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ABSTRACT 

Surveillance to detect changes of spatial patterns is of interest in many areas such 
as environmental control and regional analysis. Here the interaction parameter of 
the Ising model, is considered. A minimal sufficient statistic and its asymptotic 
distribution are used. It is demonstrated that earlier results on surveillance of a 
normally distributed random variable can be used for interesting cases. Properties 
such as expected delay and false alarm are examined for some examples. 
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1 

INTRODUCTION 

Due to several environmental issues, such as radiation change detection, 
forestry disease surveillance, earthquake warning system, climate change de­
tection and others, results about methods for judging whether a change in the 
behaviour of a spatial process has occurred or not, are strongly demanded. 
Two different approaches are 

• CHANGEPOINT ANALYSIS The data consists of a realisation of the 
whole process and the surveillance task is to detect whether or not 
a change has occurred . 

• SURVEILLANCE The data accumulates in time and it is decided "on­
line" whether or not a change has occurred yet. 

In this paper we will only be dealing with the latter of these two. For further 
reading see e.g. Basseville and Nikiforov [1], Frisen [4], Frisen and de Mare 
[5], Frisen and Wessman [6], Lai [13] or Wessman [31]. 

Quite recently Rogerson [24] investigated surveillance systems for moni­
toring the development of spatial patterns. Rogerson made an overview of 
surveillance approaches to the study of spatial clustering and concluded that 
they were rare. His suggestion was to use the cusum stopping rule of an index 
(Tango statistic) to detect a change in clustering. Rudemo and Tsybakov [26] 
analysed spatial change-point models for two-segment images with a linear 
boundary. Asymptotic distributions for piece-wise constant contour estima­
tors for data of change-point type was examined by Rudemo and Stryhn [25] 
and spatial change-point models with application to image segmentation by 
Stryhn [29]. Tsybakov [30] considered changes of contours in image analysis 
and in point processes. The former area was also studied by Martin and 
Scott [15] and the latter by Le, Petkau and Rosychuk [14]. All these studies 
dealt with change-point problems in point processes. 

In this paper we deal with a finite Markov random field denoted by X 
distributed according to the Ising model with zero exterior field. The reason 
for considering this model is that it is a simple non-trivial spatial interaction 
model and an investigation of this should therefore be a first step towards 
treating more sophisticated change point problems concerned with spatial 
data. We think of X(l), ... , X(t) as a development of X through the times 
1, ... ,t. Supposing there is a change in the interaction parameter of the dis­
tribution of X at a random time point and that the sequence of observations 
X(l), X(2), ... are conditionally independent given the time of change, we 
want to establish appropriate methods for detecting that change as soon and 
as accurately as possible after it has happened. 
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For this purpose, some statistic which reflects the amount of interaction, 
is of interest. One could use an estimator of the parameter, such as the 
maximum likelihood which has good properties as an estimator. We use 
another statistic sufficient for the interaction parameter. This means that 
no information reduction is made. We concentrate upon a minimal sufficient 
statistic which is approximately normally distributed for large lattice sizes. 
Since methods for surveillance of normal random variables are well studied 
problems (especially for the case when there is only a change in the expected 
value), many properties of the methods for surveillance of this statistic have 
been examined. Thus, the situations to which the methods of surveillance 
of univariate normal random variables apply, can be extended to include the 
problem of change of interaction in the Ising model with zero exterior field 
for large lattice sizes. 

The paper is organized as follows: in Section 1 we will be treating spatial 
matters and in Sections 2 and 3, spatial surveillance. 

1 SPATIAL MODEL 

1.1 Markov Random Field 

We briefly introduce the spatial model, Markov random field (MRF). A more 
thorough presentation of MRF's can be found in e.g. Kindermann and Snell 
[12] or M¢ller [16]. 

Let An = {1, 2, ... n 2
} be a finite set consisting of n 2 positions, called 
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Figure 1: The n x n lattice An. 

sites, forming an n x n square lattice in Z2 (as shown in Figure 1). Each 
site possesses one of two possible states, 0 or 1. The configuration space 
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is a product space E = {O, I} n 
2 

with a 0" -algebra, £, of all possible subsets 
of E. Let X = {XihEAn be a stochastic process on some probability space 
(rJ, F, P) formed by the random variables Xi: rJ -t {O, I} where i E An. If 
BeAn, we denote {XihEB by XB. Since An is finite, so is E. X is assumed 
to have a distribution with density p(x) (where x denote a realisation of X) 
with respect to the counting measure on E. For convenience, we assume the 
positivity condition which, according to Besag [2], is due to Hammersley and 
Clifford [10] and is defined as follows. 

DEFINITION 1 The stochastic process X = {XihEAn is said to fulfill 
a POSITIVITY CONDITION if P[Xi=Xi] >0 for each iEAn implies that 
P[XI =XI, ... ,Xn2 =Xn2] > O. 

DEFINITION 2 A NEIGHBOURHOOD RELATION is a relation, denoted by rv, 
such that i rf i and i rv j ::::} j rv i for each i, JEAn. The sites i and j are then 
called NEIGHBOURS. 

One may define different neighbourhood relations. We define that two sites 
are neighbours, i rv j, if lIi-j II = 1, where II ·11 denotes the Euclidean distance 
(see Figure 2). Then the sites i and j are called FIRST ORDER NEIGHBOURS. 

)(i-l ~ )(i ~ )(i+l 

t 

Figure 2: A site i has four neighbours, i - n, i-I, i + 1, i + n. Therefore, a 
state Xi depends on its neighbouring states X i- n, Xi-I, X i+1 and X i+n. 

DEFINITION 3 The NEIGHBOURHOOD ofi is the set 8i = {jEAn: irvj}. 

