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Least squares estimates of regresssion functions with certain monotonicity 

and concavity/convexity restrictions. 

Summary: In all regression problems the choice of model and estimation method 

is due to a priori information about the regression function. In some situations it is 

motivated to consider regression functions with specific non-parametric 

characteristics, for instance monotonicity and/or concavity/convexity. 

We propose a new least squares estimation method for curves that fulfil 

monotonicity and concavity/convexity restrictions. The least squares estimate of 

such a regression function is a piecewise linear continuous function with bending 

points contained in the set of the observed values of the independent variable. 

The set of bending points, which makes the function a least squares solution can 

be determined by an iterative algorithm within a finite number of steps. 

Keywords: Concave/convex, non-parametric regression, piecewise linear. 

1. Introduction. 

When you deal with regression problems the choice of model and estimation 

method is due to the a priori information about the regression function. In some 

applications the shape of the regression function is known and the estimation 

problem is reduced to an estimation of some parameters. But often this is not the 

case. Instead the relationship between the dependent and independent variables 

is determined by some constraints on the variables. A simple characteristic is 

monotonicity. In this case the only assumption about the regression function is, 

that it has a non-decreasing phase or/and a non-increasing phase. If the 

regression function consists of one non-decreasing (or non-increasing) phase only 
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a suitable estimation method is isotonic regression. This is a non-parametric 

regression method that is very often referred to. The basic theory of isotonic 

regression is described in Barlow et al (1972) and Robertson et al (1989). In case 

of unimodality the same basic technique is used for two pieces of data. 

Another simple shape characteristic is concavity (or convexity). In many 

applications it is motivated to consider regression functions with both monotonicity 

and concavity/convexity restrictions. The concave regression problem was first 

formulated by Hildreth (1954) for the estimation of marginal productivity curves. 

He adopted the LS estimation method and formulated it as a quadratic 

programming problem. Dent (1973) and Holloway (1979) continued the work and 

the concave regression function was obtained by a more general framework of 

quadratic programming with linear inequality constraints. The consistency of these 

LS concave regression estimators has been proved by Hanson and Pledger 

(1976). Wu (1982) proposed two algorithms for concave regression. One involves 

some quadratic programming. Unfortunately this algorithm has no assured 

convergence. The other is just an approximation, but very easy to implement. An 

iterative method for regression with convexity and monotonicity restrictions was 

proposed by Holm and Frisen (1985). This method gives the LS estimate in a finite 

number of steps. Fraser and Massam (1987) formulated an algorithm using 

cylinder projections and dual spaces. Theoretically they obtained the LS solution 

but the estimation method involves a matrix inversion which in practice seems to 

imply numerical instability in the obtained results. 

In this report we propose a new algorithm for all kinds of regression problems with 

different concavity/convexity restrictions, such as increasing and concave, 

unimodal and sigmoid regression. It is an iterative procedure for determining least 
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squares estimates. The proposed estimation method is closely related to the 

estimation method proposed by Holm and Frisen (1985). The iteration with an 

inclusion and an exclusion procedure is identical for both estimation methods. In 

Holm and Frisen the estimation problem is solved by using a function system 

including a matrix inversion. In our proposed method we instead use restrictions 

on the differences between two successive regression coefficients. Using these 

differences it is easier to extend the problem from increasing and concave 

regression to unimodal and sigmoid regression. These two later problems are 

mentioned but not studied by Holm and Frisen. 

In this report only non-parametric concave regression is discussed. Unimodal and 

sigmoid regression together with further properties are examined in Dahlbom 

(1994). 

2. The estimation procedure. 

The purpose of this paper is to find a regression function with simple curve 

characteristics like isotonic restrictions and concavity. Thus for the observations 

w1, w2' .... 'WN we will search for a regression function f(xj} that minimizes 

and satisfies the restrictions. First we check if the observations themselves fulfil 

the non-decreasing and concave restrictions. If this is the case, f(xj} = Yj' i=1, ... ,N, 

is the solution to the problem. 
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But usually this is not the case and instead we have to use some estimation 

procedure. When a regression function is monotonic and concave one condition is 

fulfilled, namely 

1\ 1\ 1\ 1\ 

Yi+1 - Yi Yi+2 - Yi+1 ~O ~ for i=1 , ... ,(N-2) 
1\ 1\ 1\ 1\ 

xi+1 - xi xi+2 - xi+1 

Equality in the left inequality means that two or more estimated observations will 

lie on a straight line. This means that the regression function consists of 

continuous linear pieces where the estimate of the regression coefficient for each 

linear part will change monotonically. The continuous regression function will bend 

in some x-values and for this reason they will be called 'bending points'. 

