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VARIANCE ESTIMATES BASED ON KNOWLEDGE OF 
MONOTONICITY AND CONCAVITY PROPERTIES 

ABSTRACT 

In problems dealing with regression functions the choice of model and estimation 

method is due to a priori information about the regression function. In some situations it 

is motivated to consider regression functions with specific non-parametric 

characteristics, for instance monotonicity and/or concaVity/convexity. In situations when 

we only have one y-observation for each Xi we propose two new variance 

approximation methods, one for curves that fulfil monotonicity restrictions and one for 

curves that fulfil concavity/ convexity restrictions. 

Key Words: isoton; non-parametric regression. 

1 INTRODUCTION 

In all regression problems the choice of estimation method is due to the a priori 

information about the regression function. In some applications the shape of the 

regression function is known and the estimation problem is reduced to an estimation of 

some parameters. But usually this is not the case. Instead the relationship between the 

dependent and independent variables is determined by some constraints on the 

variables. The simplest characteristic is monotonicity. In this case the only assumption 

about the regression function is, that it has a non-decreasing phase or/and a non­

increasing phase. If the regression function consists of one non-decreasing (or non­

increasing) phase only a suitable estimation method is isotonic regression. This is a 

non-parametric regression method that is very often referred to. The basic theory of 

isotonic regression is described in Barlow et al (1972) and Robertson et al (1989). If on 

the other hand the regression function consists of two phases - one non-decreasing 

and one non-increasing - with a known or unknown mode we can use unimodal 
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regression. This estimation method is described in Frisen (1980). Further statistical 

properties are given in Dahlbom (1986). 

Another simple shape characteristic is concavity (or convexity). In many applications it 

is motivated to consider regression functions with both monotonicity and 

concavity/convexity restrictions. The concave regression problem was first formulated 

by Hildreth (1954) for the estimation of marginal productivity curves. He adopted the LS 

estimation method and formulated it as a quadratic programming problem. Dent (1973) 

and Holloway (1979) continued the work and the concave regression function was 

obtained by a more general framework of quadratic programming with linear inequality 

constraints. The consistency of these LS concave regression estimators has been 

·proved by Hanson and Pledger (1976). Wu (1982) proposed two algorithms for concave 

regression. One involves some quadratic programming. Unfortunately this algorithm 

giving the LS solution has no assured convergence. The other is just an approximation, 

but very easy to implement. An iterative method for regression with convexity and 

monotonicity restrictions was proposed by Holm and Frisen (1985). This method gives 

the LS estimate in a finite number of steps. Fraser and Massam (1987) formulated an 

algorithm using cylinder projections. Theoretically they obtained the LS solution but the 

estimation method involves a matrix inversion which in practice implies numerical 

uncertainty in the obtained results. An iterative estimation method which is closely 

related to the method proposed by Holm and Frisen (1985) was proposed by Dahlbom 

(1994). This method gives the LS estimate in a finite number of steps. It is also 

evaluated for more general situations which contain different combinations of 

monotonicity and concavity/convexity restrictions like increasing concave/convex, 

decreasing concave/convex, unimodal concave/convex and sigmoid regression 

functions. 

In these situations we might have difficulties with the variance estimation depending on 

the situation. The estimation problem can be solved in different ways. In many cases 

we already have estimates of Var( Y} from another analogous survey. In other 

situations we can do some realistic theoretical assumptions. One assumption that is 
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commonly used is that all y-observations, Vi' i=1 , .. ,N, have the same variance S2. If we 

do not have any a priori information about the variance we can easily estimate if there 

is more than one y-observation for each Xi' In some situations, however, we have only 

got one y-observation for each Xi' If we have no a priori knowledge of the variances 

then we can have a more severe problem. This problem has not been solved before. 

In this paper approximation methods have been developed in the situations when the 

regression function is monotonic and/or concave/convex and when we only have one y­

observation for each Xi' Some simple properties of these approximations are also 

examined by simulation studies. Finally we illustrate the two variance estimation 

methods by using examples, one for each method. 

2 APPROXIMATION OF THE VARIANCE FOR ISOTONIC REGRESSION 

FUNCTIONS 

If the regression function consists of one non-decreasing (or non-increasing) phase 

only, a suitable estimation method is isotonic regression. An approximation method of 

the variance of the observations has been developed in this situation using the 

assumption that (52 (xJ = (52 for all i. Since some notion in the variance estimation 

method is used that will need knowledge of the estimation method we start by giving a 

short general description. 

