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Sequential probability ratio tests when using 
randomized play-the-winner allocation. 

Anna Ekman 

Abstract 

In many clinical experiments there is a conflict between ethical de
mands to provide the best possible medical care for the patients and the 
statisticians desire to obtain an efficient experiment. 

Play-the-winner allocations is a group of designs that, during the ex
periment, tends to place more patients on the treatment that seems to 
be better. Using a randomized play-the-winner allocation and making a 
suitable inference for the design, is a suggestion to perform a reasonable 
experiment for the above mentioned considerations. 

In this paper we will concentrate on sequential inference, for the case of 
simple hypotheses and for the case with simple hypotheses with a nuisance 
parameter. 

The response to treatment is assumed to be dichotomous. We proceed 
from Wald's sequential probability ratio test, SPRT, and Cox's maximum 
likelihood SPRT, for the two hypothesis cases above. 
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1. Introduction 

In many clinical trials, patients enter the study sequentially. The outcome can be 
examined repeatedly, so that early termination of the study can be considered, 
when sufficient information is obtained from the experiment. 

Consider an experiment where two treatments, say A and B, are compared. 
The response to the treatment is dichotomous, namely success or failure. The 
question arises how to allocate patients to the two treatments. A simple allocation 
rule is to randomly choose a treatment for each patient. Because of ethical consid
erations the randomized play-the-winner, RPW, allocation has been developed. 
Play-the-winner allocations was first suggested by Zelen (1969).A characteristic 
of the Play-the-winner allocations is that the probability for a treatment increases 
as the number of successes for the treatment increases. Therefore, we can assume 
that less patients are allocated to the inferior treatment than to the superior one. 
Three Play-the-winner allocation rules, Play-the-winner (PW) allocation, modi
fied Play-the-winner (MPW) allocation and randomized Play-the-winner (RPW) 
allocation, are summarized in Section 2. 

The RPW will be examined for comparing two treatments, A and B. In Sec
tions 3, 4 and 5 we will examine the case of simple hypotheses, 

Ha : PA = PB = PAa = PBa vs. HI : PA = PAI,PB = PBI , 

using Wald's sequential probability ratio test, SPRT. It will be assumed that 
PAa =1= PAl and PBa i= PBI· 

Wald's SPRT is originally presented in the case of independent identically 
distributed random variables. If a play-the-winner allocation is used the variables 
are not independent and identically distributed: the treatment of the current 
patient depends on the treatment,and the response to the treatment, of one 
or more of the previous patients. We will present a generalization of the test 
which is suitable for this more complicated situation. We will assume immediate 
responses, to simplify the calculations. In Section 3 we recall Wald's SPRT 
and some of its basic properties. In Section 4 the test is generalized to our 
experimental situation, where the random variables are not independent and 
identically distributed. As main result, of the first part of the paper, we will 
show that the error probabilities have a certain bound, for inference based on 
Wald's SPRT, when the RPW allocation rule is used in the experimental setting 
of allocating patients to the two treatments. In Section 5 we compare two Play
the-winner allocation rules, the RPW and the MPW, and total randomization 
(TR), when using the SPRT, by means of expected sample size and expected 
number of patients allocated to the inferior treatment. TR assigns treatment 
A with probability ~ and treatment B with probability ~, each time a patient 
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arrives. Hence, TR represents an allocation rule for which the random variables 
are independent and identically distributed. The expectations are calculated 
through simulations. 

In Sections 6, 7 and 8 we will discuss a test of simple hypotheses, 

in the presence of a nuisance parameter, f-l. The parametrization used is 

e = in PA _ in P B 
1 - PA 1 - PB 

This can easily be extended to testing a composite hypothesis in the presence 
of a nuisance parameter. The test, to be investigated, is the maximum likeli
hood SPRT proposed by Cox (1963). Bartlett (1946) also proposed a maximum 
likelihood SPRT. These two test are closely related. In both tests the maximum 
likelihood estimation of the nuisance parameter is used in the likelihood ratio. In 
Bartlett's test both the maximum likelihood estimation under the null hypothe
sis and the maximum likelihood estimation under the alternative hypothesis are 
used in the likelihood ratio, and in Cox's test the maximum likelihood estimation 
obtained by solving the normal equations for both the parameter of interest and 
the nuisance parameter is used in the likelihood ratio. The tests are asymptot
ically equal. For a further discussion of this and of the asymptotic behavior of 
these tests, a paper by Holm (1985) is recommended. 

In Section 6 we recall Cox's maximum likelihood SPRT. We give a quite de
tailed derivation of it and describe the connection with the theory of Wald's 
SPRT. Cox's test in the RPW-case is derived in Section 7. The properties of 
Cox's test, when using RPW allocation, are discussed in Section 8. To inves
tigate the behavior of the error probabilities, the expected sample size and the 
expected number of patients assigned to the inferior treatment, a simulation study 
is performed. The result and a discussion can also be found in Section 8. 

2. Play-the-winner allocations 

The first Play-the-winner allocation was introduced by Zelen (1969). Zelen's 
allocation, denoted by PW, is best described by an urn. For each successful 
treatment, we put a ball in the urn representing this treatment, and for each 
failure we put a ball representing the other treatment. When a patient is to be 
allocated to a treatment we draw a ball from the urn, without replacement. If 
the urn is empty, as it is at the start, each treatment has probability!. This 
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method allows the responses to be delayed, but if many responses are delayed for 
substantial time treatments will mostly be assigned with probability ~ each. 

In the same paper Zelen introduced another allocation rule, where the re
sponses were assumed to be immediate. When allocating the first patient, the 
treatments have probability ~ each to be assigned to the patient. For the follow
ing allocations one keeps on assigning the same treatment until it gives a failure, 
then switches to the other treatment and keeps assigning this one until it gives 
a failure. The allocation rule is denoted by MPW, modified play-the-winner. 
Note that with immediate responses the PW allocation is identical to the MPW 
allocation. 

