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Abstract 

We introduce a class of spatial point processes, interacting neighbour pro­
cesses, where the density of the process can be written by means of local 
interactions between a point and subsets of its neighbourhood but where 
the processes are not Markov processes with respect to this neighbour­
hood in the Ripley-Kelly sense. However, we show that the processes are 
nearest neighbour Markov processes as introduced by Baddeley and M011er 
(1989). Furthermore, we introduce a subclass of interacting neighbour pro­
cesses, full neighbourhood interaction processes, where instead of subsets 
of the neighbourhood all neighbours of a point affect it simultaneously. A 
simulation study is presented to show that some simple full neighbourhood 
interaction models can produce clustered patterns of great variety. Finally, 
an empirical example is given. 

Key words: Clustered point patterns, local interactions, static and dynamic 
neighbours, Ripley-Kelly Markov processes, nearest neighbour Markov pro­
cesses 

1 Introduction 

Markov point processes are often used to analyse point patterns with interaction 
between points. Commonly used pairwise interaction processes are good models 
for repulsive point patterns but they do not seem to be able to produce clustered 
patterns in large enough variety. Some other local interaction processes have been 
suggested as models for clustered patterns. Baddeley and van Lieshout (1995) 
suggested area-interaction processes as an alternative for pairwise interaction 
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processes. Shot noise weighted processes were considered by van Lieshout and 
Molchanov (1997) and continuum random cluster processes by M¢ller (1998). 
Furthermore, Geyer (1998) introduced two point process models, triplet processes 
and saturation processes, which are both feasible models for clustering. 

In order to model clustered point patterns we would like to introduce a class 
of interaction processes with the following properties: First, the models should 
have a natural distance-based neighbourhood relation, i.e. there is interaction be­
tween the points only if they are close to each other. The points of the continuum 
random cluster process may interact even if they are far away from each other; 
they only need to be in the same connected component. Secondly, the interac­
tion function should have a natural interpretation. Furthermore, the number of 
parameters should be kept reasonably small. 

Geyer's saturation process has the properties mentioned above. It resembles 
the Strauss process which is a pairwise interaction process, where the interaction 
is defined in terms of the number of r-close pairs. The Strauss process, however, 
is not a suitable model for clustering since the number of neighbours of a point 
can increase without bound if the number of points is not fixed and, therefore, 
the density cannot be normalized. Even if we condition on the number of points, 
the process is not an appropriate model for clustering. The saturation process, 
on the other hand, has an extra parameter which puts an upper bound on the 
influence of any single point, and which, therefore, overcomes the normalizing 
problem in the clustered case. Characteristic for the saturation process is that 
all neighbours of a point affect the point simultaneously; interaction cannot be 
factorized into pairwise, triple etc. interactions. Our aim is to find a class of 
processes with the same property. 

First, we define a general class of point processes, interacting neighbour pro­
cesses, where a point is affected by subsets of its neighbourhood. This class of 
processes includes all Ripley-Kelly Markov processes with the same fixed neigh­
bourhood. Furthermore, we show that the interacting neighbour processes are 
nearest neighbour Markov processes. Then, we introduce a subclass of inter­
acting neighbour processes, full neighbourhood interaction processes, where all 
neighbours of a point (instead of subsets of the neighbourhood) affect the point 
simultaneously. The saturation process is one example of full neighbourhood 
interaction processes. Some other examples are given in Section 4. 

Furthermore, we present a simulation study to see how well some of the full 
neighbourhood interaction processes and the continuum random cluster process 
can model clustering. Finally, we fit a full neighbourhood interaction process 
model to the Scots pines data (Penttinen et al., 1992). 

2 



2 Interacting neighbour processes 

We consider a finite spatial point process X on a bounded set A c R d (here, 
d = 2) which is defined by a positive density function f with respect to the Poisson 
process with intensity 1. A sample space DA is a set of all possible point patterns 
x = {Xl, ... , Xn(x)} with no multiple points. The number of points in the realiza­
tion x is denoted by n(x). 

