
Mailing address: 

Research Report 
Department of Statistics 
G6teborg University 
Sweden 

Eval uations of likelihood ratio 
methods for surveillance. 

Differences and robustness. 

Marianne Frisen 
Peter Wessman 

Research Report 1998:2 
ISSN 0349-8034 

Fax Phone Home Page: 
Department of Statistics 
Goteborg University 
Box 660 

Nat: 031-7731274 
Int: +4631 773 1274 

Nat: 031-7731000 http://www.stat.gu.se 
Int: +463177310 00 

SE 405 30 Goteborg 
Sweden 





2 

INTRODUCTION 

In many areas there is a need for continual observation of a time series, with 

the goal of detecting an important change in the underlying process as soon 

as possible after it has occurred. In recent years there have been a growing 

number of papers in economics, medicine, environmental control and other 

areas dealing with the need of methods for surveillance. Examples are given 

in Frisen (1992) and Frisen (1994a). The timeliness of decisions is taken 

into account in the vast literature on quality control charts where simplicity 

is often a major concern. Also, the literature on stopping rules is relevant. 

For an overview, see the textbook by Wetherill and Brown (1990) the 

surveys by Zacks (1983) or Lai (1995) and the bibliography by Frisen 

(1994b). 

Methods based on likelihood ratios are known to have several optimality 

properties. Evaluations are made of the full likelihood ratio (LR) method, 

which will be expressed as a certain combination of conditional likelihood 

ratios. In the cases studied here, the LR method has the Shiryaev optimality. 

Also, the Shiryaev-Roberts and the CUSUM methods are evaluated. These 

two methods combine conditional likelihood ratios in other ways. A 

comparison is also made with the Shewhart method that is a commonly used 

method. When control charts are used in practice, it is necessary to know 

several characteristics of the method. Asymptotic properties have been 

studied by Srivastava and Wu (1993) and Siegmund and Venkatraman 

(1995) and others. Here, properties for fInite time of change are studied. 

The usual ARLo and ARLl (which are the average nm lengths until an alarm 

under the hypothesis of no change and the hypothesis of immediate change, 

respectively) are used. Besides that, the probability of a false alarm, the 

expected delay, the probability of successful detection and the predictive 

value are used for evaluations. Since the methods have interesting 

optimality properties, the results also enlighten different criteria of 

optimality . 

Gordon and Pollak (1995 and 1997) have suggested methods that are robust, 

with respect to the ARL, for different conditions of the process. Here, the 

robustness, with respect to optimality, for different parameter choices is 

studied. 
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In Section 1 some notations are given and there is a specification of the 

situation studied. In Section 2 the methods are described and their relations 

are demonstrated. In Section 3 there are comparisons based on a simulation 

study. Section 4 contains some concluding remarks. 

1. NOTATIONS AND SPECIFICATIONS 

The variable under surveillance is X = {X(t): t = 1,2, ... }, where the 

observation at time tis X(t). It may be an average or some other derived 

statistic. The random process which determines the state of the system is 

denoted Jl = {Jl(t): t = 1,2, ... }. As in most literature on quality control, the 

case of shift in the mean of Gaussian random variables from an acceptable 

value Jl ° (say zero) to an unacceptable value Jll is considered. Only one-sided 

procedures are considered here. It is assumed that if a change in the process 

occurs, the level suddenly moves to another constant level, Jll>JlO, and 

remains on this new level. That is Jl(t) = Jlo for t= I, ... ;r-I and Jl(t) = Jll for 

t= 1", 1"+ I, .... The critical event of interest at decision time s is denoted by 

C( s ). We want to discriminate between 

Here Jlo and Jll are regarded as known values and the time 1" where the critical 

event occurs is regarded as a random variable with the density 

and LTIt = I-TI=. The intensity Vt ofa change is 

When a specific distribution has to be specified, the geometric distribution 

with Vt=V is used. 
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The aim is to discriminate between the states of the system at each decision 

time s, s=I,2, ... by the observation ~ = {Xes): t ~ s} under the assumption 

that X(I) - /l(I), X(2) - /l(2), ... are independent normally distributed random 

variables with mean zero and the same known standard deviation (say a= 1). 