Later, a randomized play-the-winner allocation was introduced by Wei and 
Durham (1978). Now we can think of an urn with WA balls representing treatment 
A and WB balls representing treatment B, at the start. When a patient is to be 
assigned to a treatment a ball is drawn from the urn, with replacement. If the 
response "success" is received, from a patient assigned to treatment A (or B 
respectively), we add p A-balls (or p B-balls) to the urn. If the response is a 
"failure" we add p B-balls (or p A-balls) to the urn. Note that here, the history 
of successes and failures will affect every allocation, even if the responses are 
delayed. This last allocation rule is denoted by RPW(WA,WB,p). A special case 
of the RPW(WA, WB, p) is when WA = WB = w, which is denoted by RPW(w, p). 

The statistical analysis of results from experiments where RPW(w,p) alloca
tion rules have been used has been discussed by several authors. Wei and Durham 
(1978) suggested an inverse stopping rule for deciding which of two treatments is 
the better one. They also compared the RPW(O, 1) with PW, with respect to the 
expected number of patients treated by the inferior treatment, the average sample 
size and the estimated probabilities of correct selection of the inferior treatment. 
The comparison of the average sample sizes was done when the inverse stopping 
rule was used. Wei and Durham concluded that the RPW(O,l) seemed to be 
approximately equal to the PW for practical use. 

Wei (1988) used the inverse stopping rule to stop the experiment, and pro
posed a fixed sample permutation test for the analysis. For comments on the 
work of Wei (1988), and general comments on difficulties with the inference after 
using the RPW(w, p) allocation, the discussion by Begg (1990) is recommended. 
In Wei, Smythe, Lin and Park (1990) exact conditional, exact unconditional and 
approximate confidence intervals were studied. One of their conclusions was that 
the design should not be ignored in the analysis. However, in many suggested 
analyses the authors have chosen either not to include the stopping rule (see 
the articles mentioned above) and therefore, by our opinion, leaving part of the 
design out or concentrated on fixed sample sizes (see Rosenberger (1996) for a 
summary). An interesting collection of reports, on adaptive designs and infer
ence in combination with these, was published after a 1992 joint AMS-IMS-SIAM 
Summer Conference, Flournoy and Rosenberger (1995). 

In the present paper we will use sequential analysis as a suggestion to include 
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a stopping rule and to handle the inference problem that arises. We have chosen 
significance tests since these are commonly used and asked for in clinical trials. 
Where nothing else is mentioned we concentrate on the RPW(l, 1) allocation. 

3. Wald's Sequential Probability Ratio Test 

In this section Wald's sequential probability ratio test, SPRT, and some of its 
basic properties are described. The theory below follows unpublished lecture 
notes, Holm (1990). A good introduction to the theory of sequential analysis 
can be found, for example, in Govindaraluju (1981), Ghosh (1970) or Siegmund 
(1985). 

3.1. The test 

We are interested in discriminating between two simple hypotheses 

with a sequential probability ratio test, with desired significance level a and 
desired power in the alternative 1 - 13. The test is constructed as follows. 

Assume that Xl, ... ,Xn are independent identically distributed random vari
ables with probability distribution function fe (.), and with joint probability dis
tribution function jn,(J (.). Then the likelihoods ratio An can be written as 

where Xn = (x!," .,xn ). 

Let A and B be absorbing barriers. Then we have three possibilities: 

B < An < A continue with an additional observation 

An ::; B stop the experiment and accept Ho 

An :::: A stop the experiment and reject Ho 

Often it is more practical to work with the log likelihood ration In An , a = In A 
and b = InB. 

3.2. Some important properties 

The following results enable us to choose the bounds A and B, so that the true 
significance level, a*, and the true power under the alternative, 1 - 13*, will be 
close to the desired ones. Equations 3.2.1 and 3.2.2 give us the bounds of the 
true a* and 1 - 13*, while a and 1 - 13 are desired. 
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The proofs of the propositions below are included to illustrate that the proof 
of Proposition 3.2 is the only one that requires the assumption of independent 
and identically distributed random variables. 

Proposition 3.1 :Assume that P (N < (0) = 1. Then for given A and B 

1 - (3* (3* 
A :S * and B ~ 1 *' a -a 

where a* and (3* are the true type- I and type-II errors. 

Proof. Let 
Rn = {xn;N = n,)w ~ A} . 

Therefore, the R~s are mutually disjoint. Now we can write 

a* = P(Jo (>.'N ~ A) = f P(Jo (Rn) = f J In,(Jo (xn) dXn . 
n=l n=IRn 

Remembering that 

on Rn we obtain 

Hence, 

Similarly we can show that 

o 

In,(Jl > A 
In,(Jo -

1 - (3* 
A<---

- a* 

(3* 
B~---

1- a* 

Proposition 3.2 : If Xl, ... ,Xn are independent and identically distributed 
random variables and 

then 
P(N<00)=1. 
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Proof. Let .6. > O. Then 

implies that 

3.6. ; P ( In j:: ~~:~ ~.6.) = , < 1 for some, > 0 . 

Furthermore, 

and hence, 

Let 

[
a - b] 

no= ~ . 

Then 

Furthermore, let us denote 

c = (1 ~ ') no 

We now have that 
P (N > kno) ~ (1 - c)k , 
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that implies 
lim P (N > kno) = 0 . 

k-+oo 

Therefore 
P(N<oo)=l. 

D 

Proposition 3.3 : Assume that P (N < 00) = 1. If A and B are chosen to 
be 

1-(3 (3 
A = -- and B = --

a 1- a ' 
where a and (3 are the desired levels of error probabilities, then the true level 

of significance, a*, and the true power under the alternative, 1 - (3*, satisfy 

a* + (3* ~ a + (3 . 

Proof. As P (N < 00) = 1 is assumed, the requirement of Proposition 3.1 is 
satisfied. Hence 

Now it follows that 

which implies that 

Thus, 

{ 
Aa* < 1 - (3* 

(3* ~ B (1 - a*) 

{ 
a* (1 - (3) ~ a (1 - (3*) 
(3* (1 - a) ~ (3 (1- a*) 

a* (1 - (3) + (3* (1 - a) ~ a (1 - (3*) + (3 (1 - a*) 

and finally 
a* + (3* ~ a + (3 . 

