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The Robustness of the Systemwise Breauch-Godfrey Autocorrelation 

Test for Non-normal Distributed Error Terms 

Ghazi Shukur 

Department of Statistic 

Gothenburg University 

ABSTRACT 

Using Monte Carlo methods, the properties of systemwise generalisations of the Breauch­

Godfrey test for autocorrelated errors are studied in situations when the error terms follow a 

normal and non-normal distributions. Edgerton and Shukur (1998) studied the properties of 

the test using normally distributed error terms. When the errors follow a non-normal 

distribution, the performances of the tests deteriorate especially when the tails are very heavy, 

and in this case the results are truly remarkable. The performances of the tests become better 

(as in the case when the errors are generated by the normal distribution) when the errors are 

less heavy tailed. 

1. INTRODUCTION 

Consider the paper written by Edgerton and Shukur (1998), in what follows referred 

to as ES, in which they studied the properties of systemwise generalizations of the 

Breauch-Godfrey (BG) test for autocorrelated errors. The BG test has the advantage 

of being both exceedingly simple to calculate and valid even for dynamic models. It 

can also easily be extended to tests of higher order autocorrelation. ES constructed 

Wald, Lagrange Multiplier and Likelihood Ratio tests that are applicable to auxiliary 

regression systems. Various degrees-of-freedom corrections have been investigated, 

in particular the commonly used simple replacement of the divisor T by L1 and, for the 

LR tests, the Edgeworth correction developed by Anderson (1984). ES have also 
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investigated the properties of the systemwise F-test approximation proposed by Rao 

(1973). Finally, they have compared the properties of tests where observations with 

missing lagged residuals are deleted with tests where the observations are replaced by 

zeroes. All in all, 18 different tests have been studied by ES. The investigation has 

been carried out using Monte Carlo simulations, and because of the extinctive feature 

of the study, ES have used different criteria to judge the "reasonableness" of the 

results. 

ES analysis revealed that four factors critically affect the accuracy of the BG-tests' 

nominal size, namely the number of equations, sample size (degrees of freedom), 

autocorrelation in the exogenous variables and size of the dynamic parameters. In all 

cases (except sample size) the performance of the best tests deteriorates as the above 

factors increase. When estimating a single equation, the simple degrees-of-freedom 

corrected LR (LRC) test seems to be preferable, otherwise Rao's F-test is best. The 

traditional Wald and TR2 tests are shown to perform extremely badly in all situations. 

No test performs satisfactorily, however, when the number of equations exceeds 5 and 

the autocorrelation in the exogenous variables is greater than 0.5. When this 

autocorrelation grows to 0.9, then only systems with one or two equations yield 

adequate results even with the F-test. The performance of the F-test also deteriorates 

when the strength of the dynamics in the model increases. A general conclusion is that 

even the best BG test has difficulty in distinguishing between different dynamic 

effects when n becomes large. 

When considering the power of Rao's F-test, the authors found that the value of the 

error variance was also important, while the strength of the dynamics played only a 

minor role. The power function becomes quite flat, even for medium sized samples, as 

the number of equations and exogenous autocorrelation increase, which reinforces our 

picture of poor performance in these situations. 

Note that ES generated the error terms from the normal distribution, but using a fat­

tailed distribution could, of course, affect the properties of the tests. Evidence of fat­

tailed distributions can often be found in empirical econometrics and! or time series, 
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e.g. finance, demand analysis, price expectations. If a test performs well under these 

conditions (i.e., when the underlying assumption that the error terms are normally and 

identically distributed may not hold), then it is usually referred to as robust. It is, 

hence, important to study the effect of fat tailed and/or the combined effect of fat 

tailed and autocorrelated errors on the properties of the BG test. 

The main purpose of this paper is to study the robustness of the BG test to non­

normally distributed errors. This will mainly be done by investigating situations 

where the error terms are drawn from members of the class of symmetric stable 

distributions (for details about the properties of the class of stable distributions, see 

Feller, 1966). The class of non-normal or contamination distributions is fairly large, 

and the effects of these distributions mostly render the error terms heavy-tailed. More 

specifically, the error terms in this study will be generated by the t-distribution with 

degrees of freedom equal to: one (i.e. the Cauchy distribution), two, three, five, and 

seven. Proceeding in this manner, we cover a wide range and varying degree of the 

fatness in the tails of the errors. Note that in this study we use almost the same model 

specification and Monte Carlo design as in SE. The results of this paper will then be 

compared with those found by the SE (i.e., when they use the normal distribution to 

generate the error terms). 

The paper is arranged as follows. In the next section we present the model we analyse, 

and we give the formal definition of a number of variants of the BG test. In Section 3 

we present the design of our Monte Carlo experiment. In Section 4 we describe the 

results concerning the size of the various tests while power is analysed in Section 5. 

Finally, a brief summary and conclusions are presented in Section 6. 

