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Abstract 

Statistical surveillance is used for fast and secure detection of a critical 
event in a monitored process. This paper studies the performance for 
AR(l) processes. 

Two often suggested methods for detection of a shift in the mean, the 
modified Shewhart and the residual method, are compared and evaluated. 
Further, comparisons are made with direct Shewhart and a likelihood ratio 
method. 

New evaluation measures, the probability for successful detection and 
the predictive value, are also applied together with the average run length 
and run length distributions. 

We conclude that neither the modified nor the residual methods is uni­
formly optimal. The residual method is, however, optimal for immediate 
detection, but has inferior properties otherwise. For many parameter se­
tups, the modified method will give the better performance. 



1. Introduction 

Statistical surveillance is used for systematic monitoring of a process with the 
purpose to detect an unwanted departure from a specified state. Methods for 
Statistical Process Control (SPC) have been widely used for industrial, medi­
cal, economical, environmental and many other applications. Several textbooks 
have been published, for example Box and Luceno (1997), Montgomery (1997) 
or Wetherill and Brown (1991). Note the difference between hypothesis testing 
for a change-point on a fix set of data and surveillance: In both cases we do 
not know if something has happened and when. But statistical surveillance is 
used for situations where new data arrives at each time step. The procedure is 
repeated and there is no fixed hypothesis. 

One fundamental assumption required by standard methods is that the pro­
cess is iid (Independent and Identically Distributed) - a requirement which is often 
not met in practise. Removing the assumption of independence will affect the 
performance of the surveillance procedures. 

A survey by Alwan and Roberts (1995) of 235 quality control applications, 
where less than 50% of the studied applications were independent and less than 
15% were iid, gives a good motivation for studying this problem. Further, Alwan 
and Roberts (1995) together with Caulcutt (1995) and the discussion following 
them, testified about the frustration they have met with engineers who tried to 
apply SPC methods to autocorrelated data since the resulting monitoring system 
does not have the wanted properties. Stone and Taylor (1995) also pointed out 
that sometimes not even the ARIMA model is sufficient for the description of the 
process. 

The robustness of CUSUM and EWMA applied directly on the observed pro­
cess have been discussed by for example Bagshaw and Johnson (1975), Harris and 
Ross (1991), Johnson and Bagshaw (1974), Montgomery and Mastrangelo (1991), 
Schmid and Schone (1997), VanBrackle and Reynolds (1997) and Yashchin (1993). 

Among others, two solutions for the non iid case have been proposed by sev­
eral authors: We will call them the modified Shewhart method and the residual 
method, respectively. The methods will be described in detail below. The mod­
ified Shewhart method have been investigated by Vasilopoulos and Stamboulis 
(1978), for an AR(2) process. The residual method was suggested for ARIMA­
processes by Berthoux et al. (1978) and Alwan and Roberts (1988). Since these 
methods are often suggested and used in practise it is interesting to compare them 
with each other. Furthermore, we will briefly ex amplify what will happen if the 
process parameters are estimated during run-in under an assumed iid situation. 
We will call this method the direct Shewhart. 
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Often comparisons between the methods are limited to average run length. 
We will extend the evaluation using the predictive value and the probability 
of successful detection suggested by Frisen (1992). We will in this paper also 
compare the modified Shewhart and the residual method with examples of the 
likelihood ratio method in order to further examine their properties. 

In Section 2 a specification of the situation which is studied is given. In 
Section 3 the methods compared in this paper are defined in detail. Section 4 
contains results on the evaluation measures considered. In Section 5 the results 
and conclusions are discussed. 
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2. Specifications 

Consider a process that is observed at discrete time steps, t = 1,2,.... The 
data observed at time t is a continous stochastic variable denoted by X (t). The 
cumulated data up to time t is denoted by X t = ( X (1) ... X (t) ). Consis­
tently, the current value of any variable is denoted by time within parentheses, 
ego X (t), j1 (t), E (t) and w (t), while the cumulated sets are denoted by time in 
index, ego X t , j1t, Et and Wt. When the process behaves in the prescribed, wanted 
or expected way we say that it is "in control". Our general model for the in 
control part of the process is 

X (t) = f1 (t) + W (t), 

where 
W (t) = </J. w (t - 1) + E (t). (2.1 ) 

and the correlation I</JI < 1. The variable Et is normally distributed white noise 
with Var [E (t)] = ()"2 and E (t) is independent of Wt-l. Note that we are defining 
()"2 as the variance of the concealed error term, E. We will in this paper assume 
that </J, j1 and ()" are known and we can therefore without loss of generality set 
f1 (t) = 0 and ()" = 1. 