D 

Note that Proposition 3.2 implies Proposition 3.1, which implies Proposition 
3.3. The allocation rule TR, where the two treatments are allocated with prob
ability ~ each, satisfy the requirement for Propositions 3.1-3.3, as the random 
variables in this case are independent and identically distributed. 

By using Proposition 3.1 and Proposition 3.3 we obtain 

I-B < a* < I-B-
A+-B - - A-B- (3.2.1) 

and 
A + I-B < 1 - (3* < A I-B-

A+-B - - A-B- (3.2.2) 

where A + is the maximum value of the likelihood ratio, when stopping and re
jecting Ho, and B- is the minimum value of the likelihood ratio, when stopping 
and accepting Ho. 
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4. SPRT for a response dependent allocation 

We investigate an allocation rule that creates dependence between the random 
variables. Therefore we need to generalize the theory of Wald's SPRT to this situ
ation. We do this for our specific experimental setting, where we want to compare 
two treatments that both have two possible responses, success and failure. 

In Section 4.1 we derive the log likelihood ratio, In An, and in Section 4.2 we 
show that the properties, discussed in Section 3.2, are true also for the generalized 
SPRT. These properties enable us to construct a generalized test in the same way 
as the ordinary Wald's SPRT is constructed. 

4.1. The log likelihood ratio 

To simplify the calculations immediate responses are assumed. From now on we 
use the following notations : 

PT = the probability of success for treatment T 
ST(i-l) = number of successes of treatment T among the (i - 1) first patients 

FT(i-l) = number of failure of treatment T among the (i - 1) first patients 

where T is either A and B. Furthermore, it is assumed that 0 < PA < 1 , 
o < PB < 1 and that PA 2: PB· 

Simple hypotheses of the following kind are considered 

Ha : PA = PB = PAa = pBa versus HI : PA = PAl, PB = PBl . 

It is assumed that 
PAa #- PAl and PBa #- PBl . 

Our response variables are 

y: = { 1 if patient i was allocated to treatment A 
2 0 if patient i was allocated to treatment B 

X. = { 1 if the treatment on patient i resulted in a success 
2 0 if the treatment on patient i resulted in a failure 

In the following we will use the notation {X}{ = {Xi, . .. , X j }. 

The likelihood function can be determined as 

N 

* II {p (Yi = Yi I{y}~-l = {y }~-l ,{X}~-l = {x }~-l) P (Xi = Xi IYi = Yi)} 
i=2 
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N 
= P (Yi = Yl) * II p~Xi (1 - PA)Yi(l-X;) pg-Yi)Xi (1 - PB )(l-Y;)(l-Xi) 

i=2 

* (p (Yi = II{y}~-l = {y }~-l ,{X}~-l = {x }~-l ) yi 

* (1- P (Yi = 11{y}~-1 = {y}~-l ,{X}~-l = {X}~-l))(l-Y;) 
Hence, the likelihood ratio is 

AN = II PAl - PAl PBl - PBl N ( )YiXi (1 )Yi(l-X;) ( ) (l-Yi)Xi (1 ) (l-Yi)(l-x;) 

i=2 PAO 1 - PAO PBO 1 - PBO 

The test statistic we use is the log likelihood ratio, the same as in Wald's 
SPRT. It can be written as 

~ [(PAl) (1 -PAl) In AN = ~ Yixiln - + Yi (1- xi)ln 
i=2 PAO 1 - PAO 

+ (1 - yd xdn - + (1 - Yi) (1 - Xi) In (
PBl) (1- PBl)] 
PBO 1 - PBO 

(
PAl) (I-PAl) (PBl) (I-PBl) =SA(N)ln - +FA(N)ln +SB(N)ln - +FB(N)ln 
PAO 1 - PAO PBO 1 - PBO 

4.2. Some properties 

Assuming that Condition 1 below holds we will show Proposition 4.1, the corre
spondence to Proposition 3.2. This implies Proposition 3.1, which implies Propo
sition 3.3. 

Condition 1 : 
P(Yi+l = liN> i):::; P(Yi+2 = liN> i,Yi+! = 1,Xi+! = 1):::; ... 

< P (y; = liN> i {y}i+m-l = {I}~+m-l {x}~+m-l = {I}~+m-l) - ~+m 't+l t+l' t+l t+l 
and 

P (Yi+! = 0 IN> i) :::; P (Yi+2 = 0 IN > i, Yi+l = 0, Xi+! = 1) :::; ... 
< P (y; = 0 IN > i {y}i+m-l = {O}~+m-l {x}~+m-l = {l}~+m-l) - t+m 't+l t+l' t+l t+l' 

\1m 

That is, we will assume that, given that the process has not stopped at stage i, 
the probability to allocate treatment A to a patient will increase, given that we 
allocate treatment A to every patient from stage i and on and that the responses 
all turn out to be successes. 

Proposition 4.1 : If Condition 1 is satisfied, then P(N < 00) = 1. 
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Proof. The following is true for all values of i. 

L t - [a-b] 1 h t - [ the absolute value of the possible 1 
e m - t +, were - increments of the log likelihood, in one step . 

By the assumptions that PAO =J PAl and PBO =J PEl, we have that 

Let us denote 

and 
CB,i+l = {(Yi+1 = 0, Xi+1 = 1), ... , (Yi+m = 0, Xi+m = 1)} . 

That is, we look at two events such that one treatment is allocated for m steps 
in a row and the responses from all these allocations are successes. 

