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ABSTRACT 

The small sample properties of the systemwise RESET test for functional misspecification is 

investigated using normal and non-normal error terms. When using normally distributed or 

less heavy tailed error terms, we find the Rao's multivariate F-test to be best among all other 

alternative test methods. Using the bootstrap critical values, however, all test methods per­

form satisfactorally in almost all situations. However, the test methods perform extremely 

badly (even the RAG test) when the error terms are very heavy tailed. 

Keywords: Systemwise Test of Functional Misspecification, Non-normal Error Terms, 

Small Sample Properties. 

JEL Classification: C 32 





1 Introduction 

The RESET test proposed by Ramsey (1969) is a general misspecification test, which is 

designed to detect both omitted variables and inappropriate functional form. The RESET test 

is based on the Lagrange Multiplier principle and usually performed using the critical values 

of the F-distribution for single equation. 

Shukur and Edgerton (1997), in what follows referred to as SE, have studied the properties of 

systemwise generalisations of Ramsey's RESET test for misspecification errors. They applied 

the systemwise Wald, Lagrange Multiplier (LM) and Likelihood Ratio (LR) tests to auxiliary 

regression systems. Various degrees-of-freedom corrections have been investigated, in 

particular the commonly used simple replacement of the number of observations by the 

degrees-of-freedom in the auxiliary regression and, for the LR test, the Edgeworth correction 

developed by Anderson (1958). The authors have also studied the properties of the 

systemwise F-test approximation proposed by Rao (1973). All in all eight different tests have 

been investigated. 

The investigation has been carried out using Monte Carlo simulations. A large number of 

models are investigated, where the number of equations, degrees of freedom, error variance 

and stochastic properties of the exogenous variables have been varied. For each model SE 

have performed 10,000 replications and studied four different nominal sizes. The power 

properties have been investigated using 2,000 replications per model, where in addition to the 

properties mentioned above the degree of misspecification (measured as the relative 

differences in the explanatory power between the null and true models) and the correlation 

between the omitted and included variables have also varied. The SE's main conclusion is that 

the Rao's F-test is the best. The differences between the various versions of corrected LR tests 

are minimal when the number of equations (n) is small. The uncorrected LR test, and both the 

corrected and uncorrected Wald and LM tests, are shown to perform extremely badly in all 

situations. Only the RAO test performs satisfactorily when n > 5. 

ill view of these facts, Shukur and Mantalos (1997), in what follows referred to as SM, 

intended to improve the critical values of the test statistics, by employing the bootstrap 

technique, so that the size of the test approaches its nominal value. Given the bootstrap critical 

values they analysed the size and power of different generalization of the RESET test and 

compared the results with those found by SE. The SM analysis revealed that, in single 

equations, all test methods shown to be identical regarding size and power, while in system 
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with many equations the eight tests reduced to three groups, namely Wald, LR (or Rao) and 

LM. Moreover, by using the bootstrap critical values, the analysis has also showed that, in 

almost all cases, the performances of all the tests are fairly satisfactory. 

In both papers, however, the error terms have been generated from the normal distribution, but 

using a fat-tailed distribution could, of course, affect the properties of the tests. Evidence of 

fat-tailed distributions can often be found in empirical econometrics and! or time series, e.g. 

finance, demand analysis, price expectations. If a test performs well under these conditions 

(i.e., when the underlying assumption that the error terms are normally and identically 

distributed may not hold), then it is usually referred to as robust. It is, hence, important to 

study the effect of fat tailed and!or the combined effect of fat tailed and functional 

misspecification on the properties of the RESET test. 

The purpose of this paper is to investigate the properties of the systemwise RESET test in 

situation when the error terms are generated from non-normal distributions. In other words, 

the main point of this study is to investigate the ability of the RESET test to detect omitted 

variables when the error terms used in the models follow a non-normal distribution. More 

specifically, the error terms in this study will be generated by the t-distribution with degrees of 

freedom equal to: 1 (i.e. the Cauchy distribution), 2, 5, 10, 15 and 25. Proceeding in this 

manner, we cover a wide range and varying degree of the fatness in the tails of the errors. 

In this study we use almost the same model specification and Monte Carlo design as in SE. 