DEFINITION 4 A stochastic process X = {XihEAn is called a MARKOV RAN­
DOM FIELD if 

P[Xi=xiIXAn\{i}=xAn\{i}] = P[Xi=xiIXai=x8i] (1) 

for each iEAn and xEE. 

The conditional distributions in (1) are called LOCAL CHARACTERISTICS and 
(1) is called the MARKOV PROPERTY. It can be shown that a Markov random 
field is uniquely determined by its local characteristics (M011er [16]). 
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1.2 Ising Model 

For this first study of spatial surveillance, we would like to consider a simple 
spatial model. Later, extensions of it may be made for more applicable mod­
els. The two-dimensional Ising model with zero exterior field (by Pickard 
called the most simple non-trivial case [22]) is a simple MRF model with the 
non-trivial characteristic of phase transition. 

Let us first define some general concepts. 

DEFINITION 5 A non-empty set C of sites in An is called a CLIQUE if C 
consists of a single site or if j rv i for each distinct i, j E C. The family of all 
cliques of An is denoted by C. 

Thus, in an MRF with first order neighbours, all cliques are of size 1 or 2. 

DEFINITION 6 X is a GIBBS PROCESS if its distribution is of the form 
p(x; 0) = Z-l exp( -U(x; 0)), where Z = EyEE exp( -U(y; 0)) is a NORMAL­
IZING CONSTANT (or partition function), U(x; 0) = ECEC Vc(x; 0) is the EN­
ERGY FUNCTION and all functions Vc (x; 0) : Ex8 -t 1R (called POTENTIALS) 
depend on X only through XC. 0 is a parameter vector in the distribution p 
with values in the parameter space 8. 

Due to the fundamental Hammersley-Clifford theorem, inference in MRF's is 
much simplified. 

THEOREM 1 (HAMMERSLEy-CLIFFORD) X is a Markov random field iff X 
is a Gibbs process. 

The original proof can (according to Besag [2] who himself gives an alterna­
tive proof) be found in Hammersley and Clifford [10]. 

DEFINITION 7 The ISING MODEL WITH ZERO EXTERIOR FIELD is a special 
case of the distribution of the Gibbs process p(x; ¢) with potential functions 

V, ( . ¢) _ {¢I(Xi=Xj) whenever C = {i,j} 
C x, - 0 whenever C is a single site 

where C is a clique, ¢ is a real valued parameter and I(L) is an indicator 
function, i.e. unity whenever L is true and zero otherwise. 

Since the Ising model is so simple, we may write the distribution as 

p(X; ¢) = ~ exp ( - ¢ L L I(xi=xj)) 
iEAn jE8i:j<i 
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where Z = Z(¢) = I:yEEeXP ( - ¢ I:iEAn I:jE8i:j<iI(xi=Xj)). 
The value of the interaction parameter ¢ tells us whether we are likely to 

get an attractive or a repulsive pattern. When ¢ is negative the neighbours 
tend to have the same values and when ¢ is positive then the neighbouring 
sites tend to have different values. The ultimate attraction case corresponds 
to configurations with all states alike, either O's or 1 'so The ultimate repulsion 
case corresponds to "chessboard configurations". The condition j < i, in 
the summation index in the energy function, fixes the pair-potential sum so 
that we only count an interaction contribution once. This is equivalent to 
letting U (x; ¢) = ~ I:iEAn I:jE8i I( Xi = Xj). 

This model is essentially the model in Besag [2] and Ising [12]. Most 
commonly the possible states are -1 and 1 and the energy is U(x; ¢) = 
¢ I:iEAn I:jE8i:j<i Xi Xj. These settings are equivalent to ours. Besag, on 
the other hand, combines the state space {O, I} with an energy U (x; ¢) = 
¢ I:iEAn I:jE8i:j<i Xi Xj which therefore gives rise to a little different situa­
tion. 

Let ~i(X) = I:jEAn\i I:kEAn\i:k<jI(xj = Xk)' Then the LOCAL CONDI­
TIONAL DISTRIBUTION, given the neighbourhood, is 

P[X = x] i exp( -U(x; ¢)) 

P[XAn\i = XAn\i] i I:xiE{O,l} exp( -U(x; ¢)) 

exp ( - ¢~i(X) - ¢ .I:.I(xi=xj)) 
JE8z 

where Zi = e-¢ I:jE8iI(Xj=O)+ e-¢ I:jE8iI(Xj=1) is the LOCAL NORMALIZING CON­

STANT. 

REMARK Let us consider the special cases with one neighbourhood con­
sisting of only O's denoted by {O, 0, 0, O} and another of only l's {I, 1, 1, I}. 
Then 

{
I as¢-+-oo 

PXilx8i(01{0,0,0,0};¢)-+ ° A.. as ,/-,-+00 

{ ° as¢-+-oo 
PXilx8i (0 I {I, 1, 1, I}; ¢) -+ 1 A.. as ,/-,-+00 
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which might serve as an illustration to the fact that in the Ising model 

¢ = -00 ::::} Xi = Xj a.s. for all i, JEAn (2) 

and 
¢ = 00 ::::} Xi =F Xj a.s. for all i E An, j E [)i. (3) 

A major feature of the Ising model concerns the random variable ;2 '2:iEAnXi. 
The conditional distribution of Xi, given X ai , is unique for all values of 

Phi =-0.9 Phl=-O,8 

~U:UI~~ 
-o,A .0.2 0.0 0.2 0... -0" 0(1.2 0.0 0.2 o..c ,1).01 ·0.2 0.0 0.2 0.4 , , , 

Phl=-O.6 Phl=O Phl=1 

!ll~JL~~ 
.(1,01 .(1.2 ~.o 0.2 o..c .(Io4.(I.2~.o 0.2 0.4 -0" .0.2 ~ 0.2 M 

Figure 3: Empirical distribution of k - l~O '2:iEAlO Xi (the centered average 
number of 1 's in an Ising pattern X) for some values of ¢ based on 5000 
simulations of X. 

