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Abstract 

Statistical surveillance are methods for repeated analysis of stochastic 
processes, aiming to detect a change in the underlying distribution. Such 
methods are widely used for industrial, medical, economical and other 
applications. By applying these general methods on data collected for 
environmetrical purposes, it might be possible to detect important changes 
fast and reliable. 

We exemplify the use of statistical surveillance on a data set of fish 
catches in Lake MaIaren, Sweden, 1964-1993. A model for the in-control 
process of one species, vendace (Coregonus albula), is constructed and used 
for univariate monitoring. Further, we demonstrate the application of 
Hotelling's T2 and the Shannon-Wiener index for monitoring biodiversity, 
where a set of five economically interesting species serve as bioindicators 
for the lake. 
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1. Introduction 

There is a growing interest for studying unwanted changes of mother earth's 
environment which is creating new opportunities for people dealing with envi­
ronmental data. More often politicians, biologists and others try to find out if 
changes in our environment has occurred, by monitoring one or more variables of 
ecological interest over time. Hot topics include for example global warming, de­
terioration of water or soil quality, increasing incidence of cancer diseases caused 
by environmental factors and changes in biodiversity. The increasing awareness 
and interest for the status of the environment has given rise to a large amount 
of data collections. However, there is a risk that data is only collected, stored 
away and not followed in a systematic way. By using the theory for statistical 
surveillance it might be possible to design procedures for monitoring changes in 
the environment, calling an alarm for a change in the system, fast and accurate. 

Sometimes time dependence is tested with an ordinary test of hypothesis on 
a fix set of data, i.e. the null hypothesis, that no change has occurred over the 
studied time interval versus an alternative where the period can be divided into 
before and after the change. However, when we are monitoring data to be able to 
detect a possible change at an unknown time and make repeated analysis, we can 
not use an ordinary hypothesis testing approach. Instead techniques for surveil­
lance have to be used. Terms used in this context are for example monitoring, 
change point detection, statistical process control (SPC) and statistical quality 
control. 

This paper will give an introduction to the use of statistical surveillance in 
environmental science. We will study an application, from a data set on fish 
catches in lake Miilaren in Sweden, where we will be able to evaluate the usefulness 
of statistical methods in monitoring the environment. We will both study the 
detection of change in the level of one species, by using univariate monitoring 
procedures, and extend the model for monitoring the correlation between the 
species. The emphasis in the paper is on identifying a useful model that can 
be used to transform the data into a form where standard SPC methods can be 
applied. We will only use Shewhart tests on the transformed data, not because it 
is the optimal method, but because it is easy to apply and have properties that 
makes it suitable for benchmarking. 

In Section 2 we will give an overview of statistical surveillance methods. In 
Section 3 and 4 a data set from Lake Miilaren is studied unsing different models for 
the data to show the impact of model selection. A background to the material is 
given below in Section 1.1. Section 3 focuses on one species, vendace (Coregonus 
albula) , while Section 4 discusses application of multivariate methods on five 
species at the same time. Finally, Section 5 discusses the conclusions and ideas 
for further study. 
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1.1. Monitoring fish in Lake Malaren 

Data from the catches of fish, made by professional fishermen around Lake 
Malaren in central Sweden are collected since 1964 by the four regional authorities 
surrounding the lake. Of the species living in the lake, six have a major economi­
cal interest: Burbot (Lota Iota), eel (Anguilla anguilla), perch (Perca jluviatilis) , 
pike (Esox lucius), pike-perch (Lucioperca lucioperca) and vendace (Coregonus 
albula). We will use five of them as indicators of the biodiversity in the lake and 
evaluate the performance of different monitoring procedures. The eel have been 
excluded since its population is depending on artificial breeding, and is therefore 
increasing over time. We will humbly avoid the discussion of the relevance of 
these specific species as bioindicators and concentrate on the statistical aspects 
of the problem. 

From 1987 the catch of vendace decreased. At first, this declination was 
considered part of an assumed 6-8 year cycle of all fish in the lake, but when the 
expected increase did not occur in 1990 further action was taken. As we will see 
below, other period lengths than the assumed might fit better to the data. No 
systematic analysis of departure from the in control pattern have been performed 
earlier. We will study the data material, kindly provided by the Fresh Water 
Laboratory in Drottningholm, from different views. The aim is to discuss the 
performances of different surveillance procedures asking the question: If we had 
done this way! what would have happened? 