The same eight tests, used in SE, are studied by Monte Carlo simulations. The properties of 

these tests have been investigated, once by using the critical values of the X2 and the F 

distributions, and once by using the bootstrap critical values. The results are then compared 

with those results from the two papers of SE and SM (i.e., when they use the normal 

distribution to generate the error terms and when using the bootstrap technique). 

The paper is arranged as follows. In the next section we present the model which we analyse, 

and give the formal definition of a number of variants of the RESET test. In Section three we 

introduce the factors that can affect the small sample properties of the test, while the fourth 

Section presents the design of our Monte Carlo experiment. In Section five we describe the 
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results concerning the size of the various tests, while power is studied in Section six. The 

conclusions of the paper are presented in the final section. 

2 Model Specification 

The regression model we will investigate is the same as in SE and SM. The model consists of 

n linear stochastic equations given by 

(1) 

where Yt and ct are (1 xn) vectors of endogenous variables and disturbances, X t is a (1 xm) 

matrix of exogenous variables, B is a (mxn) matrix of parameters, and t= 1, ... ,T. The data 

matrices YandX are (Txn) and (Txm) respectively. The null hypothesis of correct specifica­

tion implies that the error term will be independently and identically distributed conditional on 

the exogenous variables, that is 

(2) 

The hypothesis of correct functional form is equivalent to assuming that the disturbances have 
zero conditional mean, that is H 0 : E(B t I X t ) = 0 . The class of alternative hypotheses to this 

null is very general; omitted variables and incorrect functional form will obviously be 

members of the class. 

The alternative hypothesis is specified through the following model 

(3) 

Z is in general unknown, and the tests that we will investigate estimate the following 

regression instead, 

Y t =XtB+Ztr* +8t · (4) 

If the null hypothesis is correct, then r = r* = 0 whatever the choice of Z. If the hypothesis 

is incorrect, then the choice of Z will obviously affect the power of any test based on (4). The 

greater the correlation between Z and the nonlinear part of the true conditional mean of Y, 

then, in general, the greater the power will be. 

Ramsey (1969) proposed approximating the unknown conditional expectation of Y using a 

Taylor expansion around the conditional expectation under the null hypothesis, that is XjJ 

(Ramsey was using a single equation, and f3 was thus a vector). Since the parameters are un-
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known, this was in tum approximated using Y = xb, where b was the OLS parameter esti­

mate from the single equation version of (1). This is the RESET test procedure. 

Let us now define a systemwise version of the RESET test. Following common terminology 

of double regression tests we will denote equation (1) as the primary regression. The first 

stage of the RESET test is performed by calculating the least squares' predictions from the 

primary regression, Y = (X(X'X) -I X') Y. These predictions are then used in the following 

auxiliary regression, 1 

Y X B YA 2r* yA 3r* yA G+lr* S:, 
I = I + I 1 + I 2'" + I G + U I 

(5) 

where the (t, i):th elements of the power matrices are given by [Y j ]Ii = y~ . The RESET test is 

now performed by testing the hypothesis H~ : r; = ... = r; = 0 . 

The practical implementation of the RESET test now depends on two factors. Firstly we must 

decide how many power matrices to include in the auxiliary regression (i.e., determine G). 

Secondly we must decide which test method to use. In this paper, as in SE and SM, we will 

concentrate on the second question, and will let G= 1 throughout.2 

A 

Now, we denote by Ou the (Txn) matrix of estimated residuals from the unrestricted 
A 

regression (5), and by OR the equivalent matrix of residuals from the restricted regression 

with Ho imposed. The matrix of cross-products of these residuals will also be defined as 
'" '" A A 

S U = O~ 0 u and S R = O~O R' and the Wald, Likelihood Ratio and Lagrange Multiplier test 

statistics are given by 

W = T(trS;IS R -n)' 

LR =TlnU, and 

LM = T(n-trS~ISu)' 

(6) 

(7) 

(8) 

where, U = detSR/detSu . Note that in the single equation case the LM statistic reduces to 

TR2 (i.e. the number of observations times the uncentered coefficient of determination from 
the auxiliary regression). The above statistics are all asymptotically X2 (p) distributed under 

the null hypothesis, where p = Gn 2 is the number of restrictions imposed by Ho. One simple 

small sample correction is to replace T by Ll = T - (m + Gn), the degrees of freedom in the 

1 It is obviously not possible to use Y, in the auxiliary regression, since it is merely a linear combination of the 

exogenous variables. 