A major problem in the estimation method is to find the bending points that 

minimizes the sum of squares. We start describing the proposed estimation 

procedure by introducing some notations: 

Suppose that the observations are divided into M ordered groups of some sizes, 

where X1~""~ Xii belong to the first group, X il +1 ~ •••• ~ x i2 to the second and so on. 

The smallest x-observation in each group will have a certain rule in the 

construction and it is called the bending point for the corresponding x-interval. 

Since bending points will appear a few times in the description of the estimation 

method they will have a special notation, XO(k) , where IIkll is the interval in which the 
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We need also a notation for a predicted y-value corresponding to the bending 

point. Therefore we introduce a notation according to the following: 

Let XO(k) be the bending point of the k:th x-interval. Predict a y-value, YO(k), at XO(k) 

using the weighted least squares estimate of the regression line in the k:th 

x-interval. The estimate of the regression line is obtained from the observed 

y-values in this x-interval together with a predicted y-value, corresponding to the 

bending point XO(k-1), with a weight WO(k-1), obtained from the regression line in the 

(k-1 ):th x-interval, which will be described later. 

DEF: A predicted point, (XO(k), YO(k»), where XO(k) is the bending point of the k:th 

x-interval and YO(k) is the corresponding y-value, predicted according to the above 

description, is called the fiction point from the k:th x-interval. 

We first demonstrate how the procedure works on some fixed bending points. This 

case may result in a solution that does not fulfil the isotonic and concave 

restrictions. 

2.1. Fixed bending points. 

We study first the problem of estimating (by least squares) a piecewise linear 

continuous regression function with fixed bending points XO(k+1)= xi
k
+1' k= 1 , .. ,(M-1). 

Consider the first interval with observation points x1' x2 ' •••• Xi . A straight-forward 
1 

calculation shows that the minimal sum of squares for these observation points for 

a line through a point (XO(2), y)= (Xil+1 ' y*) is a quadratic function of y*. This function 
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has a minimum for y* = yo(2), the value of the ordinary regression line for the 

observation points, Xl' X2' .... XiI' taken in the point XO(2). The coefficient of the 

square in the function of y* equals 

(2) 
Wo = 

~[ (2)]2 L Xi-XO Wi 
i=1 

where X1 denotes the weighted mean, xp X2' .... XiI' This means that if the rest of 

the regression function (for X ~ XO(2)) were determined the sum of squares from the 

first interval would be equivalent to a constant plus the influence of an artificial 

observation in the point (XO(2), YO(2)) with weight WO(2). 

Next we can analogously study the sum of squares from the second interval 

X
it
+1 , ",Xi

2 
for a regression line through a point (XO(3), y*) when the artificial point 

from the previous interval is included. Again it is a quadratic function with 

minimum for y* equal to the value of the regression line. The coefficient of the 

square in the function of y* equals 

where X2 denotes the weighted mean of the ordinary x-observations in the second 

interval including the bending point xo(2). Thus the third x-interval now contains an 
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extra observation, which includes all information about the sum of squares in the 

two first x-intervals. This procedure will continue in the same way up to the last x-

interval, where we beyond the observed points will have a fiction point with a 

calculated weight which contains all information of the sum of squares from all 

former x-intervals. 

Up to this point we have estimated M straight lines. The only purpose of this is to 

calculate the weights, wo(k), and the fiction points (XO(k), Yolk)), k=2, ... ,M, one in each 

x-interval. To determine the least squares estimate of the continuous piecewise 

linear regression we must continue the procedure. 

Let Y k and xk denote the weighted averages of the y- and x-observations in the 

k:th x-interval and denote the ordinary weighted least squares estimate of ~ of a 

A 

straight line through a predetermined point by ~ M' The notation fk(x) means the 

LSE of a regression line through a predetermined point. 

In the piecewise procedure we start at the last x-interval. In this interval we 

estimate a straight line for the observed values and the fiction point (XO(M), yo(M)). 