2. SYSTEMWISE Breauch-Godfrey TESTS 

Consider the general dynamic system studied by ES. It consists of n stochastic 

equations given by 
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where Yt and et are (lxn) , X t is (lxm) , Ii is (nxn) and B is (mxn). The 

contemporary error covariance matrix is given by E(e~et) = Le ,while under the 

null hypothesis of no autocorrelation E( e;e s ) = 0 for all t -j:. s . T denotes the number 

of observations used for estimating (1), and Y I- H to Yo (the observations of the lagged 

variables) are assumed to be available. 

Equation (1) is called the primary regression. The BG systemwise test is performed by 

first calculating the least squares residuals e = (IT - Z(Z'Z)-I Z')Y from this 

regression, where Y is the (T x n) matrix of endogenous variables, and 

Z=(XY_I ... Y_H ) is the (Tx(m+Hn)) matrix of exogenous and lagged endogenous 

variables. These residuals are then used in the following auxiliary equation, 

The BG test is now performed by testing the hypothesis H~ : lfJI = ... = lfJ G = 0 . 

ES discussed a number of factors that can affect the size and power of the BG tests, 

namely, the number of equations (n), the sample size (1), degrees of freedom (d) and 

the order of the dynamic processes (G and H). In this paper, as in ES, we will study 

the consequences of varying nand .1, while T is chosen so as to give compatible 

values of .1 for different models, and only concentrate on the case where G = H = 1. 

The model under study is thus 

with error structure given by 

The auxiliary regression used to test H 0 : p = 0 is given by 

where the hypothesis under test is now H~ : lfJ = 0 . 
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ES also studied a number of other factors that could affect the properties of the BG 

tests. The distribution of X t and ut (and thus et) are obvious candidates to examine, as 

are the values of Band r. In the rest of this section we will consider these in some 

more detail. 

Regarding the dynamic structure of the endogenous variables, ES studied the special 

dynamic cases: diagonal matrices and matrices where one non-diagonal element per 

row is also non-zero, but they found that it was the largest modulus of the latent roots 

that was of importance. In this study, hence, we mainly concentrate on studying the 

case with only diagonal dynamics. The distribution of the exogenous variables we 

use, is the following fairly general type of generating processes: 

where @ and @o are (lxm), A is (mxm) and 1]t is multivariate normal white noise 

with covariance matrix Lll . Simple substitution of (6) into (7) shows that this 

reduces to the usual formulation of an AR( 1) process around a linear deterministic 

trend. 1 The values of @ and A affect the correlations of the exogenous variables over 

time, and can thus very well affect the properties of the BG tests. As shown in (SE's 

Appendix E), the value of ..Ex does not affect these properties. For more details, we 

refer to the previously mentioned appendix. 

Finally, the properties of tests are compared where observations with missing lagged 

residuals are deleted with tests where they are replaced by zeroes. In the first case the 

auxiliary regression is estimated using 1 = T - G observations, while in the second 

case, T observations are used. Asymptotically the two approaches are identical, but in 

small samples different results can be obtained. 

1 In our Monte Carlo study we have included a constant term among the exogenous variables, so that 
(6) and (7) have only been applied to the remaining m-l variables, and tPo has been set to zero. 
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A 

Now we denote by 8u the matrix of estimated residuals from the unrestricted 

A 

regression (3), and by 8 R the equivalent matrix of residuals from the restricted 

regression with Ho imposed. Defining the matrix of crossproducts of these residuals 

A A 

as Su = 8~8u and S R = 8~8 R' the Wald, Likelihood Ratio and Lagrange Multiplier 

test statistics are given by 

LR = TlnU, and 

where U = detSu /detS R • As we are not including all observations in the auxiliary 

equation, the LM statistic does not reduce to TR2 in the single equation case, since the 

last t"rows of e are not orthogonal to the last rows of Z. To include this case we must 

also define the statistic 

where Se is the crossproduct matrix of the last t" residuals from the pnmary 

regression, (1). Note that the above mentioned tests reduce to their single equation 

equivalents when n = 1. The above statistics are all asymptotically X 2 (p) distributed 

under the null hypothesis, where p = Gn 2 is the number of restrictions imposed by 

Ho. One simple small sample correction is to replace t"by L\ = 'Z - (m + (H + G)n) , the 

degrees of freedom in the equations of the auxiliary regression. The corrected 

statistics are thus given by WC = (L\/'Z)W, LRC = (L\/'Z)LR, LMC = (L\/'Z)LM and 

TR2C = (L\/'Z)TR2, which have the same asymptotic distributions as given above. 

Another, more sophisticated approximation is that given by theorem 8.6.2 in 

Anderson (1958, p. 208). This uses an Edgeworth expansion, and if we choose the 

simplest form (which is accurate to the order T-2
) this corrected LR statistic is given 

by 
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LRE =!1E InU, 

where !1E =!1+Y2[n(G-1)-1]. This is also asymptotically X 2 (p) distributed under 

the null hypothesis. Note that when G = 1, the difference between LRC and LRE is 

merely that the numerator in the correction is .d in the first case and .!1-Y2 in the 

second. 