The probability of the union of these two events, given that the process has 
not stopped at or before stage i, is then 

P (CA,i+1 U CB,i+lIN > i) = P (CA,i+lIN > i) + P (CB,i+1IN > i) 

= P(Yi+l = liN> i)P(Xi+1 = 11Yi+1 = 1) 
m 

* IT P (Yi+j = liN> i, {y}~!{-l = {1}~!{-1 ,{X}~!{-l = {1}~!{-1) P (Xi+j = 11Yi+j = 1) 
j=2 

+P (Yi+l = 0 IN> i) P (Xi+1 = 11Yi+1 = 0) 
m 

* IT P (Yi+j = 0 IN> i, {y}~!{-l = {O}~!{-l ,{X}~!{-l = {1}~!{-1) P (Xi+j = 11Yi+j = 0) 
j=2 

As a result of condition 1 we obtain 

and therefore 

Note that CA,i+1 and CB,i+1 are two possible events, but not the only ones, for 
hitting the boundary in m steps. Hence, 

P (N = (0) ::; P (N > no + m, N > no + 2m, ... ) 
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r 

= rl~~ P (N > no + m) II P (N > no + j miN > no + (j - 1) m) 
j=2 

r 

= }~~ (1 - P (N ~ no + m)) II (1 - P (N ~ no + j miN > no + (j - 1) m ) ) 
j=2 

r 

~}~~ II (1 - P (C A,no+U-I)m+1 U CB,no+U-I)m+1 IN > no + (j - 1) m)) 
j=2 

We then have that 
P(N=oo)=O, 

and hence 
P(N<oo)=l. 

o 
This implies Proposition 3.1. We can now construct the SPRT in the same 

way as the original Wald's SPRT. 

4.3. Properties when using RPW and MPW 

In Sections 4.3.1 and 4.3.2 we show that Condition 1 is satisfied for RPW and 
MPW, and for PW, as we assume immediate responses. 

4.3.1. RPW 

At the start of the experiment we have w balls representing each treatment in 
the urn. When receiving a response p balls are added to the urn : balls of type 
A if we received a success for treatment A or a failure for treatment B and balls 
of type B if we received a success for treatment B or a failure of treatment A. 

In the RPW case the probability of allocating a patient to treatment A is 

w + P (SA(i-I) + FB(i-I)) 

P (Yi = 1) = 2w + p (i - 1) . 

To see that Condition 1 is satisfied for the RPW allocation we need to check 
both inequalities. To show that the first one holds we first write 

P (Y; = liN .) = P (Yi+1 = liN> i) (2w + pi) + pP (Yi+1 = liN> i) 
z+1 > 2 (2w + p (i + 1)) 
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< p (Yi+1 = liN> i)(2w + pi) + p 
- (2w+p(i+1)) 

= p (Yi+2 = liN> i, Yi+1 = 1, Xi+1 = 1) , 

and, for j = 2,3,. " , 

P ("/ 1 \N '{y}i+j-I {l}i+j -1 {X}i+j-1 {1}i+j-1) (2 (" 1)) < L i+j = > Z, HI = i+1' i+1 = i+1 w + P Z + J - + p 
- (2w+p(i+j)) 

P (Yi+J+1 = 1 \N > i, {y}~!{ = {1}~!{, {X}~!{ = {l}~!O . 

Hence, 

P (Yi+1 = liN> i) :; P (Yi+2 = liN> i, Yi+1 = 1, Xi+1 = 1) :; ... 

< P (1': = 1 \N > i {y}~+m-1 = {1}~+m-1 {X}~+m-1 = {1}i+m-1) - t+m 't+1 t+1' t+1 t+1 

Now we want to show the second part of Condition 1. Note that 

P (1': = liN ') = P (Yi+1 = liN> i) (2w + pi) + pP (Yi+1 = liN> i) 
t+1 > Z (2w + p (i + 1)) 

> P (Yi+1 = liN> i)(2w + pi) 
- (2w + p (i + 1)) 

= P(Yi+2 = liN> i,Yi+1 = O,Xi+1 = 1) 

Note also that, for j = 2, 3, ... 

P ("/ 1 \N '{y}i+j-1 {O}i+j-1 {X}i+j-1 {1}i+j-1) (2 (" 1)) > L i+j = > Z, i+1 = i+1' i+1 = i+1 w + P Z + J -

- (2w+p(i+j)) 
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Hence, 

1 - P (Yi+1 = liN> i) ::; 1 - P (Yi+2 = liN> i, Yi+1 = 0, Xi +1 = 1) ::; ... 

< 1 - P (y; = liN> i {y}~+m-l = {O}~+m-l {X}~+m-l = {l}i+m-l) - ~+m '~+l ~+l' ~+l ~+l' 

which is equivalent to 

P (Yi+l = 0 IN > i) ::; P (Yi+2 = 0 IN > i, Yi+l = 0, X i+1 = 1) ::; ... 

::; P (Yi+m = 0 IN> i, {y}~!~-l = {O}~!~-l, {X}~!~-l = {1}~!~-1) 
Hence, it is proved that Condition 1, and therefore Proposition 4.1, 3.1 and 

3.3, are satisfied for the RPW allocation. 

4.3.2. MPW 

In the MPW case the probability of allocating a patient to treatment A equals 1 
given that the previous treatment was A and the response was a success or if the 
previous treatment was B and the response was a failure, and for the probability 
of allocating a patient to treatment B, respectively. Therefore it is easy to see 
that the MPW, and therefore also the PW, satisfies Condition 1, as shown below. 

To show the first inequality of Condition 1 note that 

P (Yi+l = liN> i) = 1 =} P (Yi+2 = liN> i, Yi+l = 1, Xi+1 = 1) = 1 

and, for j = 2,3, ... , 

P (Yi+j = liN> i, {y}~!{-l = {1}~!{-1 ,{X}~!{-l = {1}~!{-1) 

= P (Yi+J+l = liN> i, Yi+j-l = 1, Xi+j- 1 = 1) = 1 . 

Hence, the first part of Condition 1 is satisfied. To show the second part of 
Condition 1 note that 

P (Yi+l = 0 IN> i) ::; 1 = P (Yi+2 = 0 IN> i, Yi+1 = O,Xi +1 = 1) 

and for j = 2,3, ... , 

= P (Yi+j+l = 0 IN > i, Yi+j-l = 0, Xi+j-l = 1) = 1 . 

