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Testing for Co integrating Relations­

A Bootstrap Approach 

Panagiotis Mantalos 

Department of Statistics 

Lund University 

ABSTRACT 

Ghazi Shukur 

Department of Statistics 

Goteborg University 

Using Monte Carlo methods together with the Bootstrap critical values, we have studied the 

properties of two tests (Trace and L-max), derived by Johansen (1988) for testing for 

cointegration in V AR systems. Regarding the size of the tests, the results show that both of 

the test methods perform satisfactorily when there are mixed stationary and nonstationary 

components in the model. The analyses of the power functions indicate that both of the test 

methods can effectively detect the present of cointegration vector(s). Finally, when 

considering the size and power properties, we could not find any noticeable differences 

between the two test methods. 

Keywords: Testing for cointegration in V AR systems, Bootstrap, Monte Carlo methods. 

1. Introduction 

To test for cointegration among a set of economic time series, various test procedures have 

been proposed. The most frequently used methods for testing for cointegration in empirical 

investigations are the Johansen (1988, 1991), and Johansen and Juselius (1990a). These tests 

are derived from the likelihood- based method for testing for cointegration in a Vector 

Autoregressive (V AR) Model. 



Recently, a number of authors have proposed the Bootstrap method to improve the critical 

values of the cointegration test in order that the size of the test approaches its nominal value. 

Mantalos and Shukur (1998) improved the critical values in the Error Correction Model 

(ECM) cointegration test by employing Bootstrap technique. Given the "Bootstrap critical 

values", they studied the size and power of the cointegration test based on ECM. Van 

Giersbergen (1996), using the stationary Bootstrap, studied the Johansen trace statistic in 

V AR models. Mantalos (1998) examined the VECM co integration test by employing 

Bootstrap technique, and found that the Bootstrap method has the right size properties when 

testing the null hypothesis of no cointegrating relations. 

While it might be supposed that a Bootstrap test should do at least as well as the 

corresponding asymptotic test, Harris and Judge's (1998) found, by Bootstrapping the 

Johansen test, that the Bootstrap test statistic has poor size properties when there are mixed 

stationary and nonstationary components in the model, i.e. when there is at least one 

cointegration vector present. Note that Harris and Judge (1998) results from Bootstrapping the 

Johansen's test, for 50 observations and O-cointegration vectors, are the same as Mantalos 

(1998) results, i.e. 0.05 actual size for 5 % nominal size and 0.10 for 10% (see Harris and 

Judge (1998) tablel, Mantalos (1998) table 1). 

In general, however, the results of the above - mentioned studies is the confirmation that the 

Bootstrap test approach appears to do very well when we test if there is cointegration or not. 

But there remain some questions that should be answered; for example, 

a) Do the bootstrap test works well when there are mixed stationary and nonstationary 

components in the model? 

b) How the Bootstrap test behaves in the case of overspecifying the possible number of 

variables in the co integrating vector(s)? 

In this paper, we address these remaining problems by Bootstrapping the Johansen test. We 

demonstrate a way to apply the V AR cointegration test by using the Bootstrap critical values. 

And we show the efficiency of the Bootstrap method to improve the critical values of the 
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V AR cointegration test for testing more than one co integrating relation, in such a way that the 

size of the test approaches its nominal value. 

The paper is arranged as follows. In the next section we present the model we analyse. In 

Section 3 we introduce the "Bootstrap test". Section 4 presents the design of our Monte Carlo 

experiment. In Section 5 we describe the results concerning the size of the test, while power is 

analysed in Section 6. Finally, a brief summary and conclusions are presented in Section 7. 

