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Abstract. Different criteria of optimality are discussed. The shortcomings of some 

criteria of optimality are demonstrated by their implications. The correspondences 

between some criteria of optimality and some methods are examined. The situations 

and parameter values for which some commonly used methods have certain 

optimality properties are thus illuminated. A linear approximation of the full 

likelihood ratio method, which satisfies several criteria of optimality, is presented. 

This linear approximation is used for comparisons with the exponentially weighted 

moving average method. Via these comparisons it is possible to illuminate the 

influence of different criteria of optimality on the "optimal" parameter of a method. 

A uniform presentation of methods, by expressions oflikelihood ratios, facilitates the 

comparisons between methods. 
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1. INTRODUCTION 

There is a need of continual observation of time series, with the goal of detecting 

an important change in the underlying process as soon as possible after it has 

occurred. Surveillance, statistical process control, monitoring and change-point 

detection are different names for this. The timeliness and also the simplicity of 

decisions is taken into account in the vast literature on quality control charts. Also, 

the literature on stopping rules is useful and relevant here. The inferential problems 

involved are important for the applications and interesting from a theoretical view 

since they are linking together different areas of statistical theory. 

Some broad surveys and bibliographies are found in, e.g. Zacks (1983), Basseville 

and Benveniste (1986), Vardeman and Cornell (1987) and Lai (1995). In the survey 

by Kolmogorov et al (1990) and the collection of papers edited by Telksnys (1986) 

the early results on optimal stopping rules by Kolmogorov and Shiryaev are reported 

and used in further research. Also the book by Brodsky and Darkhovsky (1993) on 

nonparametric methods on change-point problems is in the same spirit. This literature 

treats both the case of a fixed period and the case of continual observation. The 

survey by James et al (1987) treats the fixed period case. 

In recent years there have been a growing number of papers in economics, 

medicine, environmental control and other areas dealing with the need of methods for 

surveillance. Applications in medicine are described in, e.g. the special issue (no. 3, 

1989) of "Statistics in Medicine" and by Frisen (1992). Environmetric control is 

described by, e.g. Pettersson (1998). Applications in economics and especially the 

surveillance of business cycles are treated in, e.g. the special issue (no. 3/4, 1993) of 

"Journal of Forecasting" and by Frisen (1999). 

In some applications the whole process will be stopped as soon as an alarm 

occurs. This is the case at the surveillance of the foetal heart during labour. At an 

alarm the baby is rescued by Caesarean section. We call this active surveillance. In 

the case when our actions at an earlier time point do not affect the distributions we 

say that we have passive surveillance. This can be the case in flood warning systems 

when alarms do not affect the height of the flood wave. Most of the discussion 

concerns active surveillance, but the differences with respect to stochastic properties 

between the active and passive surveillance will be pointed out. 

There are a large number of papers which claim to give the optimal method of 

surveillance. However, the optimality criteria differ in important aspects. Most 
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commonly used methods are optimal in some respect. Here, the aim is to make a 

characterization of the methods by the optimality properties they have. In Table 1 

some schematic characterizations are given. The moti vations will be given in the text. 

In Section 2 some notations are given. Also, specification is made of the most 

commonly discussed case of a shift in the mean of a normal distribution. This simple 

case is used throughout this paper, in order to be specific and concentrate on principle 

properties, even though some results are valid also for other cases. In Section 3 some 

criteria of optimality are described and analyzed. In Section 4 methods derived from 

optimality criteria as well as some commonly used methods are described. The two 

groups of methods are compared in order to characterize the commonly used methods 

by their optimality properties. In Section 4.1 the full likelihood ratio method, LR, 

which fulfills important optimality criteria is described. In Section 4.2 a linear 

approximation, LLR, of the LR method is derived. This approximation is used in 

Section 4.3 to determine the optimal value of the parameter of the exponential 

moving average method, EWMA, and also to discuss for which situation EWMA will 

be a good method. Different variants of CUSUM methods are analyzed in Section 

4.4 with respect to their optimality. In Section 5 some concluding remarks are given. 

2. NOTATIONS AND SPECIFICATIONS 

The variable under surveillance is denoted by X = {X(t): t = 1,2, ... }, where X(t) 

is the observation made at time t. This observation may be an average or some other 

derived statistic. For the case of surveillance of the foetal heart rate, described in 

Frisen (1992), X(t) is a recursive residual of a measure of variation. The random 

process that determines the state of the system is identified by Il(t), t = 1,2, .... 

The critical event of interest at decision time s is denoted C(s). As in most 

literature on quality control, the case of a shift in the mean of a Gaussian random 

variable from an acceptable value 11° (say zero) to an unacceptable value III is 

considered. Only one-sided procedures are considered here. It is assumed that if a 

change in the process occurs, the level suddenly moves to another constant level, 

11 1>11°, and remains on this new level. That is Il(t) = 11° for t= 1, ... , 'C-l and Il(t) = III 

for t= 'C, 'C+ 1, .... For each decision time s, s= 1, 2, ... we want to discriminate between 

the two events C(s) = {'C::;s} and D(s) = {'C>s}. C(s) implies ll(s)=ll l andD(s) implies 

ll(s)=llo. 
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We will consider different ways of constructing alarm sets A(s) with the property 

that, when Xs = {X(t): t~s} is a subset of A(s), there is an indication that the event 

C(s) has occurred. The time of the first alarm is tA = min {s: Xs c A(s)}. 

Here 110 and III are regarded as known values and the time point 't where the 

critical event occurs is regarded as a generalized random variable with the 

probabilities 1tt=P('t=t) and with the probability, 1tn that no change ever occurs 

t=oo 

TIn = 1 - L TIt. 
t=l 

The intensity, vt ,of a change is 

The aim is to discriminate between the states of the system at each decision time 

s, s=l, 2, ... by the set of observations Xs = {Xes): t ~ s} under the assumption that 

X(I) - 11(1), X(2) - 11(2), ... are independent normally distributed random variables 

with mean zero and with the same known standard deviation cr. For clarity, and to get 

shorter formulas standardization to 110=0 and cr= 1 is used and the size of the shift after 

standardization is denoted by 11. The case 11>0 is described here. The case 11<0 is 

treated in the same way. Two-sided procedures can be constructed from a 

combination of the one-sided ones but optimality will only be discussed for the one­

sided case. 