In some calculations below, where no confusion is possible, /ll is denoted /l, 

/l0=0 and a=1 for typographical clarity. 

The values of /l and v for which a method is optimized are denoted by M and 

V, respectively. 

Here active surveillance as defined by Frisen and de Mare (1991) is assumed. 

That means that the surveillance is stopped at an alarm. Thus, only one alarm 

is possible. A study of the properties of the first alarm at passive surveillance 

gives the same results. The time for the alarm is here denoted by tA- In the 

literature on quality control this is usually called the run length and is 

denoted by RL. In the literature on probability of stopping time it is 

sometimes denoted by N. Its distribution under different condition contains 

all information about the stochastic properties of a method. 

2. METHODS 

2.1 The Shewhart method 

Shewhart (1931) suggested that an alarm is triggered as soon as a value, 

which deviates too much from the target, is observed. The stopping rule is 

tA=min(S;X(s»G). This method, which is much used in quality control, has 

interesting relations to other methods as will be seen below. The limit G for 

a fixed ARLo, is calculated by the relation: Pr(X(s»GI /l=/lO)=1/ARLo. 
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2.2 The Likelihood Ratio method 

The problem of finding the method that maximizes the detection probability 

for a fixed false alarm probability and a fixed decision time was treated by 

de Mare (1980) and Frisen and de Mare (1991). The likelihood ratio (LR) 

method, discussed below, fulfills this criterion. Different kinds of utility 

functions were also discussed by Frisen and de Mare (1991). An important 

specification of utility is that of Girshick and Rubin (1952) and Shiryaev 

(1963). They treat the case of constant intensity where the gain of an alarm 

is a linear function of the difference tA -'t , that is the time between the alarm 

and the change point. The loss of a false alarm is a function of the same 

difference. This utility can be expressed as U= E{ u( 't, tJ}, where 

F or the situation specified in Section 1 their solution is identical to the LR 

method. The "catastrophe" to be detected at decision time s is C = { 't :5: s} 

and the alternative is D = { 't > s}. The LR method has an alarm set 

consisting of those ~ for which the full likelihood ratio exceeds a limit. Thus 

s 

= L wit)L(t) > K(s) 
t=l 

where wsCt) = Pr('t=t)/Pr('t:5:s), L(t) is the (conditional) likelihood ratio for the 

case when 't=t and K(s) is the limit at the decision time s. 

F or the case of normal distribution with C( s )={ 't:5: s} and D( s )={ 't>s }, as 

specified in Section 1, we have 

where 



and 

h(s)- exp( -(s+ 1)M2/2) 
Pr(t~s) 

which is a nonlinear function of the observations. 

6 

In order to achieve the optimal error probabilities discussed by Frisen and de 

Mare (1991) an alarm should be given as soon as p(Xg) > K(s). 

For the case of constant intensity v, it is possible to achieve maximum of the 

utility of Shiryaev, by using the limit K(s), as specified in the following 

definition of the LR-method. 

Definition: The LR-method gives alarm as soon as 

( » 
Pr(t>s) K 

p xs 
Pr(t~s) 1-K 

where K is a constant with respect to s. D 

The alarm set can also be expressed by the posterior distribution. The relation 

IS: 

p(x» Pr(t>s) K 
s Pr(t~s) 1-K 

The Shiryaev optimality is achieved when the method is optimized for the 

true values, that is M=J1 and V=v. Often methods of this kind are considered 

Bayesian. Here the LR-method is considered to have two parameters. When 

they are of special interest, the method is written LR(V,M). When M is 

evident, the notation LR(V) is used. 
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Frisen and de Mare (1991) demonstrated that the alarm function of the 

Shewhart method is the same as that of the LR method with C={ "C"=s }. That 

is p(xs)=LR(s). For the normal case described in Section 1 this reduces to 

p(Xg)=x(s). 

Theorem 1: The stopping rule of the LR method tends to that of the 

Shewhart method when the parameter M tends to infInity. 