2. Model Specification 

Let Yt denote the entire vector of the integrated of order one I(1) time series under study, of 

dimension k x 1, from the following data generating process: 

where C(L) denotes an infinite order polynomial in the lag operator] that is, 

00 

C(L) = LC/} , 
j=O 

, 

(1) 

(2) 

(3) 

(4) 

where Yt = (YIY2'''Yk) , Ll = Yt - Yt-l ,and t= 1, ... , T. Then from the Granger 

Representation Theorem (Engle and Granger (1987)) we know that, if Yt is cointegrated with 

co integrating rank r , it has the error correction representation: 

(5) 

1 The lag operator is indicated here by "L" and for any integer k, Lk x t = x t- k 
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where !3 is a (k x r ) matrix of cointegrating vectors, and a is (k x r ) matrix of adjustment 

coefficients. In the regression model (5), the null hypothesis of correct specification implies 

that the error terms e t will be independently and identically distributed, and this is the case 

when the U t ~ i.i.d.(O,L:u ). However, because this assumption might be too optimistic we 

extend our analysis to the following p-th order VECM: 

p-I 

ilYt = l:AiilYt- i + a!3'Yt_ p +et , t= 1, ... , T, 
i=1 

(Sa) 

where p is enough large so that e t is, or is near to a zero mean independent white noise 

process with non-singular covariance matrix L: e • 

The maXimum likelihood estimation of (Sa) by Reduced Rank Regression (RRR) for 

e
t 
~ i.i.d.(O, L:e ) and the asymptotic properties of this estimator is discussed in Johansen 

(1988) and here we give a brief overview ofthe RRR. 

To introduce the RRR estimators and further the two versions of the LR test statistics, the 

trace and A-max statistic we first define by regressing ilYt on ilYt _ I ,··· ,ilYt _ p ' and Y t- p on 

ilYt _p ... ,ilYt _ p ' the residuals up wt respectively. And then, given the residuals up wt we 

require the cross product matrices: 

T 
S T-Il:~ ~I uu = UtU t , (6) 

t=1 

T 
S T-Il: ~ ~I yu = Wt_IU t , (7) 

t=1 

T 
S T-Il: ~ ~ I yy = Wt_IW t_ l , (8) 

t=1 

and 

SUY = S~u· (9) 

Define now: 

S(A)=AS;y -SyuS::Suy, (10) 

4 



A 

then the RRR estimator of the cointegrating vectors, f3 , is the (k x r ) matrix of the 

eigenvectors corresponding to the r largest eigenvalues satisfying: 

Then given the k ordered eigenvalues ~ >- .. > Ak > 0, and to test that there are at most r 

cointegrating vectors, Johansen (1988) derives two likelihood ratio (LR) tests, the trace 

statistic: 

k 

LRA = - T L In(l- i;) , (11) 
i=r+l 

and the maximum-eigenvalue, A-max statistic: 
A 

LRA_max =-Tln(l-Ai+I ), i=O, 1, ... , k-2, k-l. (12) 

3. Bootstrap Hypothesis Testing, Critical Values 

In the case of the Johansen's test, the distributions of the used test statistics are known only 

asymptotically. Johansen (1988) tabulated simulated values for selected percentiles of those 

asymptotic distributions. As a result, when using those critical values, the tests may not have 

the correct size in small samples, and inferential comparisons and judgements based on them 

might be misleading. However, by using Bootstrap technique we try to improve the critical 

values so that the true size of the test approaches its nominal value. 

According to the basic principle of Bootstrap hypothesis testing, the Bootstrap data should be 

generated from the model under the null hypothesis. In our study, with k variables we have k 

different null hypotheses: 

HOI = 0 CI, H02 = 1 CI, ... HOk = r = k - 1 CI . 

Then the following hypothesis: Ho : af3' = rank r = 0 is used to test whether the variables 

are cointegrated or not. And the Bootstrap data should be generated from model (Sa) with the 
A A 

restriction that f3 be equal to zero, where f3 is the ML estimator of the f3 in (Sa). 
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When the variables are cointegrated the Bootstrap data should be generated from model (Sa) 

with the restriction that the f3 will only contain the i-largest eigenvectors, 

i = 0, 1, "', k - 2, k - 1 , for testing that there are at the most i cointegration vectors. 