1\ 

This means that in the M:th x-interval we obtain ~M and the estimate of the 

1\ 

regression line fM(x) = YM+~M .(x-xk)' Calculate the value of fM(x) for the bending 

point, XO(M), in the last interval. Next determine the least squares estimate of the 

regression line in the second last x-interval including the fiction observation, 
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(XO(M-1), Yo(M-1)), in a way that will make the regression line go through the predicted 

point, (xo(M), fM(xo(M))), in the last x-interval. Since the weight, wo(M-1), of the fiction 

point (xo(M-1), YO(M-1)) contains all information from the sum of squares of the first 

(M-2) x-intervals, this method will give us the minimum sum of squares in the 

(M-1 ):th x-interval taking the first (M-2) x-intervals into account. 

/\ 

The least squares estimate of P will be p M-1 = K/K2 where 

and 

The notation m(M_1) means the number of x-observations in the second last 

x-interval excluding the fiction point, (XO(M-1), YO(M-1)), and the weighted sums 

symbolize the summary of these observations. We have now connected two 

straight lines, one in each of the two last x-intervals, and the connection point is 

Next calculate the value of the regression line fM-1 (x) in the bending point, xo(M-1), of 

the second last x-interval. Estimate the weighted least squares regression line 

through this point [XO(M-1), fM-1 (X~M-l))] for the third last x-interval including the fiction 
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point containing information from the first to the (M-3):th x-interval. Now the 

straight lines, one in each of the 2:nd last and the 3:rd last x-intervals, are also 

connected and the connection point is [x (M-l) f (X(M-l))] - [x (M-l) f (X(M-l))] 
o ' M-l 0 - 0 ' M-2 0 • 

This procedure is repeated until all x-intervals are connected with weighted least 

squares estimates of regression lines through successively calculated points, 

[XO(i), fi(x~))] and we have a continuous curve. Since the weights wo(i), i=2, ... ,M, 

contain all information from the sum of squares of the preceding (i-1) x-intervals 

the procedure will give us the least squares estimate of the whole curve under the 

concave restrictions. We now have to check if the restrictions 'monotonic' and 

" " 'concave' are fulfilled. This is done by checking if ~k-l > ~k for k=2, .... ,M. As 

mentioned before this does not have to be the case when the bending points are 

fixed. 

We have described the estimation method where the procedure starts by 

estimating the continuous piecewise linear regression function from the last x-

interval to the first. This is in fact one case out of several alternatives, which give 

the same unique solution. In the addition to the above solution it is also possible to 

start the whole estimation procedure using continuous piecewise linear regression 

from the first up to the last x-interval. We can then check if the restrictions, ie 

monotonic and concave, are fulfilled. 

The procedure can just as well start with estimated bending points in each end of 

an inner interval. We continue by determining a least squares regression function 

in this x-interval and successively use continuous piecewise linear regression in 
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each direction, both to the first and the last x-intervals. It is obvious that especially 

the last method gives some understanding of how the estimation method works. 

As stated before, in each of these three cases we get the same unique solution. 

2.2. Changing bending points. 

The whole procedure starts by letting every observed value serve as a bending 

point. That means that we check if the observations themselves fulfil the isotonic 

and concave restrictions. If this is not the case we start an estimation procedure 

that uses an inclusion-exclusion method, which is described in Holm and Frisen 

(1985) according to the following: 

Determine the ordinary weighted least squares estimate of the regression line for 

all the observations. Thus we have only one bending point, namely x1• To examine 

which other points that could be possible bending points we reformulate the 

problem. Let 

k= 2, 3, .... ,N 

N 

We can also write any concave regression function f(x) as f(x) = Lakfk (x), where 
k=1 

a1 has no restrictions and ak ~ 0 for k ~ 2. Thus our weighted least squares 

estimate is obtained by minimizing 
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1) Inclusion-procedure: 

Let {Io} be the set of index-values corresponding to the x-observations that are 

bending points. When we start the procedure {Io} only contains one value namely 

i=1. 

A. Calculate the scalar product between fj(x) and fk(x) for every k ~ {lo}' Divide 

the product by the norm of fj(x): 

A 1. If Pj :::; 0 for every j then we have found the least squares solution. 

A2. If Pj > 0 for some j ~ {Io} denote the largest positive p-value by Pji and let the 

corresponding index, ji, be included in the set {lo}' This index set now contains one 

further index value and we have also got one further bending point. Use the 

procedure described for fixed bending points, which corresponds to index values 

1\ 1\ 

contained in {lo}' Estimate fk(x) = ~ + ~kX where k E {lo}' Compare ~k-1 to ~k' 
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/\ /\ 

i) If the monotonic and concave restrictions are fulfilled, ie if A > A for Pk-1 - Pk 

k-1, k E {Io} then start again from point A. 

/\ /\ 

ii) If Bk- 1 < Bk for some k-1, k E {lo} then start the exclusion-part. 