The analysis described in this paper is based on the landed catches of fish 
made by professional, mostly part-time, fishermen. Since we lack information 
about the effort it is not possible to reconstruct that information, we will use 
the raw data for analysis. Assuming that these figures are correlated with the 
amount of each fish species, they will suffice. 

2. Statistical surveillance 

Often we have data arriving to us one-by-one or in groups at discrete time steps. 
When the system producing the sequence of measurements behaves in some nat­
ural or wanted way we say that it is "in control". At a stochastic time, T, the 
system leaves the in control state and goes "out of control". The aim of the 
surveillance procedure is to detect when the system goes out of control, under 
some performance criteria, e.g. fixed false alarm probability at a certain time. In 
many cases ad hoc methods are constructed or data are viewed by an expert, who 
decides about whether to take action or not. Using methods of statistical surveil­
lance makes the monitoring more accurate since the performance of the methods 
can be evaluated and different methods can be compared with each other. 

Statistical methods for detecting changes in the underlying distribution of a 
sequence of data is used in many other applications. Examples from the industry 
can be found in Wetherill and Brown (1991), intensive care medicine in Frisen 
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(1992), surveillance of rare events in Arnkelsd6ttir (1995), postmarketing surveil­
lance of new drugs in Svereus (1995), surveillance of business cycles in Frisen 
(1994b) and even from a court case in Charnes and Gitlow (1995). Examples of 
environmental application can be found in Berthoux et al. (1978) (sewage treat­
ment plants), Kjelle (1987) (background gamma radiation), Settergren S¢rensen 
and la Cour Jansen (1991) (water quality) and Vaughan and Russell (1983) (point 
sources of pollution). 

Frisen and de Mare (1991) defined a monitoring situation to be either passive 
or active depending on the action taken after an alarm. When the process either 
is interrupted or changed after an alarm we have an active situation, while if the 
process proceeds unchanged after the alarm the situation is passive. For example, 
monitoring sea levels and floods will be passive, since no action is taken to alter 
the process after an alarm. On the other hand, when monitoring water or air 
quality, it is likely that an alarm will cause actions attempting to re-establish the 
earlier quality, in which case we define the situation to be active. 

We have a process of stochastic variables, X (t) ,t = 1,2, ... , which can be 
univariate or multivariate, i.e. X (t) is a vector of dimension p x 1. Further, we 
define the cumulated process up to time s as Xs = {X (t), t = 1,2, ... ,s}. This 
convention will be used consistently: Time within parenthesis meaning a value 
at a particular time and time in subindex meaning the cumulated values up to 
and including the time. N.b. that we will always use discrete time even if the 
notation with time in parentheses is customary for continuous time. 

2.1. Critical event 

At each time step, 3, we will formulate two possible states, that we want great 
power for distinguishing between: D (3) {:} T > 3 (in control) and C (3) (out of 
control). Given the data, X s , we will evaluate the evidence of C (3) versus D (3). 
Note that even if we will use a formulation similar to hypothesis testing this is not 
the case. The out of control alternative, C (3), will be formulated differently for 
different applications, however, examples of often interesting formulations are: 

• System goes out of control at time 3, C (3) = {T = 3}. 

• System is out of control, C (3) = {T ~ 3}. 

• System went out of control less than d time steps ago, C (3) = {3 - d < T ~ 3}. 

Different parameters can be of interest, as will be seen below, therefore the 
interesting out of control event have to be modelled in different ways. Here we 
describe statistical surveillance in the case of a change in the mean. If we let 
fl (t) = E (X (t)) and when the system is in control fl (t) = flo, for t < T, some 
examples of descriptions of the critical event is: 
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• Sudden shift to a new level, i. e. 

f-L (t) = f-LA = f-L0 + 8, for t 2: 7, 81- o. 

This model is satisfactory for many situations and, thanks to its simplicity, 
also suitable for evaluation of different monitoring procedures. 

• A generalization of the model above is to let the shift take a number, v, 
time steps to reach the new level. If we restrict f-L to monotone functions 
on [7, 7 + v) we get 

(t) = { 9 (t) when 7 :::; t < 7 + v 
f-L f-LA when t 2: 7 + V ' 

where f-L0 < g(t) < f-LA, a < b * g(a) < g(b), when a,b,t E [7,7 + v). 

• Further, setting v = 00 in the model above the mean will increase towards 
infinity. An example of this model is the linear trend beginning at 7. 