¢. However, for ¢ negative large enough, i.e. ¢ < ¢_ ~ -0.88, the limit 
distribution of ;2 '2:iEAnXi as n tends to infinity is not unique (its empirical 
distribution for the 10 x 10-lattice is shown in Figure 3), Kindermann and 
Snell [12]. This phenomenon is called PHASE TRANSITION and it is, according 
to Kindermann and Snell, characterized by the limit result proved by Georgii 
[8]: as n tends to infinity 

k ( 1 + (1- sinh -4¢ ) ~ ) 1 } w.p. "2 
if ¢ < ¢_ 1 v k ( 1 - (1- sinh-4¢ ) ~ ) -LX- --+ 1 

2 2 w.p. "2 n iEAn 
1 if ¢ > ¢_ "2 

as plotted in Figure 4. (One can also prove a similar result for ¢ > 0, Kin­
dermann and Snell [12].) 

The result (2) can be proved in the case of a square lattice MRF simply 
by taking the distribution of the random variable limn-+oo ;2 '2:iEAn Xi to 
the limit as ¢--+ -00. For the second claim (3), consider an attractive Ising 
configuration. A pattern with the same amount of repulsion may be achieved 
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1 J 
.,,. <.., <.ro <" 

"'" 

Figure 4: lim ~ LiEA Xi plotted against ¢. 
n-+oo n n 

by switching all states at odd sites of an attractive configuration: trade Xi 
for I-xi. Then the previous result implies the result in (3). More formally, 
decomposing An into A~ and A~ (see Figure 5), one observes that the energy 

u 
Figure 5: Partition of An into A~ and A~. 

function for X "D p(x; ¢) is just 

iEAn jE8i:j<i 

~ L L (l-I(xi=l-Xj)) + ~ L L (l-I(l-Xi=Xj)) 
iEAri. jE8i iEA~ jE8i 

2n2¢- U(XAri. U(Jn -X)A~; -¢) 

where I n means the nxn configuration of alII's. Therefore p(x; ¢) = 
p(XAri.U(Jn-X)A~; -¢) since the first term, 2n2¢, in the last expression cancels 
out against the same contribution from the normalizing constant. Since 
Xi=l-Xj a.s. in our case with O-I-states is the same as Xii-Xj a.s., (2) 
implies (3). 

1.3 ML Estimation of the Interaction Parameter 

For surveillance of ¢, some statistic which reflects the amount of interaction 
in a realisation X of X, is of interest. One idea is that if there is a change 
in ¢, this could be recognized as a shift of an estimator of ¢. Therefore we 
focus on the maximum likelihood (ML) estimator in this section. 
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The maximum likelihood estimator of ¢ is the value that maximizes the 
likelihood function 

L(¢; x) = 
2:yEE exp ( - ¢ 2:iEAn 2:jE8i:j<i I(Yi = Yj) ) 

and the log likelihood function 

l(¢;x) = -¢L L I(Xi=Xj)-IOg(LexP(-¢L L I(Yi=Yj))). 
iEAn jE8i:j<i yEE iEAn jE8i:j<i 

In short this is to say that we want to solve the equation 

L L I(xi=xj) = Ecf>[ L L I(Xi=Xj) 1 (4) 
iEAn jE8i:j<i iEAnjE8i:j<i 

with respect to ¢. The maximum likelihood estimator has been proved to 
be consistent and asymptotically normal (Besag [3]). However the expected 
value on the right hand side of the equation (4) cannot be calculated ana­
lytically (except for very small lattice sizes, and even then the explicit forms 
are horrifying) since we would have to go through all 2n2 possible realisa­
tions of X. Some successful efforts have been made to find an approximate 
maximum likelihood estimator (see e.g. Geyer and Thompson [9]) but this 
does not change the fact that such an estimator of ¢ is only available as an 
implicit solution of an equation. 

1.4 Sufficient Statistic 

If we could find a statistic sufficient for ¢ we would not need any estimator 
for surveillance. Therefore, let us recall the global distribution of X 

p(x;¢) = ~exp (- ¢ L L I(xi=xj)) 
iEAn jE8i:j<i 

which is a member of the exponential family. 
DEFINITION 8 

1 
Sn = 2" L L I(Xi=Xj) 

n iEAn jE8i:j<i 

Of course Sn is a.s. on the closed interval [0,2] for any values of nand ¢. 
Low values of Sn indicate repulsion and large values attraction. 

OBSERVATION 1 Sn is minimal sufficient for ¢. 

Since the Ising model is an exponential family member, this is immediate. 
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1.4.1 Limit Moments 

For surveillance of cp based upon Sn, we need to know the distribution of Sn. 
For cp=O we have that P[Xi=O] = P[Xi=1] = 1/2 for each i = 1,2, ... ,n2 

implying that 

n2Sn = L L I(Xi=Xj) 'D Bin(1/2, 2n2). (5) 
iEAn jEoi:j<i 

The distribution of Sn when cp =1= 0 is not as simple to derive. It has been 
shown that Sn is asymptotically normal (Pickard [21]). The moments of Sn 
are possible to calculate directly only for very small lattice sizes n x n since, 
in order to calculate the normalizing constant, one has to go through all 2n2 

possible configurations in E. Let us, for approximate values of the first and 
second moments, turn to the limit moments of Sn for a while and then return 
to the finite case which is what we are interested in. 

To get a first idea of limn--+oo E4>[Sn] one may derive from (2), (3) and (5) 
that 

cp= -00 =} Xi a.s. Xj for all i, JEAn =} 

cp=O =} Xi, Xj independent =} 

a.s. 
cp=oo =} Xi =1= Xj for all iEAn, j Eoi =} 

lim E-oo [Sn] = 2 
n--+oo 
lim Eo [Sn] = 1 

n--+oo 

From these three values one may roughly guess how liffin--+oo E4>[Sn] looks but, 
as we shall see, there is one important feature of this limit which maybe is 
not immediately discernible. 