3. OPTIMALITY CRITERIA 

The performance of a method for surveillance depends on the time 't of the 

change. Alarm probabilities will typically not be the same for early changes as for late 

changes. Sometimes it is appropriate to express the measure of the performance as 

a function of 't, as in Frisen (1992), Frisen and Wessman (1999) and the self 

instructive free computer program by Frisen and Cassel (1994). However, sometimes 

a precise criterion of optimality is needed. In order to obtain a measure, which is 

independent of the value of't, several approaches have been used: 
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1. In the literature on quality control it is often assumed that the change occurred at 

the same time as the surveillance started, that is -r=1. This approach is discussed 

in Section 3.1 on ARL. 

2. In the literature on statistical theory it is often assumed that the surveillance has 

been started a very long time before a possible change (e.g. Lindgren 1985, Pollak 

and Siegmund 1991, Srivastava and Wu 1993). 

3. A probability distribution of -r is considered and an averaging measure with 

respect to this distribution is used. Error probabilities are described in Section 3.2 

and expectations and utilities are described in Section 3.3. 

4. A minimax criterion with the worst possible value of -r is used (Section 3.4). 

3.1 ARL 

A measure that is often used in quality control is the average of the run length 

until the first alarm. See, e.g. Wetherill and Brown (1990). This idea was already 

suggested by Page (1954). The average run length until an alarm, when there is no 

change in the system under surveillance, is denoted ARLo. The average run length 

until detection of a true change (that occurred at the same time as the surveillance 

started) is denoted ARLI. The part of the definition in the parenthesis is seldom 

spelled out, but seems to be generally used in the literature on quality control. 

Optimality can be defined as minimal ARLI for fixed ARLo. This criterion will 

shortly be called "the criterion of minimal ARLI ". This criterion is usually used in 

the literature on quality control and is sometimes used also in more general statistical 

literature. A consequence of this criterion, which makes it unsuitable for many 

applications, will now be demonstrated. Some might consider the consequence self­

evident, but since it is in contradiction with much of the literature a detailed proof is 

given. 

Proposition 3.1.1. There exist values Cs such that a surveillance system with 

alarm at 

s 

tA = min{s: LX(t»Cs} 
t=l 

gives the minimal ARLI for fixed ARLo for the case specified in Section 2. 
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Proof First, some properties of surveillance systems based on tA above are 

derived. Let, in this proof, C(s) = {'t = I} and D(s) = {'t = oo} with the notation that 

't = 00 is the event that no change ever happens. As a technical tool, passive 

surveillance with the alarm set denoted by pA(.), is used to start with. Then, with the 

specifications in Section 2, the likelihood ratio method (Section 4.1) has the alarm 

set 

where as' bs and cs are constants. 

At active surveillance, where the surveillance is stopped at the first alarm, it 

follows from Theorem 3.1 in Frisen and de Mare (1991) that 

where aA(.) is the alarm set at active surveillance, AC
S

_1 = AC(I) n AC(2) n ... n AC(s-l) 

and AC(,) is the compliment of A(.). We have that 

s r 

aA(s) = {Xs: :EX(t»cs} n {Xs: :EX(t):s;; cr ' r=l, ... s-l} 
t=l t=l 

= {Xs: s=min{i: :EX(t»cJ }. 
t=l 

Thus, the monitoring system in the proposition is identical to that of a certain known 

likelihood-based one. Theorem2.1 in Frisen and de Mare (1991) (see also Section 4.2 

here and de Mare (1980)) states that the likelihood ratio method has the property that 

for each decision time s it gives the maximal probability of alarm P(A(s)1 C(s)) for 

a fixed false alarm probability P(A(s)1 D(s)). 

Now, we use the properties derived above to examine the optimality condition. 

Both ARLI and ARLo are expected values under the condition that l1(t) has the same 

value for all t. The condition l1(t)=O is equivalent to the condition that no change ever 

happens, that is 't = 00, with our notation. 
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=L t P(tA =tl 1"=00) =L t P(aA(t)I D(t)). 
t=l t=l 

=L t P(tA =tl1"=l) L t PCaA(t)I C(t)). 
t=l t=l 

The constants, cs' can be chosen to match any given set of false alarm probabilities 

and thus any given ARLo. For these fixed values of Cs the likelihood ratio method 

with 

tA = min{s: LX(t»Cs} 
t=l 

gives maximal detection probability for the fixed value of PCaA(s)1 D(s)) for all sand 

thus minimal ARLI. D 

Thus, only methods which give equal weight to all observations satisfy the 

optimality criterion of minimal ARLI for fixed ARLo. Such methods are not very 

often used in quality control. Examples of such methods are the simple CUSUM 

variants described in Section 4.4, where also the drawbacks of these methods are 

discussed. The Proposition 3.1.1 thus demonstrates that the optimality criterion could 

be questioned. There are a great number of papers in the literature on quality control 

where the aim is to find the parameters of a method which is "optimal" in the sense 

that the ARLI is minimized for a fixed ARLo. 

In applications where the criterion of minimal ARLI is the proper one (in spite 

of the drawbacks given above) it is not sufficient to know the alarm statistic for each 

decision time s. You would also have to determine the alarm limit Cs for this statistic 

for each s. 
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Proposition 3.1.2. The surveillance system with alarm at 

tA min{s: LXCt) > L + s~2} 
t=l 

where L is a constant, gives the minimal ARO in the class of methods with the same 

total false alarm probability. 