Proof The stopping rule with the LR method is: 

p(X »Pr("C">s) ~ 
s Pr("C"::;s) l-K 

t TIk expil(k-S-l)M2lxpl,fEX(U)} > Pr("C">s) K 
k=1 Pr("C"::;s) {2 r r.LU=k Pr("C"::;s) (I-K) 

exp{( - 1I2)M 2 ~xp{MX( s)} 

> Pr("C">s) K _ ~ TIkexpil(k-S-l)M2lxpl,fEX(U)} 
TIs (I-K) k=1 TIs l2 r r.LU=k 

exp{MX(s)} 

>exp{M2/2} r"C" s - L ~ exp -(k-s)M2 exp LX(U) P ( » K s-1 TI il } r s } 
TIs (I-K) k=1 TIs 2 u=k 

exp{MX( s)} > expi 1 M 2} {K Pre "C">s) + o( Ml )} 
{2 (I-K)TIs 

Xes) > M + ~ln{K (I-V) + o(~)} 
2 M (I-K)V M 

which tends to the stopping rule of the Shewhart method for large values of 

M, since the dependency on s, of the alarm limit for Xes), disappears. D 
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2.3 Shiryaev-Roberts method 

Shiryaev (1963) and Roberts (1966) suggested that an alann is triggered at the 

fIrst time s, for which 

s 

LL(t) > K 
t=1 

where K is a constant. 

This method is the limit of the LR method 

s 

L wsCt)L(t) > K(s) 
t=1 

when V tends to zero since both the weights wlt) and the limit K(s) tend to 

constants. Roberts (1966) motivated the method by the conjecture that the 

intensity parameter v has very little influence on the LR method ( for v less 

than 0.2) and thus the weights which depend on v can be omitted. Pollak 

(1985) proved that the Shiryaev-Roberts method is asymptotically Bayes risk 

effIcient as V -+ o. Pollak (1985) suggested a modifIcation of the Shiryaev­

Roberts procedure by a stochastic starting value which might be considered as 

reflecting the prior belief regarding the likelihood of a change when 

surveillance is initiated. Pollak (1985) and Yakir (1997) have proven different 

optimality properties such as asymptotically (as K --+ (0) minimax properties 

for this modifIcation. Here however, the original version is studied. 

Theorem 2: The stopping rule of the Shiryaev-Roberts method tends to that 

of the Shewhart method when M tends to infInity. 

Proof In analogy with the proof of Theorem 1. 
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2.4 CUSUM 

The cumulative sum 

( 

C(= L (X(i)-/lO) 
i=1 

is used in several CUSUM- variants. The most commonly advocated variant 

gives an alarm for the fIrst t for which Cs-Cs_i > h + ki (for some i=1,2, ... s), 

where Co=O and hand k are chosen constants (Page 1954). 

Sometimes the CUSUM test is defmed by likelihood ratios (e.g. Siegmund 

1985 and Park and Kim 1990). An alarm is given as soon as 

max(L(t) ; t=1,2, .... s) > K 

where L(t), as defIned above, is the likelihood ratio corresponding to a change 

at time t, and K is a constant. The last defmition reduces to the fIrst defmition 

above in the case specifIed in Section 1 with normal distribution if k=M/2. In 

this simulation study the parameter k=M/2 is used as this often is considered 

to be optimal. 

Theorem 3: When the value ofM for which the CUSUM method is optimized 

tends to infmity, then the properties tend to be identical to those of the 

Shewhart method. 

Proof 

M M->oo =* k=- ->00 =* 

2 

Pre Cs-Cs_i > h + ki; i=l, ... s ) -+ Pre Cs-Cs_i > ki; i=l, ... s) = Pr(X(s) > k) 

since tA~s =* X(i)~k i=l, ... s-l; 0 
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3. RESULTS OF SIMULATIONS 

F or the Shewhart method analytical calculations were made. For the other 

methods simulation of 10 000000 replicates were made for each of the (more 

than 1000) situations studied. The large number of replicates was necessary in 

order to make all results and figures reliable. The confidence intervals for all 

results are now small compared with the thickness of the lines of the figures. 