A final approximation is that given by Rao (1973 p. 556), namely 

RAO = (q/ p)(U-l/s -1)' 

where p and !1 E are defined above, r = p /2 -1, q = !1Es - r , and 

s= 

RAO is approximately distributed as F(p,q) under the null hypothesis, and reduces to 

the standard F statistic when n = 1. 

All the above statistics have been defined from the auxiliary regression (5), estimated 

using 'r observations. If we instead define this regression for all T observations, using 

zeros to fill in the missing lagged residuals, then other results will be obtained. 

Denoting by u * the estimated residuals from this regression, and by S * their 

crossproduct matrices, then we can redefine the first three statistics using T instead of 

1", and S* instead of S. These statistics will be denoted W*, LR* and LM * . Note that 

the orthogonality of the residuals is now preserved, so that LM * = TR2* . Corrections 

to these starred statistics will be obtained by replacing 'r with T in the definitions of .d 

and the correction factors, yielding statistics WC*, LRC* , LM * , LRE* and RAO* . 

We have thus a total of eighteen asymptotically equivalent statistics; W, LR, LM, TR2, 

WC, LRC, LMC, TR2C, LRE and RAO, plus their starred versions (except for TR2 and 

TR2C). All of these use the X2(p) distribution, except for RAO and RAO* which use 

the F(p,q) distribution. 
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3. THE MONTE CARLO EXPERIMENT 

In a Monte Carlo study we calculate the estimated size by simply observing how 

many times the null is rejected in repeated samples under conditions where the null is 

true. The Monte Carlo experiment has been performed by generating data according 

to (3), (4), (6) and (7), estimating the auxiliary regression (5) and then calculating the 

test statistics defined in Section 2. In Tables 1 and 2, we present values of a variety of 

factors that we held constant that do not and may affect the BG test performances. 

These tables are very similar to those given by ES, but with some diffirences, e.g. 

regarding the distribution of the errors. 

TABLE l. 
Values of Factors Held Constant that Do Not Affect the BG Tests 

Factor Symbol Value 

Constant term 1 

Number of X variables M-l number of equations 

Mean of X variables flx 0 

Covariance Matrix of X variables I x .21 + .8E 

Parameters of X variables B E 

X represents the exogenous variables excluding the constant term and E represents the matrix 
consisting merely of ones. 

TABLE 2. 
Values of Factors Held Constant that May Affect the BG Tests 

Factor Symbol Value 

Distribution of X variables Normal 

Properties of X in repeated samples Stochastic 

Parameters exogenous AR process A al 

Parameters exogenous trend <P ¢>e 

Dynamic parameters r yl 
Distribution of error terms Normal and none-normal* 

Order of error AR processes g,G 1 

Covariance Matrix of error terms Ie 021 
Order of endogenous AR process H 1 (dynamic) 

e represents the row vector consisting merely of ones. * The distribution of the errors has been chosen 
to follow normal distribution and t-distribution with degrees of freedom equal to 1, 2, 3, 5, and 7. 

By varying such factors we obtain a succession of estimated sizes under different 

conditions. In general, the closer an estimated size is to the nominal size, the better we 

consider a test to be. Because of the extensiveness of ES's study, they used different 

criteria for judging the performances of the tests. Some of those criteria are designed 

to tell us which tests is best in a given situation, and others tell us how often a test is 

reasonable. Moreover, ES investigated higher order interactions both graphically and 
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in table form for given values of the non-important factors, where the tables are 

enhanced to show under which conditions the tests are reasonable.2 An alternative 

methodology, also tried by ES, was to model the size of the tests directly as a function 

of the parameters and their interactions - so called response surfaces - see Davidson 

and MacKinnon (1993, section 21.7). The authors found, however, that the response 

surface approach failed to cast light on the nature of the relationship between size and 

the parameters of the experiment 

In this paper, to judge the reasonability of the results, we require that the estimated 

size should lay between twice the 95% confidence interval of the actual size. For 

example, if we consider a nominal size of 5%, we define a result as reasonable if the 

estimated size lies between 4% and 6%. (for more details about operational definition 

of reasonableness, see Section 4 in ES). Note that most of the factors we discussed 

earlier, either have very small effect, or have no effect at all on the estimated size of 

the tests. To show the effect of the remaining factors on the performances of the tests, 

we display some important results regarding the estimated sizes of the tests in our 

tables. As regards the estimated power of the tests, we have mainly compared them 

graphically. 

4. ANL YSIS OF THE SIZE 

In this section we present our most important results along with results of the main 

dominating effects of our Monte Carlo experiment concerning the size of the BG 

tests. We find that the number of equations, degrees of freedom and the distributions 

of the error terms are such factors, and we hereby introduce tables that can show how 

these factors can affect the properties of the BG test. 