2 Ramsey (1969) suggested using a value of three to maximise power in common single equation situations, but 
it is not obvious that this result will carryover to systems of equations, where the loss of degrees of freedom can 
be considerable. 

4 



equations of the auxiliary regression. The corrected statistics are thus given by 

WC = (I1/T)W, LRC = (I1/T)LR and IMC = (I1/T)IM , which have the same asymptotic 

distribution as given above. 

Another more sophisticated approximation is that given by theorem (8.6.2) in Anderson 

(1958, p. 208). This uses an Edgeworth expansion, and if we choose the simplest form (which 

is accurate to the order T-2
) this corrected LR statistic is given by 

(9) 

where I1E =11+h[n(G-l)-I]. This is also asymptotically X 2 (p) distributed under the null 

hypothesis. Note that when G = 1, the difference between LRC and LRE is merely that the 

numerator in the correction is Ll in the first case and 11 - h in the second. 

A final approximation which is given by Rao (1973, p. 556), namely 

RAO = (q/ p)(UI/s -1)' 

where p and 11 E are defined as above, r = (p /2) -1, q = I1E S - r , and 

(10) 

(11) 

RAO is approximately distributed as F(p,q) under the null hypothesis, and reduces to the stan­

dard F statistic when n = 1. Note also that Rao's approximation reduces to Anderson's 

theorem 8.5.4 when n = 2, a result that yields an exact distribution when applied to primary 

regressions. 

3 Factors That Affect the Small Sample Properties of the RESET Test 

A number of factors obviously can affect the size of the RESET tests, SE and SM have 

investigated these factors systematically, and we therefore follow their line of investigation. 

The number of equations (n), the sample size (T), degrees of freedom (Ll) and the order of the 

restrictions ( G) are four such factors. The power of the tests will also be affected by the size 

and form of Zt r in (3). In this paper we will also study the consequences of varying nand Ll, 

while T is chosen so as to give compatible values of Ll for different models ( T = 11 + m + Gn). 

We will also mainly concentrate on the case where G = 1. 
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A number of other factors can also affect the properties of the RESET tests, for example the 

distributions of X t, and ct' and the values of B. In the rest of this section we will consider these 

in some more details. Regarding the distribution of the exogenous variables, a number of pilot 

studies, in SE, have been performed by SE and showed emphatically that trending the 

exogenous variables had no effect at all on either size or power. This factor has therefore not 

been varied in what follows.3 In our Monte Carlo experiment, however, the exogenous 

variables have been obtained using the following generating processes, 

Xtj = QXt-l,j + V tj , j= 1, ... , m-l, and t= 1, ... , T, (12) 

where and vt is a multivariate normal white noise process with covariance matrix Iv- In our 

Monte Carlo study we have included a constant term among the exogenous variables, so that 

(12) has only been applied to the remaining m - 1 variables. 

The power of the tests will also be affected by Ztr in (3). Intuitively, the power of the test 

ought to increase with an increase in the omitted portion of the regression. In other words, an 

increase in the absolute value of r should imply an increase in the seriousness of the 

misspecification which is caused by using (1) instead of (3). Accordingly, we would expect 

the power of the RESET test to increase with r. The problem is deciding how large a value 

of r is needed to signify "serious" misspecification. 

SE found that good measure of misspecification is given by the relative increase of goodness­

of-fit that is achieved by going from the incorrect model under the null (1) to the correct 

model under the alternative (3), i.e., 

(13) 

where R5 and R~ are the theoretical R2 measures from the null and alternative models. The 

reasoning behind this choice of misspecification measure, and the relationships that exist 

between goodness-of-fit and the other parameters of the model, are explored in the Appendix. 

An advantage of using Rb as a measure of misspecification is that it is bounded between zero 

(no misspecification) and one (a perfect alternative). 