Proof In Frisen and de Mare (1991) it was demonstrated that the sequential 

probability ratio test (SPRT) of D= {'r>s} against C={ 'r=t} without an acceptance 

limit and with a constant rejection limit will give the shortest expected delay E(tA-'r 

IC) for a given total false alarm probability. With the conditions of Section 2 and with 

t=1 the SPRT will be 

where G and L are constants. The expected delay E(tA-'r IC), which is minimal, is 

equal to ARLI - 1, since t=1. Thus, also ARLI is minimal.D 

For comparison with other linear methods it is convenient to use weights for the 

observations, which have the sum equal to one. With such weights the method which 

gives the minimum ARLI for a fixed false alarm probability, but which does not 

have a finite ARLo, has the alarm condition 

LxCt)/s > ~2 + Lis. 
t=l 

This method will be further discussed in Section 4.4 as a CUSUM method and is 

there named LCUSUM. By choosing L small enough in this method, the finite value 

of ARLI can be made arbitrary close to one. Still, for this L the ARLo will not be 

finite and thus greater than any fixed value. 
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Proposition 3.1.3. There exists alarm limits cs' to the alarm statistic of 

Proposition 3.1.1, which fulfil "the criterion of minimal ARLIn by having ARLI 

arbitrary close to the minimal value, one, for a fixed ARLo. 

Proof Denote the fixed desired value of ARLo with A. The method with the alarm 

limits cI = L, c j = 00 for i = 2,3, ... k-1 and ck = - 00, where L is a constant and k = [A­

<D(-L)] / <D(L), have ARLo = 1-<D(L-O) + k<D(L-O) = A and ARLI = 1-<D(L-1-l) + k<D(L­

I-l) = 1- <D(L-I-l) [<D(L) + A - <D(-L)] / <D(L), which has the limit one when L tends to 

minus infinity, since <D(L-I-l)/<D(L) has the limit zero.D 

The above demonstration of the possibility to fulfill the criterion of minimal 

ARLI for a fixed ARLO, is not intended as a recommendation of how to proceed in 

practical applications, but is a demonstration of shortcomings of the criterion. 

Sometimes optimality is defined as minimal ARLI/ARLo. This ratio might be 

useful as a rough indicator but has drawbacks as a formal optimality criterion. The 

skewness of the run length distributions (especially if there is a change) and other 

facts make it easy to construct situations where obviously inferior methods satisfy 

this criterion. Below the shortcoming of this criterion is illustrated by the often used 

Shewhart method which gives an alarm as soon as xes) exceeds a limit G (Section 

4.7). 

Proposition 3.1.4. For the Shewhart method (see Section 4.7), ARLI/ARLo is 

decreasing when the limit G increases. 

Proof The method has ARLo =1/(1-<D(G)), ARLI =1/(1-<D(G-I-l)) and thus a ratio 

ARLI/ARLo = [l-<D(G)]/[1-<D(G-I-l)] 

which is decreasing when G increases. 0 

Thus, in the class of Shewhart methods, the greatest possible limit G should be 

used. This demonstrates that the optimality criterion of minimal ARL I / ARLo should 

not be used without care. 
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3.2 Error probabilities 

An important optimality criterion is the maximal detection probability P(A(s)1 

C(s)) for a fixed false alarm probability P(A(s)1 D(s)), and a fixed decision time s, 

when C = { 't :-::; s} and D = { 't > s}. The LR method of Section 4.1 satisfies this 

criterion which in short will be called "the maximum detection probability criterion". 

Different error rates were discussed by de Mare (1980) and Frisen and de Mare 

(1991). 

3.3 Utilities 

An important specification of utility is that of Girshick and Rubin (1952) and 

Shiryaev (1963). They treat the case of constant intensity where the gain of an alarm 

is a linear function of the expected value of the delay, 't-tA , between the time of the 

change and the time of the alarm. The loss associated with a false alarm is a function 

of the same difference. This utility can be expressed as U= E{ u( 't, tA)}, where 

The function h( 't-tA) could be a constant b, in which case 

Thus, we would have a maximal utility if we have a minimal (at is typically negative) 

expected delay from the change-point for a fixed false alarm rate. The criterion will 

for short be named "the criterion of minimal expected delay". The full likelihood ratio 

method LR (Section 4.1) satisfies the criterion for the case specified in Section 2. 
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3.4 Minimax 

Minimax solutions with respect to 'C avoid the requirement of information about 

the distribution of 'C. Pollak (1985) gives an approximate solution to the criterion of 

minimal expected difference, 'C-tA, between the time of the change and the time of the 

alarm for the worst value of 'C. The solution is a randomized procedure. The start of 

the procedure is made in a way that avoids the properties to be dependent on 'C. For 

many applications however, it would be more appropriate with a method depending 

on the distribution of'C than one depending on an ancillary random procedure. Both 

dependencies decrease with time. 

Moustakides (1986) uses a still more pessimistic criterion by using not only the 

worst value of'C but also the worst possible outcome of )(.-1 before the change occurs. 

The CUSUM method, described in section 4.5, provides (except for the first time 

point) a solution to the criterion proposed by Moustakides. 

Ritov (1990) considers a loss function which is not identical to that of Shiryaev 

but depends on 'C and tA besides 'C - tA. The worst possible distribution P( 'C=s+ 11 'C>s; 

XJ is assumed for each time s. With this assumption of a worst possible distribution 

(based on earlier observations) CUSUM minimizes the loss function. 

3.5 Evaluation functions 

Optimality criteria are useful, but sometimes a single criterion is not enough and a 

function is useful for the evaluation. Some examples of this will be given below. 

3.5.1 Delay of an alarm 

A measure related to the ARL\ but more general, is the conditional expected 

delay as a function of 'C 
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Differences in shapes of these curves for different methods (Frisen and Wessman 

1999) demonstrate the need for other measures than the conventional ARL. For 1=1 

the values of this function equal the values of (ARLl- 1). 

The expectation of the delay, also with the respect to the distribution of 1', is: 

This expression is used in the utility functions in Section 3.3. When the distribution 

of l' is geometrical with the intensity v, it is sometimes useful to express the 

expected delay as a function of vas in Frisen and Wessman (1999). 