2.1 THE LSE-METHOD OF ISOTONIC REGRESSION 

Isotonic regression is used for monotonic increasing or monotonic decreasing 

regression functions. A least squares estimate of the increasing regression function, 

lJ.(xi), is obtained according to the following: 

Suppose we have a probability distribution for each Xi' i=1 , ...... ,N. Also suppose that for 

each Xi a random sample {Yj(xi), j=1 , .... ,n(xJ} is available. The number of y-observations 
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can be different for different Xj. The isotonic regression is identical to the regression 

function obtained from Y(Xj) with weights 

n(xi) 
W(Xi) = -=-N""""':-'!":""-

Ln(xi) 
i=1 

Suppose that the x-observations are ordered, i.e. x1 < x2 < ......... < xN" If Y(Xj) is 

monotonicly increasing, then the averages themselves are the isotonic regression 

function. (The case when y(xI) ~ y(x2) ~ •••••• ~ y(xN) is treated analogously). If y(x) do 

not fulfil the monotonicity restrictions we compare the averages successively until the 

restrictions are not fulfilled. 

Suppose that the inequality y(xk) ~ Y(Xk+I) does not hold. We then estimate these two 

points according to 

n(Xk )y(xk) + n(xk+1 )Y(Xk+I) 

n(xk) + n(xk+I) 

Before the procedure is continued we have to check if the monotonicity restrictions 

between Y(Xk_I ), Y'(Xk) and y'(xk+1) are fulfilled, i.e. 

y(xI) ~ ......... ~ y(xH ) ~ y'(xk) = Y'(Xk+I)· 

If this is not the case we have to re-estimate the y-value for Xk.1' xk and Xk+1; 

-II (x ) = -" (x ) = -" (x ) = n(xk_1 )Y(Xk_I) + n(xk )y(xk) + n(xk+1 )y(Xk+I) 
y k-I y k Y k+1 n(x )+n(x )+n(x ) k-I k k+1 

Now we have to check if 

-( ) -() -II ( ) -II ( ) -II ( ) Y XI ~ ......... ~ Y Xk-2 ~ Y xH = Y xk = Y Xk+1 . 

If this is not the case we have to re-estimate the y-values of Xk_2' Xk_1' xk and Xk+1 using 

the weighted average of the means. This is repeated until the monotonicity restrictions 

are fulfilled for all the y-values corresponding to xi' i=1 , ..... ,k+1. We then continue to 

examine if the inequality Y"(Xk+I) ~ Y(Xk+2 ) holds and so on. 
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This procedure is repeated until estimates that fulfil the monotonicity restrictions have 

been obtained for all Xi' These estimates are the LS estimates, y+(X) , of Jl(x). As 

mentioned before properties of isotonic regression are described in Barlow et al (1972) 

and Robertson et al (1989). 

The estimate of a unimodal regression function is obtained in an analogous way. But in 

this situation we might also have the problem of estimating an unknown mode. 

2.2 ESTIMATION OF VAR(Y) FOR ISOTONIC AND UNIMODAL REGRESSION 

FUNCTIONS 

Let Jl(x) be a isotonic (or unimodal) regression function and let Vi be observations 

generated from this function. Suppose that 0'2 (Yi ) = 0'2 < 00 for all i. Then the variance 

can be estimated by 

When Jl(x) is estimated by Jl(x) = y+(x) the variance can instead be estimated by 

where p is the number of plateaus in the estimate ~ (x) = y+ (x) , containing one 

observation or more. The number N-p acts as the degree of freedom because each 

plateau has a separate mean. However the regression function is not necessarily 

constant within the plateaus, which means that this is only an approximation. Its 

accuracy will be studied in the simulation study in section 2.3. For the plateaus with 

more than one observation the 'slope' of observations go in opposite directions (see 

lemma 2.3.1). This implies that 0-;1 (VJ will underestimate 0'2. 

This might motivate the following ad hoc alternative for the estimation of 0'2. 
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Call the observations in the j:th block y+(x j ), i=mj_1+ 1 , ..... ,mp where mo=O and j=1 , ... ,K. 

Then for block j, j=2, .... ,K-1, P,(xj ) is estimated by the straight line going through the 

points 

[

X + X -y+(x) + -y+(x ) 
mj_l mj_l+l mj_l mj_l+l 

2' 2 
and 

The estimate of Il(x) corresponding to block number 1 is obtained by letting the y­

distance between the first and the second block be equal to the distance between V; 

and the first block. For block number K P,(x) is obtained in an analogous way. The 

variance estimate obtained by using !1 (Xi)= aj + bjxj will overestimate the variance. 