In Tables 3-6, we present the results of the estimated size of the BG test, using the 

normal distribution and t-distribution with different degrees of freedom, in systems 

ranging from one to ten equations. In these tables, we decide to present the results for 

2 Other forms of graphical presentation were also tried, such as the P-value plots suggested by 
Davidson and MacKinnon (1994). The high dimensionality of the study caused these methods to be far 
too extensive, however. 
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TABLE 3. Estimated Sizes of the Tests with Different Error Distributions, (R2 = 0.7, ifJ = 0.5, a = 0.5, Y= 0.3, 1to = 5%), 1 equation. 

* (shaded cells = reasonable results). 



TABLE 4. Estimated Sizes of the Tests with Different Error Distributions, (R2 = 0.7, ¢> = 0.5, a = 0.5, Y= 0.3, no = 5%), 3 equation. 

t, 
A w W* LR LR* LM LM* TR2 WC wc* LRC 
15 0.5213 0.5061 0.3754 0.3658 0.1948 0.1933 0.2943 0.2235 0.2197 0.0828 
25 0.3107 0.3100 0.2255 0.2275 0.1425 0.1422 0.2002 0.1586 0.1619 0.0857 
45 0.1768 0.1813 0.1418 0.1473 0.1075 0.1143 0.1399 0.1149 0.1234 0.0882 
75 0.1356 0.1397 0.1199 0.1219 0.1025 0.1046 0.1218 0.1077 0.1099 0.0921 

0.3297 0.3187 0.1316 0.1350 0.1791 
0.1941 0.1923 0.1445 0.1412 0.0970 0.0977 0.1199 0.1041 0.1036 0.0651 
0.1227 0.1230 0.0979 0.1005 0.0767 0.0788 0.0888 0.0793 0.0829 0.0611 

0.3434 0.3311 0.2399 0.2319 0.1286 0.1254 0.1653 0.1425 
0.1970 0.1897 0.1427 0.1390 0.0906 0.0900 0.1099 0.0989 
0.1241 0.1248 0.0953 0.0979 0.0711 0.0708 0.0790 0.0736 

25 I 0.3426 0.3270 0.2419 0.2297 0.1290 0.1227 0.1653 0.1420 
45 0.1899 0.1839 0.1342 0.1332 0.0884 0.0865 0.1015 0.0934 
75 0.1300 0.1251 0.0977 0.0981 0.0722 0.0732 0.0790 0.0744 

25 0.3541 0.3381 0.2478 0.2345 0.1377 0.1330 0.1729 0.1512 0.1450 0.0665 

LRC* LMC 
0.0891 0.0050 
0.0906 0.0335 
0.0948 0.0618 
0.0948 0.0798 

0.0655 0.0146 

45 0.1911 0.1895 0.1370 0.1387 0.0864 0.0870 0.1019 0.0919 0.0930 ji;Q)Q$j~;:m(;.P5:W 0.0258 

75 0.1268 0.1259 0.0993 0.0949 0.0737 0.0703 0.0792 0.0784 0.0746 m!O!B5~~~t;!W.U528 0.0348 

* (shaded cells = reasonable results). 

LMC* TR2C LRE LRE* RAO 
0.0072 0.0314 0.0703 0.0790 0.0676 
0.0390 0.0690 0.0805 0.0863 0.0801 
0.0706 0.0891 0.0864 0.0927 0.0864 
0.0829 0.0958 0.0906 0.0940 0.0906 

0.0142 
0.0259 
0.0344 

RAO* 
0.0772 
0.0856 
0.0924 
0.0940 



TABLE 5. Estimated Sizes of the Tests with Different Error Distributions, (R2 = 0.7, </J = 0.5, a = 0.5, Y= 0.3, 1to = 5%),5 equation. 

{, 

A w W* LR LR* LM LM* TR2 WC wc* LRC LRC* LMC LMC* TR2C LRE LRE* RAO RAO* 
15 0.9690 0.9645 0.9011 0.8881 0.6200 0.6015 0.7368 0.5817 0.5638 0.1354 0.1362 0.0000 0.0000 0.0021 0.1087 0.1142 0.0955 0.1011 
25 0.7954 0.7826 0.6352 0.6175 0.3704 0.3641 0.4679 0.3625 0.3564 0.1233 0.1306 0.0068 0.0082 0.0343 0.1125 0.1177 0.1079 0.1136 
45 0.4657 0.4642 0.3480 0.3512 0.2229 0.2288 0.2839 0.2319 0.2386 0.1359 0.1415 0.0525 0.0610 0.0903 0.1322 0.1371 0.1307 0.1360 
75 0.2844 0.2837 0.2310 0.2360 0.1823 0.1865 0.2147 0.1922 0.1951 0.1488 0.1547 0.1049 0.1110 0.1292 0.1466 0.1523 0.1458 0.1519 