3 SE have discovered that serial dependence in x had no practicable effect on either the size or power of the 
RESET tests. 
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The power of the test will also depend on the joint distribution of the included and omitted 

variables. If this is a joint normal distribution, then the regression of the omitted variables on 

the included variables is exactly linear, and no loss of fit will occur through the exclusion of 

the omitted variables. The RESET test will have zero power in such circumstances, even 

though the parameter estimates will be biased unless the omitted variable is also uncorrelated 

with the included variables. If the omitted variables are non-normal, then their conditional 

means can be nonlinear in the included variables, and the RESET test can have power. The 

strength of the power can well depend, however, on the correlation between the omitted 

variables and the proxy variables used in the auxiliary regression. In this paper, as in SE and 

SM, we concentrate on an omitted variable that is the square of one of the (normally 

distributed) included variables. 

4 The Monte Carlo Experiment 

The small sample properties of the systemwise RESET tests, when the residuals are generated 

from a non-normal distributions are unknown. Therefore, it is important to examine whether 

the actual behaviour of these tests is adequately approximated by asymptotic theory. In the 

absence of exact results, it is necessary to investigate the finite sample performance of the 

statistics by means of simulation experiments. When investigating the properties of a classical 

test procedure, two aspects are of prime importance. Firstly, we wish to see if the actual size 

of the test (i.e., the probability of rejecting the null when it is true) is close to the nominal size 

(used to calculate the critical it is values). Given that actual size is a reasonable approximation 

to the nominal size, we then wish to investigate the actual power of the test (i.e., the 

probability of rejecting the null when false) for a number of different alternative hypotheses. 

When comparing different tests we will therefore prefer those whose (a) actual size lies close 

to the nominal size and (b) have greatest power. 

The primary interest lies in the analysis of systemwise tests, and thus the number of equations 

to be estimated is of central importance. As the number of equations grows the computation 

time becomes longer, and SE took a system with ten equations as our largest model when 

considering the size of the tests. 

Another prime factor that affects the performance of tests is the number of observations. We, 

as in SE, have chosen to hold the number of degrees of freedom, Lt, constant between models 

of different sizes, since this allows a fair comparison. If the number of observations, T, was 
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held constant then tests in models with a large number of equations would automatically 

perform more poorly, simply due to the reduced degrees of freedom (a new predictor is 

included for each equation in the system). We have investigated samples typical for annual 

and quarterly consumption models, using degrees of freedom 15, 25, 45 and 75. This is 

equivalent to sample sizes of between 20 and 110 observations. 

Various values of Ii/; were chosen to represent different explanatory powers under the null, 

with a greater variation in small models. The distribution of the exogenous variables was 

varied to account for a typical property of economic time series, i.e., that they are trended 

and/or autocorrelated. As stated above, trending had no effect at all on the properties of the 

RESET test, and is therefore not reported here. We used different values of R~ 

( = 0,0.1, ... ,0.9) to indicate different degrees of misspecification when calculating the power 

functions of the tests. For each replication of the experiment we generated a set of data, 

estimated the model using that data set, and computed the test statistics. These estimated 

statistics were then compared with the appropriate asymptotic critical values for the nominal 

size under question. 

However, since we are most interested in the behaviour of the distributions in the tails, only 

results using the conventional 5% significance level have been analysed. A summary of the 

design we have used can be found in Tables 1 and 2. To judge the reasonability of the results, 

we require that the estimated size of the test should lay between the approximate 95% 

confidence intervals for the actual size presented in Table 3. Letting the number of 

replications per model be 10,000 seems therefore to be sufficient when estimating size, while 

2,000 should suffice for the estimation of the power function. 

Table 1. Values of Factors that Vary for Different Models - Size Calculations 

Factor Symbol Design 

Number of equations n 1 2 I 3,5,7 I 10 

Degrees of freedom L1 15,25,45,75 

Nominal size 1ro 1 %,5%, 10%, 20% 

Goodness-of-fit in null R2 
0 

.1, .3,.5, .7,.9 .3, .5, .7 I .3, .7 I .3.7 

AR parameter for X a 0, .5,.9 0, .5 

Correlation (X.,x.) 
I J Px 0, .5,.9 0, .5 
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Table 2. Values of Factors that Vary for Different Models - Power Calculations 

Factor Symbol Design 

Number of equations n 1,2,3,5,7, 10 

Degrees of freedom L1 15,25,45,75 

Nominal size 1ro 1 %,5%, 10%, 20% 

Goodness-of-fit in null R2 
0 

.3, .5, .7 

Relative difference in R2 R2 
D 

0, .1, .2, .3, A, .5, .6, .7, .8, .9 

AR parameter for X a 0, .5 

Correlation (1],z) PT/Z .1, .3, .5, .7, .9 

z is the omitted variable (the square of XI) and 1] is the square of the conditional expected value of y. 