Therefore, Condition 1 is satisfied also for the MPW allocation. 
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5. Comparison of three allocation rules 

The RPW(w, p) is constructed to allocate more patients to the treatment that, 
during the experiment, seems to be better. We would like to know if the RPW(w, p) 
allocates fewer patients to the inferior treatment, than to the treatment superior 
in reality. 

Each allocation to the treatment inferior in reality can be viewed as a loss. 
It is therefore of interest to minimize the number of patients allocated to that 
treatment. 

Another important question is how the expected sample size behaves when 
one uses a RPW(w, p) allocation, compared to other allocation rules. 

We compare the RPW(w,p) with the MPW and with total randomization, 
TR. TR is the simplest randomized allocation rule used and satisfies the require
ments for Wald's SPRT (independent identically distributed random variables). 
MPW, on the other hand, is one of the simplest play-the-winner allocation rules, 
but given that the response from the previous patient is known, the next alloca
tion is deterministic. RPW(w, p) is response dependent, but not deterministic. 

We study differences between the allocation rules by means of the expected 
sample size, E [N], and the expected number of patients allocated to the inferior 
treatment, E [NBJ. These expectations are complicated to compute for the MPW 
and RPW, since we do not have independent identically distributed random vari
ables. The probability that patient i is allocated to treatment A depends on all 
the earlier allocations and responses. Simulations were therefore conducted to 
investigate the behavior of the expected values E [NBJ and E [NJ. 

5.1. Description of the simulation study 

The RPW was simulated with five different combinations of the parameters 
wand p, namely RPW(100.000,1), RPW(10,1), RPW(1,l), RPW(1,10) and 
RPW(l, 100.000). 

At the start of the experiment the allocation probability is ~ for each treat
ment, for every value on wand p. The larger the ratio t is, the faster the response 
affects the allocation probability. 

Large response dependency, in the early states of the experiment, could be 
hard to get accepted when the allocation rule is used in a real practical setting, 
but to get a good understanding of how the RPW allocation behaves, extreme 
response dependency is included. 

As w increases the RPW gets closer to total randomization. High values of w 
let the play-the-winner quality come slower into the experiment. Correspondingly 
for p, the RPW gets closer to the MPW as p increases. 

For each of the three allocation rules two different hypothesis cases were 
tested, namely 
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1. Ho : PA = PB = 0.7 vs. H1 : PA = 0.8 ,PB = 0.6 

and 

2. Ho : PA = PB = 0.6 vs. H1 : PA = 0.8 , PB = 0.4 

Hypothesis case 1. represents a small treatment difference, while 2. represents 
a larger treatment difference. Simulations were done in these two cases both under 
the assumption that Ho is false and H1 is true, and under the assumption that 
Ho is true and H1 is false. 

We used Wald's sequential probability ratio test, with significance level a = 
0.05 and power under the alternative 1 - (3 = 0.95. 

The true significance level, a*, and the true power under the alternative, 
1 - (3*, are bounded as below (see equations 3.2.1 and 3.2.2). 

Hypothesis case 1 : 

0.0375 ~ 1::1 :::; a* :::; 1~~1 ~ 0.0509 
0.9493 ~ :~~~ :::; 1 - (3* :::; i~~~ ~ 0.9667 

Hypothesis case 2 : 

0.0333 ~ 1~~1 :::; a* :::; ':;1 ~ 0.0513 
0.9491 ~ ig;~ :::; 1 - (3* :::; ~~i ~ 0.9750 

For each of the four cases, two hypothesis under two different assumptions, 
500.000 independent experiments were simulated. 

5.2. Results of the simulations 

For hypothesis case 1. (see figure 5.2.1), the sample sizes were about the same 
for total randomization and RPW(100.000, 1). The sample size seems to decrease 
with decreasing w. Values of p seem not to affect the sample size in a major way: 
when w is held constant, w = 1, and p is increasing there is no difference in 
sample size for the chosen values of p. 

The results for Hypothesis case 2. were similar, see figure 5.2.2, but the 
differences in the average sample sizes were small, and might therefore not be of 
importance in practical settings. 
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FIGURE 5.2.1 : The mean, ± two times the standard error. On the x-axis: 
TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(1, 100.000), 

MPW. x = HI is true, + = Ho is true. 

HO:pa=pb=O.6 , H 1 :pa=O.8, pb=O.4 
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FIGURE 5.2.2 : The mean, ± two times the standard error. On the x-axis: 
TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(l, 100.000), 

MPW. a = HI is true, b = Ho is true. 

Note that the sample size follows approximately the same pattern both under 
the null hypothesis and under the alternative hypothesis, but that it is slightly 
smaller under the null hypothesis. That is, when the treatments are as good the 
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sample size is smaller than when there is a true difference between them. Note 
that treatment B is the inferior treatment when there is a treatment difference. 

The behavior of the number of patients allocated to treatment B follows a 
different pattern than the sample size, see figures 5.2.3 and 5.2.4, except for 
total randomization and RPW(100.000, 1). These two allocation rules behave 
quite similarly, and they are the allocation rules that allocate more patients to 
treatment B than the others, both when B is inferior to A and when A and B 
are equal. 

When there is a treatment difference MPW seems to allocate the least number 
of patients to treatment B, the inferior treatment, and the number of patients 
allocated to B decreases with increasing ~, which was expected. 

When there is no difference between the treatments one could think that the 
number of allocations to the two treatments would be the same. This is true 
for total randomization and for RPW(100.000, 1). On the other hand, the RPW 
allocations and the MPW allocation still allocates fewer patients to treatment B 
than to A. This can be understood by looking at the Wald statistic for the RPW 
and the MPW. Note that the increments of the Wald statistic are not symmetric, 
but differs for the four possible events in one step. 