In some applications there is a limited time available for rescue actions. Then, the 

expected value of the difference 1-tA is not of main interest. Instead of using the 

expected value as in Section 3.3 and 3.4, the probability that the difference does not 

exceed a preassigned limit is used. The limit, say d, is the time available for 

successful detection. Bojdecki (1979) considers the supremum (with respect to 1) of 

See Section 4.6 for discussion of consequences of this optimality criterion. 

A related expression is the probability of successful detection, 

3.5.2 Predictive value 

The predictive value PV(s) = P(C(s)1 A(s)) of an alarm at time s has been 

suggested as a criterion of evaluation by Frisen (1992). The predictive value tells us 

how probable a change is when we have an alarm. Thus, it gives important 

information about which action that would be appropriate. It simplifies matters if the 

same action can be used whenever an alarm occurs. Thus, a constant predictive value 

with respect to time is a good property. 

The relation between the predictive value and the posterior distribution PD(s) = 

P(C(s) I Xs) is different for passive and active surveillance. This is important since 

the method of giving an alarm as soon as the posterior distribution exceeds a fixed 
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limit is often advocated. See, e.g. Smith et. al. (1983) and Harrisson and Veerapen 

(1994). 

Proposition 3.5.2.1. At passive surveillance the method based on the posterior 

distribution with pA(s)= [Xs; PD(s»c] implies a lower limit of the predictive value, 

PV(s) > c. 

Proof PV(s) = P(C(s) I A(s» = P(C(s) I Xs; P(C(s) I Xs) > c) > c. D 

At passive surveillance the predictive value typically increases to one as time s 

increases, since P(C(s» = P(t:s;s) tends to one. As an example, the predictive value 

for the Shewhart method, when 't has a geometric distribution with intensity v will be 

given. For the Shewhart method, the alarm probabilities a = P(tA=tl tA~t, D) and (1-

~) = P(tA=tl tA~t, C) do not depend on time which simplifies formulas. 

PV(s) = P(C(s) I A(s» = P(C(s) n A(s»/P(A(s» 

= I(1-y)'t-1V(1-~)/[(1-V)S+ I(1-y)'t-1V(1-~)+1 
't = 1 't = 1 

= [V(l- ~)(1- (1- V)S-l)]/[V(l- ~)(1- (1- v)s-l)_ av(l- v)s- 2] 

which tends to one when s tends to 00. 

At active surveillance, the process is stopped if aA(1) occurs. Otherwise the 

complement aAC(l) occurs and for s=2, 3, ... write aA\_l = aA C(l) n aA C(2) n ... aA C(s). 

In this active case, the simple relation in the Proposition 3.2.1 above is no longer true. 

Instead PV(s) = P(C(s) I aA(s) n aAcs_l ). 

At active surveillance the predictive value typically has an asymptote less than 

one since we have that the probability of the first alarm at s decreases with s for large 

s. The formula of the asymptote for the Shewhart method is given in Frisen (1992). 

Graphs of the predicti ve value for different methods are given in Frisen and Wessman 

(1999). The predictive value is not monotonically increasing for all methods. 

There is a great difference between a single decision and a sequence of decisions. 

At a single decision the posterior distribution might give sufficient information. For 

a sequence of decisions, characteristics of the sequence, such as constant predictive 

value, become of interest. 
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4. METHODS 

In Figure 1 the alarm set of some methods, which will be described below, are 

illustrated for the decision time s=2. The purpose of the figure is to illustrate the 

geometrical differences of the alarm sets. 

In Table 1 some main characterizations of some methods are schematically 

described. The number of parameters which can be used to optimize for different 

situations is one important difference. Many methods for surveillance are based in 

one way or another on likelihood ratios. For the comparison, expressions in terms of 

the basic likelihood ratios are also given in Table 1. 

4.1 The likelihood ratio method 

A method constructed by Frisen and de Mare (1991) to meet several optimality 

criteria, e.g. those of Sections 3.2 and 3.3, will first be presented. The general method 

uses combinations of likelihood ratios. Although methods based on likelihood ratios 

have been suggested earlier, for other reasons, the use in practice is (yet) rare. The 

likelihood ratio method will be used as a "benchmark". Commonly used methods are 

compared with it in order to clarify their optimality properties. 

Here, the likelihood ratio method is applied to the shift case specified in Section 

2. The "catastrophe" to be detected at decision time s is C = { 't :<::; s} and the 

alternative is D = { 't> s}. 

The likelihood ratio method has an alarm set consisting of those X for which the 

likelihood ratio exceeds a limit: 

For the case of C = { 't :<::; s} this can be expressed as 

s 

L w(t)L(t) > Os 
t=l 

where wet) = P('t=t)IP('t:<::;s) and L(t) is the likelihood ratio for the case when 't=t. 
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For the case of normal distribution, C(s)={ 't:::;s} and D(s)={ 't>s}, as specified in 

Section 2, we have 

where 

g(s) exp(-(s+1)/l2/2) 
P('t:::;s) 

does not depend on the data and 

is a nonlinear function of the observations. 

In order to achieve the optimal error probabilities described in Section 3.2, an 

alarm should be given as soon as p(xs) > Os. 

In the case of geometric distribution of 't the condition of "minimal expected 

delay", as described in Section 3.3, is achieved if an alarm is made as soon as the 

posterior distribution exceeds a fixed limit (Shiryaev 1963). 

( ) 
P(T>S) K 

P x s >-----'---'-
P(T~S) l-K 

where K is aconstant. Thus, the optimality is achieved by the likelihood ratio method 

with the additional requirement 

Os =K P('t > s) / (1-K) P('t :::; s). 