In the alternatives described above the change at 7 persists and the system 
will not return to the in control state. Below are three examples of alternatives 
where the system eventually returns to the in control state: 

• Pulse lasting one time step, 

{ 
f-L0 when t > 7 

f-L(t) = f-LA when t = 7 

• The model above can be extended to a pulse lasting v steps. 

• For some applications it is reasonable to say that the out of control event 
is a pulse that decays exponentially after 7, i. e. 

The choice of critical event can have important effects on the performance of 
the surveillance procedure used (Svereus (1995)). 

2.2. Methods 

Several methods for detecting the change in distribution have been designed. For 
univariate problems the first method was the Shewhart chart (Shewhart (1931)), 
followed by CUSUM (Page (1954)) and EWMA (Roberts (1959)). Bayesian ap­
proaches can be found in Zacks (1983). The likelihood ratio method (Shirayev 
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(1963) and Frisen and de Mare (1991)), which have maximum detection proba­
bility for a specific alternative and a false alarm probability. When the in con­
trol system contains unknown parameters that are updated, recursive residuals 
(Brown et al. (1975)) can be applied. 

With the Shewhart method an alarm is triggered when the last observation 
exceeds a critical limit, i. e. when IX (s) I > c. The limit, c, is in traditional SPC 

literature set to 3.09· a(s) or 3· a(s), where a(t) = JVar(X (t)) (Wetherill 
and Brown (1991)). CUSDM methods are based on the cumulative sums of 
observations, S (t) = L~=l X (i). An alarm criteria can be when the statistic 
maxi=l, ... ,t IS (t) - S (i)1 exceeds a limit h + k . (t - i), for some hand k. The 
EWMA, Exponentially Weighted Moving Average, uses a weighted sum of the 
observations as a test statistic, i. e. U (t) = L~=o Ai X (t - i), for some A E (0, 1), 
where a smaller value of A gives more weight to more recent observations. For 
the likelihood ratio method the critical function, p, is defined as 

p(Xs) = ix. (xs I C (s)), 
ix. (xs I D (s)) 

where both the C (s) and D (s) are fully specified states, C (s) being the system 
is out of control and D (s) in control, respectively. 

For multivariate problems two natural strategies are either to monitor each 
process separately (an alarm is triggered at the first alarm of an individual pro­
cess) or to transform the data into a univariate sequence. The likelihood ratio 
method can equally well be applied for a multivariate sequence as for a univariate 
one. A survey of methods for detecting changes in more than one variable can 
be found in Wessman (1996). 

2.3. Evaluation criteria 

Different measurements of performance have been suggested, see Frisen (1992) 
or Frisen (1994a) for a comprehensive description. Depending on the considered 
application we will have different demands on the performance. Widely used is 
the average run length, ARLo, which is defined as the expected time from start 
to the first alarm given T = 00. An other often used measure of run length is 
the ARV, the time from start to the alarm, given T = 1. Further a measure 
related to the run length is the expected delay, which is the expected time from 
T to alarm. 

In some cases it is necessary to detect the critical event within a certain time, 
d, or else it might be too late. An interesting measure for these cases is the 
probability of successful detection) P S D (d). When we need to have control over 
the probability of having false alarms, we can use the false alarm rate, a (t), the 
probability of having a false alarm at t and the cumulated false alarm rate, at. 
When we have got an alarm, the probability of it being caused by a true change 
can be formulated in the predictive value of an alarm, PV (t), defined as the 
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probability of a change given an alarm. Cost functions, i.e. measures that gives 
a cost to the event of a false alarm and a cost proportional to the delay of an 
alarm, t - T, can also be used. 

2.4. Recursive residuals 

To be able to detect a deviation out of control we have to specify what is con­
sidered to be in control. The in control model can also contain parameters with 
unknown values, that have to be estimated. Two natural ways for dealing with 
the unknowns are: Either we first run the system during a so called run-in pe­
riod, estimate the parameters and thereafter treat them as known or we update 
the estimates in each time step using X s- I ' One example of the latter is to use 
recursive residuals (Brown et al. (1975)) where we compare the predicted value, 
E [X (s) I X S - I ] , against the real X (s). The residuals are used for surveillance. 
The effect of using nearly the same data for both modelling and surveillance is 
interesting but will not be discussed further in this paper. 