1ii 
HO:pa=pb=O.7, H1 :pa=O.8, pb=O.6 ~ 

a .;: 
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.S 
.9 I{) 4 4 
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.!!l )( )( 
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.0 

TR (10,1) (1,10) MPW E 
::l 
z 

Allocation rule 

FIGURE 5.2.3 : The mean, ± two times the standard error. On the x-axis: 
TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(1, 100.000), 

MPW. 0 = HI is true, 0 = Ho is true. 
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~ HO:pa=pb=O.6 , H1 :pa=O.8, pb=O.4 
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FIGURE 5.2.4 : The mean, ± two times the standard error. On the x-axis: 
TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(l, 100.000), 

MPW. a = HI is true, b = Ho is true. 

For all allocation rules the true significance level and the true power under the 
alternative are close to the intended quantities (see the tables in the appendix). 
Note also that for all allocation rules the standard errors of the means seems to 
be small (see the figures and the tables in the appendix). 

Some interesting remarks are that the RPW gets closer to total randomization 
as w increases, and for the smaller treatment difference the sample size is slightly 
larger for total randomization than for the allocations with response dependency, 
even under Ho. It means that even if there is no treatment difference we obtain a 
slightly smaller sample size by using a response dependent allocation rule rather 
than the total randomization. For the large treatment difference the sample sizes 
are about the same for all allocation rules compared, but there is, as expected, a 
large difference in the number of patients allocated to the inferior treatment. 

For the case with less treatment difference, PA = 0.8 and PB = 0.6, the actual 
number of patients allocated to the inferior treatment differs slightly more, be
tween the allocation rules (note especially between RPW(l, 100.000) and MPW), 
than in the case with the greater treatment difference, PA = 0.8 or PB = 0.4. 
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5.3. Discussion 

Wald's sequential probability ratio test is originally presented for independent 
identically distributed random variables. As shown in Section 4 some important 
properties of the test, holds for a certain class of response dependent allocation 
rules, like RPW and MPW. 

We compare the RPW allocation rule to the MPW allocation rule and to 
total randomization. Two important quantities are the expected sample size 
and the number of patients allocated to the inferior treatment. However, both 
expectations are hard to derive theoretically, and thus they were estimated by 
simulations. 

Regarding the expected sample size and the number of patients allocated to 
the inferior treatment, the MPW is slightly better than the others, for the cases 
studied. After the MPW comes the RPW, in this aspect. There is, however, a 
negative characteristic of the MPW to consider. The MPW allocation is non
random in the following sense : 

Given that the response from the previous patient is known, the next alloca
tion is deterministic. In addition, the MPW requires immediate responses. 

Non-randomness could, for example, lead to selection bias. By selection bias 
we mean that when the experimenter knows, for certain, which treatment will 
be assigned to the next patient he may, consciously or unconsciously, bias the 
experiment by letting this knowledge influence the decision of who is or is not a 
suitable experimental subject. 

One could argue that the disadvantages, non-randomness and immediate re
sponses, could be reduced by using Zelen's PW allocation. It allocates the treat
ments with probability ~ if there are a lot of delayed responses, and it tends to 
be close to the MPW allocation if there are few delayed responses. 

The RPW(w, p) allocation, for the cases studied, was quite good, both in terms 
of the expected sample size and in terms of minimizing the number of patients 
allocated to the inferior treatment, and it does not have the disadvantage of 
Zelen's MPW allocation, mentioned above. 

A general remark on the comparisons, in the cases with simple hypotheses, 
indicated here, is that if the responses are allowed to affect the allocation enough 
the play-the-winner rules decreases the number of patients allocated to the inferior 
treatment, but also decreases the sample size, compared to total randomization. 
For the RPW (1,1), and for the rules with even more response dependence, the 
simulations indicated the statement above. 
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6. Maximum Likelihood SPRT procedures 

6.1. The parametrization 

Two treatments A and B are of interest to compare. The probability of success 
is denoted, Pi , i = A, B. The aim is to see if the two treatments differ or if they 
are equally good. We will use the parametrization 

o = In PA _ In P B 
1 - PA 1 - PB 

ln~+ln~ 
I-PA I-PB 

f1= 2 
where f1 is the nuisance parameter. The parameter 0 of interest, then is the 

log odds ratio. In this way we will get a parameter of interest with suitable 
properties and a good covering of the whole space of possible values (PA, PB). 

.c 
Co 
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'<t 
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o 
ci 

0.0 0.4 0.8 

pa 

FIGURE 6.1.1 Each arc represents a specific value on 0, 
and along each arc f1 takes values between -00 and 00. 

Se also Lehman (1991) for discussion of the odds ratios. 

6.2. Cox's maximum likelihood SPRT 

Suppose we are interested in testing Ho : 0 = 00 against HI : 0 = 01 and that f1 
a nuisance parameter. 

Maximum likelihood SPRT's have been proposed by Bartlett (1946) and Cox 
(1963).Whether Bartlett's or Cox's test is the most suitable in a specific situation 
mainly is determined by the maximum likelihood estimations. In our case the 
maximum likelihood estimation for the nuisance parameter has a quite complex 
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expression for Bartlett's test. Below Cox's procedure will be introduced. First 
the log likelihood ratio will be approximated by Taylor's expansion. 

Let f(x,y;(),f-L) be the common probability density of a sequence of inde
pendent identically distributed random variables Xi, where () E e and f-L E .6... 
Let 

[) [ [)2 1 Jee = Var([)() lnf(x,y;(),f-L)) = -E [)()2Inf(x,y;(),f-L) 

/\ /\ 

Let ()n and f-Ln denote the maximum likelihood estimates of () and f-L based on 

(xn,Yn)' The Taylor's expansions for Infn(xn,Yn;()i,~n) for i = 0,1 about the 
true ((), f-L) yield 

1 [ 2 [)2 (/\ ) [)2 1 +"2 (()i - ()) [)()2In fn(xn, Yn; (), f-L) + 2 (()i - ()) f-Ln -f-L [)()[)f-L In fn(xn, Yn; (), f-L) 

+ (~n -f-L) 2 ::2 In fn(xn' Yn; (), f-L) + R2 ((()i - ()), (~n -f-L)) 

whereR2 (e, - e), (~n -1')) = (ei - e)' + (~n -I' n 3/2 H (ei - e), (~n -1')) 
The function H is bounded in a neighbourhood of (0,0). 