A t an unknown time, T, the process is disturbed and goes "out of control" . 
We study the case where a shift in j1 to a known value, 8, occurs, i.e. 

Hence the expected value of X is 

E [X (t)] = { 0 when t < T 
8 when t :.:::: T 

A t each time, s, we want to discriminate between two events, D (s) and C (s), 
where D (s) = {T > s} is the event of the process being in control. C (s) = 
{T = s} and C (s) = {T :S s} will be discussed. 

Figure 1 shows an example of an AR(I) process with a shift 8 = 10· ()" with 
T = 40. 
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3. Methods for Monitoring an AR(l) Process 

When the monitored process is not iid but autoregressive the properties of the 
standard methods are changed. In this paper we will study some methods that 
are often suggested in the literature for this case: "Direct Shewhart", where the 
time series structure is not taken into account; "Modified Shewhart", where the 
limits have been altered to give a specific average run length and" Residual She­
whart" , where the forecast errors are used for monitoring. As a benchmark these 
methods will be compared with the likelihood ratio method. The name" modified 
Shewhart" was given by Schmid (1995) and exact limits for some processes have 
been given by Vasilopoulus and Stamboulis (1978). The residual method was 
suggested by Alwan and Roberts (1988) and Berthoux et al. (1978). 

We will in this paper restrict attention to the AR(I) process (2.1) with </; > o. 

3.1. Direct Shewhart 

If time dependence is not taken into account a user might estimate the mean 
and the variance during run-in. In the case of an iid process, X, the Shewhart 
procedure, suggested by Shewhart (1931), prescribes that an alarm is called when 

IX (t)1 > k· (]", 

where the constant k is set to give a certain proabability of calling a false alarm. 
In traditional SPC litterature k is often 3 or 3.09. However, for a stationary 
AR(I) process the variance of X becomes 

(]"2 

(]"; = Var [X (t)] = </;2 
1-

Estimating the variance with a very large number of observations and using the 
same constant k an alarm will be called when 

IX (t) I > k . (]" = k . (]" . 1 
x VI - </;2 

(3.1) 

Since (1 - </;2r1/2 > 1 these limits will become greater than the limits for an iid 
process with variance (]"2. 
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3.2. Modified Shewhart 

The direct Shewhart will, as we will see in later Sections, have some undesirable 
properties, ego an ARLo (Section 4.1) that is depending on ¢. A straightforward 
solution to that problem could be to adjust the control limits of the Shewhart 
chart to give the wanted ARLo. 

Define c (¢) as the factor adjusting the limits of the iid Shewhart so that an 
alarm is called when 

IX (t) I > k . (J • c (¢) . 

Since ¢ > 0 ~ Var [Xl> (J2 it follows that c (¢) > 1. In Table 3.1, the adjusting 
factors have been estimated by computer simulation to yield ARLo = 11, the 
limits are also plotted in Figure 3 together with the limits obtained by using the 
direct Shewhart (3.1) with ARLo = 11 for ¢ = o. 

¢ Modified Direct 
c (¢) (1 - ¢2rl/2 ARLo 

0.0 1.000 1.000 11.00 
0.2 1.014 1.020 11.26 
0.4 1.060 1.091 12.17 
0.6 1.155 1.250 14.36 
0.8 1.363 1.667 20.99 

Table 3.1: Comparison between the adjusting factors of the modifed and direct 
Shewhart. 

We see that c(¢) < (1-pr1
/

2
, i.e. the direct Shewhart is having higher 

alarm limits than the modified. Therefore it follows that that the ARLo is higher 
for the direct than for the modified Shewhart. 