The first pont of most curves is exactly calculated. For ARL ° = 11 change 

points 1, 2, ... ,40 and many variants of the methods were studied. The short 

ARLo used in most of the studies was chosen to make the computer time, 

necessary for the study, reasonable. For ARLo = 1 00 fewer cases were studied. 

The generality of the results for different values of the ARLo is discussed in 

Section 3.4. The limits of the stopping rules were determined with an 

exactness which made the deviation between the intended and estimated ARLo 

less than (and for most cases much less than) 0.1 % of the intended value. The 

number of replicates makes it possible to neglect the sampling error for this 

determination. 

3.1 Probability of a false alarm 

In all simulations the parameters of the different methods were chosen so that 

ARLo was equal for all methods (equal to 11 in most comparisons and 100 in 

some) to make them comparable. To fix the value of ARLo is in accordance 

with most comparative studies in this area. However, as will be seen, it is not 

the only alternative. 

Equal values of ARLo do not imply that the run length distributions are 

identical when 11=11°. The distributions can have different shapes. This is 

demonstrated in Figure 1. Here the probabilities of an alarm at a specific time 

point, when no change has occurred, are given for some different methods. The 

skewness of the distributions is less pronounced for the LR method with a 

great intensity parameter. For ARLo = 11, the distributions for the Shewhart 

and the CUSUM methods are very similar except at the first point. 
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A smnmarizing measure of the false alann distribution is the total probability 

of a false alann, 

00 

Pr(tA <-r)= L Pr(-r=t)Pr(tA <tl-r=t) 
t=1 

It is illustrated as a function of v in Figure 2 for the case where the probability 

of a change has a geometric distribution with the intensity v. The fIrst factor 

in the sum does not depend on the method but only on the true intensity v. The 

second factor depends only on the run length distribution when no change has 

occurred. Since the values of the ARLo are equal for all methods only the 

different shapes and not their locations will influence the false alann 

probability. Thus, only the size of the differences in Figure 2 can be expected. 

Although the number of replicates was as large as 10 000 000, this is not 

enough for reliable values for the situation with very small v. However, the 

limiting value, when v tends to zero, is easily calculated to be one. This value, 

with linear interpolation, was used for the extremely small values of v. 

Asymptotic values, as ARLo increases, for the Shiryaev-Roberts method as 

given by the relation ARLo = (l-Pr(t A<-r))/vPr(t A<-r) in Kolmogorov et al. 

(1990) are not good enough for ARLo =11 or 100. 

3.2 Delay of an alarm 

As was seen above, the correspondence to the level of signifIcance in an 

ordinary test is not a value but the run length distribution, namely the 

distribution of tA , the time of an alann. For the power the correspondence is 

still more complicated. To describe the ability of detecting a change we need 

a set of run length distributions for different times of change. 

The case where the change occurred before the surveillance started (-r= 1), IS 

illustrated in Figure 3 for some methods. The effect of values of the parameter 

M different from the true ~ can be seen. This illustrates the robustness of this 

parameter choice. The speed of the limiting behaviour, which was proven 

above, is illustrated. 
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The average run length under the alternative hypothesis, E( tAl W=/ll) = 
E(t.J-r=1) = ARV, is the mean number of decisions that must be taken to detect 

a change (that occurred at the same time as the inspection started). The part of 

the definition in the parenthesis is seldom spelled out but seems to be generally 

used in the literature on quality control. The values of ARL 1 for the case of 

ARLo=11 are given in Figure 4. Here the convergence with increasing M to the 

properties of the Shewhart method is clearly seen. For ARLo=100 only few 

values are available but it is clear that the convergence is much slower. 

Since the case -r= 1 is not the only case of interest the expected delay is 

calculated also for other values of -r. Some kind of summarizing measure is 

useful. The expected delay 

is given in Figure 5 for different values of -r and M. For -r= 1 the values of this 

function equal the values of (ARLI - 1). The differences in shapes of these 

curves demonstrate the need for other measures than the conventional ARL. 

