining the case where ly1=y"=y>0, k is odd and 

m = k + 1 . In this class of problems, the first half part of the regression in the design points 
2 

is linearly decreasing and the following half part is linearly increasing. The results from the 

simulation study for this first case are presented in Table 5.1 for different values of Y in the 

interval 0.26 - 1.00 and different number of design points. The value y=0.26 is a relevant 

value in studies of business cycles (Andersson, 1999). 
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Table 5.1: The power of the test when Iy'l = y" = y> 0, k is odd and m = k + 1 . 
2 

r k a=O.05 a=O.OI r k a=O.05 a=O.OI 
0.26* 19 0.60258 0.33389 0.65** 9 0.4779 0.2435 

21 0.72668 0.46495 11 0.7232 0.4808 
23 0.84549 0.62183 13 0.8964 0.7380 
25 0.93327 0.76722 15 0.9829 0.9256 
27 0.97677 0.88935 17 0.9985 0.9903 
29 0.99441 0.96195 19 1.0000 0.9998 

0.30** 17 0.5966 0.3340 0.70** 9 0.5392 0.2902 
19 0.7255 0.4663 11 0.7851 0.5638 
21 0.8575 0.6393 13 0.9376 0.8164 
23 0.9385 0.7900 15 0.9920 0.9631 
25 0.9862 0.9136 17 0.9996 0.9976 
27 0.9961 0.9736 

0.35** 15 0.5759 0.3143 0.75** 9 0.5982 0.3467 
17 0.7314 0.4846 11 0.8382 0.6404 
19 0.8574 0.6452 13 0.9647 0.8766 
21 0.9472 0.8160 15 0.9973 0.9835 
23 0.9781 0.8994 17 1.0000 0.9992 
25 0.9989 0.9875 

0.40** 13 0.5026 0.2553 0.80** 7 0.3782 0.1629 
15 0.6920 0.4348 9 0.6507 0.4016 
17 0.8450 0.6366 11 0.8835 0.7142 
19 0.9378 0.8007 13 0.9814 0.9208 
21 0.9860 0.9313 15 0.9993 0.9918 
23 0.9986 0.9843 
25 1.0000 0.9991 

0.45** 13 0.5983 0.3436 0.85** 7 0.4153 0.1876 
15 0.7917 0.5620 9 0.7030 0.4610 
17 0.9189 0.7685 11 0.9180 0.7788 
19 0.9798 0.9078 13 0.9910 0.9551 
21 0.9972 0.9810 15 0.9998 0.9974 
23 0.9999 0.9986 

0.50** 11 0.4995 0.2608 0.90** 7 0.4529 0.2178 
13 0.6946 0.4420 9 0.7530 0.5262 
15 0.8704 0.6825 11 0.9482 0.8358 
17 0.9635 0.8733 13 0.9958 0.9768 
19 0.9938 0.9642 15 1.0000 0.9992 
21 0.9994 0.9958 

0.55** 11 0.5795 0.3279 0.95** 7 0.4913 0.2497 
13 0.7789 0.5446 9 0.7962 0.5877 
15 0.9279 0.7841 11 0.9640 0.8806 
17 0.9852 0.9374 13 0.9981 0.9880 
19 0.9987 0.9893 

0.60** 11 0.6518 0.4005 1.00* 7 0.53642 0.28239 
13 0.8473 0.6427 9 0.83407 0.63459 
15 0.9631 0.8703 11 0.97865 0.91851 
17 0.9954 0.9738 13 0.99912 0.99441 
19 0.9999 0.9973 15 1.00000 0.99940 
21 1.0000 0.9998 

*The power is estimated from 100 000 replicates ofT 
* * The power is estimated from 10 000 replicates ofT 
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In Figure 5.1 the results are illustrated for y=0.26, y=0.50, y=0.75 and y=1.00. The results 

show how, given y, the power increases with the number, k, of design points. 
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Figure 5.1: The power as a function of the number of design points, for y =0. 26 

(symbol 0), y=0.50 (symbol t:,.), y=0.75 (symbol 0) and y=1.00 (symbol x). 
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Further conclusion is that the stronger slope the fewer design points are needed to receive 

great power. However, even for the weakest slope exemplified, 0.26, the test is quite 

useful. For that case, about twelve points on each side of the turning point give an 

acceptable power. In Figure 5.2, combinations of rand the least value of k, of those values 

given in Table 5.1, which guarantees power >0.65 and >0.90 are presented. Another 

conclusion from Table 5.1 and Figure 5.1 is that the stronger slope the greater is the effect 

of the number of design points on the power. In other words, the stronger slope the steeper 

power curve. 