To model point patterns with interaction between the points, it is convenient 
to use Markov point processes. Basis of the Markov point processes is the def­
inition of a neighbourhood. Let", be a symmetric, reflexive relation on A. If 
two points ~ and TJ in A are related under "', we write ~ '" TJ, and say that ~ 
and TJ are neighbours with respect to the relation "'. The set of all TJ E x \ {O, 
TJ '" ~, is called the neighbourhood of ~ and denoted by N(~) or Nx(~). Note that 
according to this definition of neighbours, two points are or are not neighbours 
independently of the realization. We refer to such neighbours as static neigh­
bours. Baddeley and M011er (1989) define nearest neighbour Markov processes 
which allow the neighbourhood relation to depend on the realization. We say 
that such neighbourhood relation is dynamic and denote it by "'x. 

According to the factorization theorem by Ripley and Kelly (1977) the density 
of a Markov point process can be written as a product of interaction functions, 
where the product is over all cliques in x. A clique is a set of points of x, where all 
pairs of points are neighbours (does not have to be a maximal set). In particular, 
a one point set is a clique. Our aim is to construct models that allow interactions 
between a point and any set of its neighbours even though the set of neighbours 
is not a clique (with respect to "'). 

Definition 1: A point process X is an interacting neighbour process with a given 
neighbourhood relation", if its density has the form 

f(x) = a II II Q(Xi, z), 
xiEx z~x\{xd 

where a is a normalizing constant and Q : A X DA -+ (0, (0) is a neighbour set 
interaction function for which Q(Xi, z) = 1 if z is not a subset of N(Xi). Thus, 
the density of the interacting neighbour process can be written as 

f(x) = a II (1) 
xiEx Z~N(Xi) 

Remark: Ripley-Kelly Markov processes with the given neighbourhood relation 
rv are interacting neighbour processes. The density of Ripley-Kelly Markov pro­
cesses can be written as a product of interaction functions over cliques C, i.e. 

fRK(X) = a II h(y) = a II h(y), 
y~x yEC 
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where h : nA -+ (0, (0) is an interaction function for which h(y) = 1 if y is not 
a clique. We can write 

II 
XiExzU{X;}EC 

where #{-} denotes the number of points in {-}. A set ZU{Xi} cannot be a clique 
if z is not a subset of N(Xi), and therefore, we can write 

where 

fRK(X) = a II II Q(Xi' z), 
xiEx Z<;;N(Xi) 

if z U {xd is a clique 
otherwise. 

Since the class of interacting neighbour processes includes the whole class of 
Ripley-Kelly Markov processes (with a given neighbourhood "', which does not 
depend on the realization), the class contains processes with interactions of any 
order. 

3 Markov property 

According to Ripley and Kelly (1977) a point process is a Markov point process 
with respect to '" if the conditional intensity A(~; x) = f(;Y~i}) depends only on ~ 
and its "'-neighbours. Baddeley and M0ller (1989) and Kendall (1990) consider 
nearest neighbour Markov processes which allow the neighbourhood relation to 
depend on the realization. 

Let us now consider the Markov property of the interacting neighbour pro­
cesses. First, we investigate whether the processes are Ripley-Kelly Markov pro­
cesses with respect to a given neighbourhood relation "'. The conditional inten­
sity can be written as 

. A(~; x) (2) 

II Q(~, z)· II II Q(Xi' Z U {O)· 
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We can conclude that the conditional intensity depends not only on ~ and the 
neighbours of ~, but also on the neighbours of neighbours of~. Therefore, the 
process is not a Markov process in the sense of Ripley and Kelly with respect to 
the neighbourhood relation "'. 

Let us then consider another neighbourhood relation. Two points ~ and rJ of x 
are said to be iterated neighbours, and write ~ "'~ rJ, whenever ~ '" rJ or whenever 
there is another point ( E x such that ( '" ~ and ( '" rJ. A similar neighbourhood 
relation, iterated Dirichlet neighbours, was introduced by Baddeley and M!Zlller 
(1989). Note that two points can be iterated neighbours in one realization but 
not in another and are, therefore, dynamic neighbours. 

Neighbours of neighbours are always iterated neighbours and therefore, we 
have proved the following: 

Proposition: An interacting neighbour process with "'-neighbours is a nearest 
neighbour Markov process with respect to the neighbourhood relation "'~. 