~----- - ------------------------

{, 

A w W* LR LR* LM LM* TR2 WC wc* LRC LRC* LMC LMC* TR2C LRE LRE* RAO RAO* 
15 0.9709 0.9628 0.9009 0.8836 0.6143 0.5887 0.7352 0.5623 0.5368 0.1061 0.1085 0.0000 0.0000 0.0002 0.0838 0.0853 0.0721 0.0747 
25 0.8240 0.8093 0.6624 0.6408 0.3689 0.3605 0.4689 0.3442 0.3327 0.0881 0.0923 0.0020 0.0025 0.0080 0.0756 0.0822 0.0711 0.0787 
45 0.4957 0.4851 0.3499 0.3446 0.1929 0.1951 0.2427 0.1848 0.1847 0.0747 0.0801 0.0146 0.0197 0.0301 0.0697 0.0745 0.0681 0.0730 
75 0.2925 0.2868 0.2099 0.2066 0.1278 0.1322 0.1549 0.1270 0.1321 0.0724 0.0774 0.0333 0.0365 ;~~§;!W~,~ii 0.0694 0.0739 0.0690 0.0737 

{, 

A W W* LR LR * LM LM* TR2 WC wc* LRC LRC* LMC LMC* TR2C LRE LRE* RAO RAO* 
15 0.9755 0.9689 0.9063 0.8883 0.6258 0.5992 0.7415 0.5750 0.5475 0.1101 0.1130 0.0000 0.0000 0.0000 0.0864 0.0919 0.0731 0.0790 
25 0.8322 0.8168 0.6609 0.6436 0.3686 0.3546 0.4564 0.3401 0.3264 0.0819 0.0811 0.0019 0.0018 0.0034 0.0708 0.0702 0.0667 
45 0.5198 0.5134 0.3632 0.3538 0.1958 0.1925 0.2378 0.1806 0.1769 0.0643 0.0686 0.0106 0.0107 0.0147 
75 0.2945 0.2936 0.1999 0.2015 0.1200 0.1203 0.1391 0.1113 0.1084 0.0535 0.0565 0.0192 0.D205 0.0233 

{, 
A I W W* LR LR * LM LM* TR2 WC WC* LRC LRC* LMC LMC* TR2C LRE LRE* 
15 0.9757 0.9682 0.9101 0.8909 0.6260 0.6003 0.7431 0.5802 0.5505 0.1112 0.1135 0.0000 0.0000 0.0000 0.0856 0.0901 
25 0.8399 0.8199 0.6756 0.6525 0.3716 0.3619 0.4702 0.3403 0.3322 0.0867 0.0816 0.0024 0.0018 0.0035 0.0738 0.0714 
45 0.5204 0.5159 0.3616 0.3600 0.1969 0.1929 0.2393 0.1849 0.1803 0.0675 0.0661 0.0101 0.0117 0.0150 0.0621 0.0611 
75 0.2980 0.2975 0.2045 0.2051 0.1240 0.1261 0.1423 0.1180 0.1193 }):0;966'4;: 0.0625 0.0221 0.0228 0.0280 ~;iQ;~~7§- :(};O$04 

Normal 
A I W W* LR LR* LM LM* TR2 WC WC* LRC LRC* LMC LMC* TR2C LRE LRE* RAO 
15 0.9774 0.9723 0.9080 0.8914 0.6253 0.6010 0.7462 0.5793 0.5538 0.1094 0.1065 0.0000 0.0000 0.0001 0.0858 0.0851 0.0725 
25 0.8433 0.8232 0.6726 0.6485 0.3709 0.3608 0.4627 0.3418 0.3324 0.0844 0.0805 0.0016 0.0024 0.0034 0.0714 0.0705 0.0665 

45 0.5254 0.5146 0.3673 0.3605 0.1932 0.1948 0.2398 0.1846 0.1827 ).~ .. ~~~.8.;O.0620 0.0117 0.0120 0.0159<R;~~3~~\)~.d573·.i. O:p~~~;;, 
75 0.3055 0.3008 0.2106 0.2091 0.1254 0.1241 0.1419 0.1182 0.1170 1;jQ;Q§QQ;~[i:Q.Q~g2 0.0238 0.0210 0.0274~.JR~~i;;I.Q.O?5Zi.( 0:0562 

* (shaded cells = reasonable results). 



