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ABSTRACT 

We study, by means of simulations, the performance of the Shewhart method, 
the Cusum method, the Shiryaev-Roberts method and the likelihood ratio 
method in the case when the true shift differs from the shift for which the 
methods are optimal. The methods are compared for a fixed expected time 
until false alarm. The comparisons are made with respect to some measures 
associated with power such as probability of alarm when the change occurs 
immediately, expected delay of true alarm and predictive value of an alarm. 

INTRODUCTION 

Statistical surveillance is needed to detect changes in random processes in e.g. 
environmetrics, manufacturing industry, econometry, biometry, etc. Suppose 
that a random process is observed at discrete time points. Each random 
variable is normally distributed with zero mean and unit variance. At a 
random time point, T, the mean shifts to a new level, 11, but there is no shift 
in variance. We are interested in situations where the methods for detecting 
the shift are optimal for one specified size of shift. We determine the power 
aspects for different shift sizes of the process. 

Srivastava and Wu (1993) made a similar kind of comparison study of 
several well known surveillance methods, the Exponentially weighted mov­
ing average (EWMA), the Cusum and the Shiryaev-Roberts methods. They 
considered the case when the size of the shift of the stochastic process is un­
known while the shift for which the methods are specified is fixed. However, 
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there are several differences between their study and our study. We treat 
the case of active surveillance, i.e. when the surveillance stops as soon as 
the first alarm is signalled. Srivastava and Wu studied passive surveillance, 
when a number of false alarms have been signalled before the change. Fur­
thermore, they considered continuous time while we consider discrete time 
(i.e. time is present only through a countable set of observations made at dis­
crete time points). In our study the EWMA method is not considered. But 
the likelihood ratio (LR) method, discussed by Frisen and de Mare (1991), 
is included. 

The measures of performance we use here are expected time until alarm 
given that a change happens immediately (ARL1): E[tA IT = 1], the dis­
tribution of the time of alarm given that a change happens immediately: 
P[tA = tiT = 1], the expected delay of true alarm when a change occurs 
at time t (CED): E[tA - T I tA > T = t] and the total expected delay of 
true alarm when T is geometrically distributed (ED): Ev [t A - Tit A > T]. 
Srivastava and Wu used the stationary average delay time (SADT): 
limt-too E[tl + ... +tn+1 - TIT = t] where t 1 , ... ,tn are time intervals between 
n false alarms before T, and tn+l is the interval between the last false alarm 
an the first alarm after change. The main difference between SADT, CED 
and ED is that SADT is the limit expected delay when the time of change 
T = t tends to infinity while CED and ED are measures of expected delay 
without this limit. 

Frisen and Wessman (1999) made a study of differences between and 
robustness of some methods for surveillance based on the likelihood ratio 
when there is a shift in the mean of a sequence of normally distributed 
random variables. They made a simulation study of a unit shift in mean 
when the methods were specified for a 0.5, 1 and 2 shift in mean having fixed 
the ARLO so that ARLO was the same for all methods. The comparisons were 
made with respect to the same measures of performance as in this paper. 
The main differences were shown to be between (the Shew hart method, the 
Cusum method) and (the Shiryaev-Roberts method, the LR method) for 
ARLo = 11. For ARLo = 100 the properties of the Cusum method were more 
similar to those of the LR method and the Shiryaev-Roberts method. They 
concluded that increasing specified size of shift makes the properties of all 
considered surveillance methods tend to the Shewhart method. This means 
that an increased weight is put on the latest observation. The properties of 
the LR method considered are well approximated by those of the Shiryaev­
Roberts method for most cases studied here. 

This paper is organized as follows. In Section 1 the statistical model 
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and the surveillance methods are described. In Section 2 the properties of 
distribution of true alarm, average run length, expected delay and predictive 
value are examined for some surveillance methods, by means of simulations. 
An example of the use of the results for spatial surveillance is given in Section 
3 and in Section 4 the results are discussed. 

1 METHODS 

We consider the problem of shift in the mean of a normal distribution. Sup­
pose that we have a sequence of random variables {X (t) : tEN} and a 
random time of change T. We also assume that, given the change-point T, all 
variables, X(1), X(2), X(3), ... , are conditionally independent. We assume 
that 

X(t) !2 { N(O,1) if t<T 
N(tt, 1) if t2:T . 