Instead of monitoring the process {X (tn we use the residual process 

R (t) = X (t) - E (X (t) I Xt-I) , (2.1) 

where the new process, {R (i)}, is monitored with some univariate method. An 
example is when the mean level is constant, but unknown, and is re-estimated at 
each time step, i.e. 

1 t-I _ 

R (t) = X (t) - - 2::X(i) = X (t) - Xt-I. 
i-I i=I 

Models of this kind have also been studied from a Bayesian approach by among 
others Zacks (1989). An other example is an ARM A process where the forecast 
errors, i.e. the residuals between the real values and their forecasts, can be 
used for monitoring. For example, for an AR(2) process, X (t) = rPIX (t -1) + 
rP2X (t - 2) + c (i), we monitor 

R (t) = X (t) - E (X (i) I Xt-I) = X (i) - rPIX (t - 1) - rP2X (t - 2), 

with estimated values of rPI and rP2. The one-step ahead forecast errors are iid, 
with the same distribution as c (i) (Wei (1990)). 

3. Modelling and surveilling vend ace 

In this section we will study the data for vendace (Coregonus albula) from a 
univariate point of view. First we have to identify the in control state. We 
will study both the alternative where periodicity is concerned and when data is 
considered aperiodic. The periodicity will be estimated either using a periodic 
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mean model or a Fourier series. Further, we will also compare models where 
successive observations are independent and a model where we assume data to 
be an ARM A (p, q) process. Ideally, the state, C, which is considered to be in 
control is given by knowledge of the biological process. Here we have to use data 
to determine the in control state. Model selection will be based on the data 
1964-1988, since we find it possible that the system is out of control in 1990. 
The parameters will, however, sometimes be estimated using data from 1964 to 
an earlier year than 1988, to show the impact of re-estimation on the surveillance. 

In Section 3.1 the modelling of the in control state for vendace is described, 
beginning with periodic models where successive observations are independent 
followed by ARM A models. In Section 3.2 we apply the techniques for surveil­
lance of the process and study the impact of different model assumptions. 

3.1. Modelling 

For the current purpose, to illustrate surveillance we find it sufficient to describe 
the alternative models by the residual mean squares, RM S. Suppose we estimate 
l parameters in the model using {X (1) , ... ,X (s - 1)}, then denote the expected 
value of X (i) by /11,s-l (X (i)). We then define 

RMS (Xs, s - 1) = s ~ l E (X (i) - /11,s-l (X (i))? . 

We will not discuss the choice of measure for model selection further, since it is 
only used for describing purposes and since the emphasis in this paper is on the 
surveillance of the specific application. There are however, other - and sometimes 
better - measures to use. 

In theoretical papers on surveillance, the in control state is usually assumed 
to be that the process have a constant mean, Ilo and variance (72. In many 
applications, however, the in control state will be that the system has a periodic 
variation of length l. It is well known that many systems of species (Colinvaux 
(1986), ch. 13) have periodic variations (cyclic as defined below), where classical 
examples include the ten year cycle in trapping of lynx in northwestern Canada 
(Elton and Nicholson (1942)) and the four year cycle of lemmings. 

We make a distinction between seasonality and cyclic variation, although they 
are both periodic variations and can be treated in the same way mathematically. 
By seasonality we define a periodicity where the length of the period is related to 
a "natural" period of time, i.e. annual or daily variation. By cyclic variation we 
define other periodicities, not explained by "natural" time periods, e.g. 20 days, 
9 hours or 6 years. 

Assume we have an additive process with independent and known mean and 
constant variance, i.e. X (t) = III (t) + E (t), where E (t) are iid, N (0, (7). Then 
the transformed process, Xc (t), defined by Xc (t) = X (t) - III (t), becomes a 
white noise process that can be used for surveillance. When III (t) is unknown we 
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will in the following use estimated values, /1z (i), and when also I is unknown we 
estimate 1 first and then estimate J1z (i) using f and get /1f(i). 

Using a time domain approach (Box and Jenkins (1972)), the process can 
be identified and its parameters estimated. The in control state can then be 
defined such as the process is an ARM A (p, q) process. Since the forecast errors 
of a properly identified process should be iid, we can use them for surveillance 
instead. However, the critical event can manifest itself in different ways in the 
original process and the forecast errors, a problem that will not be discussed 
further in this paper. 

3.1.1. Frequency domain approach 

Although the present data series only consist of 30 time steps, we see possible 
periodic patterns in more than one species. Using a frequency domain approach, 
we can estimate the periodically varying mean. To do so, we will have to know, 
or estimate, the cycle length, l. 