TABLE 6. Estimated Sizes of the Tests with Different Error Distributions, (R2 = 0.7, ¢ = 0.5, a = 0.5, Y= 0.3, 1to = 5%), 10 equation. 

t, 
Ll w W* LR LR* LM LM* TR2 WC wc* LRC LRC* LMC LMC* TR2C LRE LRE* RAO 
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9994 0.4529 0.4354 0.0000 0.0000 0.0000 0.3605 0.3433 0.1529 
25 1.0000 1.0000 1.0000 1.0000 0.9962 0.9947 0.9986 0.9663 0.9633 0.2541 0.2619 0.0000 0.0000 0.0000 0.2166 0.2210 0.1586 
45 0.9977 0.9972 0.9756 0.9719 0.8211 0.8149 0.8672 0.7008 0.6957 0.2253 0.2310 0.0042 0.0052 0.0151 0.2084 0.2128 0.1936 
75 0.8808 0.8750 0.7415 0.7351 0.5121 0.5128 0.5664 0.4550 0.4591 0.2294 0.2357 0.0534 0.0574 0.0842 0.2222 0.2292 0.2185 

t, 
Ll w w* LR LR* LM LM* TR2 WC WC* LRC LRC* LMC LMC* TR2C LRE LRE* RAO 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9994 0.4218 0.3908 0.0000 0.0000 0.0000 0.3307 0.3090 0.1277 
25 1.0000 1.0000 1.0000 1.0000 0.9960 0.9961 0.9986 0.9650 0.9596 0.2056 0.2028 0.0000 0.0000 0.0000 0.1645 0.1633 0.1138 

45 0.9991 0.9991 0.9913 0.9908 0.8680 0.8587 0.9107 0.6943 0.6848 0.1219 0.1274 0.0002 0.0004 0.0016 0.1068 0.1118 0.0958 

75 0.9537 0.9508 0.8358 0.8305 0.5541 0.5480 0.6171 0.4058 0.4055 0.1048 0.1056 0.0056 0.0059 0.0122 0.0969 0.0986 0.0935 

t, 
Ll w W* LR LR* LM LM* TR2 WC WC* LRC LRC* LMC LMC* TR2C LRE LRE* RAO 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9991 0.4281 0.3905 0.0000 0.0000 0.0000 0.3336 0.3059 0.1345 
25 1.0000 1.0000 1.0000 0.9999 0.9971 0.9960 0.9989 0.9665 0.9597 0.2121 0.2065 0.0000 0.0000 0.0000 0.1698 0.1665 0.1147 

45 0.9996 0.9996 0.9912 0.9891 0.8786 0.8715 0.9174 0.7004 0.6878 0.1189 0.1160 0.0002 0.0002 0.0003 0.1024 0.1014 0.0909 

75 0.9651 0.9647 0.8558 0.8491 0.5677 0.5599 0.6306 0.3971 0.3987 0.0841 0.0866 0.0018 0.0027 0.0036 0.0751 0.0778 0.0719 

t, . 
Ll w W* LR LR* LM LM* TR2 WC WC* LRC LRC* LMC LMC* TR2C LRE LRE* RAO 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9999 0.4299 0.3965 0.0000 0.0000 0.0000 0.3369 0.3074 0.1307 

25 1.0000 1.0000 1.0000 1.0000 0.9975 0.9966 0.9993 0.9689 0.9629 0.2078 0.2093 0.0000 0.0000 0.0000 0.1675 0.1676 0.1144 

45 0.9996 0.9996 0.9925 0.9918 0.8805 0.8738 0.9246 0.7088 0.6967 0.1200 0.1137 0.0000 0.0000 0.0001 0.1022 0.0972 0.0909 

75 0.9686 0.9652 0.8631 0.8562 0.5707 0.5601 0.6373 0.3953 0.3927 0.0784 0.0814 0.0016 0.0020 0.0027 0.0721 0.0746 0.0697 

Normal 

Ll w W* LR LR* LM LM* TR2 WC WC* LRC LRC* LMC LMC* TR2C LRE LRE* RAO 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9992 0.4253 0.3927 0.0000 0.0000 0.0000 0.3329 0.3071 0.1274 

25 1.0000 1.0000 0.9999 0.9999 0.9967 0.9952 0.9990 0.9655 0.9597 0.2022 0.1975 0.0000 0.0000 0.0000 0.1617 0.1592 0.1100 

45 0.9999 0.9994 0.9908 0.9894 0.8803 0.8716 0.9220 0.7017 0.6887 0.1179 0.1162 0.0002 0.0003 0.0004 0.1014 0.1002 0.0886 

75 0.9651 0.9619 0.8542 0.8470 0.5649 0.5579 0.6281 0.3952 0.3927 0.0790 0.0812 0.0013 0.0009 0.0024 0.0706 0.0744 0.0683 

* (shaded cells = reasonable results). 
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the situations when the R2 = 0.7, if> = 0.5, a = 0.5, Y = 0.3, and 1to = 5%, while in 

Figure 1 we present results when different degrees of autocorrelations in the 

exogenous variables are used. These combinations are fairly representative of the 

whole experiment and similar to the overall results presented in ES. Full results with 

other combinations, however, are available, on request from the author. 

Looking at Table 3 (i.e., in single equation case), we can see that when the errors are 

normally distributed all the corrected LR methods perform well and very similarly. 

the situations when the R2 = 0.7, if> = 0.5, a = 0.5, Y = 0.3, and 1to = 5%, while in 

Figure 1 we present results when different degrees of autocorrelations in the 

exogenous variables are used. These combinations are fairly representative of the 

whole experiment and similar to the overall results presented in ES. Full results with 

other combinations, however, are available, on request from the author. 