A direct residual resampling gives: 

p-I 

LlY; = LAiLlY;-i + e;, (Sb) 
i~1 

to test if the variables are cointegrated, and 

p-I 

LlY: = L4LlYt~i + dJ3Yt~1 + e;, (Sc) 
i~1 

to test that there are at the most i cointegration vectors. In (Sc), e; are i.i.d observations 

e;, ... , e~, drawn from the empirical distribution (ft.) putting mass liT at the adjusted ML 

residuals (e t - eJ from models (Sb), (Sc) by using the RRR procedure. f3 is the restricted 

fi that contains only the i largest eigenvectors, t = 1, ... , T. This method is called the 

Bootstrap based on residuals, abbreviated RB, proposed by Efron (1979). Note that, in what 

follows, all Bootstrap statistics will marked by an asterisk (*). 

Let us denote by T: the LR test statistics (11) and (12) as given in chapter 2, and by (the 

"Bootstrap LR test statistics". Then the basic principle of Bootstrap hypothesis testing is, then, 

to draw a number of "Bootstrap samples" from the model under the null hypothesis, calculate 

the "Bootstrap test statistics" ( T:*), and compare it with the observed test statistic. 

The "Bootstrap test statistics" ( T:* ) can then be calculated by repeating this step Nb number of 

times. We then take the (l-a):th quintile of the Bootstrap distribution of ( and get the a -

level "Bootstrap critical values" (c;a)' And, finally, we then reject the null hypothesis if 

T: ~ c;a· This is our Bootstrap test approach to investigate the size by using the conventional 

way to report the results, i.e. in form of tables. A Bootstrap estimate of the P-value for testing 

is p* { T; ~ T:} and this approach we use to examine the size of the Bootstrap test with the 

help of the "P-value plot". The number of the Bootstrap sample used to estimate Bootstrap 

critical values and P-values in our study is Nb = 200. 
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4. The Monte Carlo Experiment 

In this section we illustrate in a Monte Carlo study the cointegration test in VECM systems 

with 1(1) variables. We calculate the estimated size by simply observing how many times the 

null is rejected in repeated samples under conditions where the null is true. To judge the 

reasonability of the results we use an approximated 95% confidence interval for the actual size 

(n): 

A ~ i(l- i) 
n±2 N ' (13) 

where i is the estimated size and N is the number of replications. It should also be noted that, 

in our Monte Carlo experiment, we use 10.000 replications per model for the estimating of the 

size. Accordingly, the confidence interval when using the 5% significance level, will lie 

between 4,56% and 5,44%. Results that lie outside the above interval will be considered as an 

indication of bad performances. 

Following the Monte Carlo analysis of Podivinsky (1998), we have generate the following 

process: 

(14) 

for analysing the size of the test of no cointegration, and 

-2 e] Y +e 
- y 1 2 - ye 12 t-l t' 

(15) 

to study the size and the power of the tests when there is one and two cointegration vectors, 

and where et ~ LLN( 0,10013 ) , Yt - l = (YIY2Y3)t_I', III = Yt - Yt-l' The process has 

cointegration rank r = 1 if y = 0 and rank r = 2 if y = 1. Therefor we use y = 0 to study the size 

and power of the tests when there is only one cointegration vector (Ylt = 2Y2t -By3t)' and we 

use the value y = 1 to study the size and power of the tests when there are two cointegration 

vectors (i.e. the Ylt = 2Y2t - By3t and Ylt = (Y2t + By3J 12). For e = 0, only two variables are in 

cointegration vectors and when e = 1 all three variables are in cointegration vectors. 
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The order ofp of the process (Sa) is assumed to be known, and we fitted the (Sa) model with 

p=l. For that reason, the RRR estimators require the cross product matrices: 

T 

S = T-1
"" ~Y~Y' uu ~ t t' (6a) 
1=1 

T 

SyU = T-IIYt-t~Y:, (7a) 
1=1 

T 

Syy = T-1IYt-tYLt. (8a) 
1=1 

However, since the assumption, that the order ofp of the process (Sa) is known might be too 

optimistic, we also fitted the (Sa) model with p=3. 

For each time series, 25 presample values are generated with zero initial conditions, taking net 

sample sizes of T = 50, 75 and 100. Finally, the" Bootstrap test statistic" ( r.*) is calculated. 