We will first study a model where the mean function is any function with 
period l, i.e. J1z (i) = J1z (i + l), Vi > O. Our model is that X (i) = J1z (i) + 
E (i), that the mean function, J1z (i), is periodic with period 1 and that E (i) rv 

N (0, 0-2) and independent. For a given I we estimate J1z by using the time-subsets, 
Tz,s (i) = {i, i + l, i + 21, ... :::; s}, for i = 1, ... ,l. They are all disjoint and their 
union becomes {I, ... ,s}. The maximum likelihood estimate for J1z,s (i), given l, 
becomes 

/1z,s(i) = #Tl (i) L X(i),i=I, ... ,l-l. 
Z,s iETI ,8(t) 

The estimated variance, 0-
2 , using Xs for the estimation becomes 

&; = ~ t (X (i) - /1z,s (X (i)))2 = ~ . RSS, for s > 1 + 1, (3.1) 
s- -1. s- -1 z=l 

where RSS denotes the residual sum of squares. 
The RM S for 1 = 2, ... , 15 are shown in Figure 1. It seems like we can get a 

better fit by using a periodic mean than a constant mean. However, the disad­
vantage of the periodic mean model is that we have to estimate 1 + 1 parameters. 
There is a risk, when the sample size is small, that we overfit the model. If two 
models are having the same residual sum of square (RSS) but different number of 
parameters, the estimated variance will be unnecessary high for the model with 
more parameters, thereby reducing power to detect changes. 

Instead of estimating a mean level for each part of the sample, we can fit a 
more parsimonious Fourier series of order 1, (see Tolstov (1962) or Churchill and 
Brown (1987) for example) i.e. 

J1z (i) = J1 + (31 cos (27r ·1) + (32 sin (27r . D . 
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This model needs three parameters to be estimated for the mean (cf. I above) 
independent of I. Parameters are estimated using linear regression and the vari­
ance is estimated analogously with (3.1). RMS for these models, RMSFo (l) are 
also shown in Figure 1. 

Using reasonably low values of I, we get local minima both for RM SFo (l) and 
RM Spm (I) for I = 9 years. A comparison between the true data and the different 
models, with I = 9, are shown in Figure 2. Since the periodic mean model have 
more parameters than the Fourier model, RMSpm is bigger than RMSFo for most 
values of I, except I = 9 where we seem to get a better fit with the parameter 
mean model even in spite of that penalty. Note also the big difference in RM Spm 
when we move I away from 9, the Fourier series model seems to be more robust 
for the choice of I. 

3.1.2. Time domain approach 

In the time domain approach of the problem, we identify the process and estimate 
the parameters using the Box-Jenkins approach (Box and Jenkins (1974) or Wei 
(1990)). As usual we define the ARM A (p, q) model with mean f1 (t) as 

X (t) = f1 (t) + <PlX (t - 1) + ... + <ppX (t - p) 
-(JlE (t - 1) - ... - (JqE (t - q) + E (t) 

where E (t) are iid and N (0,0'2). The one-step ahead forecast errors, will be 
iid with mean 0 and variance 0'2 = Var (E (t)), and can therefore be used for 
surveillance procedures by for example the Shewhart method. 

The identification of the process is made by using the sample autocorrelation 
function (ac!), Pb and the sample partial autocorrelation function (pac!) both 
shown in Figure 3. For the vendace data, we find that a suitable model would be 
the AR (1), having three parameters shown in table 1. 

Table 1. Estimates of the AR (1) model 
Parameter f1 <Pl a 
Estimated value 158 0.39 31.2 

The sample mean and the Yule-Walker estimate are used for estimating f1 and 
<Pl, respectively. The variance, 0'2, is estimated by &2 = Var (Xt ) . (1 - (h . Pl)' 
The forecast errors are plotted in Figure 4. The RM S for this model, RM S ARl = 
922. Diagnostic checking shows that the fit seems to be accurate enough, although 
we have an indication of a possible periodicity of 9 years. 

3.1.3. Comparison between the models 

We will now discuss the arguments for and against the models designed above: 
the AR (1) model, the iid model, the periodic mean model and the Fourier series 
model. The best fits for the periodic models are for a period of 9 years and these 

11 



periods will be used in the comparisons. The 9 year cycle is also indicated when 
we use the AR (1) model. 