2) Exclusion procedure: 

Go back to the former solution, which was the last solution, where the monotonic 

and concave restrictions were fulfilled. Denote the estimated Bk-values in this 

/\+ 

solution by Bk. Let 

Calculate 

for k E {Io- the index for the last obtained bending point}. 

B. If there exists a minimal c-value < 1 then let Cjk = min ck < 1, where minimum is 

obtained for k E {lo}' The index value jk is excluded from the index set {lo} and xjk 

will no longer be a bending point. Thus we have one bending point less compared 

to the last time we used the procedure for fixed bending points. 
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The minimum value Cjk is used to obtain a new estimate of ~k' k=1 , .... ,M, where the 

monotonic and concave restrictions are fulfilled. This is obtained by calculating a 

I\W I\W 1\ 1\+ 

new weighted estimate of ~k' denoted by ~k ' according to ~k = cjk * ~k + (1- cjk)* ~k 

where k E {lo}' 

Next we start the procedure for fixed bending points again using the bending 

points xk' k E {lo}' Estimate fk(x) = C\ + ~kX where k E {lo}' Compare these new 

1\ 1\ 

estimates ~k-1 to ~k' 

1\ 1\ 

81. If the monotonic and concave restrictions are fulfilled ie if ~k-1 ;.::: ~k for 

k-1, k E {lo} then start the inclusion procedure again from point A. 

1\ 1\ 

82. If ~k-1 < ~k for some k-1, k E {lo} then continue with the exclusion part. Go 

I\W 

back to the former solution, which was the last solution, ~k ' where the monotonic 

and concave restrictions were fulfilled. 

Let 

1\ 1\ 

<\ = ~k-1 - ~k' 

Then calculate a new set of ck: 
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After that the exclusion procedure continues from point B. 

This inclusion-exclusion part of the estimation method will go on until Pk ~ 0 for 

every k E {lo} at point A 1 in the inclusion procedure. We have then received the 

least squares estimate of the regression function. 

The estimation method is of course not limited to just monotonic and concave 

regression. We can just as well use it for isotonic and concave regression, isotonic 

and convex regression, pure convex and suitable combinations of regression 

functions of the shapes concave-up, concave-down, convex-up and convex-down. 

But for each of these four cases we must make some adjustments in the 

continuous piecewise linear regression, use different function systems in the 

inclusion procedure and also change the restrictions for Pk and the comparisons 

A A 

between ~k-1 and ~k in the inclusion-exclusion procedure. These adjustments are 

discussed in Dahlbom (1994) together with different properties of the estimation 

procedure. 
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3. Some properties of the L.S. estimation method. 

3.1. Convergence of the algorithm. 

The algorithm consists of an inclusion part and an exclusion part. The inclusion part 

works in a way that gives new bending points, one by one according to a specific 

criterion. After each obtained bending point the algorithm checks if the form 

restrictions are fulfilled before it picks another bending point. This procedure gives 

us an ever smaller sum of squares of errors. The inclusion part continues until the 

restrictions about the form are not fulfilled. 

Then the exclusion part starts. Thus one bending point is excluded according to a 

special criterion and a new solution is determined. The algorithm checks if the new 

solution fulfils the form restrictions. If this is not the case, another bending point is 

excluded. This continues until we obtain a solution which makes the restrictions 

fulfilled again. 

We now start with a new presolution with a smaller sum of squares of errors than the 

previous one. Since we only have a finite number of possible sets of bending points 

and since each cycle gives us a smaller sum of squares of errors the procedure will 

converge to the LS solution in a finite number of steps. 

3.2. Consistency. 

Consistency in concave regression in general is a very intricate problem. We will 

present only one consistency property given by Hansen & Pledger (1976). 

Let 1 be an interval on the real line. For each x in I let F x be a cumulative distribution 

function with the mean Jl(x). Suppose that Jl(x) is continuous and concave on I. Also 
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suppose that Vi' j=1 , ...... ,N is a sequence of independent random variables which 

gives Yk the distribution Fxk ' For each positive integer N we can define an estimator 

j..lN(X) = j..lN(X; Vi' j=1 , ...... ,N) of j..l(x) which minimizes a sum of squares. In this situation 

with probablility one, j..lN(X) will converge to j..l(x) uniformly on any subinterval of I and 

in addition j..lN(X) satisfies a condition which means that j..lN(X) will not get too large at 

the ends of the interval I. 