Since in our study, we are primarily interested in the behaviour of the tails of the distributions, 

only results using the conventional 5% nominal significance level have been analysed in Table 

1. 

5. Analysis of the Size of the Tests 

In this section we present the results of our Monte Carlo experiment concerning the sizes of 

the Bootstrap tests statistics using VECM models. A conventional way to report the results of 

a Monte Carlo experiment is to tabulate the proportion of how many times the null hypothesis 

is rejected in repeated samples under conditions where the null is true. In Table 1, we present 

the estimated size for both versions of the Johansen (1988) co integration test at the 5% 

nominal size. The table shows the properties of the tests under conditions when two or three 

variables are included in the model, and when there are none, one or two cointegration 

vector(s). Moreover, the test properties have been investigated for different number of 

observations in the samples. In the case of 50 observation, we study the combination when 

two or three variables are included in the model, and when, there are none, one or two 

co integration vector(s). For the sample sizes of 75 and 100 observations, results are shown 

only in the case when three variables are used in the model. Results from the other case of two 
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variables have shown to be identical to those of three variables and will not be referred to in 

what follows. 

Now, looking at the first column with 50 observations, both the Trace and L-max tests exhibit 

the correct size when we have two variables and one or two cointegration vector(s). In the 

case of three variables, the tests perform satisfactorily when there are none or one 

co integration vector. In the case of two cointegration vectors, both tests under-reject very 

slightly. The same conclusions hold for the case with 75 observations, but in the case of two 

cointegration vectors, both tests lay almost on the lower bound (4.56 -5.44) of the estimated 

confidence interval. Finally, when we have 100 observations, the L-max test performs well in 

all situations, while the Trace test under-reject slightly in the absence of cointegration vector. 

Table 1. Estimated Size for the Cointegration Test at 5% Nominal Size 

500BS 750BS 1000BS 

5% (2V) (3V) (3V) (3V) 

TRACE L-MAX TRACE L-MAX TRACE L-MAX TRACE L-MAX 

o CI - - 0.0467 0.0484 0.0496 0.0491 0.0446 0.0468 

1 CI 0.0468 0.0469 0.0468 0.0476 0.0496 0.0498 0.0511 0.0515 

2 CI 0.0499 0.0499 0.0445 0.0445 0.0454 0.0454 0.0482 0.0482 

The (2V) mdlcates two while (3V) mdlcates three vanables m the comtegratlOn vector(s). 

Davidson and MacKinnon (1997) argue that graphical methods provide more information, 

about the size of the tests, and in our case we use the P-value plots that are easy to implement 

and interpret. 

The graphs we use in our study, the P-value plots and Size-Power plots, are based on the 

empirical distribution function (EDF) of the P-values of ( 1',). More precisely, we use only the 

Wald-Bootstrap test, and then, the P-value associated with (1'.) is p* { 1'.* ;::: 1', }, where 

s = 1, ... , N, and N is the number of replications in our Monte Carlo experiment. 

The (EDF) of the ~ is simply an estimate of the cumulated density function (c.d.f.) ofp(1',) 

which at any point Xj in the (0,1) interval, it is defined by 
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(16) 

where I( P. ~ x j ) is an indicator function that takes the value 1 if its argument is true and ° 
otherwise. The EDF (16) is either evaluated at every data point, or if the N is large, as often it 

is, only at m points j = 1, ... , m. Davidson and MacKinnon (1997) advocate the use of m = 107 

corresponding to intervals 0,01 with 0,002 extra points in the tails to do not miss any unusual 

behaviour in tails, or m = 217, with intervals 0,005 and 0,001 extra points in the tails. 

However, in our cse, we evaluate at m = 217 points. Finally, we mention that the P-value plot 

we use is a simple plot of ft(x j ) against x j . 

Figure 1: P-value plots for Bootstrap tests -Trace, L-max for no cointegration. 