3.3. Residual Method 

The idea ofthe residual method is that the current value, X (s), and its expecta­
tion given the past value are compared and the difference is used for monitoring. 
A similar approach is used by the Food and Drug Administration (FDA) as a 
guideline in postmarketing surveillance of adverse effects of drugs, where con­
sequtive quarters are compared (Svereus, 1995). Also the National Institute for 
Radiation Protection (SSI) uses differences in mean between consequtive 24 hour­
period means to detect suddenly increasing background radiation levels (Kjelle, 
1987). Other examples of applications of the residual method can be found in 
Harris and Ross (1991), Montgomery (1997), Notohardjono and Ermer (1986) 
and Pettersson (1998). 
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Based on the second last observation, X (s - 1), a forecast of X (s) is 

X(t)=¢.x(t-1). 

The residual is here defined as the difference between the observed value and its 
forecast, i. e. 

R (t) = X (t) - X (t) = X (t) - ¢. X (t - 1). 

When t < 7 the residual R (t) = 6 (t). But generally the residual becomes 

R (t) = 6 (t) + 6 (t), 

where 

6 (t) = E [R (t)] = { ~ 
(1 - ¢) 6' 

when t < 7 

when t = 7 

when t > 7 

For a fixed value of 7 

VaT' [R (t)] = VaT' [6 (t)] = 0'2. 

and a Shewhart test used for R would call an alarm when 

[R (t)[ > k· 0', 

where k is a constant. 
When ¢ > 0, the expected value will decrease after 7 and 

E [R(t)] < E [R(7)], for t = 7 + 1,7 + 2, ... 

(3.2) 

In Figure 1 we see an example of an simulated AR(l) process, with a shift at 
t = 40 of the size 100'. Figure 2 shows the residuals, i.e. forecast errors, of 
the process in Figure 1, where E[R(40)] = 10 and E[R(t)] = 5 for t > 40. 
That have earlier been observed by among others Harris and Ross (1991), Ryan 
(1991), Superville and Adams (1994) and Wardell et al. (1994) and for time series 
analysis by among others Enders (1995), Fox (1972) and Wei (1990). 

3.4. Likelihood Ratio Method 

It is possible to derive a method which have certain optimality properties. For a 
fixed false alarm rate and a fixed time, an alarm set based on the likelihood ratio 
statistic (IT') have the highest probability of calling an alarm when the process 
have gone out of control (Frisen and de Mare, 1991). Sequential procedures with 
minimal expected delay are based on this statistic. This approach will not be 
studied in detail in this paper, except for some illustrative examples intended to 
give insight in the properties of the methods studied. 
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The likelihood ratio statistic, 11 (Xs), is defined as 

1 (X)=f( X s IC(3)) 
I s f(XsID(3))' 

where f (Xs I D (3)) and f (Xs I C (3)) is the probability density function of Xs 
under the in- and out-of control states, respectively. Since X (t) given X t - I is 
normally distributed with 

E [X (t) I X t- I ] = rP' X (t - 1) + 6. (t) 

and Val [X (t)] = CT 2 the probability distribution function becomes 

1 {I 2} fX(tlIX t - 1 (x (t), x (t - 1)) = !CL exp --2 (x - rP' x (t - 1) + 6. (t)) , 
V 27rCT 2CT 

where 6. (t) = 0 for t < T (3.2). Further, using that 

f (Xs) = f (X (3) I Xs- 1 ) . f (X (3 - 1) I Xs- 2 ) ..... f (X (1)) 

the 11 statistic for D (3) = {T > 3} and C (3) = {T = k S; 3} reduces to 

Cancelling constants and using the properties of the exponential function we find 
that the 11 statistic depends on the data only through 

s 

L: (X (i) - rP . X (i - 1) + 6. (i))2 - (X (i) - rP . X (i - 1))2 
i=k 

s 

= L: [2· X (i) .6. (i) - 2rP' X (i - 1) .6. (i)] 
i=k 

s s 

= 2 L: [X (i) - rP' X (i - 1)] . 6. (i) = 2 L: R (i) . 6. (i) . 