Denote the variance estimate using !1(x) = y+(x) by (j~1 and using !1 (Xi)= aj + blj by 

(j~2 • The proposed estimate (j~ of the variance is the geometric average of (j~1 and 

. The motivation for using the geometric average is that for 

positive values it is at least as logical to use the geometric average compared to the 

arithmetic average. Since the logarithms are symmetric around d=l we get a better 

estimate, i.e. closer to 1. 

2.3 SOME PROPERTIES OF THE VARIANCE ESTIMATION METHOD FOR 

ISOTONIC REGRESSION 

The estimated isotonic regression function has constant values in blocks of 

neighbouring points. This common value is equal to the weighted mean of the y-
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observations in the block. Let a weight function w(x), i=1 , ... ,N with positive values be 

defined. This means that the estimated function can be given as a sum of step 

functions. Let Ao = {x1, x2 , ....... ,xN}, where x1 < x2 < ....... <xN, be the set of observed x-

values and 

For each non-decreasing function f(x), x£Ao' there exist constants ao' a1 ..... , aN' with ak~ 

o for k~ 1, such that f(x) = ao + a1f1(x) + a2f2(x) + ..... + aNfN(x) for x £ Ao' 

LEMMA 2.3.1: Let M be any block in the non-decreasing estimate of the regression 

function. Then for all k such that xk£ M we have 

I.[Y(Xj)-Y+(Xj)] fk(xj)w(Xj):::;; 0 
XjEM 

Proof: Suppose that 

I.[Y(Xj)-Y+(Xj)] fk(xj)w(Xj) > 0 
XjEM 

Then 

I. [Y(xj) - y+ (xj) + £ fk (Xj)] 2 w(xj) = 
XjEM 

I. [[Y(xj) - y+ (xj) r w(Xj) + £2 fk (Xj)2 W(Xj) - 2£ [Y(Xj) - y+ (Xj )]fk (Xj) W(Xj) ] 
xjEM 

For £ small enough and positive we can always get 

2£ I. [Y(Xj ) - y+ (Xj) ]fk (Xj )W(Xj) > £2 I. [fk (Xj)Y W(Xj) 
xjEM xjEM 

Choose an £ satisfying this and also being smaller than the increase in level mean from 

M to the neighbouring block to the right. This means that we can find another isotonic 

regression function that gives a smaller sum of squared deviation than y+ (xi)' But by 
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definition y+ (Xj) is the isotonic regression function that gives the smallest sum of 

squared deviations. This means that I.[y(Xj)-Y+(Xj)] fk(xj)w(Xj) can not be positive. 
X;£M 

Q.E.D. 

The lemma implies that the linear regression function estimate with weights w(x) for the 

x-observations in M always has a negative slope. 

Simulations were made using 100 replications to examine the new variance estimation 

method for isotonic regression functions under the assumption that Vi are identically 

normally distributed with Jl(x)= _X2 and the common variance 0'2=1. In the simulations we 

used N fixed equidistant x-values. The number of x-observations varied from 50 to 500 

within the x-interval (-5,5). The result of the simulations is shown in table 2.1. 

TABLE 2.1 

Number of 
x-observations, N, 

-5:::; X:::; 5 

50 0.66 1.97 1.14 
75 0.69 1.60 1.05 

100 0.75 1.44 1.04 
200 0.82 1.24 1.01 
300 0.86 1.18 1.01 
400 0.89 1.15 1.01 
500 0.91 1.13 1.01 

Table 2.1. Random numbers were generated so that Y - N(-x2;1) for equidistant x-observations in the x­

interval -5 ::; x ::; 5. The number of x-observations varied from 50 to 500. The variances were estimated 

according to the proposed estimation method. 
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We see from this that the geometric average O'~ of the two variance estimates 0';\ and 

0';2 is a possible modification which is rather good but overestimate Var(Y) a little. 

However when the numbers of x-observations increase O'~ decreases towards 0'2=1. 

Even for moderate values of N, O'~ is very close to 0'2. This study indicates that the 

estimation method is rather good. It also seems that N-p is a rather good approximation 

for the degrees of freedom. 

2.4 AN EXAMPLE 

Let Yi be the average corn yield and Xi be the amount of nitrogen fertilizer. In the 

examined x-interval we can estimate a non-decreasing regression function to the data. 