Looking at Table 3 (i.e., in single equation case), we can see that when the errors are 

normally distributed all the corrected LR methods perform well and very similarly. 

Other tests, such as WC, WC* and TR2C have also shown to perform satisfactorily. 

The rest of the tests perform well only in medium and large size samples. These 

results are fairly similar to the general results in ES. We obtain very remarkable 

results, however, when the error terms are generated from the t(l)-distribution. Almost 

all the tests performs badly in all sample sizes, but with some exceptions regarding 

the LM, LM*, WC, WC*, LRC* and TR2C which perform well only in small samples 

and badly otherwise! Of course, the reason behind the unexpected, good performance 

in small samples, could be a result of random error in the experiment, but also could 

be an effect of the extremely heavy tails of the error terms. When the errors follow a 

t(2)-distribution, the LM, LM*, WC, WC*, LRC, LRC* and the TR2C perform well 

for all sample sizes. When the errors are generated from t(5) and t(7) distributions, the 

performances of the tests become better and similar to the results obtained when the 

errors follow a normal distribution. 
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In Table 4, where we have three equations and normal, t(5) and t(7) distributions, only 

the LRE, LRE*, RAO and RAO* exhibit best performances in all sample sizes, while 

the LRC and LRC* perform well in medium and large sample sizes. All the other tests 

perform badly irrespective of the distribution of the error terms. For the cases when 

the errors follow t(1) distribution, even the best LRE, LRE*, RAO and RAO* tests 

perform badly, whereas with t(2)-distribution, those tests and the TR2C, LMC and 

LMC* perform well only in large samples. 

In systems with five equations (Table 5), the LRE, LRE*, RAO and RAO* exhibit 

good performances only in large samples and normal, t(5), and t(7)-distributions. In 

systems with ten equations (Table 6), all the tests perform badly in all situations. Most 

of the tests, especially the uncorrected tests, are rejecting the null hypothesis 100% of 

the time, while LM, LM* and TR2C do not reject at all. Even the RAO and RAO* 

tests perform poorly, yet are, however, better than the others. 

In our analysis we have identified four factors that seem to have a significant effect on 

the performance of the BG tests, which are: the number of equations, degrees of 

freedom, autocorrelation in the exogenous variables, and the heaviness of the tails of 

the error terms. The strength of dynamics has also shown to have a considerable effect 

on the performance of the tests, but we choose to fix the dynamic parameter at a value 

of 0.3 in our analysis. Other factors have at the most small and/or ambiguous effects. 

In Figure 1 we present results for the four-way interaction of these factors for the 

RAO test. We choose this test since the RAO tests are shown to be superior in most 

situations. 

A number of conclusions can be drawn from these results. Firstly, the degrees of 

freedom effect becomes stronger as a increases and the tails of the error terms 

become wider. Secondly, the RAO small sample approximation gets worse as n and a 

get larger. Finally, it appears that the number of equations effect is not linear, but 

becomes stronger as n increase. 
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Figure 1: The Size of the Rao Test for Different Number of Equations and Different 

Distributions of the Error Terms, (R2 =0.7, rjJ =0.5, y=0.3, 1to=5%). 
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5. ANLYSIS OF THE POWER 

In this section we discuss the most interesting results of our Monte Carlo experiment, 

which regard the power of the BG test. The power functions of different versions of 

the BG test were estimated by calculating rejection frequencies from 2000 

replications for error autocorrelation given by p=0,0.1, ... ,0.9. Unfortunately, for 

high rand low R2 the power functions are not computable for all values of p. 

Even if a correctly given size is not sufficient to ensure the good performance of a 

test, it is a prerequisite. As shown in the previous section, the corrected LR tests are 

the only ones that accurately estimate the size in a wide variety of situations, and, in 

particular, the RAO tests were shown to be superior except in the single equation 

case. The differences between the RAO and RAO* tests were very small, as were the 

differences to the LRC tests when n = 1. In fact, it is impossible to visually detect any 

differences in the power functions of the tests in these situations, and we will 

therefore merely present the results for the RAO test in this section. Note that the 

power functions have all been estimated using the nominal size, even in those 

situations where we have found this not to correspond to the actual size. The results 

must therefore be interpreted as rejection rates at nominal significance levels, not as 

true power functions. One could, of course, calculate and present the size-corrected 

power functions which give a more correct information about the power of the tests. 

However, there is one drawback in using this method, namely that the reader can get a 

good idea about the real power but a misleading idea about the performance of the 

size (when corrected). For this reason, we decide to use the rejection rates at nominal 

significance levels and leave the reader to make the inferential statements regarding 

the performances of both the size and power. 