In this paper we consider the shift sizes ttE{O.5, 1,2}. 

Some measures of performance include specification of the distribution of 
T. In these cases T is geometrically distributed with an intensity parameter 
v(t) = v. In general T has a frequency function, 7ft = P[T =t], with intensity 
v(t) = P[T=tIT2:t]. 

A surveillance method is a stopping rule. In this paper the stopping rules 
considered may be represented as 

tA = min{ s : p(Xs) > K} 

where Xs denotes the history of X up to time s, {X(t) : t~s}, p(.) is called 
an alarm function and K is a threshold (sometimes called critical limit). See 
e.g. Lai (1995) for a more thorough presentation of surveillance methods. 

Let lr(t) denote the likelihood ratio f(X(t) I T ~ t)/ f(X(t) IT> t). Thus, 
for a shift of size M we have 

lr(t) = exp (M(X(t) - M/2)). 

The surveillance methods considered here can all be defined by using lr(t). 
The Shewhart method (Shewhart, 1931) is defined by writing the alarm 
function as 

p(Xs) = lr(s) for all sEN. 
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The Cusum method is the surveillance method suggested by Page (1954) 
and presented by Lorden (1971) with an alarm function 

p(Xs) = { log lr(l) when s = 1 
max(O, log lr(s) + p(Xs-d) when s = 2,3,4, ... 

The Shiryaev-Roberts method, derived by Shiryaev (1963), has an alarm 
function 

p(Xs) = { lr(l) when s 1 
lr( s) (P(Xs - 1) + 1) when s - 2,3,4, ... 

The (full) likelihood ratio (LR) method is the surveillance method pre­
sented by Frisen and de Mare (1991) with 

s s 

p(Xs) = ~ 1- ~~=l7rW l! lr(w) for all sEN 

where 7rt=P[r=t] and vet) = P[r=tJr2:t]. When not otherwise stated, the 
LR method used is optimized for v = 0.1. 

Throughout the paper all surveillance methods considered are optimized 
for the shift in the mean of size M = 1 and no shift in variance which is 
unity. The values of fJ, of the processes studied are fJ, E {0.5, 1, 2} and a = 1. 
Choosing a low value for the threshold K makes the alarm function p(Xs) 
more likely to exceed K and thus the stopping rule more likely to signal 
alarm soon after a change has occurred but also more prone to give false 
alarms. Choosing a high value will give fewer false alarms but also a longer 
delay of true alarm. 

This study is intended as a complement to the study by Frisen and Wess­
man (1999). There fJ,=1 and the shift size for which the surveillance methods 
were optimized ME {0.5, 1, 2} while in our study the surveillance methods 
are optimized for M = 1. This is illustrated in Figure 1. 

M=O.5 M=1 M=2 M=O.5 M=1 M=2 

11=0.5 X 11=0.5 

11=1 X 11=1 X X X 
11=2 X 11=2 

Figure 1: To the left: the cases of this study. To the right: the cases of the 
study by Frisen and Wessman (1999). 
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2 RESULTS 

For the Shewhart method, the run length distribution P[tA = tiT = 1] was 
analytically calculated while, for the other surveillance methods, simulations 
were used to approximate the run length distribution. 107 replicates of the 
run length were simulated for T = 1, ... ,150. In these simulations standard 
normal random numbers were generated by the NAG subroutine g05ddf. To 
make the plots comparable, the thresholds K were chosen so that ARLo=100 
for all surveillance methods. These thresholds were determined with a level 
of accuracy which made the deviation between the intended and estimated 
ARLo less than 0.1% of the intended value. The large number of replicates 
made it possible to neglect the sampling error from this determination. 

2.1 Probability of false alarm 

Even though the surveillance methods are calibrated so that ARLo = 100, 
the false alarm probability, P[tA < TJ, differs between the methods. It can 
be thought of as a characteristic for surveillance corresponding to the level 
of significance for hypothesis testing. The false alarm probability is not a 
function of the shift size p,. Thus, the results by Frisen and Wessman (1999) 
apply also here. 