Since we only want to use the monotonicity restriction isotonic regression will be used. 

The data together with the estimates are 

x 0 10 20 30 40 50 

Y 23 49 42 45 65 66 

60 70 

59 73 

80 90 1 00 11 0 120 130 

82 85 81 79 82 80 

y+ 23 45.33 45.33 45.33 63.33 63.33 63.33 73.00 81.50 81.50 81.50 81.50 81.50 81.50 

x 140 150 160 170 180 

Y 88 96 97 95 94 

y+ 88.00 95.50 95.50 95.50 95.50 

The degrees of freedom is estimated by 19-7=12 where 19 is the number of 

observations and 7 is the number of plateaus. 

Using these data we obtain 0';\ = 6.653, which underestimate the variance. To be able 

to determine 0';2 we first calculate the seven straight lines, one for each plateau: 
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No the equation of the straight line the estimated y-values 

1 Yi = 0.67 + 22.33 Xi Y1 = 23.000 

2 Yi = 30.804 + 6.72167 Xi Y2 = 37.526, Y3 = 44.2473, 

Y4= 50.969 

3 Yi = 52.024 + 4.612 Xi Y5 = 56.636, Y6 = 61.248, 

Y7 = 65.86 

4 Yi = 63.6225 + 9.085 Xi Y8 = 72.7075 

5 Yi = 76.625 + 1.25 Xi Y9= 77.875, YIO= 79.125, 

YlI = 80.375, Y12 = 81.625, 

Y13 = 82.875, Y14 = 84.125 

6 Yi = 81.25 + 7.00 Xi Y15= 88.250 

7 Yi = 90.8125 + 1.875 Xi Y16 = 92.688, Y17 = 94.563, 

Y18= 96.438, Y19= 98.313 

From these y,;estimates we obtain 0'22
2= 16.332. This implies that 

0'9= 3.229. 

3 ESTIMATION OF VAR(Y) FOR CONCAVE/CONVEX REGRESSION FUNCTIONS 

Suppose that we have the same estimation situation as in section 2.2, i.e. 

we have only got one y-observation for each Xi' If Il(xi) is a concave (or convex) function 

and Vj j=1 , ... ,N, are observations with Vi - N(Il(x); a\x)) where the variances a
2
(xi) are 

assumed to be the same for all Xi' then the variance might be estimated by 
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When we use concave regression to estimate Jl(X), (0'1)2 will underestimate the 

variance (i. Therefore another estimation method has been developed for this 

situation. 

Suppose that Vi' i=1 , ... ,N, have the same variance ri. We start by looking at three 

observations, since this is the smallest possible number of observations to form a 

concave (or convex) function. 

Suppose that we have three observations, Jll , Jl2, Jl3, forming a concave regression 

function. Let the corresponding observations on the least squares estimate of the 

regression line for these three observations be denoted by Jl/, Jl2* and Jl3*· Thus Jl/;::: 

Jll , Jl2 * ::;; Jl2 and Jl3 * ;::: Jl3. Denote the distance between Xl and x2 by Ll12 and the distance 

between x2 and X3 by Ll23. Then the corresponding distance between Jll * and Jl2 * will be 

d1= ~ Ll12 and between Jl2 * and Jl3 * d2= ~ Ll23 where ~ is the slope of the regression line 

Case 1: If we have the special case that the concave regression function itself is a 

straight line we get equality for Jl;* and Jl;, i=1,2,3, i.e. Jl/ = Jl1' Jl/ = Jl2 and Jl3* = Jl3. If the 

x-observations are equidistant, i.e. if Jl/ = 0.5 (Jl/ + Jl/), then we can use the 

corresponding real observations Y1, Y2, Y3 to calculate 

S2 = ~[Y2 - 0.5(Yl + Y3 )] 

But usually this is not the case. Therefore we will use a more general formula. 

The relation between Jl/, Jl/ and Jl/ can be written as Jl2* = (d1+d2t(d2Jl/ + d1Jl/). Then 

we can do the corresponding calculation 

S2 = ((d1 +d2)2 +d~ +d~r\d1 +d2)2*[Y2 - (d1+dJ1(d2Y1 + d1Y3)t. ................ (3.1) 

Denote U= Y2 - (d1+d2t(d2Y1 + d1Y3). Since E[U] = E[Y2 - (d1+dJ1(d2Y1 + d1Y3)] = 

Jl2 - (d1+d2t(d2Y1 + d1Y3) = 0 thus 

E(U2) = (d1 + d2f2( (d1 + d2)2 + d~ + d2
2) cl. 
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From this calculation we obtain that E(S2) = (i and therefore (3.1) will serve as the 

estimated variance for these three observations. But usually a regression function 

consists of more than three observations. Then we can use 

as an estimate of the variance, (l, of the observations. 