The method for this limit, that thus gives alarm for the first s where 

will here be called the LR method. A usual assumption is that 't has a geometric 

distribution with 1t t=(1-vY-1v . The shape of the alarm set for this case is illustrated 

in Figure 1. The alarm is given for the first s where 
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(1) 

When v tends to zero both the weights wet) and the limit Gs of the LR method tend 

to constants. Shiryaev (1963) and Roberts (1966) suggested the method, which is now 

called the Shiryaev-Roberts method, for which an alarm is triggered at the first time 

s, for which 

s 

LL(t) > G 
t=l 

where G is a constant. The method has an approximately constant predictive value 

(Frisen and Wessman 1999), which makes it easier to interpret alarms which happens 

late or early during the surveillance. 

The posterior distribution PD(s) = P(C(s) I Xs ) has been suggested as an alarm 

criterion by, e.g. Smith et al (1983). When there are only two states, C and D, this 

criterion leads to the LR method. Sometimes the use of the likelihood ratio or 

equivalently the use of the posterior distribution is named "the Bayes' method". This 

name is avoided here since it might give wrong associations. Here no use of Bayesian 

inference will be made. Bayes' theorem is used and 't is considered as a stochastic 

variable but no results are dependent on the perspective of Bayesian inference. 

4.2 Linear approximation of the likelihood ratio method 

To obtain a method which is easier to use, and also to clarify the connection with 

other methods, a linear approximation of the alarm-function Ps is of interest. The 

exponential functions of the partial sums of the observations will be approximated 

by linear functions. The situation, often studied in the literature, with late changes and 

thus expected values of the partial sums which are close to zero, is considered. By 

approximation by Taylor expansions 

1 +/J.[Lx(t)] 
t=i 



and with a = exp(/l2/2) the following linear approximation is achieved: 

s s 

p/xs);::;Ps *(xs) = L TCJl +/lLx(t)]exp(i~l/2) = 
i = 1 t=i 

s s s 
=LTCia i +/lLTCia i LX(t)= 

i=l i=l t=i 

=m(s) +/lLx(t)m(t) , 
t=l 

where the weights for the observations are 

t 

m(t)=La iTCi. 
i=l 

17 

The linear approximation of the LR method is here denoted as the LLR method. It 

will give an alarm as soon as 

Ps **(Xs)=Lx(t)m(t) 
t=1 

exceeds the limit 

[GJg(s) -m(s)]//l 

K =[a s+l P(1">s) -- - m(s)]//l 
l-K 

The sum of the weights is 

sst s s 
Lm(t)=LLa iTCi=LTCtLa i. 
t=l t=li=l t=l i=t 

With adjustment to make the sums of the weights equal to one we have the 

weights 



18 

t s s 

wL(t)=m(t)/Lm(t)=La iTC/LTCtLa i 
t=1 i=1 t=1 i=t 

and the LLR method can be expressed as 

s s+1 KI 
LWL(t)X(t) > [_a __ PCr>s) ~ - wL(S)]//-L 
t=1 S S . 1-K 

LTCtLa 1 

t= 1 i =t 

If the intensity is constant, when 't has a geometric distribution 1t t=(l-vY-lv and then, 

with b =a(1-v) = (1-v)exp(1l2/2), we have 

met) 
t 

[v/(l-v)]Lb i = __ b_V __ (b t-l) 
i=1 (b-l)(I-v) 

Lm(t) 
t=1 

bv b(b S -l)-s(b-l) 

(b-l)(l-v) b-l 

and 

For geometrically distributed 't the alarm criterion for the LLR method becomes 

(2) 

For large s the limit tends to 

which is proportional to bS/(bS_l). For s=2 the alarm set is illustrated in Figure 1. 
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4.3 Exponentially weighted moving average 

A method for surveillance based on exponentially weighted moving averages, 

usually called EWMA, was introduced in the quality control literature by Roberts 

(1959). Recently the method has got much attention. This may be due to papers by 

Robinson andHo (1978), Crowder (1987), Ng and Case (1989), Lucas and Saccucci 

(1990) and Domangue and Patch (1991) in which positive reports of the quality of 

the method are given. 

The alarm statistic is 

Zs = (1-A)ZS_1+AX(S), s=l, 2, ... 

where 0<A<1 and in the standard version of the method Zo is the target value !l0, 

which here is chosen to zero. 

The statistic is sometimes referred to as a geometric moving average since it can 

equivalently be written as 

s-l 

Zs= AL (l-AYX(S-j) 
j=O 

where k=lI(I-A) is a constant> 1. 

t=l t=l 

An out-of-control alarm is given if the statistic Zs exceeds an alarm limit, usually 

chosen as LCiz, where L is a constant and Ciz the limiting value, as s tends to infinity, 

of the standard deviation. This method will give an alarm for the first s for which 

or equivalently 

(3) 

s-l 

Zs= AL (l-AYX(S-j) > Loz' 
j=O 

L wE(t)x(t) > LE 
t=l 

with weights wE(t)= kt-l(k-1)/(kS_l) which sum to one and with ~ =LCiz kS/(kS_l). 

EWMA gives the most recent observation the greatest weight, and gives all 

previous observations geometrically decreasing weights. If A is equal to one, only the 

last observation is considered and the resulting method is the Shew hart method 

described in Section 4.7. If A is near zero, all observations have approximately the 

same weight. 
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Proposition 4.3.1 There does not exist any "A which makes the EWMA exactly 

optimal in the sense of Sections 3.2 or 3.3. 

Proof The likelihood method, which satisfies the optimality criteria above, gives 

alarm when a nonlinear function of the observations exceeds a fixed limit, while the 

EWMA method gives alarm when a linear function exceeds a fixed limit. D 

Since the EWMA method has two parameters, "A and L, these can be chosen to 

equal any other linear method when s=2, as in Figure 1. It is thus not included 

separatel y in that figure. When s> 2 differences appear and similarities with the linear 

LLR method will now be examined. 

Proposition 4.3.2 The weights of the observations in the alarm function of the 

EWMA method cannot be exactly identified with the weights by the LLR method for 

the case of constant intensity. For late observations approximate identification is 

achieved with "A = 1 - exp(-/-l212)/(I-v), when this is positive. 