Interacting neighbour processes are not Ripley-Kelly Markov processes with 
respect to '" but they are Ripley-Kelly Markov with respect to a wider neigh­
bourhood. For example, let two points ~ and rJ be neighbours if they are r-close, 
i.e. if 0 < d(~, rJ) ~ r, where d(~, rJ) is the distance between ~ and rJ. Then, an 
interacting neighbour process with r-close neighbours is not Ripley-Kelly Markov 
with r-close neighbours but is Ripley-Kelly Markov with 2r-close neighbours. We 
would, however, have to make some restrictions on the interaction function since 
not all 2r-close points are iterated neighbours. Therefore, it is more natural 
to consider the interacting neighbour processes as nearest neighbour processes 
instead of as Ripley-Kelly Markov processes with a wider neighbourhood. 

The class of interacting neighbour processes is a subclass of the connected 
component Markov point processes (see e.g. Baddeley and M!Zlller, 1989; M!Zlller, 
1998). The general form of the density of the connected component Markov 
process IS 

fcc(x) = ex II c/J(y) , 
YEC(X) 

where C(x) is the set of all connected components in x. If we choose 

c/J(y) = II II Q(Xi' z) 
xiEy Z~N(Xi) 

we obtain the interacting neighbour process. 
There are reasons to consider this new class of processes which is somehow 

between Ripley-Kelly Markov processes and nearest neighbour Markov processes. 
First, we want to have a process where the basic neighbourhood with respect to 
'" is the most important set when considering interactions between the points. 
The connected component process allows iterated neighbours of infinite order and 
gives the same importance to all points in one component. Second, we want to 
introduce a class of processes where a set of neighbours of a point affects the point 
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simultaneously but where the set of points is not necessarily a clique. Therefore, 
Ripley-Kelly Markov processes (with respect to a given neighbourhood) are not 
wide enough a class. On the other hand, Ripley-Kelly Markov processes with a 
wider neighbourhood is a too wide class. 

4 Full neighbourhood interaction processes 

Whereas interaction due to a point of an interacting neighbour process can be 
factorized into interaction with subsets of its neighbourhood, we want to specify 
a class of processes which has the property that all neighbours of a point affect 
the point simultaneously. We call such processes full neighbourhood interaction 
processes. 

Definition 2: A process is a full neighbourhood interaction process with a given 
neighbourhood relation rv if it has the density 

f(x) = a II CP(Xi)'IjJ(Xi, N(Xi)), (3) 
xiEx 

where cP : A -+ (0,00), 'I/J : A x DA -+ (0,00), and where the neighbourhood 
interaction function 'I/J cannot be factorized. 

Conditional intensity of the full neighbourhood interaction process is of the 
form 

(4) 

It depends on ~, neighbours of ~ and neighbours of neighbours of ~. Therefore, 
the full neighbourhood processes are nearest neighbour Markov processes with 
respect to the neighbourhood relation rv~. 

Remark: It can be shown that the full neighbourhood interaction process is a 
specific case of the interacting neighbour process. For this it is enough to check 
that the following choice of the neighbour set interaction functions in the density 
(1) , 

and 
Q(Xi, z) = II 'IjJ(Xi' Z')(-l)lz\z'l, 

0-=1-z'~z 

where Iz \ z'l denotes the number of points in z \ z', leads to the density of the 
form (3). 

Let us now give some examples of the full neighbourhood interaction processes. 
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Example 1: Let us first recall the saturation process introduced by Geyer (1998). 
For each point Xi E x, we define 

tx(Xi) = L 1(O,r)(d(Xi' Xj)), 
xjEx 

where d(Xi' Xj) is the distance between the points Xi and Xj and 1(·) is the in­
dicator function. Therefore, tx(Xi) is the number of points of x within distance 
r from the point Xi, and I: tx(Xi) is twice the number of r-close pairs which 

xiEx 
is the sufficient statistic used in defining the Strauss process. In the case of the 
saturation process, instead of adding up the tx(Xi), i = 1, ... , n(x), one puts an 
upper bound on the influence of any single point. Let c > 0 be an arbitrary 
constant, and define 

The density for the saturation process is then 

f (x) = abn(x)ryu(x\ (5) 

where b > 0 is connected to the intensity of the process, and ry > 0 is an inter­
action parameter. Values ry < 1 indicate regularity, ry > 1 clustering, and ry = 1 
mutual independence between the points. 

Given that two points are neighbours if they are r-close, the saturation process 
is a full neighbourhood interaction process since 

where ¢(Xi) = band ,¢(Xi, N(Xi)) = rymin{c,tx(Xi)} , and ,¢(Xi, N(Xi)) cannot be 
factorized. 