The results are summarized in table 2, sorted in descending order of RM S. 
The number of parameters include the estimated variance. 

Table 2. Comparison between the RM S for the univariate models. 
Model #Parameters RMS 
iid 2 1077 
AR (1) 3 922 
Fourier series (1 = 9) 4 708 
Periodic mean (l = 9) 10 607 

As expected, the iid have the maximum RM S. Adding only one extra pa­
rameter and using the AR (1) model would give a notable improvement. Going 
further, would on one hand improve the fit even more, but it is obvious from 
Figure 1 that both the Fourier series model and the periodic mean model are 
sensitive to the choice of 1. For 1 :::; 8 and 1 2: 11 we get a better fit with the 
AR (1) model. Also, after centering the process using the periodic models, the 
residual series is auto correlated , thereby calling for a further step, with yet one 
more parameter. 

We conclude that there are many different models that might fit the data, we 
therefore need better knowledge about the actual ecological model generating the 
data to be able to make a choice. If we consider a model with a periodic mean, 
a period of 9 years seems to be suitable. We also find that the models with a 
small number of parameters, the AR and the Fourier series models, are giving a 
fit that is sufficiently close, compared to the periodic mean model. 

3.2. Monitoring vendace 

We will now apply the models developed above for monitoring a change in dis­
tribution of the vendace population. We will only apply Shewhart test on the 
data, to make comparisons easier, even though other methods might give better 
performance. The mean and standard deviation are re-estimated at each time 
step, and the residuals are used for surveillance, using the formulation 2.1. We 
define jis-1 (X (8)) as the expected value of X (8) estimated from X s- 1 (page 
8). Analogously, we define o-s-l (X (8)), the standard deviation of the resid­
ual at 8. The Shewhart test prescribes that an alarm is triggered at time 8 if 
IX (8) - jis-1 (X (8))1> 3· o-s-l (X (8)). 

U sing the procedure described above, assuming that the process is iid, X (i) rv 

N (/1,0- 2
), we would get an alarm in 1990. If we instead apply the refined models 

described above, we will at least not get an alarm earlier than 1990. Table 3 
shows the standardized deviation from the expected value, given the estimated 
mean and variance. The Shewhart method triggers an alarm when S > 3. 
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Table 3. The standardized deviation from the mean in 1990. 
Model S (1990) 
AR(1) -3.42 
iid -3.68 
Fourier series (l = 9) -5.42 
Periodic mean (1 = 9) -6.59 

The difference between the models are that the iid and the periodic ones on one 
side are comparing the current value with an expected value. The expected value 
of 1990 is higher than the 1989 one, in both the periodic models, and the drop 
in 1990 therefore sums with the expected increase. 

The AR-model on the other hand, compares the current value with the pre­
ceding one. Since 1989 was lower than average, the 1990 drop was not extremely 
big. Autoregressive time series tend to behave in a way that they are strolling 
up and down around their means. The suspected cyclic variation could therefore 
possibly be explained as a part of this random walking. 

With the surveillance procedures we have used, Shewhart with 3& limits, we 
would not get an alarm earlier than 1990. Decreasing the critical limit could 
make it possible to detect the change earlier if we accept the higher false alarm 
probability. Note however, that the Shewhart method is not always the optimal 
method to use, and an other choice of method might have detected a change 
earlier. 

We conclude that different models can give different results. Since the data 
material, due to the long time steps (one year), will be small still for many years, 
ecological background or other prior information is needed to restrict attention 
to only a small number of possible models. 

4. Monitoring five species simultaneously 

Earlier we restricted the analysis to univariately monitor one species at a time; 
but we have five sequences of data that can be used in parallel. Monitoring 
the biological diversity have received more attention since the UN conference 
in Rio de Janerio 1992. In the Rio convention biodiversity is defined as "the 
variability among living organisms... this includes diversity... between species 
and of ecosystems." . 

One way of combining the information from the multiple sources, and design 
a common system for monitoring all at a time, is by creating an index, that can 
be used for surveillance. Since the covariance matrix plays an important role we 
will also study it specially. We will see that it, for this example data set, has some 
interesting properties. Statistical methods for surveillance of multiple processes 
have been suggested by many authors, among which the most popular methods 
probably is Hotelling's T2. 