The case of ARLo=l1 and M=1 is a good example of this. Although the 

Shiryaev-Roberts method has worse ARL1
, and thus worse delay for a change 

at -r=1, than the Shewhart method, it is better for all other times of change. 

Another example is that the CUSUM and the Shewhart methods are very much 

alike for -r=1, for ARLo=11, but the CUSUM is better for all other change 

points. The convergence with increasing M to the expected delay of the 

Shewhart method is much slower for the larger ARLo. This is in accordance 

with the results for ARL 1. 

The expectation of the delay also with the respect to the distribution of -r is: 

This function is given as a function of v in Figure 6, for the case when the 

distribution of -r is geometrical with the intensity v. The estimates by the 

simulations for very small v are not reliable in spite of the large number of 

replicates. However, then v tends to one, the expected delay tends to ARLl-1 
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and this value and a linear interpolation was used for the extremely small 

values ofv. 

In some applications, such as medical intensive care, there is a limited time 

available for rescuing actions. Then, the expected value of the difference -r-tA 

is not of main interest. Instead, the probability that the difference does not 

exceed a fixed limit is used. The fixed limit, say d, is the time available for 

successful detection. 

The probability of successful detection, 

PSD(t,d)=Pr(tA --r<dltA:?:-r, -r=t). 

was suggested by Frisen (1992) as a measure of the performance. It is 

illustrated in Figure 7. 

3.3 Predicted value 

The predictive value PV(t) = Pr(-r st ItA=t) has been used as a criterion of 

evaluation by Frisen (1992), Frisen and Akermo (1993) Akermo (1994) and 

Frisen and Cassel (1994). It is illustrated in Figure 8. The price for a high 

probability of fast detection of a change in the beginning of the surveillance 

(as was demonstrated in Figure 7) for the CUSUM and the Shewhart method 

is that the early alarms are not reliable. The predicted value of an alarm 

depends on the intensity v of the process. As will be seen in the next section, 

different values of v have to be used for different values of ARLo to make 

comparisons easier. If the same value had been used, the predicted values for 

ARLo=11 had been much lower than those for ARLo=100. 

3.4 Effect of different values of the ARLO 

Most of the simulations were made for a very low value of ARLo to make the 

computer time reasonable. This corresponds in a way to making observations 

more seldom. For example, instead of making them each minute they may be 

made each hour. A low ARLo thus makes continuous time approximations less 

reliable. Pollak and Siegmund (1985) derive some results that seem impossible 
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to compute in discrete time. Some recent publications on change-point 

detection in continuous time are Chu et al. (1996) and Beibel (1997). The 

change in time scale may also have other effects which will now be discussed. 

The ordering between the methods with respect to early alarms is the same for 

both the values of ARLo used in the simulations. The Shewhart method has the 

largest probability for an early alarm. It is followed in order by the CUSUM, 

the Shityaev-Roberts and the LR-methods with increasing V. However for the 

small ARLo=11 the Shewhart method was very similar to the CUSUM method 

and the important difference was between these two methods and the others. 

For ARLo=100 this is no longer the case. An explanation for this is that the 

relative information loss of using only the last observation is much larger for 

the larger ARLo which corresponds to frequent observations. For the larger 

ARLo, the major difference is between the Shewhart method and the others. 

The results on probability of false alarm, expected delay and the predicted 

value which are direct functions of the true intensity v will be affected by 

different ARLo since both are dependent on the time scale. 