Let us recall the derivation of the expected value and variance of Sn 
(Pickard [21]). Let Zn (cp) be the normalizing constant in the n x n lattice 
Ising model with zero exterior field. 

Differentiating log Zn(CP) with respect to cp, we see that 
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d~ ( - Zn~</» ~ n 2
Sn exp( -</>n

2
Sn)) 

I:n4S~exp(-¢n2Sn) I:n2Snexp(-¢n2Sn). ~Z ("') 
Zn(¢) + Zn(¢)2 d¢ n 'P 

n4 Vare/>[Sn]' 

The limit ((¢) = liffin-+oo log Zn(¢)/n2 may be calculated explicitly in terms 
of ¢ (Onsager [18]) as 

((¢) = lim logZn(¢) = 
n-+oo n2 

log(( 2
nl
.)2) + ~ r2

71" r2
71"log ((1+'l/J2)2 + 2'I/J(1-'l/J2)(cosu+cosv)) dudv 

1 + 'P 81f J 0 J 0 , # 

' '---, ..... J,e/» # '2 (e/>:u,v) 

where 'I/J = tanh *. Observe the removable singularities at cos u = cos v = 1, 
'I/J = V2 ± 1 i.e. ¢ = ± log( V2 - 1), the critical values, ¢_ and ¢+, of the 
parameter at which phase transition occurs! (and the first derivative of 
( with respect to ¢, (', are continuous on the lot of IR while the second 
derivative of ( with respect to ¢, (", is continuous on IR \ { ¢_, ¢+}. Let 
us restrict to the case where ¢ E (¢_, ¢+). Then lim iogZ;(e/» = ((¢) and 

n-+oo n 

.!L (iOgZn(e/») L (iOgZn(e/») are continuous and tend uniformly to 1"'("') and de/> n2 'de/>2 n2 .., 'P 

(" (¢), respectively. We have 

d I Z ("') = _ dl"l _ _1_1271"1271" dl"2 du dv lim E [Sn] = __ (lim og n 'P ).., .., 
n-+oo e/> d¢ n-+oo n2 d¢ 81f2 0 0 d¢ 

(Plotted in Figure 6.) 

. 2 d2 
(. log Zn ( ¢) ) 

11m n Var e/>[Sn] = d"'2 11m 2 n-+oo 'P n-+oo n 

(Plotted in Figure 7.) 

Due to Proposition 1, which follows below, it suffices to look at negative 
values of ¢ for statements about Sn regarding the expectation and variance. 

DEFINITION 9 A function f: D ---+ IR is called EVEN (ODD) if f(x)=f(-x) 
(J(x)=-f(-x)) for each x in D. 
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-zeta'(phi) 
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Figure 6: A plot of -('(4» = lim E¢[Sn]. 
n-too 

zeta"(phi) 

2 

1.5 

1 
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PROPOSITION 1 E¢[Sn]-l is an odd function of ¢. Var ¢[Sn] is even. 

PROOF In subsection 1.2 we deduced that 

Since U(x; ¢) =n2¢Sn(x) we have that 

E [8] "8 ( ( ))exp(-U(y(x);¢)) 
¢ n = L...J n Y X Z (A.) 

xEE n ~ 

(where y(x) = XA~ U (In -X)A~) 

2:(2 - Sn(x)) exp( -2n2¢~ U(x; -~)) 
xEE LZEE exp( -2n ¢+ U(z, -¢)) 

2 - E_¢[Sn] 

so E¢[Sn]-l = -(E_¢[Sn]-l) for each ¢EIR. 
Var ¢[Sn] is even since it is the derivative of -n-2E¢[Sn] with respect to ¢. 

o 

Much of the research of MRF's has been concentrated upon events concerned 
with the phase transition region and questions about what happens as ¢ 
approaches the critical values from the positive and the negative sides. As 
it happens, the situations that most call for methods of surveillance are 
when there is a small change of the parameter in focus, meaning that the 
local behaviour oflimn-+oo E¢[Sn] and limn-+oo Var ¢[Sn] is of interest. As well, 
for many situations, at first, there might be no interaction but we want to 
know if/when the sequence of Ising patterns suddenly are starting to show 
attraction or repulsion. 

To summarize, we want to know some local properties of liffin-+oo E¢[Sn] 
and limn-+oo Var ¢ [Sn] about the origin. For this purpose, a result that will 
prove to be useful for surveillance later on, is the following. 

PROPOSITION 2 lim E¢[Sn] = 1-~+O(¢3) lim n2 Var¢[Sn] = ~+O(¢2) 
n-+oo n-+oo 

where ¢E (¢, 0). 

PROOF Let 

(( ¢ ) = lim log Zn ( ¢ ) 
n-+oo n2 
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as given previously in this subsection. From direct calculation we have that 
((0)=log2 and from (5), that ('(0)=-1. Differentiating (1 twice, we get 

(I/(¢;) = _ 2'ljJ1/(1 + 'ljJ) - 2('ljJ')2 where 'ljJ = tanh T.2 . 
1 (1 + 'ljJ)2 

Since 
1 tanh~ 

'ljJ' = and 'ljJ1/ = _ 2 = _'ljJ 'ljJ' 
2 cosh2 ~ 2 cosh2 ~ 2 2 

we have 'ljJ1II = (-'ljJ'ljJ')' = -('ljJ')2 - 'ljJ2'ljJ' and 'ljJ(0) = 0, 'ljJ'(O) =~, 'ljJ1/(0) = 0 
so 'ljJ1II(0) = -~ and (f(O) = ~. Differentiating (f reveals that 