Now remember that Wald's SPRT is based on the difference of the log likeli
hood function under the alternative hypotheses and under the null hypotheses. 
Using the Taylor expansion above 
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= (01-00) :oln!n(xn'Yn;O,ft)+~ [(Oi- 05+ 20 (00-01)) ::2 In !n(Xn,Yn;0,ft)] 

fJ 1 fJ2 
= 01fJOln!n(xn,Yn;0,ft) +"2 (Oi -2001) fJ02ln!n(Xn,Yn;0,ft) 

+01 (~n -ft) fJ:~ft In!n(xn,Yn;O,ft) +R~((xn,Yn)) 
where R~ ((xn' Yn))involves the differences ofthe second order derivatives, and it 
converges to zero in probability when 10i - 01 , i = 0,1 are sufficiently small and 
the second derivatives are smooth (see remark 3.7.1 in Govindaraluju, page182). 

/\ 

Next expanding + In !n(xn,Yn;On,ft) = ° about the true (O,ft) 
BOn 

+ (~n -ft) fJ:~ft In !n(xn, Yn; 0, ft) + R2 ( (en -0) , (~n -ft) ) 
This gives 

fJ (/\ ) fJ2 (/\ ) fJ2 fJOln!n(xn,Yn;O,ft) ~ - On -0 fJ02In !n(xn,Yn;0,ft)- ftn -ft fJOfJftln!n(xn,Yn;O,ft) 

Substituting the equation above into the expansion of 
/\ /\ 

In!n(xn,Yn;Ol,ftn) -In!n(xn,Yn;Oo,ftn) gives Cox's test statistic, which will be 
denoted by C, and the following Theorem. 

Theorem: When 10i - 01, i = 0,1, is sufficiently small and the second partial 
derivatives are smooth, then we have 

where nOn is asymptotically normal with mean nO and variance nloo , where 
1

00 = 100 - Ijp,/lp,w 
For large n, nOn is the sum of i.i.d. random variables {Ii}, i = 1, ... ,n, where 

see Govindaraluju (1981, p. 182-185). 
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Now, we can use Wald's approximations for the boundary values in terms of 
error probabilities, see Govindaraluju (1981, p.185). That is 

loo ~ ~ InB = -In-- ~ Cnln--
lOO 1 - a 1 - a 

In A = loo In 1 - ~ ~ Cn In 1 - ~ 
lOO a a 

and 

Or equivalently would be to use the test statistic 

and the limits 
I ~ InB ~ In-

I-a 

I 1- ~ 
InA ~ln--

Rigorous asymptotic treatment can be found in Holm (1985). 

7. Cox's SPRT in the RPW case 

To derive Cox's SPRT first the test statistic 

need to be derived, which includes to estimate loo with the sample, by substituting 
e with the maximum likelihood-estimate. Note that Cox assumed the random 
variables to be independent and identically distributed, which gives that loo is 
the same for all random variables in the sample. In the RPW case the random 
variables are dependent and have different probability distributions, call them 
!(i)(Xi, Yi; e, fl). Note that !n(xn, Yn; e, fl) is the joint probability function. Hence, 
let 

lOO(i) = Var(:e In!(i)(xi,Yi;e,fl)) = -E [:;2 In !(i)(Xi,Yi;e,fl)] 
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and let 

Ieen = -E [:;2 Infn (xn,Yn;O,/-l)] 

Iep,n = -E [a:;/-llnfn(xn,Yn;O,/-l)] 

Therefore the test statistic, in the RPW case, will be defined as 

The limits for continuing sampling needs to be derived. These will be defined as 

by the same reason as above. 
For simplifying the coming calculations the following rewriting of the expres

sion will be used. Let 

where I~e = (Ieen1p,p,nn - 15p,n) /Ip,p,n. 
Then sampling is continued as long as 

and the limits are 
b* = In_(3_ 

I-a 

a* = In 1 - (3 
a 

7.1. The maximum likelihood estimates 

To get the maximum likelihood estimate for (0, /-l )solve the equation system 
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where 

= -5 A(n) In (1 + e-I"-*) - FA(n) In (1 + el"+*) -5B (n) In (1 + e-I"+~) - FB(n) In (1 + el"-~) 
That is to solve 

which yields 

Hence 

{:=:::} 

FA(n) = 0 
He-I'-~ 

FE(n) = 0 
He-I'+~ 

{:=:::} 

{ 
5A(n) - FA(n)el"+: = 0 
5 B (n) - F B (n)el"-'2 = 0 

{:=:::} 

On= In 5 A(n) -In 5 B (n) 

FA(n) FB(n) 

In SA(n) + In SEen) 
FA(n) FE(n) 

2 

/\ 5 A(n) 
PA(n)=-N 

A(n) 

/\ 5B (n) 
PB(n)=-N 

B(n) 
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7.2. The test statistic 

From Section 7.1 we have that the test statistic, in the RPW case, is as follows. 

C(n) = (8
1 

- 8
0

) + leenlJtJtn - I5Jtn (In SA(n)FB(n) _ (80 + 81)) 

lJtJtn FA(n)SB(n) 2 

The test statistic involves the expression 

Below the identities will be derived and expressed both in terms of (8, f-l) and 
(PA,PB)' Then approximations ofthe expectations of SA(n) , FA(n) , SB(n) and FB(n) 

will be presented and expressed in terms of PA and PB. These approximations 

will then be used to approximate leen - IItJ-Ln. 
J-LJ-Ln 
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e~+! e~-! 