13 



4.1. Diversity indices 

Several indices of biodiversity, with different statistical and demographic prop­
erties, have been suggested. Overwiews can be found in for example Colinvaux 
(1986), Magurran (1988), Noss (1990) or Pielou (1975). However, no universally 
acceptable index exists. Least complicated is probably the species richness index, 
defined as the number of species. A widely used statistic for biodiversity is the 
Shannon-Wiener index (Shannon and Weaver (1949)), H', originally designed for 
measuring information content. It is defined as 

where Pi is the proportion of individuals of species i, measured by some suitable 
unit. Given a number, N, of species, H' is maximized for Pi = 1/ N giving 
H:nax = log (N). The Q index and the Pielou JI statistic, for example, are 
smaller alterations of H', giving higher weight to the richness (N), but when N 
is constant. 

When we measure diversity any definition of" amount" can be used: Number 
of individuals, mass, area or anything else that has a relevant meaning for the 
studied species. We use the landed mass of each species. Standardized values of 
H', based on estimated mean and variance of H', i. e. 

H" (t) = H' (t) - B1988 (H') 
&1988 (H') , 

have been plotted in Figure 5. Assuming that H' is approximately normal, we 
see from that Figure that a Shewhart 3& limit will give no alarm at all. 

4.2. Estimation of the covariance matrix 

If we assume that the data comes from a multinormal distribution, X (t) rv 

MN5(fl(t),~), where the sequence is iid. The dimension of X(t) and fl(t) is 
1 x 5 and the dimension of ~ is 5 x 5. The mean is estimated for each process 
separately, by using X s, is denoted [is (i). Let P be the number of parameters 
used in [is (i), for constant means within each process P = 5. We estimate ~ 
successively over time, Es estimated using X s , by 

Es = _1_ t (X (i) - [is (i)f (X (i) - [is (i)) when s > p. 
s - P i=1 

When we do so and plot Es versus s we see an interesting pattern, Figure 6. The 
correlations between the species can be grouped into three groups: 

1. Correlation between pike-perch and other. 

2. Correlation between vendace and all but pike-perch. 
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3. Correlation within burbot, pike and perch. 

Using this grouping we can reduce the number of parameters from 15 to 8. 
Below, we have replaced the individual covariances with the arithmetic means of 
the groups. The estimated covariance matrix becomes 

Vendace Pike Pike-perch Perch Burbot 
Vendace 835.5 85.21 39.78 85.21 85.21 

~1988 = 
Pike 70.33 39.78 22.03 22.03 

( 4.1) 
Pike-perch 743.0 39.78 39.78 
Perch 14.97 22.03 
Burbot 26.06 

A plot of I: t against t is found in Figure 7. We have used all the data from 1964 
up to t at each time step. One disadvantage that will not be discussed in detail 
here, is that since we accumulate more and more data for the estimation, the 
power for detecting a change recently in time, e.g. detecting the event {T = t}, 
will decrease. An alternative approach to avoid this risk would be to use a window 
of length w for estimation, i.e. I: t is estimated using X (t - w + 1), ... ,X (t), 
this approach will however not be studied in this paper. 

4.3. Hotelling's T2 

Hotelling's T2-statistic (Hotelling (1947)) is defined as 

T2 (t) = (X (t) - p,)T ~-1 (X (t) - p,), 

where p, and ~ are the mean vector and covariance matrix, respectively. A more 
general definition would be to allow the mean vector p, (t) and covariance matrix 
~ (t) to vary over time. We will, however, in the following restrict attention 
to the case where the in control variance matrix and mean vector are constant, 
~ (t) = ~o and p, (t) _ p,0. The T2-statistic can detect deviations from both 
mean and variance, but is most sensitive for changes in mean, especially when 
all the means are changing at the same time and direction. Since Hotelling's T2 
is a well known and often used statistic we will give it a go ~ on our data. 

Using the estimated covariance matrix for 1988 (4.1), I:1988 , and a constant 
mean vector, /11988 = (159.7,36.76,145.5,11.98,12.50), the T2-statistic based on 
the estimated values is plotted in Figure 8. The estimated mean vector have a 
multinormal distribution, /1t rv M Nq (p" ~/t), and the estimated variance matrix 
have a Wishart distribution, ~t rv Wq (t - 1, ~), which is a multivariate extension 
of the X2-distribution (Crowder and Hand (1993)). Approximating the distribu­
tion of I: t by a Wq (t - 1,~) we get 

q T2 apK:,0x F 
(t + l)(t - q + 1) q,t-q+1· 
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Using f.l and ~ estimated with data up to 1988 (t = 25), we would yield an 
alarm already in 1989 with the critical limit -4.55. 