When the residuals follow a normal distribution, we find, as in the ES, that those 

factors that affect the power of the BG tests proved to be similar to those that affect 

the actual size. For example, deterministic trend (¢) and covariance in the exogenous 

variables (Lx) in (6) and (7), did not produce any noticeable effects on the estimated 

power of the tests, the number of equations (n), degrees of freedom (Li) and 

autocorrelation between the exogenous variables (a) had a considerable effect on both 
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size and power. One difference we found was that the value of the dynamic parameter 

(n only had a very small effect on the shape of the power function of the tests, 

whereas it had a noticeable effect on the estimated size. Another difference, in the 

opposite direction, we observed, was that the value of the error variance (R2) has a 

very noticeable effect on the power of the tests, which was not the case regarding the 

size. On the other hand, when the residuals follow for example the t(1) distribution, the 

(R2) and autocorrelation between the exogenous variables (a) effects have shown to 

be very small, i.e., the performance of the test in these cases will not be better with 

higher (R2) or worse with higher (a). 

Figures 2 and 3 show the effect of L1, R2 and the distribution of the error terms on the 

power of the RAO test for systems with one and ten of equations. The power 

functions are shown for I = 0.3, a = 0.5 and at a nominal size of 5% (values have 

also been calculated at other sizes, but are excluded to save space). The value of yI 

was chosen to allow a reasonable picture of the power function for large error 

variances. Note that we have used different values of fjJ when a = 0, a = 0.9 and 

a = 0.5 , but this has no effect on the graphs. 

We can see from the figures that the power functions satisfy the expected properties 

of increasing with L1 and p. The rate at which the power approaches the maximum 

value of one depends however essentially on the values of n and the distribution of the 

errors. In small samples and when the error terms follow the t(1) distribution, there is 

indeed no difference between the power of the tests and the nominal size, even in 

systems with one equation. Note also how the power functions become flatter as the 

number of equations increase, i.e., the RAO test becomes worse and worse. 

A closer examination of the figures shows that the power functions decrease with 

lower R2 and higher number of equations, especially when the error terms are 

normally distributed. The effect of the size of the error variance is quite dramatic 

(only in the case when the errors are normally distributed), if we recall the minimal 

effect this factor had on the estimated size. When the error terms follow the t(1) 

distribution, we can not find any noticeable effect of the R2 on the power functions. 
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Figure 2. The Power Function of the RAO Test, (R 2 = 0.7, a = 0.5, tjJ = 0.5). 
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Figure 3. The Power Function of the RAO Test, (R 2 = 0.5, a = 0.5, rjJ = 0.5). 
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6. CONCLUSTIONS 

In this paper we have studied the properties of systemwise generalisations of the BG 

test for autocorrelation when the error terms follow a normal distribution and t­

distribution with different degrees of freedom. The degrees of freedom of the t­

distribution have been chosen so as to cover a wide range and varying degree of 

fatness in the tails of the errors which could, of course, affect the performances of the 

test. 

The specification of the model we use in this study and our Monte Carlo design are 

almost the same as in ES. A large number of models were investigated regarding the 

size of the tests, where the distributions of the error terms, number of equations, 

degrees of freedom, dynamic parameter, error variance and stochastic properties of 

the exogenous variables have been varied. For each model we have performed 10,000 

replications and studied four different nominal sizes. The power properties have been 

investigated using 2,000 replications per model, where, in addition to the properties 

mentioned above, the error autocorrelation has also varied. 

When the errors follow a normal distribution, the analysis has revealed that four 

factors are important for determining the accuracy of the BG-tests' nominal size, 

namely the number of equations, the number of observations (degrees of freedom), 

the autocorrelation in the exogenous variables, and the size of the dynamic 

parameters. In all cases the performance of the best tests deteriorates as the first factor 

decreases and the other factors increase. When estimating a single equation, the 

simple degrees-of-freedom corrected LR test seems to be preferable, otherwise Rao's 

F-test is best. It should be noted, however, that the differences between the various 

versions of corrected LR tests are minimal when the number of equations (n) is small. 

The difference between the two methods of treating missing values was also quite 

small. 

When the errors follow the t distribution, the performances of the tests deteriorate 

especially with tel), and in this case the results are truly remarkable. The performances 

of the tests become better (as in the case when the errors are generated by the normal 

distribution) when the errors follow the t distribution with higher degrees of freedom, 

for example t(7). 
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Generally, we find five factors that prove to have a considerable effect on the 

performances of the BG size: viz. the number of equations, degrees of freedom, 

autocorrelation in the exogenous variables, strength of dynamics and the heaviness of 

the tails of the error terms. No tests perform well (even the best RAO test) when the 

number of equations are more than five. 

As regards the power of Rao's F-test, we found that the value of the error variance 

was also important (except when the errors follow the tel) distribution), while the 

strength of the dynamics played only a minor role. The power function becomes quite 

flat, even for medium sized samples, as the number of equations increases. 
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