Proof At constant intensity v 

1ti = (l-vY-1v i=l, 2, ... 

The weights, met) of the LLR method are found in Section 4.2. The relative weights 

are 

m(t+l)/m(t) = (l_bt
+

I )/(I_bt
) = b + (1-b)/(I-bt

). 

The relative weights are thus not constant for the LLR method as they are for the 

EWMA method. For large values of u the relati ve weight tends to b when b> 1. When 

m(t+l)/m(t) = k= 1/(1-"A) = b = (I-v) exp(/-l212) and thus "A = 1 - exp(-/-l212)/(I-v). D 

The comparison between the weights of the LLR method and the weights of the 

EWMA method with "A = 1 - exp(/-l2I2)1(I-v ) is made in Figure 2. In the beginning of 

the surveillance the EWMA puts more weight to the older observations than the LLR 

method. However, already for decision time s=lO the differences between the two 

methods are without importance. For s=15 it is not possible to see any difference in 

the scale of the figure. The approximately optimal values of "A are given as a function 

of /-l in Figure 3. It is given for different values of the intensity, v. The effect of v is 
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moderate. Instead, the size, /l, of the shift which is to be detected, has a major effect. 

This effect is slightly more pronounced for the greater intensities. The approximation 

in Proposition 4.3.2 requires that /l is not too small if v is very large. Also by the 

formula in Proposition 4.3.2, it is seen that the parameter Iv of the EWMA method 

rapidly increases to one which makes the method identical to the Shewhart method. 

So far only one time s of decision has been considered. The LLR method is an 

approximation of the LR method which satisfies "the maximum detection probability 

criterion" for each value of s. The EWMA method with proper weights can thus be 

expected to have good properties according to Section 3.2 for each value of s. For a 

full comparison of the methods it is necessary also to consider how the limits for 

alarm depend on s for different methods. The limit for the EWMA method depends 

on the decision time s as kS/(kS_1) as was seen in the beginning of this section. With 

Iv chosen as in Proposition 4.3.2 we have k=b. In Section 4.2 it was demonstrated 

that also the limit for the LLR method depends on s as bS/(bS_1) for large s. Thus, for 

this choice of Iv the EWMA method approximately fulfills also the optimality 

condition of Section 3.3 of a minimal expected delay. 

According to Proposition 3.1.1 Iv should approach zero in order to give equal 

weight to all observations and thus give an alarm statistic which can give a minimal 

ARO for a fixed value of ARLo. However, the alarm limit does not depend on s in 

the way required (see Proposition 3.1.2 and 3.1.1). Papers which determine optimal 

Iv according to the criterion of minimal ARLI (e.g. Crowder (1989), Lucas and 

Saccucci (1990) and Srivastava and Wu (1997)) recommend considerably smaller 

values than those derived here for the minimal expected delay. 

4.4 Simple cumulative sums 

Sometimes CUSUM is used as a unifying notation for methods based on the 

cumulative sum of the deviations between a reference value and the observed values. 

In the simplest form there is an alarm as soon as the cumulative sum of differences 

from the target value /l ° which here, by standardization, is set to zero 

(4) s 

C s= L x(t) 
t=l 
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exceeds a fixed limit. This method is sometimes called the simple CUSUM. It will 

here be denoted as SCUSUM. The SCUSUM method gives optimal error 

probabilities for T=1 in the case specified in Section 2. However, Frisen (1992) 

demonstrated that when T> 1, SCUSUM cannot compete with other methods with the 

same ARLo. The probability of successful detection within a short time is lower. 

Also, the predictive value of an alarm is strongly decreasing with the time of the 

alarm. As is seen in Figure 1 the shape of the alarm set is quite different from the 

optimal one to minimize the expected delay. 

Another simple method based on cumulative sums is the method which gives an 

alarm when the likelihood ratio for C={ T=I} against D={ T>S} exceeds a fixed 

constant. As was demonstrated in Proposition 3.1.2 we have an alarm at 

(5) s 

tA = min{s: LX(t) > L + s~2}. 
t=l 

This method, which gives an alarm as soon as Ct exceeds a linear function of s is here 

called the LCUSUM method. The method is a sequential probability ratio test without 

the limit for acceptance. The alarm set of the method can also be expressed by the 

likelihood ratio condition L(1) > G, where G is a constant and L(I) as before is the 

likelihood ratio for C={ T=1 }. For the SCUSUM method the limit for L(1) depends 

on s. The LCUSUM method has minimal E(tA-T) when T=lamong methods with the 

same total false alarm probability. In Figure 1, where the alarm limit for s=2 is 

illustrated, the LCUSUM is identical to the SCUSUM since the only difference is 

how the limit for alarm depends on the decision time s. 

For both SCUSUM and LCUSUM, the data from all earlier points in the time 

series have the same weights as the last one. As soon as only T=1 is considered (as 

in the criterion that minimizes the ARO for fixed ARLO) these weights are the 

optimal ones. For most applications this is not considered rational. The most often 

suggested optimality criterion in the literature on quality control does thus lead to a 

type of method which is seldom used in practice. 
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4.5CUSUM 

The variant of cusum tests, which is most often advocated, is called the CUSUM 

or V -mask. It can be based on a diagram of the cumulative sums of deviations from 

the target value. In the two-sided case a V -shaped mask is moved over the diagram 

until some earlier observation is outside the limits of the mask and an alarm is given. 

The two legs of the V are usually placed symmetrically to the horizontal line. The 

apex of the V is placed on the same level as the last observation but at a distance to 

the right of the observation. There is thus an alarm for the first s for which 

(6) I Cs - Cs-i I > h + ki for some i=l, 2, ... , s, 

where Co = 0 and hand k are chosen constants. The parameter k determines the 

slopes of the legs in the V -shaped mask and h determines the location of it. The 

distance between the apex and the last observation is hlk if the axes have the same 

scale. In that case the angle of the V -shaped mask is 2*arctan(k). In V -masks with a 

very narrow angle there is no big difference between the weights of recent and old 

observations and there are similarities to the simple cusum test. With a wide angle 

the last observation has a heavy weight and there are similarities to the Shewhart test. 