It may be interesting to compare the saturation process and the Strauss pro­
cess. The density of the Strauss process can be written as 

~ I: tx(Xi) 
fST(X) = abn(x)ry "'i Ex • 

The neighbour statistic min{ c, tx(Xi)} of the saturation process reaches and stays 
at constant level c while ~tx(Xi)' the neighbour statistic of the Strauss process, 
increases (see Figure 1a). Therefore, if ry is greater than 1, the same is true for the 

~ I: tx(xd 
interaction term ry "'i

Ex 
• Here, only the clustered case is of interest because 

in the regular case both processes are most likely the same (if c is not too small) 
since the probability that the number of neighbours of a point being greater or 
equal to c is small, and therefore, saturation gives only a negligible effect. 

Example 2: Let us now consider a process with the density 

I: max{O,tx(Xi)(C-tx(Xi))} 
f(x) = abn(X)ry"'i EX , 
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where b, tx(Xi) and c are like in Example 1. This process is again a full neigh­
bourhood interaction process with r-close neighbours: The density can be written 
as 

n(x) 
f(x) = a II b/,max{O,tX(Xi)(C-tX(Xi))} = a II ¢(Xi)'ljJ(Xi, N(Xi)), (6) 

i=l 

where ¢(Xi) = b, 'ljJ(Xi' N(Xi)) = /,max{O,tx(Xi)(C-tX(Xi))} and 'ljJ(Xi' N(Xi)) cannot be 
factorized. 

Let us look at the process with density (6) in more detail. The neighbour 
statistic max{O, tx(Xi)(C - tx(Xi))} is plotted against tx(Xi) in Figure lb. In the 
case /' > 1 the interaction term II 'ljJ(Xi' N(Xi)) gets its largest value as the 

xiEx 
number of neighbours equals ~, i.e. the cluster size ~ + 1 is favoured. Therefore, 
we can control the size of clusters by choosing the constant c appropriately. Since 
for large values of the interaction parameter /' all clusters are of the same size, 
we call this process a twin clusters process. 

The case /' < 1 is interesting as well. Then, the interaction term gets its small­
est value when the number of neighbours of each point equals ~ and its largest 
value if points have either no neighbours or c (or more) neighbours. Hence, 
instead of being a repulsive model, it is a specific cluster model: either isolated 
points (no neighbours) or clusters with c or more neighbours are favoured. There­
fore, the process is a combination of a regular and a clustered process. We call 
it a bipattern process and believe that it is a suitable model when data looks 
heterogeneous consisting of some clusters superimposed on a regular pattern. 

5 Simulation study 

We carried out a simulation study to explore what type of clustering can be 
produced by the models in Examples 1 and 2. The bipattern model is included 
in the study even though it does not create purely clustered patterns but rather 
mixtures of regular and clustered patterns. 

For comparison we considered also the continuum random cluster (CRC) pro­
cess (M0ller, 1998) which has the density function 

f(x) = abn(x)/,-IC(x)l, 

where IG(x) I is the number of connected components in x. The process is not a 
full neighbourhood interaction process but it is capable of generating clustered 
patterns. 

In the simulation of the patterns from these four models, we used the Metropo­
lis-Hastings algorithm with Metropolis updates and with a fixed number of points 
(M0ller, 1998). Each simulated pattern consists of n(x) = 100 points generated 
in the unit square mapped onto a torus. To obtain independence between the 
samples we used different runs for each sample. Before recording a sample we ran 
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1000-20000 (depending on the interaction parameter value) burn-in steps with a 
binomial realization as the initial pattern. 

For all three full neighbourhood interaction processes we used the same values 
of the interaction radius r = 0.08, and the constant c was chosen to be 5 for the 
saturation and the bipattern models, and 12 for the twin clusters model. For the 
eRe model we fixed the radius of the discs to be equal to 0.02 which corresponds 
to the interaction radius 0.04. Only one set of values was used here but we think 
that even this simple experiment is able to show us something about the variety 
of clustered patterns that these models can produce as we let the interaction 
parameter 'Y vary (Figures 2-5). 

The saturation model (Fig. 2) seems to be able to create clustered patterns 
of large variety: from slight to dense clustering. Unlike the saturation model the 
twin clusters model (Fig. 3) seems to create clustered patterns with clusters .that 
are clearly separated from each other. For values of the interaction parameter 'Y 
close to 1 the difference between the saturation model and the twin clusters model 
is not significant. As was expected, the bipattern model (Fig. 4) enables us to 
generate point configurations combining some features of regular and clustered 
patterns. The eRe model (Fig. 5), instead, produces clearly clustered patterns 
only with high values of the interaction parameter. Moreover, clusters generated 
by the eRe model are not necessarily dense and they have a large variety of 
shapes. 