THEOREM 3.1: Suppose that I = [0,1] and that 0 < a < b < 1. Then 

P{ limsup maxx E I [j..lN(X) - j..l(x)] ~ 0 ; 
N~~ 

lim inf maxa:O;x:O;b [j..lN(X) - j..l(x)] ~ 0 } = 1. 
N~~ 

The proof of this theorem is given in Hanson & Pledger (1976). 

Summarizing the estimation method we can conclude that the estimate of 

concave/convex regression is a piecewise linear function. However, the formulas for 

continuous piecewise regression function estimates are not directly applicable to this 

case. But the sum of the mean variance and the mean squared bias for piecewise 

linear regression is probably a rough estimate of the mean variance of a 

concave/convex estimate with the same mean interval length. 

One common property for continuous piecewise linear regression is that the least 

squares regression function estimates are linear functions of the observations. This 

is proved in the following lemma. 
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LEMMA 3.1: If the bending points are fixed then the LS regression functions 

estimates are linear functions of the observations. 

PROOF: For any of the xi-intervals where the function is linear, the estimates are 

determined by using the estimation method simultaneously from the first x-interval to 

the i:th and from the last x-interval to the i:th. Then information from the observations 

in the first interval to the (i-1):th is contained in a fiction point in the i:th bending point 

and information from the (i+ 1 ):th to the last x-interval is contained in a fiction point in 

the (i+ 1 ):th bending point. The regression function estimate in the i:th x-interval is 

the ordinary linear regression function estimate with the two fiction points included 

and for each observation in the interval the estimate is a linear function of all 

observations. But the fiction points are also a linear function of the observations in 

the other intervals respectively to the left of the (i-1):th and to the right of the (i+1):th 

intervals including other fiction points and so on. Therefore we can conclude that 

each regression function estimate is a linear function of the observations. 

Q.E.D. 

If we use the assumptions of equidistant x-observations and equally sized x-intervals 

it is easy to evaluate some theory about wo(i). A useful property describes the 

influence of the observations in the (i-k):th or (i+k):th x-interval on the weighted 

steepness in the i:th x-interval: 
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Suppose that (xk, Yk)' k=1 , .... ,N, are observations with the corresponding weights wk' 

and that the values of x are equidistant. The estimate of the regression function is a 

continuous function consisting of piecewise straight lines. In order to get rough 

estimates of the influence of the bounds we make a calculation for equidistant 

bending points. This means that in each x-interval, corresponding to an estimated 

straight line, we have m ordinary observations xi' j=i, .... ,i+m-1, with weights Wj = 1 

together with an extra estimated point (XO(i), YO(i)) with weight WO(i). This estimated 

observation, with corresponding weight, contains the influence of the observations in 

the neighbouring x-interval, i-1. This means that when we use the weighted LSE of 

the regression line the influence of (XO(i), YO(i)) on the slope is wo(i)/(m+wo(i)). It is easily 

shown that WO(i) is limited by 0.1 and 0.3 and 

(i) 
Wo 0.3 

m+wg) < 1+0.1 < 0.275. 

Thus the influence of the observations in the (i-k):th or (i+k):th x-interval on the 

weighted steepness in the i:th x-interval is generally (0.27St If k > 4 this influence 

will be very small. 

Suppose we have a regression problem according to the described situation with 

observations (xk, Yk)' k=1 , ... ,N with weights Wk. Also suppose that the x-observations 

are equidistant. Divide the observations into intervals, each containing m x-

observations, m ~ 2. The first x-observation in each interval will be an ordinary 

observation with weight wk and also coincide with the bending point with weight wo(i-1) 
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for the previous interval. The rest of the (m-1) x-observations in each interval will be 

ordinary points. In this situation we can give a general expression for the weight WO(i) 

(i) 
Wo = 

It is obvious that if the series wo(i), successively obtained, will converge to the limit 

value, wO' then this value is the solution of the general expression when wo(i) =WO(i-1). 

The general expression of the weight, WO(i), can be written in a simplified way as 

('I) A + Bw(oi-1) (' 1) 
Wo = = f(wr ) 

C+Owg-1) 

This equation behaves very nicely. It is obvious that the size of the derivative f' will 

influence the distance between WO(i) and Wo and also the convergence of !im wg). 
I~~ 

Generally, if f'<1 then lim wg) will converge to a limit value. If on the other hand 
I~~ 

f'> 1 then this is not the case. We can also conclude that if the equation 

(C + Owg-1))wg) = (A + Bwg-1
)) has complex roots then the series wo(i) will not 

converge. In other cases we can obtain two solutions. 
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In simple situations the limit value, wo' is very easy to calculate. Let ~ be the notation 

of the distance between two successive x-observations. In the special case when 

~=1 and wk=1, k=1 , ... N, the solution of the general expression gives us the limit 

value 

In this situation we can prove the convergence. 