By the CUSUM method (in contrast to the simple variants of Section 4.4) the 

information from earlier observations is handled quite differently depending on the 

position in the time series. 

Sometimes (e.g. Siegmund 1985 and Park and Kim 1990) the CUSUM test is 

presented in a more general way by likelihood ratios (which in the normal case reduce 

to Ct-Ct-i). Observe however that this is not the LR method described above. The 

CUSUM method is the result of a natural (but not optimal) combination of methods. 

Each of these is optimal to detect a change that occurs at a specific time point. The 

alarm condition of the method can be expressed by the likelihood ratios for C={ t=t} 

as 

max(L(t); t=l, 2, .. , s) > G, 

where G is a constant. 

The optimal value of the parameterk of (6) is usually claimed to be k=(~o+~l)l2, 

which after our standardization reduces to ~12. The chain of references (if any) 

usually ends with Ewan and Kemp (1960). In that paper they conclude from a 

nomogram that this value seems to be about the best. The likelihood ratio method for 

C={ t=i} gives alarm for 
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s 

LX(t»C + (s-i)~2. 
t=i 

where c is a constant. Thus, also here we have the slope 1-112. That this slope is 

optimal in each step does explain why it "seems to be about the best". However it 

does not prove that it is optimal for the sequence of decisions. 

The CUSUM, with k= 1-112 satisfies certain minimax conditions (Moustakides 

1986 and Ritov 1990) as was discussed in Section 3.4. In Figure 1 the alarm limit of 

the CUSUM method is seen to be a two-phase linear approximation of the nonlinear 

limit of the LR method. 

4.6 Moving average 

The moving average method gives an alarm as soon as 

(7) 

where d is a fixed window width and L is a constant. The alarm set can also be 

expressed by the likelihood ratios L(t) as 

L(s-d) > G 

where G is a constant. 

The method can be shown to be a special case of the solution of Bojdecki (1979) 

to the maximization of 

where tA is the time of alarm. See Section 3.5 for discussion on this optimality 

criterion. 

4.7 Shewhart 

This method, which is much used in quality control, was suggested by Shew hart 

already (1931) An alarm is triggered as soon as an observation deviates too much 

from the target. The stopping rule is that we have an alarm as soon as 

(8) x(s»G. 
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The limit G for a fixed ARLo, is calculated by the relation: P(X(s»GI 

/-l(s)=/-l°)=l/ARLo. For illustration of the alarm set at decision time s=2 see Figure 1. 

More expanded descriptions are found in many textbooks like Wetherill and Brown 

(1990). 

The alarm statistic of the LR method 

fxs(xs I C) Ifxs(xs ID) 
reduces to that of the Shewhart method when the "catastrophe" to be detected at 

decision time s is C = { 't = s} and the alternative is D = { 't > s}. The alarm set can 

be expressed by the condition 

L(s) > G 

where G is a constant. Thus the Shewhart method has optimal error probabilities for 

these alternatives for each decision time s. 

For large shifts, it was demonstrated by Frisen and Wessman (1999) that the LR 

method and the CUSUM method converge to the Shewhart method. 

5. CONCLUDING REMARKS 

The performance of a system of surveillance depends on the time of the change 

'to To get an index with a single value, either a summarizing measure over the 

distribution of 't, or evaluation for a specific value of 't, can be used. Suggested 

optimality criteria based on specific values of't are those based on 't=1, "'t=oo" or't= 

"worst possible value". In Roberts (1959 and 1966) the value 't=8 was used, but that 

was because of technical reasons. The solution to an optimality criterion based on 't= 

"worst possible value" is a randomized procedure. Recent suggestions are to make 

the minimax criterion still more pessimistic by also assuming the worst possible 

outcome. Optimization and evaluations for the steady state case "'t=oo" are of great 

value, but as with other asymptotic results it is not enough for all applications. 

In quality control, optimality criteria based on ARL, with the same distribution 

for all time points, is the common choice. Sometimes the criterion is expressed as the 

ratio ARL1/ARLo. As was noted in Proposition 3.1.4, this has umeasonable 

implications. More often the criterion is stated as minimal ARLI for a fixed ARLO. 

As was noted in Proposition 3.1.1 this criterion implies methods where all 

observations have the same weight. The shortcomings of such methods were pointed 

out in Section 4.4 and they are not often recommended. Instead, methods which have 
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all weight on the last observation (Shewhart) or gradually less weight on the older 

observations (EWMA and CUSUM) are commonly recommended in the literature 

on quality control. Methods which have good properties when 't=1 might not be as 

good if the change occurs later. If the problem is to discriminate between the 

hypothesis ll(t)=O for all t and the hypothesis ll(t)=1l for all t, when sequential 

methods for tests of hypotheses (such as the power one SPRT method of Proposition 

3.1.2) are appropriate. Only the situations where a change is expected to happen after 

an unknown time, 't, require the special methods for surveillance. 

A summarizing optimality criterion is achieved by using an assumption on the 

distribution of't. Exact information about the distribution might be lacking. However, 

the drawbacks with the criteria based on ARL demonstrate the importance of any 

information on the distribution of't. 

Criteria based on the posterior distribution have an intricate relation both to the 

LR method and to the predictive value of an alarm. These relations were analyzed in 

Section 3.5.2 for passive and active surveillance. 