2.2 Delay of true alarm 

In the same way that the false alarm probabilities correspond to the level 
of significance, characteristics involving events concerned with alarm when 
the change has occurred, such as the conditional probability that alarm is 
signalled at time t given that T:::; t and the expected delay of true alarm, can 
be said to correspond to the power of a test. Figure 2 shows the run length 
distribution P[tA =t I T= 1] for shift sizes p,=0.5, 1, 2. 

p,= 0.5 p,=1 
05 

0,' 

00 ~
x..:.' 

0.1 'If,... x:.'. , 
I ;.r; •• ,lK •• ' " •••• _ ••••• 

Figure 2: Probabilities of alarm at time t, given that T= 1. 
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In Figure 3 we see the conditional expected time of delay of an alarm given 
that the change has already happened at time t, i.e. E[tA-TltA>T=t]. 
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Figure 3: Conditional expected delay given that the change occurs at time t. 

The expected time until alarm when the change has already occurred 
when surveillance starts, E[ tA I T = 1], is usually denoted by ARL 1. This has 
to do with the delay of true alarm in a similar way as ARLo has to do with 
false alarm. The limits of 1 +Ev[tA -T I tA > T], as the intensity v tends to 1, 
are the values of ARL1. The expected delay, Ev[tA -T I tA > T], is shown in 
Figure 4 as a function of v. 
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Figure 4: Expected delay as a function of the intensity v. 

As can be seen in Figure 3 and Figure 4, the Shewhart method has a larger 
conditional expected delay (CED) and expected delay (ED) than the other 
methods when (ft,M)=(0.5,1) and when (/-l,M)=(l,l). For (/-l,M)=(2,1) 
the Shewhart method performs better and is comparable to the others with 
respect to CED and ED. 

In Table 1 the numerical values of expected delay have been tabulated for 
v = 0.1,0.25,0.5,0.75,0.9. For the Shewhart method the expected delay is 
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ARL 1 -1, regardless of 1/. The differences in ED between all except the She­
whart method are small. The LR method and the Shiryaev-Roberts method 
perform marginally better for f-l = 0.5 and Cusum for J-L = 1 and f-l = 2. 

Method f-lr 0.10 0.25 0.50 0.75 0.90 

Shewhart 0.5 28.50 28.50 28.50 28.50 28.50 

Cusum 14.33 14.55 14.81 14.99 15.07 

LR 12.76 13.36 13.94 14.27 14.40 

SR 13.17 13.67 14.19 14.49 14.62 

Shewhart 1 9.83 9.83 9.83 9.83 9.83 

Cusum 4.68 4.79 4.93 5.03 5.08 

LR 4.83 5.19 5.56 5.78 5.87 

SR 4.71 5.02 5.34 5.55 5.64 

Shewhart 2 1.69 1.69 1.69 1.69 1.69 

Cusum 1.39 1.43 1.49 1.54 1.56 

LR 1.74 1.93 2.14 2.27 2.33 

SR 1.58 1.75 1.93 2.05 2.11 

Table 1: Expected delay when the intensity is 1/=0.1,0.25,0.5,0.75,0.9. 

2.3 Predictive value 

Another power aspect on surveillance methods is the predictive value, PV(t) = 

Pv[T :::; t I tA = t], which measures the credibility of an alarm at time t. In 
Figure 5 the predictive value is plotted having specified T to have geometrical 
distribution with intensity 1/=0.1. From Figures 2 and 5, one may conclude 
that high probability of fast detection is penalized by low credibility of alarms 
at an early stage. 
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Figure 5: PV(t) = P[T:::;t I tA =t] when T is geometrically distributed with 
intensity 1/ = 0.1. 
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3 SPATIAL SURVEILLANCE 

A new area, where the results presented in the previous section can be used, 
is spatial surveillance. For example, one may want to detect a change of 
levels of gamma radiation in a specified geographical region. This is one 
situation when spatial dependencies might need to be taken into account. 
Jarpe (199S) made a study of a surveillance situation in the Ising model. 
Figure 6 shows two simulated Ising patterns. 