(III (0) = -~ ('ljJ2 + 'ljJ'ljJ' _ 2'ljJ' + ~ ('ljJ + L)) I = o. 
1 1 + 'ljJ 1 + 'ljJ 1 + 'ljJ ¢=o 

Tedious differentiation of (2 w.r.t. ¢; shows that 

and 

d~3 (2( ¢;, u, v) I¢=o = (cos u + cos v) (2( cos u + cos V)2 - 5) 
implying :;2 J0

27r
Jo

27r 
(2(¢;, U, v) dudvi¢=o = d~3 J0

27r
Jo

27r 
(2(¢;, U, v) dudvi¢=o = 0 

and thus we have 

(1/ (0) = ~ and (III (0) = O. 
2 

Finally, by Taylor expansion about the origin, 

((¢;) = log2 _ ¢; + ~2 + O(¢4) 

so that 

where ¢E (¢;, 0). 

1.4.2 Asymptotic Normality 

To conduct surveillance of Sn, we need to know its distribution. 

o 
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THEOREM 2 (CENTRAL LIMIT THEOREM FOR THE ISING MODEL) 
If ¢E (¢_, ¢+), then 

as n -+ 00 

A detailed proof for this is given by Pickard [21]. 

REMARK According to Theorem 2 we have approximately, for large lattice 
sizes n x n, that 

(6) 

Let us look at the empirical distribution of 8n for some different lattice sizes 
n and some values of the interaction parameter ¢. One measurement of dis­
crepancy between empirical distribution and approximate distribution values 
is the KOLMOGOROV STATISTIC. We denote it by K = suPs IFN(S) - F(s)1 
where FN(S) is the empirical distribution of 8n from a simulated sample of 8n 

of size Nand F(s) the normal distribution with mean -('(¢) and variance 
("(¢)jn2. 

EXAMPLE 1 The convergence towards normal distribution is very rapid. 
From 10000 simulations of a 4x4lattice Ising model with ¢=-0.35, we see 
the empirical distribution of 84 in Figure 8 where K =0.11. As we shall see 
later, a change from ¢ = 0 to ¢ = -0.35 in a 4 x 4 lattice corresponds to a 
change in mean from 0 to 1. 

Another example which corresponds to a change in mean from 0 to 1 is 
a 10 x 10 lattice when ¢ changes from 0 to -0.14 and here K = 0.06, an 
improvement due to both larger lattice size and ¢ closer to the origin. The 
empirical distribution of 810 with ¢=-0.14 is shown in Figure 9. 

Convergence towards the normal distribution is slower for ¢ closer to the 
points of phase transition (e.g. the left point ¢_), and in spite of a larger 
lattice size (resulting in a smoother empirical distribution) there is some 
systematic deviance from the normal distribution. In Figure 10 is an example 
with ¢ = -0.8 and n = 20 where K = 0.05. The normal approximation works 
better the larger the lattice size (of course) and the closer to the origin the 
interaction parameter. 
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Figure 8: Left picture: empirical distribution of 84 when <p = -0.35. 
Right picture: Values of the empirical distribution plotted against the val­
ues of a normal distribution with mean -('( -0.35) ~ 1.18 and variance 
0.0625 ("( -0.35) ~0.036. 
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Figure 9: Left picture: empirical distribution of 810 when <p = -0.14. Right 
picture: the values of the empirical distribution plotted against the val­
ues of a normal distribution with mean -('( -0.14) ~ 1.07 and variance 
0.01 ("( -0.14) ~ 0.005. 

Empirical distribution of Sn with n = 20 and phi = -O.B 

Data 

Figure 10: Left picture: empirical distribution of 820 when <p = -0.8. 
Right picture: the values of the empirical distribution plotted against the 
values of a normal distribution with mean -('( -0.8) ~ 1.55 and variance 
0.0025 ("( -0.8) ~0.003. There is some systematic deviance of the empirical 
distribution from the normal. 
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2 SURVEILLANCE 

Henceforth we denote an Ising configuration occurring at time t by X(t) = 
{Xi(t) : iEAn} and we assume that 

P[X(t) =x(t) I X(t-1) =x(t-1), ... , X(l) =x(l), T=U] = P[X(t) =x(t) I T=U] 

which implies that the Sn(t)'s are conditionally independent given T. We 
make observations of {Xi (t )}tElN, iEAn , a sequence of Ising model patterns 
{X(l), ... ,X(t)}, where 

X(t) v {p(x(t);<po) ift<T 
- p(X(t);<PI) ift2:T 

where the distribution p(.; <p) is as given in Section 1.2 and <Po, <PI E (<p-, <p+). 
We consider the problem of detecting a change of <P from <Po to <Pl. 

The suggested method of surveillance will be based on the minimal suffi­
cient statistic 

Sn(t) - Ecpo[Sn(t)] 
Sn (t) = ----'t:=:===~~ 

yVarcpo[Sn(t)] 

which for large n, due to the asymptotic normality of Sn(t) , is approximately 
normal 

S (t) v { N (0, 1) if t < T 

n N (It, 0") if t 2: T 

where It=n( -('(<PI) + ('(<Po))/ y'("(<po) and 0"= y'("(<PI)/("(<Po). 

When <P changes from <Po to <PI, there is a simultaneous change in both 
Ecp[Sn(t)] and Varcp[Sn(t)]. However, if both <Po and <PI are in a small interval 
about the origin, the variance of Sn(t) is close to a constant with respect to 
<p, i.e. Sn(t) is approximately distributed N(O, 1) for t < T, N(It, 1) for t 2: T. 
Let us concentrate upon this situation. 