Figures 2-5 show only one realization of each type and therefore they can 
not tell us anything about the variation of the different models. Properties of the 
models can be summarized in the distribution of the number of r-close neighbours. 
Figure 6 presents histograms averaging the empirical distributions obtained from 
1000 generated patterns of each type. As the value of the interaction parameter 
of the saturation process increases, the more likely it is for a point to have more 
than c neighbours. The histogram of the twin clusters model, instead, is almost 
symmetrical with the highest frequency at ~. Thus, this model seems really to 
be able to create clusters of any desired size. Furthermore, as the interaction of 
the bipattern process gets stronger the distribution of the number of neighbours 
becomes clearly bimodal with peaks at the values 0 and c. This shows empirically 
that this model is a mixture of regular and clustered models. 

Whereas all three full neighbourhood interaction processes form clusters of a 
specific size, the eRe process (with fixed value of 'Y) seems to produce patterns 
with clusters of various size and shape. It may be due to the fact that all points 
in one component are neighbours even though they can be far away from each 
other. 

Calculation of Ripley's K-function (see e.g. Diggle, 1983) shows the differ­
ence between the second-order properties of the models. Here, we use a modified 
version of the K-function, namely L*(r) = vK(r)/7r - r. The values close to 
zero indicate that the process is close to Poisson, positive values clustering and 
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negative values regularity. Figure 7 shows averages of L * -functions calculated 
from 1000 realizations. The L*-functions of the saturation and the twin clus­
ters processes have very similar shape indicating clustering for the chosen set of 
parameters. The cusp points of the functions correspond to the value of the in­
teraction radius. Note that the slope after the cusp point is steeper for the latter 
model. The L * -function of the bipattern model does not have a clear cusp point 
and it decreases very slowly. An interesting feature of the CRC model is that the 
mean size of clusters, and hence, the effective radius of interaction increases as 
the interaction parameter "I increases. 

6 Application 

To show how the full neighbourhood interaction processes can be applied for the 
analysis of real data we chose to analyze a data set which has previously been 
studied in the literature by using other models. The data set consists of locations 
of 126 Scots pine saplings in a square plot of 10 x 10 m2 (Figure 8a). The data 
have been analyzed by Penttinen et al. (1992) and by Stoyan and Stoyan (1994) 
who fitted Matern's cluster processes, and by M¢ller et al. (1998) who fitted the 
log Gaussian Cox process to the data. 

First, we fitted the saturation model to the Scots pine data. The interaction 
radius was chosen to be 0.65 m based on the L*-function estimated from the 
data (solid line in Figure 9a) and the saturation parameter c = 8 based on the 
histogram of the number of neighbours. The Monte Carlo maximum likelihood 
(MCML) method introduced by Geyer and Thompson (1992) suggests 1.19 as an 
estimate for the unknown parameter "I indicating that there is slight attraction 
between the points. Edge effects were taken into account by considering them as 
a missing data problem as was suggested by Geyer (1998). 

To check how well the data can be modelled by the saturation process we 
plotted the empirical L * -function of the data together with the envelopes (dashed 
and dotted) from 200 simulations of the estimated model (Figure 9a), and the 
empirical distribution G of the nearest neighbour distances (Figure 9b) together 
with the envelopes calculated also from 200 simulated patterns. The L*-function 
study shows a reasonably good fit except in small distances, where the attraction 
between the pines is stronger than according to the fitted model. The same 
conclusion can be drawn from the plot of the G-functions. The empirical curve 
is above the upper envelope in small distances (up to 0.2-0.3 m). 

In order to take the stronger attraction in small distances into account we 
modificated the saturation model by including another interaction parameter 
which describes short range interactions. The new model has the density 

f( ) - bn(x) Ul(X) U2(X) 
X - a "II "12 , 

10 



where 
U1(X) = L min{C1' L l(O,rd(d(xi,Xj))}. 

xiEx xjEx 

and 
U2(X) = L min{c2' L Ih,r2l(d(Xi,Xj))}. 

xiEx xjEx 

The sufficient statistics U1 and U2 are built up by summing up the number of 
r1-close neighbours of each point bounded by C1 and the number of neighbours 
between distances r1 and r2 away of each point bounded by C2, respectively. 
Therefore, neighbours that are further away (but still neighbours) contribute 
differently from the very close neighbours. 