Figure 6: To the left: a simulation of an attractive Ising pattern with 
<p = -O.S. To the right: a simulation of a repulsive Ising pattern with 
<p=O.S. 

It was shown that, in this case, the spatial surveillance problem consid­
ered could be reduced to an ordinary univariate surveillance problem. In the 
Ising model, a certain amount of shift in the interaction parameter <p in an 

n <Pl P, E4>l [tA -7 ItA >7=t] 
t = 1 t = 15 

5 -0.142 0.5 14.470 12.077 

-0.274 1 5.925 4.441 

-0.274 2 2.360 1.535 

7 -0.101 0.5 14.470 12.077 

-0.199 1 5.925 4.441 

-0.3S0 2 2.360 1.535 

10 -0.071 0.5 14.470 12.077 

-0.142 1 5.925 4.441 

-0.274 2 2.360 1.535 

Table 2: Examples of conditional expected delay of the LR method for the 
Ising model. 
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n x n-lattice corresponds to a shift in mean of a statistic sufficient for this 
interaction parameter. A Shewhart chart based on the sufficient statistic for 
the changing parameter, cP, was used. In the Ising model cP = 0 corresponds to 
no interaction, cp < 0 to attraction and cp > 0 to repulsion. The performance 
was evaluated by the expected delay. For example a shift from 11=0 to 11=0.5 
corresponds to a larger shift of the interaction parameter cp in a 5 x 5-lattice 
than in a 6 x 6-lattice. Supposing that cp changes from CPo = 0 to CPl in an 
n x n-lattice, Table 2 gives the values of CED which correspond to a change 
from 11 = 0 to 11 = 0.5,1,2 for lattice sizes n = 5,7,10 when the LR method 
is specified for a shift in mean of size 1. 

4 DISCUSSION 

Since Shiryaev-Roberts method is the limit method of the likelihood ratio 
method when the 1/, for which it is optimized, tends to 0, these methods 
are quite similar as can be expected from the study by Frisen and Wessman 
(1999). 

Srivastava and Wu (1993) considered the problem of a Brownian motion 
with drift I1E {0.5, 1, 1.5, 2}, diffusion 0"= 1 and methods optimized for drift 
1 and diffusion 1 where ARLo was fixed 100 and 500. The comparisons were 
made with respect to the stationary average delay time (SADT). The closest 
correspondence to SADT in this paper would be the limit expected delay as 
1/ tends to infinity 

lim Ev[tA -7 I tA > 7] 
v--+O 

(where 7 is assumed geometrical with intensity 1/) and the limit conditional 
expected delay given that change occurs at time t as t tends to infinity 

lim E[tA -7 I tA >7=t]. 
t--+oo 

In the study by Srivastava and Wu SADT Cusum > SADT SR when the shift 
size is 0.5 and ARLo = 100 which coincides with our result for both expected 
delay and conditional expected delay. In the Srivastava and Wu study, the 
Shiryaev-Roberts method is the best method with respect to SADT for all 
cases 11 = 0.5, 1, 1.5, 2 and 1/ = 0.1, 0.25, 0.5, 0.75, 0.9. In our study, however, 
the Cusum method is better with respect to expected delay for 11 = 1,2. 
(In the conditional expected delay respect no such conclusion is perceivable 
for 11 = 1, 2.) The differences are small and may depend on the fact that 
expected delay, conditional expected delay and SADT are different measures 
of performance. 
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As expected, the power performance of all methods is worse when a 
smaller shift than specified occurs. The loss of performance can be large 
as seen in Figures 3 - 5. For example the differences of CED and ED be­
tween IL= 0.5 and IL= 1 more than doubles regardless of T and t respectively. 
However, in absolute time the deterioration in performance in this respect 
is more pronounced for the Shewhart method. Also the PV(t) for early 
alarm decreases as one moves from (IL, M) = (0.5, 1) to (IL, M) = (1, 1). For 
(IL, M) = (2,1) when the shift is larger than specified the methods perform 
better than for the case they are optimized for. This is especially true for 
the Shewhart method; only for (IL, M) = (2,1) it has CED and ED values 
comparable with the other methods considered. 
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