Now, using the specification (3.2) for 6. we find that the 11 statistic depends on 
the data only through 

s 

R(k)+(l-rP) L: R(i), 
i=k+1 

for C {T = k} when k < 3 and R (3) for C {T = 3}. Hence the likelihood ratio 
statistic for immediate detection, C (3) = {T = 3}, depends on the data only 
through R (3). However, for other specifications of C (3) this is no longer the 
case. The likelihood ratio statistic for C (3) = {T = k} becomes a function of 
R(k), ... ,R(3). 
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4. Results 

In this section numerical results comparing the methods are presented. To com­
pare different methods, several evaluation measures have been suggested, see 
Frisen (1992) and Frisen and Wessman (1998) for overviews. The choise of which 
measure should be used as guidance has to be decided by using knowledge of the 
specific application. 

We will study an AR(I) process with parameter 0 < ¢ < 1 and without loss 
of generality we set fl = 0 and a- = 1. We will use a two-sided Shewhart test, with 
the limits set to give ARLo = 11. For many applications this might be too small 
but it will anyway show the impact of the autocorrelation on the surveillance 
procedures. 

The critical event is a shift in mean from 0 to 8 . a- occuring at time T. To 
calculate the predictive value and probability of successful detection we need 
knowledge of the run length given any value of T, which is an extension from 
earlier papers on this matter, where only the cases T = 1 or T = 00 have been 
considered. At calculation of the predictive value, we will a priori assume that T 

is geometrically distributed, 

iT (t) = 1/ • (1 - l/)t-l ,t = 1,2, ... , 

where 1/ is the failure rate or incidence, i.e. 1/ = P {T = tiT ~ t}, for t = 1,2, .... 

4.1. The Run Length Distribution 

The time to the first alarm, that is the run length, tA, is of special interest. When 
tA < T the alarm is false and otherwise it is true. The stochastic variable tA is 
a stopping time with outcomes in {I, 2, ... }. Figure 4 shows the the probability 
density function for the run length, itA' for the modified and residual method 
when fl (t) 0 which is denoted by T = 00. 

An often used summarizing value is the Average Run Length (ARL). More 
specifically, we define 

ARLo = E [tAl T = 00] , 

the average run length when the process is in control. In quality control literature, 
the ARLo is often compared with 

ARLl = E [t A I T = 1] . 

For the residual method, the probability of calling a false alarm at a specific 
time is 

po = P (I R (t) I > ka-) = 2 (1 - <I> (k )) , 
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where <I> denotes the cumulative probability density function for the standard 
normal distribution. The expectation E [R (t)] is depending on the time since 
the shift (3.2). The probability of calling an alarm for t ~ T becomes 

P AO = P (t A = T) = P (I R ( t) I > kit = T) = 1 - <I> (k - 8) - <I> ( - k - 8) 

and 

PAl = P (t A = tit > T) = 1 - <I> (k - 8 . (1 - 1;)) - <I> ( - k - 8 . (1 - 1;)) . 

The average run lengths ARLo and ARLI becomes 

and 

00 

ARLo = 2: i . P (t A = i I T = 00) 
i=l 

~ . (1 )i-l 1 w'/, . Po . - Po = -
i=l Po 

ARLI = 1· P (tA = 1 IT = 1) + E [tA ItA> 1]· P (tA > 1 IT = 1) 

PAO + (_1 + 1) . (1 - PAO) 
PAl 

1 - PAO + PAl 

PAl 

For the direct Shewhart the ARLo depends on 1; (Figure 5). Therefore it is not 
directly comparable with the other methods. It will be excluded from analyses 
with measurements of detection power. 

Figure 6 presents the ARLI for the residual and modified Shewhart where the 
values for the latter have been obtained using computer simulations. Comparing 
them, we find that they both have an ARLI that increases with 1;, but ARLI 
for the residual method is higher than the ARLI for the modified method. Using 
the run lengths would therefore favour the modified Shewhart method. When 
1; ~ 0.6 there is a substantial difference. 