2.1 Accuracy of Approximations 

Since the situation of change from independence to slight interaction is an 
important special case, we focus some extra upon this. To get an idea of how 
large n needs to be and how close to ° <Po and <PI should be, let us look at 
some examples. The accuracy of the approximation with the normal distri­
bution was illustrated in Section 1.4.2. 
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Let us recall Proposition 2, 

where ¢E (cp, 0). Due to this, (]"2 = (1/2 + O(¢i))/(1/2 + O(¢5)), which is 
not a function of n (since we have normed Sn(t) with its standard deviation). 
This variance is approximately 1 for CPo, CP1 close to 0 (see Table 1). 

CP1 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 

(]"2 1.370 1.288 1.221 1.165 1.118 1.081 1.051 1.028 1.013 1.003 1.000 

Table 1: Values of (]"2 =Vart/>l [Sn(t)] for different CP1 when CPo=O. 

The linear transformation Sn (t) = n ( Sn (t) + (' ( CPo) ) /J (" ( CPo) also makes the 

expected value of Sn(t) after change 

For a picture of this relation between n, CP1 and J-L, when CPo = 0 we have the 
following table of values of CP1 such that (7) holds. 

In Table 2, looking down the 4th column, it says that if we are interested 
in a change corresponding to that from N(O, 1) to N(l, 1), it is only for lattice 
sizes larger than 14x14 that CP1 is less than 0.1 away from the origin which in 
turn, by Table 1, guarantees the variance after change to be less than 1.013 
which might be approximated by 1 for some level of accuracy. 

We summarize this section with the following conclusion. 

COROLLARY 1 For CPo, CP1 close to the origin and large n, the normal distri­
bution approximates the distribution of Sn(t) well. The surveillance problem 
of shift from CPo to CP1 can be reduced to a problem of monitoring a shift in 
the mean of a normal distribution. 

It is important that the condition" CPo, CP1 close to the origin" is fulfilled in 
order for the variance approximation to be sensible. This is illustrated by 
the next example. 

EXAMPLE 3 Recalling the Kolmogorov statistic K =suPs IFN(S) -F(s)l, let 
us look at the empirical distributions of Sn when cP = CPl. Suppose that CPo = 0 
and CP1 = -0.8, not close to the origin but rather close to cp_. Then variance 
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J-L 0.1 0.25 0.5 1 2 

n 
5 -0.028 -0.071 -0.142 -0.274 -0.513 

6 -0.024 -0.059 -0.117 -0.230 -0.434 

7 -0.020 -0.050 -0.101 -0.199 -0.380 

8 -0.018 -0.044 -0.088 -0.175 -0.337 

9 -0.016 -0.039 -0.078 -0.156 -0.304 

10 -0.014 -0.035 -0.071 -0.142 -0.274 

11 -0.013 -0.032 -0.064 -0.128 -0.250 

12 -0.012 -0.029 -0.059 -0.117 -0.230 

13 -0.011 -0.027 -0.054 -0.108 -0.212 

14 -O.OlD -0.025 -0.050 -0.101 -0.197 

15 -0.009 -0.024 -0.047 -0.094 -0.188 

16 -0.009 -0.022 -0.044 -0.088 -0.176 

17 -0.008 -0.021 -0.041 -0.083 -0.166 

18 -0.008 -0.020 -0.039 -0.078 -0.157 

19 -0.007 -0.019 -0.037 -0.074 -0.148 

20 -0.007 -0.018 -0.035 -0.071 -0.142 

50 -0.003 -0.007 -0.014 -0.028 -0.056 

100 -0.001 -0.004 -0.007 -0.014 -0.028 

Table 2: Values of CP1 such that E(Pl [8n (t)] = J-L for different J-L and n 
CPo=O. 

Empirical distribution of Sn-tilde with n = 20 and phi = -0.8 
o,---------------------~~~ 
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Figure 11: Left picture: empirical distribution of 820 when CP1 = -0.8. Right 
picture: the values of the empirical distribution plotted against the values of 
a normal distribution with mean 20· 21/2( -('( -0_8) -1) ~ 15.6 and variance 
1 (a poor approximation of the real variance 2.7)_ 
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of tho is 2 (" ( -0.8) ~ 2.7 quite far from 1. This is a case of simultaneous 
change in both jJ, and 0'. If qyt is close to cf>- or cf>+ and a model with unit 
variance before and after change, is used, this gives poor accuracy for the 
method (K =0.16, in Example 1 we had K =0.05) as can be seen in Figure 
11. This inaccuracy will remain no matter how large n is since the variance 
of Sn does not depend on n. However, this situation is not so important from 
a surveillance point of view since large n and a radical change of cf> (from 0 
to -0.8), which corresponds to a shift in mean of Sn from 0 to 15.6, would 
be immediately obvious to the eye of an observer and not need a method of . 
surveillance. 

2.2 Evaluation of the Procedure 

There are several general surveillance methods suggested in the literature. 
The simplest is the Shewhart stopping rule, suggested by Shewhart [27], 

T = inf {t 2 1 : Sn (t) > c} 

where c is a constant. 
Just looking at Table 1 and Table 2 may give the impression that, for 

instance, situations with cf>o = 0, (Pt = -0.14 and n = 5, 10,20 are equivalent 
from a surveillance point of view. To see clearly that this is not the case, one 
could look at a measurement of how well a certain stopping rule behaves. 

DEFINITION 10 The expected stopping time given that no change occurs, 
E[T I T = 00], is called ARLo (AVERAGE RUNLENGTH). The expected time 
from change to stop given that the change has occurred by the stopping time, 
E[T-T I T2T], is called EXPECTED DELAY. 

The expected delay has to do with delay of true alarm and ARLo has to do 
with probability of false alarm. Of course we want both these to be as small 
as possible but as they are somewhat contradictive, one has to settle with a 
little of both. 