Table 3. Approximate 95% Confidence Intervals for Actual Size 

1r
Q

' •• N 2000 10000 

1% ±Oo44 ±0.20 

5% ±0.97 ±Oo44 

10% ±1.34 ±0.60 

20% ±1.79 ±0.80 

5 Analysis of the Size of the RESET Tests. 

In this section we present the results of the main dominating effects of our Monte Carlo 

experiment concerning the size of the RESET tests. When determining the manner of 

presentation, some account has to be taken to the results obtained. We find, as in SE and SM, 

that the number of equations in the system (n) and the degrees of freedom (..1) have a 

dominating effect on the performances of the tests. Moreover, we find that distribution of the 

error terms has also a very significant effect on the performances of the tests. 

Some important results regarding the different variants of the RESET test are presented in 

following Table SE 4 (i.e., Table 4 in the SE study). Note that changing the factors we have 

held constant in this table (goodness-of-fit, multicollinearity and autocorrelation in X) did not 

change the conclusions in any way. 
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Table SE 4. Estimated Size for the Alternative RESET Tests at 5% Nominal Size. 

L1 

15 
25 
45 
75 

L1 

15 
25 
45 
75 

15 
25 
45 
75 

15 
25 
45 
75 

1 

.047 

.049 

.051 

.049 

1 

No. of Equations (n) 

RAO 

2 3 5 7 

.048 .047 .050 .049 

.047 .053 .048 .051 

.051 .052 .049 .049 

.050 .050 .054 .053 

LRT-C 

2 3 5 7 

No. of Equations (n) 

LRE 

10 1 2 3 5 7 

.047 .048 .048 
.048 .049 .047 .054 
.048 .051 .051 .053 
.054 .049 .050 .050 

Wald-C 

10 1 2 3 5 7 

10 

10 

Source: Shukur and Edgerton (1997, Table 4). In this table R~ = 0.7, Px = 0.5 and a= 0.0. The shading indicates 

bad performance, i.e., when the results lie outside the approximate 95% confidence interval for actual size. 

The most obvious result is that the RAO test is clearly superior to all the other alternatives, 

with only one result (of 24) outside the 95% confidence interval. The next best test is the 

Edgeworth adjusted likelihood ratio test, LRE, which performs well in systems up to 3 equa­

tions, but then gradually begins to deteriorate in small samples. In the case of 10 equations, 

the test performs badly for all sample sizes. The simpler likelihood ratio correction, LRC, 

perform well in small systems of 1 or 2 equations, but otherwise quite poorly. All the other 
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tests perform poorly, only occasionally giving results that lie within the given confidence 

interval. Note that in all cases, except for the corrected LM test, we find that the tests tend to 

reject too often. For large systems and small samples the uncorrected Wald and LRT tests are 

rejecting 100% of the time!. 

The result that the RAO test is best agrees with what is found by Edgerton and Shukur (1998) 

and Shukur (1998) for the Breusch-Godfrey autocorrelation test. In these cases all tests 

performed badly in large systems, and the difference between the RAO and LRE tests was 

smaller. The superiority of the Rao's F-test is, in other words, much more marked for RESET 

than for the Breusch-Godfrey test. 

Because of this fact and to save space, we only present results for the RAO test in Table 5 

when the error terms follow normal and t-distribution with different degrees of freedom in 

systems ranging from one to ten equations. To make a fair comparison between our results 

with those found by SE we present, in Table 5, the results for the situations when the R2 = 0.7, 

Px = 0.5, ex = 0.0, and 1to = 5%. Full results with other combinations are available from the 

author upon request. 

In our analysis we have identified one factor which shows to have significant effect on the 

performance of the RESET tests, that is the heaviness of the tails of the error terms. When the 

error terms are generated from the tco-distribution, even the best RAO test performs badly in 

all sample and system sizes. The effect is more dramatic in large system of equations which in 

this case the tests reject about 90% of the times under the null hypothesis. This bad effect 

becomes less and less with higher degrees of freedom in the t-distribution. In models with one 

equation, we achieve the same properties as in the normal case when the errors are generating 

from the t(5)-distribution. In systems with more than 7 equations, we need to generate from, at 

least, the t(25)-distribution to achieve the same properties as when the errors are normally 

distributed. 
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Table 5. Estimated Size for the RAG test with Alternative Distributions in the Error Terms 

at 5% Nominal Size. 