Case 2: Suppose that the concave regression function consists of three 

observations, Il" 112 and 1l3' Also suppose that we don't have the special case where the 

concave regression function itself is a straight line. Then we obtain the inequalities III * > 

Ill' 112 * < 112 and J..ls * > 1l3' These order conditions give us 

E[Y2 -( d1 + d2f\d2 Y1 + d1 Y3)] = 112 - (d1 + d2f\d21l1 + d11l3) > O. 

Thus 

V =s/~-N( (dl+d2)2 .'I~·1) h 'I (d d)-l(d d) d 
v 2 2 2 11., were II. = 112 - 1+ 2 2111 + 1113 an 

(d + d ) + d + d 0' 1 2 1 2 

From this inequality follows that 

E(S2) = E(0'2V2) = 0'2 + ({d1 +d2)2 +dl +dlf\d1 +d2)2 /..,2> 0'2. 

Thus S2 will overestimate the variance 0'2. If the regression function contains more that 

three observations the proposed estimate 

can be used as a rough estimate of the variance 0'2. To get a better estimate we can 

use 
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(32 = E(S2) - ((d1 +d2)2 +d~ +d~r1(d1 +d2Y '),} 
where A is the average curvature of the regression function. This can be estimated 

according to the following: 

Suppose we have least squares estimates of straight lines, f(xi) = Jl; + ~iXi' i=1 , ... ,N-1, 

through Jl; and Jl;+1' Thus the estimates consist of N-1 regression lines where the slopes 

~1 > ~2 > ..... > ~N-l form a concave function. We can give an approximate model for the 

slope ~k for ~1 > ~k > ~N-l; 

From this model we obtain 

~k - ~k-l = (N-1rl(~N_l-~1) 

For the first two x-intervals we get 

A = 112 - (d1 + d2t 1 
(d21l1 + d11l3) = (d1 + d2t 1 

(d2~1 - d1~2) = 

This gives us the desired relation for the two first x-intervals 

For any two x-interval we get the corresponding expression 

Since in this expression we have ~1 and ~N-l we must estimate them. This can be done 

according to the following: 

Suppose we have a least squares estimate of a concave regression function with M 

bending points X
O

(l) < X
O

(2) < ....... < xo(M). Thus the estimate consists of M regression lines 
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where the slopes ~1 > ~2 ..... > ~M form a concave function. The estimates of ~1 and ~N-l 

are ~1 and ~M , where ~1 and ~M are the end slopes in the concave estimate of the 

whole regression function Jl(xj), i=1 , ... ,N. The proposed variance estimate will be 

N-1 -1 

s2=(N-2t ~ { ((dj_ 1 + dJ dj_/ + dj
2

) (dj_ 1 +'dJ(Yj - (dj_ 1 + dj )(djYj_ 1 + dj- 1y j+1)r -
1=2 

If the x-observations are equidistant this formula will be simplified to 

N~ 2 2 
A2_21 -1",( 1/( )) 1/( _l(A A)) 
(j -73(N-2) ~ Yj - 12 Yj- 1 + Yj+1 - 16 (N-1) ~1 -~M 

1=2 

From the proposed formula we can also see that if we have the described situation in 

case 1, that the regression function already is a straight line, then we obtain ~1 = ~N-l 

and the correction term vanishes. This gives us the variance estimate that was 

proposed in case 1. 

3.1 IMPROVEMENT OF THE PROPOSED VARIANCE ESTIMATION METHOD FOR 

REGRESSION FUNCTIONS WITH BIG CURVATURE 

The estimation method proposed in the preceding section is based on short linear 

pieces, which are weighted together. If the regression function has a big curvature we 

can expect that the variance will be overestimated rather much. In this situation it might 

be appropriate to consider second-degree functions instead of linear pieces. If we use 

the assumption that all Yj have the same variance then the corresponding variance 

estimation method can be evaluated according to the following discussion: 

Since we will use second-degree functions three parameters are to be estimated. 