These ARL functions have earlier been described by Schmid (1995), Wardell 
et al. (1994) and Zhang (1997). They found that the modified method has a 
smaller ARLI than the residual method, given a fixed ARLo. Also Schmid and 
Schone (1997) and Superville and Adams (1994) have found the same. 
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4.2. Probability of Successful Detection 

For some applications it is crucial that a change is detected within a certain 
time, say d time steps. If an alarm is called within d time steps, actions can be 
taken to prevent the negative effects of the change. A relevant measure for such 
applications is the Probability of Successful Detection (P SD). We define 

P{s<tA<s+dl7"=s} 
PSD(s,d,¢)=P{tA<S+dltA~S,7"=S}= P-{ I } 

tA ~ s 7" = S 

(Frisen, 1992). The P S D is generally a function of the time of the change, 7". The 
properties of the Shewhart test implies that the P S D for the residual method is 
constant over time: 

P SDres (d, ¢) = 1 - (1 - PAO) . (1 - PAl)d-l . 

Also the P S D for the modified Shewhart is constant over time and have been 
estimated by computer simulations. 

In the special case where d = 1, i. e. the probability of immediate detection, 
the residual is better than the modified (Figure 7). When ¢ = 0 the PSD for 
both the methods are equal. From Figure 8, where some values of the P S D for 
d > 1 are plotted, we see that the performance of both the residual and modified 
methods get worse when ¢ grows. Further, we can see that for values ¢ ~ 0.7 or 
smaller the modified method will have a higher probability of calling an alarm 
here. When ¢ is close to one, the P S D becomes higher for the residual method 
than for the modified depending on that it still has a high probability of calling 
an alarm at t = 7. 

4.3. Predictive Value 

As an alarm is called we want to know how certain we can be that a change has 
occured. A measure for this is the Predictive Value (PV), defined as 

PV(s) = P{7"::; S ItA = s}, 

(Frisen, 1992). It can be rewritten as the proportion of motivated alarms of all 
alarms at time s, i.e. 

P{tA=sl\7"::;S} PMA(s) 
PV(s) = P{tA = s} = PMA(s) +PFA(s)' 

when P {tA = s} > O. When PV is close to 1 the alarm is highly motivated. 
We define the Probability of a False Alarm (PFA) occuring at time s as 

P F A (s) = P {tA = s I 7" > s} . P {7" > s} . ( 4.1) 
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The Probability of a Motivated Alarm (PMA) is not only depending on the time 
of the alarm, s, but also on the actual time of the change, T, and the event to be 
detected. The PM A is calculated by conditioning on T and using the distribution 
of T 

8 

PM A ( s, 8) = 2: P { t A = SiT = t} . P {T = t} . (4.2) 
t=l 

To derive the PV for the residual method we find the P F A using (4.1) 

P F A (t) = po . (1 - Po) t-l . (1 - v) t , 

which is independent of ef. Secondly, we use (4.2) to find PM A 

8 

PMA(s) = 2:v(l-v)t-l.l(s,t,ef), 
t=l 

where I (s, t, ef) = P {tA = SiT = t} for t :::; s. For the residual method I (s, t, ef) 
can be calculated exactly and 

PMAre8 (s) = v· (1 _v)8-1. (1- Pot-I. PA (0) 
8-1 + I: v· (1 - V)t-l . (1 - PO)t-l (1 - PA (O)t-t-l . PA (1). 
t=l 

For the modified Shewhart the I-function, po and PA have been estimated by 
computer simulations. In Figure 9 PV for ef = 0, ef = 0.2 and ef = 0.9 of the 
residual and modified method are plotted. Often it is reasonable to choose an 
ARLo high enough to ensure that the monitoring stops before the t = ARLo 
when T = 1. When t < ARLo 

eft < ef" =? PV (t, eft) > PV (t, ef") , 

for the cases presented in the figure. Further, when t = 3,4, ... the predictive 
value for the modified Shewhart is higher than for the residual method. Initially 
the modified Shewhart is having a very poor PV, which is depending on the high 
£lase alarm probability at t = 1 (Figure 4). At t = 2 the methods are almost 
equal, but the modified method is better when ef = 0.9 and the residual when 
ef = 0.2. 
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5. Discussion 

The direct Shewhart method will have an ARLo which is increasing with cPo 

In order to obtain a constant ARLo the limits would have to be adjusted and 
set equivalent with the modified Shewhart. Hence direct Shewhart is not fully 
comparable with the others. 