No. of Equations (n) No. of Equations (n) 

RAO -Normal RAO -1(25) 

L1 1 2 3 5 7 10 1 2 3 5 7 10 

15 .047 .048 .047 .050 .049 .047 .052 .051 .050 .054 
25 .049 .047 .053 .048 .051 .048 .054 .055 .053 .051 .050 .054 
45 .051 .051 .052 .049 .049 .048 .051 .050 .054 .055 .050 .053 
75 .049 .050 .050 .054 .053 .054 .048 .050 .051 .050 .050 .051 

RAO -1(15) RAO-1{lo) 

L1 1 2 3 5 7 10 1 2 3 5 7 10 

15 .051 .049 .052 .052 .050 
25 .051 .054 .053 .054 
45 .051 .053 
75 .050 .051 

RAO-1(5) 

L1 1 2 

15 .050 
25 

45 

75 

RAO-1(2) 

L1 

15 
25 

45 

75 

In this table Ii/; = 0.7, Px = 0.5 and a= 0.0. The shading indicates bad performance, i.e., when the results lie 

outside the approximate 95% confidence interval for actual size. 

In Table 6, however, we present results of our experiment when we use the bootstrap critical 

values instead. The results will be compared with those found be the SM. Our primary results, 

as in the SM, reveal that the LM and Wald tests give results identical to their corrected 

correspondents (i.e., LMC, and WC). 
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Table 6. Estimated Size for the RAO test with Alternative Distributions in the Error Terms 

at 5% Nominal Size (using the bootstrap critical values). 

L1 

15 

25 

45 

75 

L1 

15 

25 

45 

75 

L1 

15 

25 

45 

75 

15 

25 

45 

75 

L1 

15 

25 

45 

75 

L1 

15 

25 

45 

75 

1 

.049 

.050 

.051 

.047 

1 

.051 

.054 

.051 

.053 

1 

.053 

.047 

.054 

.048 

1 

Wald = Wald-C 

3 7 10 

.051 .050 .045 

.051 .047 .045 

.050 .055 .047 

.046 .049 .047 

3 7 10 

.052 .047 

.050 .051 .050 

.050 .053 .050 

.049 .048 .050 

3 7 10 

.053 .048 .050 

.052 .051 .049 

.052 .054 .051 

.054 .051 .051 

3 7 10 

No. of Equations (n) 

RAO = LRE = LRT = LRT-C 

1 3 7 10 

.049 .053 .046 

.050 .051 .048 .045 

.051 .050 .054 .049 

.047 .046 .050 .048 

1 3 7 10 

.051 .052 .046 .045 

.054 .050 .048 .050 

.051 .048 .054 .049 

.053 .049 .050 .050 

1 3 7 10 

.053 .053 .053 .049 

.047 .052 .052 .050 

.054 .052 .054 .050 

.048 .054 .049 .051 

1 3 7 10 

LM=LM-C 

1 3 7 10 

.049 .051 .047 .047 

.050 .052 .049 .050 

.051 .048 .054 .050 

.047 .047 .050 .045 

1 3 7 10 

.051 .051 .048 .046 

.054 .050 .051 .049 

.051 .048 .053 .051 

.053 .049 .048 .052 

1 3 7 10 

.053 .054 .051 .048 

.047 .053 .055 .053 

.054 .052 .050 

.048 .053 .050 .051 

1 3 7 10 

In this table R~ = 0.7, Px = 0.5 and a= 0.0. The shading indicates bad performance, i.e., when the results lie 
outside the approximate 95% confidence interval for actual size. 
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We also find that all the LR tests (including the RAO) lead to identical results. Moreover, for 

a single equation, we find that all the eight test methods yield the same results. Note that, 

when using the bootstrap critical values and to achieve the same properties as when the errors 

are normally distributed, the errors only need to be generated from .the t-distribution with 

seven degrees of freedom. This means that, in situations when the error terms are rather 

heavily tailed (not heavier than t(7)), the RESET test performs better when using the bootstrap 

critical values instead of the critical values from the F- and X2 -distributions. 