The results on robustness for the choice of the intensity V are heavily 

dependent on the size of the ARLO since v, V and ARLo all relate to the time 

scale. One possible way to relate them is by a fixed value of Pr('r~ARLO). This 

relation will not make the situations perfectly comparable because of the 

discreteness involved. However, one effect of the time scale will be 

considered. Let va and Vb be the corresponding intensities for situations with 

ARLo equal to a and b respectively. Then 

For example, by this relation the value v 11 =0.6 corresponds to v 100 = 0.1. Also 

other relations were studied. Examples are fixed false alarm probability for the 

Shewhart method, fixed ratio w(ARLO)/w(l) between the weights in the LR­

method, and fixed ratio K(ARLO)/K(I) between the limits for alarm, for 
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s=ARLO and s=l, by the LR-method. All these gave approximately the same 

munerical results. However, for the similarities between the Shiryaev-Roberts 

and the LR method it is not only the conditions for time points far apart which 

influence, but also the similarities between adjacent weights. This works in the 

other direction and the combined effects observed in the figures are that 

vll=0.2 (or even a little less) corresponds better to vlOO = 0.1. 

The influence of ARLo on the robustness for the choice of V is evident since 

both are connected to the time scale. Even if less pronounced there is also a 

connection between the time scale and M since the optimal method for large 

M is to allocate much alarm probability for early time points and vice versa. 

However, the theorems on the similarities between methods, when the 

parameters are determined for large values M, does not depend on the size of 

ARLo. As was discussed above, the difference between the Shewhart method 

and the others (with M=/l) is more pronounced for large ARLo . Thus M is 

more important for large ARLo since the behaviour for large M and M=/l 

differs more. This is illustrated by the figures. 

4. DISCUSSION 

Sometimes the LR method is considered a Bayesian method while the 

Shiryaev-Roberts method is considered a frequentistic one. Here, however no 

assumptions are made which automatically violates the frequentistic 

framework. No specially Bayesian assumptions are necessary for the LR 

method. The change point 'C can be regarded as an ordinary stochastic variable. 

It is not necessary to interpret the intensity parameter V as a Bayesian 

assumption of the process. The properties of the method will be better if the 

parameter is not far from the actual intensity but the method can be considered 

anyhow. 

The number of parameters for the studied methods differs. The Shewhart 

method has no parameters which can be used to optimize the method. The only 

adjustment that can be made is to set the limit for an alarm to make the average 

false alarm properties (here ARLO) comparable with other methods. The 

CUSUM and the Shiryaev-Roberts methods have one parameter to optimize 

for the size of the shift /l but none for the intensity v. First, the effect of the 
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optimizing for J! will be discussed, then the effect of the optimizing for v, and 

fmally the general properties will be considered. 

The case where J! is unknown was examined by Srivastava and Wu (1993). 

They studied the effect of different true J! for a fixed assumed M. Here, the 

properties for different values of M for a fixed J! are studied to examine the 

robustness to the choice of parameter value M. The theorems and the figures 

demonstrate that choice of a large value of M makes the properties of the 

methods more alike. That means that a wrong specification to a too large value 

is not very dramatic as concerns the choice of method. All methods will have 

very skew distributions with high probabilities of early alarms. On the 

contrary, when the methods are optimized for small values, the skewness of the 

run length distribution is shifted and very early alarms are more rare. The 

skewness of the distributions becomes less pronounced compared with that of 

the Shewhart method. The differences in performance between the Shewhart 

method and the others is more pronounced for the large ARLo than for the 

smaller one because of the relatively larger information loss. Thus it is not 

surprising that the convergence with increasing M to the properties of the 

Shewhart method is slower for the large ARLo. 

The less skewness for smaller values ofM corresponds to a smaller probability 

of a false alarm Pr(t A<1') for a fixed ARLo. For late changes the power of 

detection gets better as is reflected by the expected delay and the probability 

of successful detection. The total expected delay, for the optimal values of the 

parameters, is optimal for the LR method for a fixed probability of false 

alarm. Now the ARLo is fixed instead. The balance between the false alarms 

and the power, as reflected by the predicted value, is better for the Shiryaev­

Roberts and LR methods for early alarms. 

The LR method is the only method here which has a parameter to optimize for 

the intensity v. That the Shiryaev-Roberts method is the limit of the LR 

method when the intensity v tends to zero is seen by the formulas and 

illustrated by the simulated results. The smaller the intensity parameter, the 

smaller the difference between the LR method and the Shiryaev-Roberts 

method. Simulations were made also for v=O. 001 and v=O. 01 but these results 

are not included in the figures since the differences to those of the Shiryaev­

Roberts method are less than the line width. The Shiryaev-Roberts method is 
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a good approximation of the optimal LR method and thus approximately 

optimal, for small values of v. 