The LR method is nonlinear with respect to the data. Commonly used methods 

are equivalent to the LR method only at extreme cases where the nonlinearity 

disappears. The linear approximation, LLR, is here used mainly for the comparison 

with other linear methods. The comparison is used to demonstrate how the parameter 

A of the EWMA method should depend on the size of the shift and intensity of the 

change to be detected. The value of A which approximately satisfies "the criterion of 

minimal expected delay" depends strongly on Il but very little on v. The result that 

the method with this choice of A approaches the Shewhart method when Il increases 

is in agreement with the results by Frisen and Wessman (1999) that when the LR, 

Shiryaev-Roberts and the CUSUM methods are optimized for large shifts they are 

very much alike the Shewhart method. This A differs, both in the level and in the 

slope of the function of Il, in an expected way from the results where "the criterion 

of minimal ARL 1" is used. 

The EWMA method has continuously decreasing weights for older observations. 

The CUSUM method has a discrete adaptive way of including old observations. This 

can explain the good minimax properties for the CUSUM method. The EWMA 

method has bad "worst possible" properties according to Yashchin (1987). The best 

thing would be to have continuous adaptive weights. That is actually what the LR 

method gives. 
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The simple cumulative sum methods SCUSUM and LCUSUM satisfy optimality 

conditions for C={ 't=1 }. They are linear, but with equal weight to all observations in 

contrast to the linear approximations of the LR method which give more weight to 

later observations. 

The limits for the alarm functions in Figure 1 are not comparable with respect to 

false alarm probability. The false alarm probability P(tA=sID) depends on s in 

different ways for the different methods. Thus the area under the curves cannot be 

interpreted. However, the shapes of the curves demonstrates geometrically some 

characteristics. The linear methods LLR and EWMA (with two and one adjustable 

parameter respectively) can approximate the nonlinear LR method rather well. The 

two-phase linear CUSUM method which has an adjustable parameter also 

approximates the smooth LR method rather well. However the Shewhart and the 

SCUSUM methods which do not have any adjustable parameter except the limit can 

only approximate the LR method for very special cases. 

The robustness with respect to the choice of parameters is also of interest. The 

properties of different methods when the actual shift I..l or intensity v is not the same 

as those M and V for which the method was optimized have been examined. 

Srivastava and Wu (1993) studied the asymptotic effect of different true I..l for a fixed 

parameter M. Jarpe and Wessman (1999) studied the same effect for small samples. 

Frisen and Wessman (1999) studied the small sample properties for different values 

of M for a fixed I..l to examine the robustness to the choice of parameter value M. The 

theorems and the figures demonstrate that the choice of a large value of M makes the 

properties of the methods more alike. For large values of M all methods behave as 

the Shewhart method. Heuristically, a method designed to detect a large shift with a 

small expected delay should allocate nearly all weight to the single last observation. 

A consequence is that with specification to a large value of the shift the choice of 

method is not very important. The similarity is pronounced for M larger than 2 for 

1..l=1. This confirms the results by Mevorach and Pollak (1991) that the Shiryaev­

Roberts method and the CUSUM method have similar properties for the cases M=5 

andM=7 for 1..l=1. The study by Frisen and Wessman (1999) confirms the conjecture 

by Roberts (1966) about the robustness with respect to differences between the 

assumed and true intensities V and v. 

Here, the simplest and in the literature most commonly discussed situation has 

been treated in order to concentrate on principal inferential matters. However, also 
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many other situations are of interest for applications. Some examples will now be 

given about results for such situations. Multivariate surveillance is of interest in many 

applications. Wessman (1998) has examined the case there many processes are 

monitored for a common change point and demonstrated that univariate surveillance 

can be used. The case of spatial surveillance has been studied by, e.g. Jarpe (1999) 

where also a reduction to ordinary univariate surveillance was demonstrated to be the 

proper solution. Here the case of independent observations is described but also the 

case of autocorrelated observations has been studied by, e.g. Alwan (1992). Here 

normally distributed observations were studied but the surveillance of the frequency 

of events has been studied by, e.g. Radelli and Gallus (1989). 
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LEGENDS TO TABLE AND FIGURES 

Table 1. Schematic characterization of methods by optimality properties described 
in the text. 

Figure 1. Alarm limits at decision time s=2 for some methods described in the text 
and in Table 1. The values v=O.Ol and 11=1 were used for those methods which can 
be optimized. 

Figure 2. Connections with straight lines of the weights wet) of the observations x(t). 
The weights of the EWMA method are calculated for A = 1 - exp(11212)1(1-v). The 
LLR method is optimized for the case when the change 't has a geometric distribution 
with intensity v=O.Ol and the shift is 11=1 and the same values are used for A. The 
pairs of curves are for decision times s = 5 and 10. 

Figure 3. The value of the parameter A of the EWMA method, which according to 
Proposition 4.3.2 is approximately optimal, as a function of the shift, 11, for the 
intensities, v, 0,10,0,05 and the limiting value 0. 
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Table 1 

Method Formula Alarmfunction of No of parameters Optimality 
number L(t) except the limit 

min B(tA - tl tA ~t) for fixed P(tA< t) 

L w(t)L(t) 
and 

LR (full likelihood ratio) (1) 2 
max P(A(s)1 C) for fixed P(A(s)1 D) 

when C = { t ~ s} and D = { t > s} 

Shiryaev Roberts (1) s 
with v ..... o LL(t) 1 As for LR if v ..... 0 

t=l 

LLR (linearization of the LR method) (2) 2 approximation of that for LR 

with ALLR approximation of that for LR 
BWMA (3) 1 

with small A approximation of that for SCUSUM 

SCUSUM (4) L(1) 0 max P(A(s)1 C) for fixed P(A(s)1 D) 
when C = { t = I} and D = { t > s} 

LCUSUM (5) L(I) 0 min ARL 1 for fixed total false alarm 
probability 

CUSUM (6) 
maxL(t) 

1 best min max B(tA - tl tA ~t) for fixed 
P(tA< t) 

Moving average (7) L(s-d) 1 min P(lt - tAI~d) 

min B(tA - tl tA ~t) for fixed P(tA< t) 
asymptotically for large /l 

Shewhart (8) L(s) 0 and 
max P(A(s)1 C) for fixed P(A(s)1 D) 

when C = { 'L = s} and D = { t > s} 
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