Therefore we start by looking at five observations forming a concave (or convex) 

function. This gives us two degrees of freedom for the variance estimate. 
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Case 1: Suppose we have equidistant x-observations with the distance ~ between 

two successive observations. Let the points be centered at x=o.o. Thus the five 

observations will be Y2' Yl' Yo, Y1 and Y2 and the corresponding x-observations -2~, -~, 

0.0, ~ and 2~. The parameters ~i' i=0,1 ,2, to be estimated are contained in the function 

y= ~o + ~1X +~2(X2- y). We can simplify the evaluation if we calculate an appropriate 

value of y to obtain orthogonality: 

((_2~)2_y)1 +((_~)2_y)1 -y1 +(~2_y)1 +((2L~y-y)1 = ° <=> 

Then we obtain the estimates 

From the five points we obtain the following contribution to the variance estimate 

This expression can be evaluated to hold for several second-degree pieces. Suppose 

that we obtain the sets of five observations successively. Denote the estimated 

parameters fromthe k:th set by ~i(k) , i=0,1 ,2. Thus we can use 

S2 = (N-4r1~ 1 ~ [(Vi - Yk) - (~o(k) + ~/k) (Xi - xk) + ~2(k)((Xi - Xk)2 - 2~2))r 
k=3 2 i=k-2 

as an estimate of the variance, (l, of the observations on the whole curve. 

Case 2: If the x-observations are not equidistant then it is no simplification to central 

the x-observations or determine a value of y to obtain orthogonality. Instead we will use 

the ordinary normal equations to estimate ~i' i=0,1 ,2. Thus the corresponding estimate 

of the variance, cl, for the observations on the whole curve is reduced to 

If the curvature of the regression function is big this alternative will not overestimate the 

variance as much as the one proposed for linear pieces. However, for functions with 

small curvature we will obtain almost the same size of the estimate of the variance. In 
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practice this is probably a minor problem. Therefore the simulation studies in the 

following section are made for the estimation method proposed for linear pieces. 

3.2 SOME PROPERTIES OF THE VARIANCE ESTIMATION METHOD FOR 

CONCAVE REGRESSION OBTAINED BY SIMULATIONS 

A simulation study was performed to examine the properties of the proposed variance 

estimation method for a regression function with constant normalized curvature (NC). 

We used 25 000 replications for the regression function Yj = Jl(xj) + Ej' where Jl(x) = -cx2
, 

c/},? 
Ej - N(O;1) for -10 ~ x ~ 10 and NC= cr/ . 

IFn 
TABLE 3.1. 

NC E(s2) 
correction A2 A 

term 
cr cr 

----------- ---------- --------- -------- --------
0.0125 1.0010 0.0009 1.0001 1.000 
0.05 1.0068 0.0036 1.0032 1.000 
0.20 1.0258 0.0184 1.0074 1.004 
0.50 1.1657 0.1024 1.0633 1.031 
0.75 1.3740 0.2356 1.1377 1.067 
1.00 1.6655 0.4421 1.2222 1.106 
1.50 2.4987 1.0994 1.3977 1.182 
2.00 3.6568 2.1300 1.5335 1.238 

Table 3.1. Random numbers were generated so that Y - N(-cx2;1) for equidistant x-observations in the x­

interval-10::;; x::;; 10. The variances were estimated according to the proposed estimation method for 

0.0125 ::;; NC ::;; 2.00. 

The x-observations were chosen equidistantly. The position of the nearest x-value 

compared to Xmax was uniformly distributed in the interval (-0.5~, 0.5~). In the 

simulations both the estimated expected value of S2, the estimated correction term, the 
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estimated cl and the corresponding standard deviations of the estimates were 

determined. The results were rescaled and shown in table 3.1. 

From this table we can see that both the estimated expected value of S2, the estimated 

correction term and the estimated cl increase when NC increases. But still when 

NC=2.0, the estimated cr2 will be rather moderate. Bigger values of NC are useless to 

examine since then the observations almost themselves will form a concave regression 

function. From the table we can see that the estimated d seems to converge to cr2 

when the normalized curvature decreases to zero. 

The simulation results also indicate that the variance of the estimated cr2 increases 

when NC increases. 

TABLE 3.2. 

NC ~ I(stand dev(cr3» ~4/(stand dev(cr4» 
0.05 1.008 4.495 
0.20 1.008 4.498 
0.50 0.981 4.424 
0.75 0.900 4.245 
1.00 0.801 3.982 
1.50 0.707 3.217 
2.00 1.197 3.973 

Table 3.2. Random numbers were generated so that Y - N(-cx2;1) for equidistant x-observations in the x­

interval -10 :s; x :s; 10. The standardized skewness and the standardized kurtosis were obtained for the 

variance estimates for 0.05:S; NC:s; 2.00. 