6 Analysis of the Power of the RESET tests 

In this section we discuss the most interesting results of our Monte Carlo experiment, 

concerning the power of the various versions of the RESET test. The effect of the non­

normally distributed error terms on the power functions of different versions of the RESET 

test is analysed in systems ranging from one to ten equations. The power function was 

estimated by calculating the rejection frequencies in 2,000 replications using different values 

of the relative differences in goodness-of-fit, R~. 

In the SE study, the authors shown that the corrected LR tests are the only ones that accurately 

estimate the size in a wide variety of situations, and in particular the RAG tests were shown to 

be superior in all situations. SE therefore only present results for the RAO test. On the other 

hand, since all tests perform well regarding the size when using the bootstrap critical values, 

SM compare the power functions of the three test groups (Wald, LR and LM). SM find that, 

for single equation, the power functions for all the tests are identical. This means that in single 

equation, the eight tests reduces to one and that one can present results from anyone of them. 

In systems with more than one equation the results differ somewhat between the three test 

groups. All tests have shown satisfactory power functions specially in small systems and large 

samples, and that the differences between the alternative RESET tests are very minimal. Note 

that the RAG test performs well in both studies SE and SM. Accordingly, to show the effect of 

the non-normally distributed error terms and to facilitate comparison between the three 

papers, we will only present results for the RAG test in this study. 

The number of equations (n), degrees of freedom eLi) and the distribution of the error terms 

had a considerable effect on both size and power (except for the case when using the bootstrap 
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critical values together with normally distributed errors, in this case the tests perform 

satisfactorily in almost all situations). As in the case of the size, changes in the autocorrelation 

between the exogenous variables a and the goodness-of-fit in the null (R5) did not produce 

any noticeable effects on the estimated size or the power, and will not be shown in the figures. 

Finally, the correlation between the included and omitted variables (p r,Z) also seems to affect 

the power function. The greater the misspecification, and the better the RESET proxy mirrors 

the omitted variable, the greater the power of the tests. 

In SE only results for the RAO test have been presented, which have shown to be very similar 

to those results for the other tests groups in SM. Hence, to make our results comparable to 

those of SE and SM, we use the same combinations as in SE and SM and fix the 

autocorrelation in the exogenous variables (0. = 0), the goodness-of-fit in the null (R5 = 0.7 ) 

and the correlation between the included and omitted variables (P1]Z = 0.5). 

In Figure 1 we show the power functions of the RAO test, at a nominal size of 5% for different 

degrees of freedom (,,1) and for systems with different numbers of equations (n). The power 

functions have also been calculated for other values, but since the patterns obtained are 

essentially the same they are excluded to save space. 

The power of the RESET test did, as expected, depend on the degree of misspecification (R~). 

Note also how the power functions become flatter as the number of equations increases and ,,1 

decreases, i.e., the RAO test becomes worse and worse. The distribution of the error terms has 

also shown to affect the properties of the RESET test especially in large systems and when the 

t-distributions have low degrees of freedom. Note that when choosing the t-distribution with 

seven degrees of freedom, the results are almost identical to the situations when the errors are 

generated from the normal distribution. In order to show the effect of the fat tails on the 

properties of the RESET test, we used t(2)-distribution to generate the error terms instead of 

the t(l)-distribution, since the later have shown to have extremely biased results regarding the 

size of the test. 
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Note that the power functions have all been estimated using the nominal size, even in those 

situations where we have found that it does not correspond to the actual size. The results must 

therefore be interpreted as rejection rates at nominal significance levels, not as true power 

functions. One could, of course, calculate and present the size-corrected power functions 

which give a more correct information about the power of the tests. However, there is one 

drawback in using this method, namely that the reader can get a good idea about the real 

power but a misleading idea about the performance of the size (when corrected). For this 

reason, we decide to use the rejection rates at nominal significance levels and leave the reader 

to make the inferential statements regarding the performances of both the size and power. 

7 Conclusions 

In this paper we have studied the properties of systemwise generalisations of Ramsey's 

RESET test for misspecification errors when the error terms follow a normal distribution and 

t-distribution with different degrees of freedom. The degrees of freedom of the t-distribution 

have been chosen so that to cover a varying amount of fatness in the tails of the errors, which 

could, of course, affect the performances of the test. 