Figure 1a: 50 obs, 0 CI 
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Figure la: 75 obs, 0 CI 
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Now as for the P-value plots, we have that if the distribution used to compute the Ps IS 

correct, each of the Ps should be distributed as uniform (0,1). Therefore, when ft(Xj) IS 

plotted against x j , the resulting graph should be close to the 45° line. Figure 1 shows some of 

the advantages of the P-value plots, since they make it easy to distinguish between tests that 

work badly, and test that work well. The P-value plots should also make it possible and easy 

to distinguish between tests that systematically over-reject or under-reject, and tests that reject 

the null hypothesis about the right proportion of the time. In our case, the Bootstrap test 

rejects the null hypothesis about the right proportion of the time. 
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Figure 2: Truncate P-value plots for Bootstrap Trace and L-max tests, no co integration vector. 

Figure 2a: 50 obs. 

Figure 2b: 75 obs. 

Figure 2c: 100 obs. 
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Note that the whole lines for the figures are the approximate 95% confidence interval for actual size. 
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Figure 3: P value plots for Bootstrap tests-Trace, L-max for 1-2 cointegration vector(s). 

Figure 3a: 50 obs, CI 
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The disadvantage of these P-value plots is that we cannot see patterns in the behaviour of the 

tests when all perform well (see Figure 1). To reduce this problem, we truncate hereafter the 

P-value plots at x = 0.25. 

Figure 2, shows the truncated P-value plots for the Bootstrap tests for 50, 75, and 100 

observations and in the case when there is no co integration vector in the V AR(I) model. 

While in Figure 3, we present results when there are one or two cointegration vector(s). 

Looking at these figures, it is not difficult to make the inference that, using the Bootstrap 

critical values, both tests perform adequately especially in large samples. Only occasionally, 

the results can lie either on the confidence bounds or strictly slightly outside the bounds. 

Generally speaking, in this study, the Bootstrap test rejects sufficiently under the null 

hypothesis and it is difficult to se any noticeable differences between the performances of the 

Trace and L-max tests. In the case when there is no cointegration, the Bootstrap test rejects 

reject about the right proportion of the time for all samples (50, 75 and 100). Finally, there are 

not noticeable effects on the size of the tests from including two extra lags in model (Sa), i.e. 

by fitting a V AR(3) model, so it is not shown here. 

The conclusion of our size investigation is that Bootstrap works well even when there mixed 

stationary and nonstationary components in the model. That is, the Bootstrap test behaves 

approximately the way that we expected, and the plots look roughly like 45° lines, for all 

samples 

6. Analysis of the Power of the Tests 

In this section we discuss the most interesting results of our Monte Carlo experiment, 

designed to gather evidence concerning the power of the various test versions. We analyse the 

power of the Bootstrap test using sample sizes 50, 75, and 100 observations. The power 

functions are estimated by calculating the rejection frequencies in 1000 replications using 

values of y = 0 in (15), when there is only one cointegration vector (Ylt = 2 Y2t - fry3t)' and y = 

1 when there are two cointegration vectors (i.e. Ylt =2Y2t -fry3t) and Ylt = (Y2t +fry3t)/2). 

13 



For e = 1 all three variables are in cointegration vectors. For e = 0, only two variables are in 

cointegration vectors, and in this case the power functions are estimated by calculating the 

rej ection frequencies in 1000 replications using a sample size of 50 observations. 

In this section we present the estimated power functions of the tests in various graphical 

forms. We use the Size-Power Curves to compare the power functions of alternative test 

statistics. The main point of interest is to compare the results for the different tests in different 

sets of conditions. We follow the same process to evaluate the EDF's denoted as ftEll(xj ) by 

using the same sequence of random numbers as for the size of the tests ( see section 5). We 

then plot the estimated power functions against the estimated size, that is, ftEil (x j) against 

ft(Xj) , to obtain the Size-Power curves. 