4. Example 

Consider the concave regression example by Hildreth (1954), Wu (1982) and 

Fraser and Massam (1987): 

Let Yi be the average corn yield, Xi be the amount of nitrogen fertilizer and mi be 

the number of y-observations for each Xi' The data are 

20 40 60 80 120 160 180 

9 8 10 9 19 10 8 

y; 22.94 41.58 65.46 58.81 81.74 82.15 96.59 94.01 

First we estimate an ordinary least squares regression line from the 

1\ 

observations y(x) = 34.43 + O.3310x. Now, for each Xi we calculate a p-value. If 

any p-value > 0 this indicates that we have not found the least squares 

estimate. 
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p(x) = (0.00, 59.69, 56.91,45.96, 38.05, 19.87,5.80, 0.00) 

The largest p-value is p(x2)= 59.69. This indicates that we should include x2=20 

as a bending point. Now we have to estimate two straight lines connected in x2• 

From the linear regression through a predetermined point we obtain 

A 

y(x) = 22.94 + 1.5490x 0::;; x::;; 20 

A 

Y (x) = 48.92 + 0.2505x 20::;; x ::;; 180. 

When we compare the regression coefficients we can see that the concavity 

restriction is fulfilled. Therefore we continue with the inclusion part to examine if 

any other point should be included in the regression procedure as a bending 

point. For each Xi' we calculate a p-value. 

p(x) = (0.00, 0.00, 10.27, 10.04, 11.90,7.11,2.60, 0.00) 

The largest p-value is p(x5)= 11.90, ie X5 = 80 is included as a bending point. 

Now we have to estimate three straight lines connected in x2 and in x5• From 

the linear regression procedure we obtain 

A 

y(x) = 22.94 + 1.0810x 0::;; x::;; 20 

A 

y(x) = 33.53 + 0.5513x 20::;; x::;; 80 

A 

y(x) = 64.52 + 0.1638x 80::;; x::;; 180. 

When we compare the regression coefficients we can see that the concavity 

restriction is fulfilled. Therefore we continue with the inclusion part to examine if 

a third point should be included in the regression procedure as a bending point. 

For each xi' we calculate a p-value. 
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p(x) = (0.00, 0.00, 2.47, -1.51, 0.00, -0.60, 0.58, 0.00) 

The largest p-value is p(x3)= 2.47, ie X3 = 40 is the new bending point. From the 

linear regression procedure with bending points in x2 ' X3 and X5 we obtain 

1\ 

Y (x) = 22.94 + 0.9320x 0 :::;; x :::;; 20 

1\ 

Y (x) = 23.46 + 0.9059x 20 :::;; x :::;; 40 

1\ 

y(x) = 43.03 + 0.4167x 40:::;; x:::;; 80 

1\ 

y(x) = 62.25 + 0.1765x 80:::;; x:::;; 180. 

From this result we can see that the regression coefficients fulfil the concavity 

restriction. We continue the inclusion part. For each Xi' we calculate a p-value. 

p(x) = ( 0.00, 0.00, 0.00, -2.72, 0.00, -0.12, 0.72, 0.00) 

The only p-value > 0 is p(x7)= 0.72 and x7 = 160 is included as a bending point. 

From the linear regression procedure we obtain 

1\ 

Y (x) = 22.94 + 0.9320x 0 :::;; x :::;; 20 

1\ 

y(x) = 23.83 + 0.9274x 20:::;; x:::;; 40 

1\ 

Y (x) = 45.70 + 0.3606x 40:::;; x :::;; 80 

1\ 

y(x) = 54.72 + 0.2479x 80:::;; x:::;; 160 

1\ 

Y (x) = 97.40 - 0.01882x 160:::;; x:::;; 180. 



23 

If we continue the inclusion part and calculate a p-value for each Xi then we can 

se that no obtained p-value > 0 and all b-values fulfil the concavity restriction. 

Thus we have found the least squares estimate which gives us the estimate of 

the regression function 

1\ 

y(x) = (22.94, 41.58, 60.13, 67.13, 74.55, 84.47, 94.39, 94.01). 

The least squares estimate gives us the sum of squares 1570.812. 
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