Let us look at the expected delay for a fixed level of ARLo. Denoting 
the cumulative distribution function before change P ¢o [ Sn (t) :S s] by Fo (s) 
and after change p¢JSn(t):S s] by Fl(S), we recall that, for the Shewhart 
method, the average runlength is 

ARLO = E[T I T=oo] 
1 

I-Fo(c) 

and the expected delay 

E[T-T I T2T] 
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and thus the relation between average runlength and expected delay 

OBSERVATION 3 E[T-TIT~Tl = F1(Fo-1(A~i~o1))/(1-F1(Fo-1(A~i~o1))). 

Suppose that we fix the average runlength ARLo = 100. Then the values 
of expected delay of detection of a change from CPo = 0 to CP1 = -0.14 when 
n=5, 10,20 are the following. 

n=5 =? change of Sn(t) from N(O, 1) to N(~, 1) =? E[T-T I T~Tl = 28.5 
n=10 =? change of Sn(t) from N(O, 1) to N(l, 1) =? E[T-T I T~Tl = 9.8 
n=20 =? change of Sn(t) from N(O, 1) to N(2, 1) =? E[T-T I T~Tl = 1.7 

EXAMPLE 3 Suppose CPo = 0, CP1 = -0.14 and n = 10. Figure 12 shows one 
realisation of the alarm function (in the Shewhart case the alarm function 

Shewhart alarm function values 

~~--------~5"O---------'~OO--------~lW~------~~~ 

Figure 12: Values of the Shewhart alarm function for a simulated sequence 
of Ising configurations. The dashed horizontal line is the critical boundary c 
and the dashed vertical line at t = 101 is the time of change. The surveillance 
stopped (i. e. the alarm function crossed c) at t = 109 in this particular case. 

is simply Sn(t)). It is based on one simulation {x(t)}~~~ of Ising configu­

rations X(t) v p(x(t); 0), t = 1,2, ... ,100 and X(t) v p(x(t); -0.14), t = 

101,102, ... ,200 (i.e. with T = 101). The critical level is c chosen such that 
ARLo=100. 

3 DISCUSSION 

This study shows that for many cases, surveillance of the interaction param­
eter for a sequence of finite square lattice Ising patterns with zero exterior 
field can be performed using known methods of surveillance. 

When the values ofthe interaction parameter, before and after change, are 
close to the origin (i.e. the local states in the Ising patterns appear almost 



DISCUSSION 21 

independently), the surveillance problem can be reduced to a special case 
of a well studied univariate surveillance problem. Closer to the points of 
phase transition, the problem of a change in interaction concerns with a 
simultaneous change in both expectation and variance of the statistic Sn. 

In this paper, only the simplest surveillance method (the Shewhart method) 
is considered. However, other surveillance methods, such as cusum methods, 
Shiryaev-Roberts method, likelihood ratio methods, exponentially weighted 
moving average methods, can, of course, be applied here as well. 

The spatial surveillance model is the Ising model for the spatial structure 
and conditional independence of Ising configurations at different timepoints 
given the time of change. The applicability of this model may be questioned. 
One should bear in mind, though, that this study is meant as a first step 
towards solving more relevant problems. 

Sometimes, methods for treating a simultaneous change in both intensity 
and interaction are necessary. The reason for choosing the Ising model was 
that it is a simple model which nevertheless possesses a non-trivial property. 
An extension to a square lattice auto-normal model could be appropriate 
for a lot of situations and would be even simpler since it would lack the 
phase transition singularities. There is also the possibility of a non-zero 
exterior field. In this paper we have considered only change in the interaction 
parameter in a zero exterior field model. 

There are many possibilities to use the results on how the spatial surveil­
lance problem can be transformed. For example, if the statistic follows an 
auto-regressive process, then methods for surveillance of an auto-regressive 
process can be used (Pettersson [20]). 
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ApPENDIX: SIMULATION 

To simulate an Ising model we have chosen a technique of the type called 
EXACT SIMULATION (introduced by Propp and Wilson [23]) for the illus-

Figure 13: Three 100 x 100 torus square lattice Markov random field realisa­
tions simulated exactly according to an Ising model, the first with interaction 
parameter cp=-0.7, the second with cp=O and the third with cp=0.7. 

tration of lattice realisations (see Figure 13). However, for large number 
of replicates this technique (in our implementation) is too time consuming 
for the computer. For the illustrations of the empirical distributions of the 
statistic, GIBBS SAMPLER was used. This is a well documented method for 
approximating samples from a Gibbs distribution. 

Gibbs Sampler 

The Gibbs sampler was invented by Suomela [28] but usually the credit goes 
to Geman and Geman [7]. It is a stepwise procedure where one, at each 
timestep t = 1,2,3, ... , cruises along the sites i E An so that each site is 
almost surely visited infinitely often. This cruise could be made in a number 
of ways e.g. i = 1,2, ... , n2

• At each visit the state possessed by that site, is 
updated according to the map g : E x An X [0, 1] -+ E as 

(X(t) i u.(t)) = {XAn\i(t)U{l} if PXiIXai(l! Xai(t)) > Ui(t) 
g "~ XAn\i(t)U{O} otherwise 

where {Ui(t) : i= 1, ... , n2 , t=O, 1, 2, ... } is a sequence of independent obser­
vations of the uniform distribution on [0,1]. For some fixed t = to, the states 
are {Xl (to), ... ,xnz(tO)}). As all sites are visited and updated again the clock 
snaps one tick to t = to+ 1 and the states are {Xl (to+ 1), ... , XnZ (to + I)}, and 
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so on. Starting with arbitrary states {Xl(O), ... ,Xn2(0)} and updating ac-
cording to this rule, the sequence {x(O), x(l), ... } of configurations achieved 
at each "full round", forms a Markov chain with the pleasing property that 

P[X(t) = x I X(O) = xo] ---+ p(x) as t ---+ 00 for each x, Xo E E 

where p denotes the steady-state distribution of the Markov chain. So we 
may approximately simulate an Ising configuration according to the desired 
global distribution. 