The likelihood ratio method is optimal in the Neyman-Pearson sense, i.e. 
have the highest probability of calling a true alarm given a specific false alarm 
pro bability (Frisen and de Mare, 1991). When the method is optimized to detect 
a change immediately, i. e. when C (8) = {T = 8}, the lr method and the residual 
method become equivalent, and in the special case cP = 0 also the modified and 
direct Shewhart methods become equvivalent with the likelihood ratio. For other 
specifications of C (8), eg. an event occuring at a specified time, t < T, the lr 
statistic is not a function of R (8) or X (8) only. 

Apart from the case C (8) = {T = 8}, both the residual and the modified She­
whart are suboptimal. As was seen above, the residual method is not monitoring 
the level of the mean, but instead the change in level of the mean. This effect 
have been observed and discussed by among others Harris and Ross (1991), Ryan 
(1991), Superville and Adams (1994) and Wardell et al. (1992,1994). Wardell 
et al. (1994) showed that the run length distribution after a shift has occured 
is almost equal to the in control run length distribution, one time step after the 
shift. 

Clearly, if we can identify the process under study and the requirements we 
have on the surveillance procedure, it might be possible to construct an optimallr 
procedure. However, reducing the data with the tranformations presented above 
will, except in a few special cases, lead to a loss of information and suboptimal 
procedures. Applying EWMA or CUSUM on the reduced data can not get that 
information back. 

Summarizing the findings about the ARLl, PSD and PV (for t < ARLo) 
we see that for most of the cases studied both the modified and the residual 
methods have worse performance for larger values of cPo For cP ~ 0.7 and smaller, 
the modified method will be better, except for immediate detection. The low 
PV (1) for the modified method is due to the high probability of a false alarm at 
t = 1. Zhang (1997) pointed out, as a rule of thumb, that the residual method is 
to prefer when 0 > 2 and cP > 0.8. 

As have been noted by many authors before, the residual chart does not 
give a full picture of the process and is only sufficient for some specifications 
of the considered process. To overcome the disadvantages of the residual and 
modified methods Adams et al. (1994) suggested that both the observed and 
residual processes should be used simultanously. Alwan (1992) compared the 
alarms given by either of the observed and residual process. This approach will 
lead to a multivariate monitoring problem, discussed by ego Jones et al. (1970), 
Kramer and Schmid (1997) and Wessman (1998). 
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From the results in the earlier Sections we find that one method is not always 
uniformly better than the other. Neither the residual nor the modified method 
are optimal except in a few special settings, for example the residual method for 
the situation of immediate detection of a shift. 
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Legend to Figures 

1. Simulated example of an AR(I) process (cjJ = 0.5) with a shift in mean, 
f1 (t) = 10·1 {t = 40,41, ... }. 

2. The residuals, R (t), from the process in Figure 1. 

3. The alarm limits for the direct (solid) and modified (dotted) shewhart for 
different values of cjJ. 

4. The pdf of the in control run length, ft (t), for the modified Shewhart 
(cross) and the residual method (ring) for a process with high autocorrela­
tion (cjJ = 0.9). 

5. The ARLo for direct shewhart for different values of cjJ. The limits were set 
to make ARLo = 11 for cjJ = o. 

6. The ARLI for the modified Shewhart (dotted) and the residual method 
(solid) for different values of cjJ, where ARLo = 11. 

7. The PSD (1), i.e. the probability of immediate detection after a change, 
for the modified (dotted) and residual method (solid) for different values of 
cjJ, where ARLo = 11. 

8. The PSD (d), i.e. the probability of detection before d timesteps after the 
change, for the modified (dotted) and residual (solid) method for different 
values of cjJ, where ARLo = 11. The upper and lower pairs have d = 7 and 
d = 3, respectively. 

9. The PV (t), i.e. the predictive value of an alarm at time t, for the modified 
and residual method, where cjJ = 0.2 and cjJ = 0.9. The solid lines for the 
residual method and dotted for the modified Shewhart. (X) marks for the 
situation where cjJ = 0.2 and (0) for cjJ = 0.9. The dotted line without marks 
is for cjJ = o. The incidence v = 0.1. 
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