5. Discussion and conclusions 

We see from the univariate analysis of the vendace (Coregonus albula) data above, 
that the choice of model is of great importance. When different cyclic patterns or 
autocorrelations are present, data have to be modified to take this into account. 
We find that goodness of fit can be improved by estimating cyclic patterns or 
autocorrelation. By using either of the four models studied in this paper, the 
Shewhart procedure would have detected a change by 1990. The weakest reactions 
come from the AR(1) and iid-models. The AR(1) includes a natural wandering 
around the mean of the system that partly explains the drop in 1990. Due to 
this, the AR (1 )-model stops calling the alarm in 1991. The periodic models both 
expected an increasing catch by 1990. Because of this the difference between the 
expected and actual catch in 1990 was magnified and an alarm was triggered. 

As expected, the species of fish are all positively correlated with each other. 
This leads to the conclusion that the drop in vendace will either be explained by 
the other species behaving in the same way or else lead to a decreasing correlation 
between vendace and other species. Both scenarios are interesting as the ecolog­
ical causes possibly have to be sought in different places. As with the univariate 
problem above, the description of the critical event is crucial and is also affected 
by the in control system. 

Neither the Shannon-Wiener index nor the variants of it studied in this paper 
manages to call any alarm at all. Hotelling's T2, however, detects a change 
already in 1989, one year earlier than the univariate procedures. This is likely to 
depend on the fact the change in the vendace population is a small one in the 
proportions between the species while the change for vendace it self is quite big. 
Since Pielou JI is sensitive to changes in proportions between the species it fails 
while Hotelling's T2 can detect big changes in one species at a time. 

Using more than one species can make it possible to detect changes, when 
the critical event is being magnified by the interaction between the species. Also, 
using more than one species will make it possible to monitor biodiversity. 

There is a great potential and usefulness for statistical surveillance on envi­
ronmental data. Over the world enormous amounts of data are collected about 
the environment and stored for analysis. Quality control and statistical process 
control is used, as was mentioned earlier, in many places in society, and now the 
turn must have come for environmental data. 
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Legend to Figures 

1. Residual mean square (RMS) for different models of the vendace data: 
Constant mean model (dashed line), the periodic mean model (rings), the 
Fourier series model (cross) and the AR (1) model (dotted line). The con­
stant mean and the AR (1) model are independent of period length. 

2. The real data series (stars) compared with its expected value of the fitted 
periodic mean (dashed line) and Fourier series model (dotted line), all es­
timations are made on data 1964-1988. The shape of the three sequences 
coincides at least until 1988. 

3. Sample autocorrelation function (ac!) and sample partial autocorrelation 
function (pac!) for the catches of vendace, estimated using data from 1964-
1988. Estimation is made on data from which the sample mean have been 
subtracted. A reasonable identification seems to be the AR (1 )-model. 

4. One step ahead forecast errors for the catches of vendace. Forecasts are 
based on the AR(l)-model. The alarm limit is the 3· O't-l(t) Shewhart 
limit with O't-l (t) estimated from the data X t-1. 

5. Standardized Shannon-Wiener index. The standardisation is made on the 
sample mean and standard deviation, i. e. HLI' A value exceeding 3 would 
trigger an alarm with the Shewhart method. 

6. Pairwise correlation coefficients between species, estimated between 1964 
and the current year. Correlations have been grouped into three groups 
where the correlations are almost equal to each other: The "pike-perch"­
group (correlations between pike-perch, Lucioperca lucioperca, and any other 
specie), "vendace" -group (correlations between vendace, Coregonus albula, 
and any other specie except pike-perch) and" other" -group (correlations 
between burbot, Lota Iota, perch, Perca fiuviatilis and pike, Esox lucius). 

7. Aritmetic mean of the pairwise correlation coefficients taken over the cor­
relation groups. Vendace contains the correlation between vendace and all 
other species except pike-perch. Other contain the correlations between 
burbot, perch and pike. 

8. Hotelling's T2-statistic based on mean and variance estimated up to 1988. 
The variance matrix have been replaced by the reduced variance matrix, E, 
where the covariances have been replaced by their arithmetic means within 
the correlation groups. The critical limit, -4.55, have been estimated using 
an approximated using the F-distribution. 
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