Exact Simulation 

Let {Ui(t) : i = 1, ... , n2 , t = -M, ... , O} be a sequence of independent 
observations of a uniform random variable on [0,1]. The main idea is the 
following: impose the partial ordering relation denoted by :::S meaning that 
x :::S y if Xi ~ Yi for each i E An. Then generate two monotone Markov 
chains {x(t) H=-M and {y(t) H=-M according to the" Coupling-from-the-past­
protocol" starting with x( -M) = 6 being the minimal state and y( -M) = i 
the maximal state and terminating with x(O) = y(O) which is the simulated 
Ising configuration. The time - M is unknown stochastic and it is determined 
during the evaluation of the algorithm. The algorithm is the pseudocode 

T+-1 
repeat 

upper +- i 
lower +- 6 
for t =-T to 0 

for i = 1 to n2 

T +- 2T 
until upper = lower 
return upper 

upper +- g(upper,i,ui(t)) 
lower +- g(lower, i, Ui(t)) 

where the map 9 may be chosen as the previous sampling algorithm Gibbs 
sampler or other Metropolis-Hastings algorithms (see M¢ller [17]) or some 
other that results in a Markov chain and which preserves the partial ordering. 

However, the distribution p, that we want to simulate samples from, must 
. satisfy a monotonicity condition (Propp and Wilson [23]) in order for the 

method to be valid. When cjJ is negative (attractive case), p is monotone 
but otherwise not. On the other hand, when cjJ is positive (repulsive case), p 
satisfies an anti-monotonicity condition and with a slight modification of the 
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updating map g, realisations can be simulated in this case as well (Haggstrom 
and Nelander [11]). In short this is to say, provided that we have chosen the 
Gibbs sampler as the map 9 in the case of positive cp, then the modification 
is just to update each site of say the chain referred to in the pseudocode 
as upper, not according to its neighbours but rather according to the cor­
responding neighbourhood of the partner chain lower. The same goes for 
updating each site of the lower chain according to the corresponding neigh­
bourhood in the upper chain. Haggstrom and Nelander showed that this 
change makes the resulting Ising pattern distributed exactly according to 
the stationary distribution in the anti-monotone case. Thus we are able to 
simulate Ising configurations regardless of the value of cp. 

As well it should be mentioned that we have avoided all edge problems 
by using the convention of a TORUS ALIGNMENT. This is to say: each edge 
site has as a neighbour the nearest site at the opposite edge and each corner 
site has as two neighbours the corner sites of the two nearby corners. 
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Program Code 
We chose Fortran 77 using the NAG library for our simulation programs. Our 
implementation for exact simulation of the Ising model with zero exterior field 
now follows. 

10 

C 

subroutine exact(rows,cols, 
& phi,lo,seed,loops) 

external g05caf 
external g05cbf 
integer rows,cols,M,dlol, 

& dhil,seed,loops 
& lo(rows,cols),hi(rows,cols), 
& zeros(rows,cols), 
& ones(rows,cols), 

double precision phi, 
& g05caf,prob.lo,prob.hi, 
& rands(rows,cols,loops) 

logical coalesced 
call g05cbf(seed) 
do i=l,rows 

do j=l,cols 
zeros(i,j)=O 
ones (i, j )=1 
do m=l,loops 

rands(i,j,m)= 
& g05caf(rands(i,j,m)) 

end do 
end do 

end do 
do i=l,rows 

do j=l,cols 
zeros(i,j)=O 
ones(i,j)=l 

end do 
end do 
M=l 
coalesced=.FALSE. 
if (coalesced) goto 20 

lo=zeros 
hi=ones 
call g05cbf(seed) 
do k=l,M 

do i=l,rows 
do j=l,cols 

TORUS ALIGNMENT 
if (i. gt .1) then 

il=i-l 
else 

il=rows 
end if 
if(j.lt.cols) then 

j2=j+l 
else 

j2=1 
endif 
if(i.lt.rows) then 

i3=i+l 
else 

i3=1 
endif 

C 
C 

C 
C 

C 

C 

if(j.gt.l) then 
j4=j-l 

else 
j4=cols 

endif 
END TORUS ALIGNMENT 
COUNT NEIGHBOUR ZEROS AND ONES 

if(phi.le.O.dO) then 
dlol=lo(il,j)+lo(i,j2)+ 

& lo(i3,j)+lo(i,j4) 
dhil=hi(il,j)+hi(i,j2)+ 

& hi(i3,j)+hi(i,j4) 
else 

dlol=hi(il,j)+hi(i,j2)+ 
& hi(i3,j)+hi(i,j4) 

dhil=lo(il,j)+lo(i,j2)+ 
& lo(i3,j)+lo(i,j4) 

endif 
END COUNT NEIGHBOUR ZEROS AND ONES 
GIBBS SAMPLER 

prob.lo=l.dO/(l.dO+exp( 
& 2.dO*phi*(dlol-2.dO))) 

prob.hi=l.dO/(l.dO+exp( 
& 2.dO*phi*(dhil-2.dO))) 

if(prob.lo.gt.rands(i,j, 
& loops-k+l)) then 

lo(i,j)=l 
else 

lo(i,j)=O 
endif 
if(prob.hi.gt.rands(i,j, 

& loops-k+l)) then 
hi(i,j)=l 

else 
hi(i,j)=O 

endif 
END GIBBS SAMPLER 

end do 
end do 

end do 
SET COALESCED 

coalesced=.TRUE. 
do i=l,rows 

do j=l,cols 
coalesced=coalesced.and. 

& (lo(i,j).eq.hi(i,j)) 
end do 

end do 
C END SET COALESCED 

M=2*M 
goto 10 

20 return 
end 
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