Intuitively, the part where it is uncertainty about the monotonicity of the curve has great 

effect on the power. A strong slope in this part increases the probability that data supports 

HI. However, in these examples, the slope is the same also in the increasing part of the 

regression, which mainly are design points corresponding to the part of the curve with 

known monotonicity. A strong slope in the part with known monotonicity will give slightly 

less power since the probability of a false indication of tum in that part decreases, but the 

impact of the slope in the unknown part dominates the effect on the power and this 

influence will now be examined. 
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Figure 5.2: Combinations ofk and ythat guarantee power >0.65 (symbol x) and >0.90 

(symbol 0). 

25 



26 

The slope of the regression is an important factor for the power. We now investigate 

separately how the slope of the regression influences the power in the class of problems 

h ' II 1 k 9 k+1 were YI, ... ,Ym-1 =Y, Ym' ... 'Yk-1 =Y = , = and m=--=5. 
2 

Keeping the slope in the increasing part of the regression constant we study the power for 

some slopes of the decreasing but not constant part. In Table 5.2 results are presented for 

y' = -0. 01, which gives a configuration under HI very close to Ho, to y' = -2. 00, which 

gives a configuration under HI far from Ho. 

• 
• 

• 
• • • • • • • • • • • • • • • 

Design point number Design point number 

y' =-0.01 y' =-2.00 

Figure 5.3: The configurations of the regression in the design points for y' = -0. 01 and 

y' =-2.00, k=9, m=5 and Y" =1 

Table 5.2: The power for different values of y', when k=9, m=5 and Y" =1 

y' a=0.05 a= 0.01 

-0.01 0.0197 0.0036 
-0.25 0.0787 0.0182 
-0.50 0.2531 0.0974 
-0.75 0.5580 0.3139 
-1.00 0.83407 0.63459 
-1.25 0.9677 0.8906 
-1.50 0.9975 0.9842 
-1.75 0.9999 0.9992 
-2.00 1.0000 1.0000 
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The result confinns the earlier statement. Stronger slope in the decreasing but not constant 

part consisting mainly of design points corresponding to the uncertainty part of the curve 

gives great power. Figure 5.4 illustrates the result. 
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Figure 5.4: The power as a function of Ir1, when k=9, m=5 and r" =1, for a=0.05 

(symbol 0) and a=0. 01 (symbol x). 

Finally, we study how the number of design points corresponding to the decreasing part in 

proportion to the number of design points in the increasing part effects the power for r = 1 

and k=9. In Table 5.3 the results for different values of m, from m=2, which gives a 

configuration under HI very close to Ho, to m=9, which gives a configuration under HI far 

from Ho are presented. 
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Design point number 

m=2 

• • 

• • • • • • • • • 
Design point number 

m=9 

Figure 5.5: The configurations of the regression in the design points for m=2 and m=9, 

k=9 and y=l. 
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The conclusion is that many design points in the decreasing but not constant part gives 

great power. In other words, design points corresponding to the uncertainty part of the 

curve give great power. 

Table 5.3: The power for different values ofm, k=9, y=l. 

m a=0.05 a=O.OI 
2 0.0176 0.0044 
3 0.1340 0.0451 
4 0.4545 0.2368 
5 0.83407 0.63459 
6 0.9831 0.9360 
7 0.9996 0.9968 
8 1.0000 1.0000 
9 1.0000 1.0000 
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Figure 5.6: The power as a function of m, k=9, r =1, a=0.05 (symbol 0), a=0.01 

(symbol x) 
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6. The choice of design 

We make statements about the relation between the independent variable and the 

expected values of the dependent variable, only in the design points. A turning point 

exists if the configuration of the regression in the design points is in accordance with the 

alternative hypothesis. 

In this section we discuss the choice of design for Case i. Of course, corresponding 

statements can be made for the other three cases. 

For understanding that the restriction under the alternative hypothesis implies that the 

curve includes a turning point, we must have in mind our prior knowledge about the 

shape of the curve. We are uncertain about the first part and certain about the final part 

of the curve. Example 6.1 illustrates that a turning point must exist if HI is true, but also 

how the choice of design points affects the possibility to indicate an existing turning 

point. 

Example 6.1: Suppose that the information about the shape of the curve can be 

illustrated as in Figure 6.1.1. 

Independent variable 

30 

Figure 6.1.1: The prior information about the shape of the curve implies uncertainty 

about the first part and certainty about the final part of the curve. 
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Let us now study jive examples of three-points-designs for testing H 0 : The regression is 

increasing versus HI: The regression is U-shaped but not increasing. Important is that 

the hypotheses refer to the regression in the design points and not the curve. 

If the curve includes a turning point, choosing three design points, the following four 

principal cases can arise: 

• 
• • 

Independent variable Design point number 

Figure 6.1.2: The design points are chosen from the interval of the independent 

variable corresponding to the increasing part of the curve. The curve includes a turning 

point, but choosing design points corresponding to the part of the curve with known 

mono tonicity always implies that Hi is false. 