To examine the variation in the results the 3:rd, ~3' and the 4:th, ~4' moments were 

determined and the estimates of ~/(stand dev(crn and ~/(stand dev(crt) were 

calculated for different values of the normalized curvature, NC, together with the 

estimated distributions. The results were rescaled and shown in table 3.2. 

From this table we can see that the standardized skewness was around 1.0 for all 

values of NC and the standardized kurtosis near 4.0. To see if the estimate could be 

approximated by a X2-distribution, we also more carefully examined the estimated 
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distribution of the estimated (J2. This knowledge can be very useful if we try to 

determine approximately 95% limits of the estimate. The estimated cumulative 

distribution for NC=0.5 obtained from the simulations is shown in the appendix. 

From the same simulation study we also obtained the 0.025-limits and the 0.975-limits 

of the estimated distributions for 0.20~ NC ~2.00. The results are shown in table 3.3. 

This table shows that both the value of the lower and the upper limit increase when NC 

increases. 

NC 0.20 

lower limit 0.350 
upper limit 2.075 

0.50 

0.400 
2.150 

TABLE 3.3. 

0.75 

0.425 
2.225 

1.00 

0.450 
2.350 

1.50 

0.505 
2.765 

2.00 

0.600 
3.450 

Table 3.3. Random numbers were generated so that Y - N(-cx2;1) for equidistant x-observations in the x­

interval -10 :s; x :s; 10. The 0.025 and 0.975 limits of the estimated cumulative distribution of the estimated 

d, using the proposed estimation method, were obtained for 0.20:S; NC:s; 2.00. 

It is also obvious that the 95% confidence interval becomes wider when NC increases. 

Since the X2 -distribution in the corresponding situation has 20 degrees of freedom we 

can compare the obtained results, rescaled as (N-1) &2 / (J2 , with the 95% confidence 

limits of the X2-distribution, which are 9.59 and 34.17. 

NC 0.20 0.50 0.75 

lower limit 7.00 
upper limit 41.5 

8.00 
43.0 

8.50 
44.5 

TABLE 3.4. 

1.00 1.50 2.00 X2(20 df) 

9.00 
47.0 

10.1 
55.3 

12.0 
69.0 

9.59 
34.17 

Table 3.4. Random numbers were generated so that Y - N(-cx2;1) for equidistant x-observations in the x­

interval-10:S; x:s; 10. The 0.025 and 0.975 limits of the estimated distribution of the estimated el, using the 

proposed estimation method, were rescaled for 0.20:S;N:S;2.00 and compared to the X2-distribution with 20 df. 
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The result of this comparison is shown in table 3.4. The result in this table shows that 

the lower level corresponds rather well to the X2 -distribution but the upper limit is much 

higher in the estimated distributions. It is also obvious that the obtained limits are some 

functions of NC. 

To get an expression for the connection between NC and the estimated variance we 

use some results of Mammen (1988). He gives an expression, containing J..l(x) and 

Jl{x) , that converges to a limit distribution for concave regression. Let 

J..l"(xo) = the curvature in xo' 

cr(XO)2 = Var(YIX=xo), 

N F'(xo) = the density of observations in xO' 

G = the universal limit distribution. 

Using these notations we have according to Mammen 

From this expression we see that the distribution depends on the curvature of J..l(x) and 

the variance of the observations. The product N2IS F'(xo)21S is used as a scaling factor. 

The limit distribution G has a very complicated form and Mammen gives no theoretical 

expression for it. Probably the mathematical expression for how the curvature affects 

the estimation of the variance is not easy to find. 

3.3 AN EXAMPLE 

In this situation we use the same example as for the estimation method using isotonic 

regression, i.e. let Yi be the average corn yield and Xi be the amount of nitrogen 

fertilizer. Since we use concavity restriction concave regression will be used. The data 

are 
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x 0 10 20 30 40 50 60 70 80 90 100 110 120 130 

Y 23 49 42 45 65 66 59 73 82 85 81 79 82 80 

x 140 150 160 170 180 

Y 88 96 97 95 94 

When we use concave regression we obtain the following estimated regression function 

together with the corresponding bending points: 
A 

~j 

bending 
points, X(i) 

1.9560 

1 

0.4953 0.2028 0.1546 -0.1000 

2 5 9 17 

Since the x-observations are equidistant we can use the simplified formula 

N~ 2 2 
A2_21 -1",( 1/( )) 1/( _1(A A)) cr -73(N-2) ~ Yj-/2Yj-1+Yj+1 -/6 (N-1) ~1-~M . 