When we apply model (15), all the estimated power functions quickly exhibit the maximal 

power value of 100%, which make it impossible to visually detect any differences in the 

power functions of the tests in these situations. The reason behind this is mainly the 

magnitude of the parameters used in model (15), which, of course, signify a rapidly increasing 

power function. Hence, to allow a realistic picture of the power functions, and to make it 

easier to see if there are any differences in the properties between the models, we chose to use 

half of the coefficients in (15) and apply the following model instead: 

0.05 J[l 
0.1 
0.15 Y 

(15a) 

In Figure 4, we present results for the Bootstrap test for no co integration relations when the 

true model has one co integration vector or two co integration vectors. Looking at this figure, 

we can see that the Trace test and the L-max test have almost the same power. We can see that 

even when we use model (15a), the tests exhibit sufficient power. 
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Figure 4: Power-Size plots for Trace and L-max statistics, Ho: No cointegration relations. 
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Figure 4c : 50 obs, I CI only 2 Variables Figure 4d : 50 obs, 2CI only 2 Variables 
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Figure 5 presents the Size-Power Curves for the tests, when there are two or three variables in 

the cointegration vectors. As we see, there is no effects on the power of the tests if there are 2 

or 3 variables in the cointegration vector. 

Figure 6a shows that the Bootstrap tests have almost the same power in both cases, when we 

test if there is cointegration or not and when we test if there is one cointegration vector and all 

three variables are in cointegration vector. On the other hand, Figure 6b shows that there is a 

slight different between these two cases. 
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Figure 5: Power-Size plots for Trace and L-max statistics, Ho: One cointegration relations. 
Figure Sa : 50 obs, 2CI Figure 5b : 50 obs, 2CI only 2 Variables 
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Figure 6: Power-Size Plots Comparison between Ho: 0 CI and Ho: 1 CI 
Figure 6a : 50 obs, 0 CI vs. 1 CI Figure 6b: 50 obs, 0 CI VS. 1 CI only 2 
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Finally, Figure 7, shows as expected the lost in the power functions for the OCI and 1 CI tests, 

by including two extra lags in model (Sa), i.e. by fitting a V AR (3) model. 
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Figure 7: Power plot for model (5) and (5a) with p = 3. 

Figure 7a: 50 obs, 0 -Cointagration Vector Figure 7b: 50 obs, 1-Cointagration Vector 
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7. A Brief Summary and Conclusions 
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When we investigate the properties of a test procedure, two aspects are of prime importance. 

First, we wish to see if the actual size of the test is close to the nominal size. Second given 

that actual size is a reasonable approximation to the nominal size, we then wish to investigate 

the actual power of the test for an alternative hypothesis. When comparing different tests, we 

will therefore prefer those in which (a) actual size lies close to the nominal size and, given 

that ( a) holds, (b) have greatest power. The argument that the Bootstrap test has actual size 

that lies close to the nominal size make us choose the Bootstrap test in our V AR model given 

that it has adequate power. The tests has shown to be adequate, even in small samples, in 

testing both the null hypothesis both in the case to test the null hypothesis that there are no 

cointegration relations and in the case when there is cointegration. 

In this paper we have studied the properties of two tests (Trace and L-max), derived by 

Johansen (1988) for testing for cointegration in V AR systems. 

The investigation has been carried out using Monte Carlo simulations together with Bootstrap 

statistics. Different combinations were investigated regarding the size of the tests, where the 
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number of observations, the number of the cointegration vectors in the system and the number 

of the variables in the cointegration vectors have been varied. For each model we have 

performed 10,000 replications and studied three different nominal sizes. The power properties 

have been investigated in the same manner using 1000 replication per model and different 

alternative hypotheses. 

The results regarding the size of the tests have been presented both in form of table and P­

value plots. Our analysis has revealed that, using the Bootstrap test statistics, the Trace and L­

max have been showed to perform adequately when there are mixed stationary and 

nonstationary components in the model. The difference between the two tests is really quite 

negligible, and it is difficult to see any pattern that cannot be a result of random error in the 

experiment. In other words, the Bootstrap test have exhibit well performances in all samples 

(50, 75 and 100). 

As regarding the power of the tests, the power functions have been presented only graphically. 

The analyses of the power indicate that both of the tests can sharply detect the presence of CI 

vector(s), and that the differences between the power functions of them are very trivial. The 

power functions, as expected, become lower when including extra lags in the V AR model. 
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