• .... .... • .......... • 

Independent variable Design point number 

Figure 6.1.3: The design points are chosen from the interval of the independent 

variable corresponding to the turning point part of the curve. The curve includes a 

turning point, but the design points are chosen in such a way that Hi is false. 



.. 
" ............ 

Independent variable 

• • 
• 

Design point number 

Figure 6.1.4: The design points are chosen from the interval of the independent 

variable corresponding to the turning point part of the curve. The curve includes a 

turning point and the design points are chosen in such a way that HI is true . 

.. 
" ........... 

Independent variable 

• 
• • 

Design point number 

Figure 6.1.5: The design points are chosen from the interval of the independent 

variable corresponding to the decreasing part of the curve. Choosing design points 

corresponding to the part of the curve under question, when the curve includes a 

turning point, always implies that HI is true. The regression in the design points is 

certainly monotonic, but, bearing the prior information about the curve in mind, a 

decreasing regression in the design points implies that the curve must include a turning 

point. 

If the curve is increasing and then not includes a turning point, choosing three design 

points, only one principal case can arise: 
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Independent variable 

• 
• 

• 
Design point number 

Figure 6.1.6: It does not matter which design points we are chosen from the 

independent variable. If the curve does not include a turning point HI can never be true. 

If the curve includes a turning point, we then have to choose design points so that the 

configuration of the regression in the design points is in accordance with HI. In other 

words, we have to choose a design not missing that a turning point in fact exist. If all 

design points are chosen in the curve's up-phase, then we miss it. If the design points 

are chosen in the turning point interval of the curve, then we might miss it. If all design 

points are chosen in the curve's down-phase, then we never miss it. 

So then, if the curve includes a turning point, the design can miss it. However, HI can 

never be true if the curve does not include a turning point. Thus, the size of the test still 

holds. 

The discussion so far points to choose the design points in the down-phase of the curve, 

to eliminate the risk of missing the turning point of the curve. The results in Table 5.3 

and Figure 5.6 illustrates that the power of the test is greatest when a large proportion of 

the design points corresponds to the down phase. We then have two good reasons to 

choose design points in the down-phase of the curve. 

However, we must also have in mind a reason for another design choice strategy. If we 

chose all design points in the down-phase of the curve we do not get a validation of the 

curve's up-phase. Maybe it does not even exist an up-phase. Perhaps the curve is non­

increasing but not constant. The validation of the 'knowledge' we have about the shape 

of the curve requires design points even in the up-phase of the curve. 
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Furthermore, we must remember that perhaps we do not know where the possible 

turning point is located, and by that we cannot securely choose a design point in a given 

phase of the curve. 

According to (Goetghebeur & Pocock, 1995), there are many more data points to the 

right of the turning point than to the left in most medical examples. In many applications 

one can expect to have much information on one part but less on the other. 

In Example 6.2 an important aspect of the choice of design is illustrated. 

Example 6.2: Suppose that the curve is shaped as in Figure 6.2.1 (a), a linear down­

phase followed by a linear up-phase. 

In Figure 6.2.1 (b), (c) and (d) three-paints-designs are illustrated. In all designs the 

design points are chosen equidistant from the independent variable. In (b), the first two 

design points are chosen corresponding to the curve's down-phase and the last point is 

chosen corresponding to the curve's up-phase. In (c), the design points are chosen from 

an over lapping, but of the same width, interval as in (b). However, all design points are 

chosen corresponding to the curve's down-phase. In (d), all design points are chosen 

corresponding to the down-phase of the curve, but from a wider interval compared to 

(c). 
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12 12 

• 
• • 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Independent variable Design point number 

(a) (b) 

12 12 

• 
• • • 

• • 
Design point number Design point number 

(c) (d) 

Figure 6.2.1: Examples of three-points-designs. In (b) the values 7, 9 and 11, in (c) the 

values 5, 7 and 9 and in (d) the values 2, 6 and 10 are chosen from the dependent 

variable. 

According to the simulation results, d) gives greater power than c), which gives greater 

power than b). The conclusion is then, given the number of design points, that great 

power is received if all design points are chosen from a wide interval of the down­

phase, that is the uncertainty part, of the curve. 

Another important aspect of the choice of design is illustrated in Example 6.3. 

Expanding a design with additional design points may change the slope of the regression 

in the design points. 
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Example 6.3: Suppose that the curve is shaped as in Figure 6.3.1 (a), a linear down­

phase followed by a linear up-phase. Figure 6. 3.1 (b) shows a three-paints-design 

where the design points are chosen equidistantly from the interval of the independent 

variable corresponding to the curves down-phase. Figures 6.3.1 (c) and (d) show 

examples of jive-paints-designs. Both designs include the points in (a) and two more 

points. In (c) the design points are chosen equidistantly from a wider interval of the 

independent variable, corresponding to the curves down-phase, than in (b). 
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The slopes of the regressions are then the same in (b) and (c). In (d) the design points 

are chosen in the same interval as in (b), equidistant but closer. Therefore the slope of 

the regression in (d) is weaker compared to (b) and (c). 