The figures demonstrate that the LR method is robust against wrong 

specification of the intensity parameter V for the cases studied. In comparison 

with the difference to the Shewhart method, the choice of the intensity 

parameter of the LR method has very little influence on the performance. The 

results here confirm the conjecture by Roberts (1966) about the robustness of 

the LR method with respect to V. 

The optimal method when the intensity is large should intuitively have a large 

probability of early alarms. Some present results might seem to be 

contradicting this. These results will now be discussed. 

The shapes (see Figures 1 and 3) of the distributions of the alarm time tA might 

seem surprising. The probability of a very early alarm by the LR method with 

a low intensity parameter is greater than for a large value of the parameter. 

However, for a low intensity the probability of a late change is great and thus 

a thick tail of the distribution of tA is appropriate. As the expected value ARLo 

is fixed, the only possibility is a high probability of early alarms. This also 

causes the differences in false alarm probabilities in Figure 2. 

The large expected delay (see Figures 5 and 6) for the LR method with a large 

intensity parameter v might seem surprising. For a fixed cost of a false alarm 

the delay will be less for greater values of the intensity parameter v. However, 

now we have a fixed ARLo, and thus a greater value ofthis cost, which implies 

that the delay is increased to make the locations of the distributions of tA equal. 

The difference between the distributions is the shape, and not the location, and 

this difference causes the expected delay to be greater for the greater values of 

the intensity parameter. 

The predicted value of an alarm is given in Figure 8. This reflects the trust one 

should have in an alarm. A constant predicted value makes the interpretation 

of an alarm easier since the same kind of action is appropriate both for early 

and late alarms. The Shiryaev-Roberts and the LR-methods have relatively 

constant predicted values when M=J.l. This advantage is however diminished 

if a wrong specification of J.l is used. 
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The conclusion by Mevorach and Pollak (1991), that the expected delay is 

similar for the Shiryaev-Roberts and the CUSUM methods also for small 

values of ARLo, can only be confirmed for large values of M. They studied the 

cases M=5 and M=7 for ~=1. In the present study the conclusion is that there 

is similarity for the small ARL 0= 11 only for large values of M. Then, all 

methods converge to the Shewhart method and become similar. Also, they 

studied a situation where the time of change, 1", does not have any influence. 

When the effect of 1" is considered the CUSUM in many aspects was very 

similar to the Shewhart method. Srivastava and Wu (1993) made the 

conclusion that for small ARLo, Shiryaev-Roberts methods is clearly better 

than the CUSUM method. 

Most theoretical comparisons are made for the case where ARLo tends to 

infinity. Even though ARLo=100 is not large enough for the results about 

measures of performance to be approximated by those results some general 

conclusions agree. The conclusion by Pollak (1985), that the CUSUM and the 

Shiryaev-Roberts methods are similar for large ARLo, is confirmed. The 

relative information loss with the Shewhart method, that only takes advantage 

of the last observation, makes the properties of the Shewhart method more 

different from those of the others. Even though the CUSUM method still 

resemblances the Shewhart method in the tendency of a power-spending to 

early alarms, it is now much more alike the others than the Shewhart method. 

At large, the properties differ between the LR and the Shiryaev-Roberts 

methods on one hand and the Shewhart method on the other, for the situation 

studied in the simulations. This difference is more pronounced for the large 

ARLo and for the cases where a change has occurred. This is not surprising 

since the loss of information by using only the last observation is worst for 

these cases. The main difference is the "error-spending" on early or late 

alarms. When the common practice in quality control, to use ARLo and ARL 1 

only to judge methods, this fact is not demonstrated. Neither the effect of the 

skewness nor the effect of the value of 1" is seen by those measures. For 

Shewhart early (but often false) alarms are more frequent. The drawback with 

too early alarms is reflected by the predicted value. The early alarms are of 

less value since the predicted value is very low. 
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