1=2 

Then we obtain the following results: 

N-1 2 ?: (Yj - ~(Yi-1 + Yj+1)) = {49-0.5(23+42))2 + ... + {95-0.5(97+94))2=666.75 
1=2 

This gives us the variance estimate &2 = 26.14488 and the corresponding estimated 
standard deviation & = 5.113. If we use the proposed method that improves the 
estimated for regression functions with big curvature we obtain the estimated standard 
deviation & = 5.334, which indicates that we do not have a big curvature in this 
problem. 
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APPENDIX 

TABLE 

6-2 F( 6-2
) 6-2 F( 6-2

) 6- 2 F( 6-2
) 6-2 F( 6-2

) 

------------------ -------------------- -------------------- -------------------
0.250 0.0001 1.150 0.6299 2.050 0.9665 2.950 0.9980 
0.275 0.0016 1.175 0.6501 2.075 0.9691 2.975 0.9982 
0.300 0.0042 1.200 0.6696 2.100 0.9715 3.000 0.9984 
0.325 0.0079 1.225 0.6874 2.125 0.9736 3.025 0.9986 
0.350 0.0124 1.250 0.7037 2.150 0.9756 3.050 0.9988 
0.375 0.0178 1.275 0.7218 2.175 0.9774 3.075 0.9989 
0.400 0.0247 1.300 0.7365 2.200 0.9790 3.100 0.9990 
0.425 0.0319 1.325 0.7516 2.225 0.9805 3.125 0.9991 
0.450 0.0406 1.350 0.7665 2.250 0.9822 3.150 0.9992 
0.475 0.0497 1.375 0.7813 2.275 0.9836 3.175 0.9992 
0.500 0.0605 1.400 0.7946 2.300 0.9849 3.200 0.9993 
0.525 0.0730 1.425 0.8076 2.325 0.9864 3.225 0.9993 
0.550 0.0868 1.450 0.8189 2.350 0.9876 3.250 0.9994 
0.575 0.1041 1.475 0.8302 2.375 0.9889 3.275 0.9994 
0.600 0.1208 1.500 0.8396 2.400 0.9899 3.300 0.9995 
0.625 0.1408 1.525 0.8486 2.425 0.9905 3.325 0.9996 
0.650 0.1607 1.550 0.8580 2.450 0.9914 3.350 0.9996 
0.675 0.1816 1.575 0.8681 2.475 0.9919 3.375 0.9997 
0.700 0.2024 1.600 0.8768 2.500 0.9924 3.400 0.9997 
0.725 0.2264 1.625 0.8840 2.525 0.9927 3.425 0.9998 
0.750 0.2523 1.650 0.8684 2.550 0.9932 3.450 0.9998 
0.775 0.2767 1.675 0.8985 2.575 0.9938 3.475 0.9998 
0.800 0.3001 1.700 0.9051 2.600 0.9941 3.500 0.9999 
0.825 0.3254 1.725 0.9112 2.625 0.9948 3.525 0.9999 
0.850 0.3504 1.750 0.9170 2.650 0.9951 3.550 0.9999 
0.875 0.3751 1.775 0.9221 2.675 0.9955 3.575 0.9999 
0.900 0.3997 1.800 0.9279 2.700 0.9960 3.600 0.9999 
0.925 0.4248 1.825 0.9332 2.725 0.9963 3.625 0.9999 
0.950 0.4485 1.850 0.9386 2.750 0.9968 3.650 0.9999 
0.975 0.4727 1.875 0.9434 2.775 0.9970 3.675 0.9999 
1.000 0.4956 1.900 0.9473 2.800 0.9972 3.700 0.9999 
1.025 0.5174 1.925 0.9515 2.825 0.9974 3.725 0.9999 
1.050 0.5410 1.950 0.9544 2.850 0.9976 3.750 0.9999 
1.075 0.5631 1.975 0.9574 2.875 0.9978 3.775 0.9999 
1.100 0.5866 2.000 0.9604 2.900 0.9978 3.800 0.9999 
1.125 0.6086 2.025 0.9628 2.925 0.9980 3.825 1.0000 

Table. Random numbers were generated so that Y - N(-cx2;1) for equidistant x-observations in the x-

interval-10::;; x::;; 10. The cumulative distribution of the estimated (/, using the proposed estimation 

method, was estimated for NC = 0.50. 
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