12.--------------------, 12.,-------------------, 

• 
• 

• 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Independent variable Design point number 

(a) (b) 

12.,..-----------... 12.,..-----------... 
• • • • • • • • 

• 
• 

o~--~~--~--~-~~ 
o 3 

Design point number Design point number 

(c) (d) 

Figure 6.3.1: One three-paints-design and two jive-paints-designs. In (b) the values 5, 7 

and 9, in (c) the values 1, 3, 5, 7 and 9 and in (d) the values 5, 6, 7, 8 and 9 are chosen 

from the independent variable. 



The conclusion is then that when expanding the design with additional design points, 

the choice of points will affect the slope of the regression in the design points. This is 

important when using Table 5.1, for example. 
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7. Concluding remarks 

Situations with limited infonnation about the shape of the curve have been treated. Only 

infonnation in tenns of order-restricted relations is used. No parametric regression 

function is assumed. In this respect the estimation and test are non-parametric. However, 

the residuals around the regression function are assumed to have the nonnal distribution. 

In this distributional respect, the test is not non-parametric. Interesting for future 

investigations is the robustness of the test for other distributions than the nonnal one. 

The test statistic has been derived for one of four principal combinations of hypotheses, 

but the other three cases can simply be handled by transforming the data and 

fonnulating the hypotheses for the new data. The aim of the transfonnations is of course 

to make use of the results from Case i, presented in this work. The transfonnations 

presented in Section 3 imply how we change from the actual Case ii, iii or iv to Case i. 

Observe that the whole problem is described in new way and that we also test other 

hypotheses, namely the hypotheses in Case i. An alternative to the transfonnations is to 

derive the likelihood ratio test in an analogous way as in Case i. 
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When the hypotheses cannot be expressed as any of the four cases above, but as a 

combination of these like "monotonicity versus existence of a turning point" we can 

handle this by standard methods for mUltiple inference. 

The test is invariant under linear transfonnations as long as the scale parameter b is 

positive. By that the test statistic has two important properties. For all levels, a, of the 

independent variable the data can be transfonned Y~ = Yij -a without making any 

change of the value of the test statistic. Choosing a = Yll' for example, the differences 

Yij - YlI are enough besides the infonnation vector calculating the test statistic. Further, 

it does not matter in which scale the variable is expressed. Transforming the data from 

metre to the centimetre, for example, does not affect the value of the test statistic 

A linear transfonnation, where the sign of b is negative always implies a change 

between two cases. As mentioned in Section 3, for a=O and b=-l, the hypotheses in 



Case iii for the original data describes the same problem as the hypotheses in Case i, for 

the transformed data. 

A conservative test has been constructed using the least favourable configuration of the 

regression for the test statistic under Ho. In the class of problems with equal information 

in all design points the distribution of the test statistic depends on the number of design 

points only. Equal information in all design points implies that the maximum likelihood 

estimates for each level set are un-weighted means of the observations corresponding to 

the set. The amount of information does not influence the distribution of the test statistic 

under the "worst case" of Ho. Thus one table of critical values is enough. Interesting for 

future investigation is the robustness of the test for divergence from equal information 

in all design points. 

The power of the test has been estimated for some examples of configurations under HI. 

The results are that the test has high enough power to be useful. 

An important factor, influencing the power, is the configuration of the regression in the 

design points. In this work, the class of problems where the regression is linear both in 

the down-phase as in the up-phase has been studied and the configuration has been 

expressed and discussed in terms of the slope of the regression in the design points. The 

slope depends on two factors, the shape of the curve and the chosen design points. The 

conclusion from the simulation study is that, for design points chosen in the part of 

uncertainty of the curve, strong slope gives great power. This result is the expected one. 

Given the amount of information in the design points, great power is received with 

many design points and in so wide an interval as possible in the part of the curve where 

uncertainty about the shape is prevailing. 

For a fixed interval of the curve, increasing the number of design points, which means 

that the design points are chosen closer, gives values of Yi = W(Pi+l - Pi)' which are 

closer to zero. However, the power will still be greater because of an increasing number 

of design points gives greater power. In other words, it is no loss of power increasing the 

amount of information. This is what should be expected by a fair test. 
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An argument against designs where all points are chosen in the part of uncertainty is that 

it will be no validation about the certainty part of the curve. Perhaps we are testing the 

wrong class of hypotheses. However, if the analysis is confirmative, enough knowledge 

about the problem may be available for using designs giving great power before 

validation of the model. 
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