With the choice r1 = 0.2, r2 = 0.65 and constants C1 = 3, C2 = 5 we obtained 
MCML estimates 1'1 = 9.97 and 1'2 = 1.26. Therefore, clustering is very strong 
in small distances. The graph of the envelopes from 200 patterns simulated 
by the estimated model leads to the conclusion that the model fits to the data 
much better. A simulated realization of the fitted model is given in Figure 8b. 
Note that the plot of G-functions (Figure 9b) reveals that both estimated models 
overestimate the nearest neighbour distribution for the distance range 0.6-1.0 m 
which means that besides clustering the data exhibit slight regularity. Therefore, 
the bipattern process could be an appropriate model. However, according to our 
experiments, the bipattern process fits to the data poorly because it overestimates 
the number of isolated points. 

7 Discussion 

We have introduced a new class of point processes, interacting neighbour pro­
cesses, which includes Ripley-Kelly Markov processes (with a given neighbour­
hood) and which itself is a subset of the class of nearest neighbour Markov pro­
cesses. Characteristic for the processes is that subsets of the neighbourhood of a 
point, which are not necessarily cliques, affect the point simultaneously. 

The full neighbourhood interaction processes are a subclass of interacting 
neighbour processes, where all neighbours (not subsets of the neighbourhood) af­
fect a point simultaneously. The neighbourhood interaction function 'ljJ depends 
on the realization but can be written by means of neighbour set interaction func­
tions that do not depend on the realization. Some full neighbourhood interaction 
processes seem to be good models for clustering. The saturation process as well 
as the twin clusters process is able to produce clustered patterns in large vari­
ety. The bipattern process creates combinations of clustered and regular patterns 
which can be interesting from the point of view of applications. 
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Labels of Figures 

Figure 1: The neighbour statistics a) min{ c, tx(Xi)} connected to the satu­
ration process (solid), tx(Xi) connected to the Strauss process (dashed) and b) 
max{O, tx(Xi)(C-tx(Xi))} connected to the twin clusters and the bipattern process 
are plotted as a function of tx(Xi) and with c = 4. 

Figure 2: Simulated realizations of the saturation process with In ry equal to a) 
-0.2 b) -0.3 c) -0.4 d) -0.7 e) -1.0 and f) -2.0. 

Figure 3: Simulated realizations of the twin clusters process with In ry equal to 
a) -0.04 b) -0.08 c) -0.10 d) -0.15 e) -0.20 and f) -0.30. 

Figure 4: Simulated realizations of the bipattern process with In ry equal to a) 
0.15 b) 0.20 c) 0.30 d) 0.40 e) 0.70 and f) 1.0. 

Figure 5: Simulated realizations of the eRe process with In ry equal to a) 1.0 
b) 1.5 c) 2.0 d) 2.5 e) 3.0 and f) 5.0. 

Figure 6: Frequencies of the number of r-close neighbours averaged over 1000 
simulated patterns of each process. The interaction radius equals 8. 

Figure 7: L*-functions calculated from 1000 simulations of the a) saturation 
process: lnry = -0.2, -0.3, -0.4, -0.7, -1.0 and -2.0; b) twin clusters process: lnry = 
-0.04, -0.08, -0.10, -0.15, -0.20 and -0.30; c) bipattern process: In ry = 0.15, 0.20, 
0.30, 0.40, 0.70 and 1.00; and d) eRe process: In ry = 1.0, 1.5, 2.0, 2.5, 3.0 and 
5.0. The values of the parameters lnry correspond to the L*-curves from the 
bottom to the top. 

Figure 8: a) Locations of Scots pines. b) A realization of the fitted modified 
saturation model. 
Figure 9: a) Empirical L*-function (solid) together with the lower and upper 
envelopes calculated from 200 simulated patterns of the fitted saturation model 
(dashed and dotted) and the fitted modified saturation model (dashed). b) Em­
pirical nearest neighbour distribution (solid) and the envelopes calculated from 
200 simulated patterns of the fitted saturation model (dashed and dotted) and 
the fitted modified saturation model (dashed). 
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