We have constructed Wald, Lagrange Multiplier and Likelihood Ratio tests that are applied to 

auxiliary regression systems. Various degrees-of-freedom corrections have been investigated, 

in particular the commonly used simple replacement of the number of observations (1) by the 

degrees-of-freedom (Li) and, for the LR test, the Edgeworth correction test and Rao's 

multivariate F-test. 

The investigation has been carried out using Monte Carlo simulations. A large number of 

models were investigated, where the number of equations, degrees of freedom, error variance 

and stochastic properties of the exogenous variables have been varied. For each model we 

have performed 10,000 replications and studied four different nominal sizes. The power 

properties have been investigated using 2,000 replications per model, where in addition to the 

properties mentioned above the degree of misspecification (measured as the relative 

differences in the explanatory power between the null and true models) and the correlation 

between the omitted and included variables have also varied. 
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Our analysis has revealed that two factors are important when determining the accuracy of the 

RESET-tests' nominal size (except in case when using the bootstrap critical values together 

with normally distributed errors), namely the number of equations and number of 

observations. When using a normally distributed error terms, the performance of the tests 

(except for the RAG test ) deteriorates as the first factor increases and the second factor 

decreases. Moreover, we found that the fatness of the tails of the error terms has also a 

considerable effect on the test properties especially in large systems. 

ACKNOWLEDGMENTS 

The author is grateful to professor Kasra Afsarinejad for a careful reading of the manuscript 
and valuable comments. The author is also grateful to professor Marianne Frisen for 
encouragement and support. 

References 

Anderson, T. W. (1958): An Introduction to Multivariate Statistical Analysis. New York: 

Wiley. 

Edgerton, D. L. and G. Shukur (1998): "Testing Autocorrelation in a System Perspective," 

accepted for publication, to appear in Econometrics Reviews 1999. 

Ramsey, J. B. (1969): "Test for Specification error in Classical Linear Least Squares Regres­

sion Analysis," Journal of the Royal Statistical Society, Series B. 31, 350-37l. 

Rao, C. R. (1973): Linear Statistical Inference and Its Applications, Second edition. New 

York: Wiley. 

Shukur, G., (1998): "The Robustness of the Systemwise Breauch-Godfrey Autocorrelation 

Test for Non-normal Distributed Error Terms, " Department of Statistics, University of 

Goteborg, Sweden. Submitted for publication, Communications in Statistics. 

Shukur, G., and D. L. Edgerton (1997): "The Small Sample Properties of the RESET Test as 

Applied to Systems of Equations," FD Thesis, Department of Statistics, Lunds University, 

Sweden. 

Shukur, G., and P. Mantalos (1997): "Size and Power of the RESET Test as Applied to 

Systems of Equations: A Bootstrap Approach, " Department of Statistics, Working paper 

1997:3, Lunds University, Sweden. 

18 





Research Report 

1998:6 Dahlbom, U: 

1998:7 Dahlbom, U: 

1998:8 Grabamik, P. & 
Sarkka, A. 

1998:9 Afsarinejad, K. & 
Hedayat, S.: 

1998:10 Hatemi-J, A. & 
Shukur, G.: 

1998:11 Shukur, G.: 

1999:1 Andersson, E.: 

1999:2 Wessman, P.: 

1999:3 Andersson, E.: 

1999:4 Andersson, E.: 

1999.5 Mantalos. P. & 
Shukur, G.: 

Least squares estimates of regression functions 
with certain mono tonicity and 
concavity/convexity restrictions. 

Variance estimates based on knowledge of 
monotonicity and concavity properties. 

Some interaction models for clustered point 
patterns. 

Repeated measurement designs for models 
with self and mixed carryover effects. 

The causal nexus of government spending 
and revenue in Finland: 
A bootstrap approach. 

The robustness of the systemwise Breauch­
-Godfrey autocorrelation test for non-normal 
distributed error terms. 

On monotonicity and early warnings with 
applications in economics. 

The surveillance of several processes with 
different change points. 

Monotonicity aspects on seasonal adjustment. 

Monotonicity restrictions used in a system of 
early warnings applied to monthly economic data. 

Testing for cointegrating relations- A bootstrap 
approach. 