( 
e)2 (E [SA] + E [FA]) + ( e)2 (E [SB] + E [FB]) 

1+e~+2 1+e~-2 

= 4IIJIJn 

I I~~n = 4IIJIJn I 
Let us now express the identities above in terms of PA and PB. First, note 

that 
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Hence, we have that 

I Ieen = ~ (PA (1- PA) E [NA(n)] + PB (1 - PB) E [NB(n)]) I 

I IeJLn = ~ (PA (1 - PA) E [NA(n)] - PB (1 - PB) E [NB(n)]) I 

Then 

The numerator is 

and the denominator is 

Expressed in terms of PA and PB the numerator is 

30 



And the denominator then is 

7.3. Approximation of the test statistic 

Approximate the earlier expression of leon - ;tp.n by using the below results for p.p.n 
P(Ii = 1) and P(Ii = 0). 

1- PB 
~im P (Ii = 1) = almost surely 
~-+oo 2-PA-PB 

. 1- PA 
~lm P (Ii = 0) = almost surely 
~-+oo 2 - PA - PB 

These limit results are discussed in Wei (1979). 

n n 

E [FB(n)] = LE [(1-Ii)(1- Xi)] = L (1- PB) P (Ii = 0) 
i=l i=l 

Hence 

Now let us use these approximations, of the identities, in the expressions 
obtained earlier. That is 
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_~n2 (PA (1 - PA)(l- PB) _ PB (1- PB) (1 - PA))2 
4 2 - PA - PB 2 - PA - PB 

n2 (1 - PA? (1 - PB)2 (PA + PB)2 - (1 - PA)2 (1 - PB)2 (PA - PB)2 

4 (2-PA-PB? 

n2 (1- PA)2 (1 - PB)2 ((PA + PB)2 - (PA - PB)2) 

4 (2 - PA - PB)2 

And the denominator then is 

Hence 

41 
PA (1 - PA) (1- PB) PB (1 - PB) (1 - PA) een ~ n + n ------'-:---'--'-------'-

2 - PA - PB 2 - PA - PB 

4I§en - I§/ln 
4Ieen 

"-' n2 (1 - PA)2 (1 - PB? ((PA + PB)2 - (PA - PB)2) 2 - PA - PB 

"-' 4 (2 - PA - PB)2 n (1 - PA) (1 - PB) (PA + PB) 

n (1- PA)(l - PB) ((PA + PB)2 - (PA - PB?) 

"4 (2 - PA - PB)(PA + PB) 

Sampling is continued as long as 

where 

4I§en - I§/ln n (1- PA) (1 - PB) ((PA + PB? - (PA - PB)2) 

4Ieen ~ "4 (2 - PA - PB)(PA + PB) 
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7.3.1. The approximation of the test statistic with the maximum like
lihood estimates 

Substituting the maximum likelihood estimates into the approximation of the 
412 _12 

expression een ep.n yields 
41een 

4I§en - Tt/1n 
41een 

FA(n) FB(n) (( SA(n) + SB(n))2 _ (SA(n) _ SB(n)) 2) 
n NA(n) NB(n) NA(n) NB(n) NA(n) NB(n) 

~ "4 (FA(n) + FB(n)) (SA(n) + SB(n)) 
NA(n) NB(n) NA(n) NB(n) 

This is the expression that is actually used in the test statistic, when the 
simulations are run. 

8. Properties of Cox's SPRT in the RPW case 

It would be satisfying if Cox's SPRT worked as well in the RPW-case as we 
earlier showed that Wald's SPRT did. Unfortunately this is harder to show 
strictly mathematically in this case. 

Cox's test is based on 

Under the assumption of independent identically distributed observations the 
process Tn is a random walk with independent increments of mean 8 - ~ (81 + 80 ) 

and variance 1/1/1/ (Iee1flfl) - 15/1' In the RPW case we do not have a constant 
variance since it depends on which n we have reached. The problem, in this 
case, is to know how closely related Tn is to a random walk with independent 
increamants and constant variance. How rough is the assumption of asymptotic 
normality is as an approximation (the adjustment of the test limits is based on 
this assumption)? 

Figure 8.1 shows three realizations (when 8 = 1, fl = In(3/2)) of the Cox's 
statistic under some restrictions on the simulations, described in Section 8.2.1. 
Briefly described these restrictions are that we take some minimum number of 
observations before we allow the experiment to stop and we put an upper limit 
to the sample size. The figure shows a case when there is a treatment difference. 
The first illustrates an experiment of expected length. The second illustrates 
an "unexpectedly" long experiment and the third illustrates an "unexpectedly" 
short experiment. Note that the longest experiment starts at a negative value on 
the test statistic. 
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Cox's statistic when using RPW 
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FIGURE 8.1 

8.1. A heuristic discussion of properties 

As mentioned in Section 6.2, njjn is, for large n, approximately a sum of inde
pendent identically distributed random variables. To prove this five equations 
are used, see Govindaraluju (1981, p. 182-185). Two of the equations are Taylor 
expansions, but the other three are a collection of limit results, namely 
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~ ~2 In!n(xn,Yn;O,f1) ---+ -11l-1l- in probability 
nUf12 n_oo 

In the RPW case there is no immediate equivalence as the informations in 
the RPW case are not constant for all n. The correspondence for lee is the one 
dimensional l ee(n), equivalently for lell- and 11l-w 

We think that the properties are still approximately true since the following 
is true in the RPW case. 

and 

1 1 (PA + PB)(l - PA) (1 - PB) 
--l(}(}n ---+ -

n n-oo 4 2 - PA - PB 

Correspondingly for lell- and 11l-w 
These limit results hold due to the following argumentation. 
In Section 7.2 we saw that 

From Wei (1979) we have that 

NA(n) 1 - PB 
-- ---+ almost surely 

n n-oo 2 - PA - PB 

NB(n) 1 - PA 
-- ---+ almost surely 

n n-oo 2 - PA - PB 

for the RPW (1, 1) case. 
That implies 
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The second limit result follows the argumentation below. 
Remember that 

Note that 

IN~(n)l::;l 

By the Dominated-Convergence Theorem (see for example Williams 1991, p. 
54) the below statement follows. 

lim E [NA(n)] 
n-+oo n 

1- PB 

2 - PA - PB 

A similar reasoning implies that 

lim E [NB(n)] 
n-+oo n 

1- PA 

2 - PA - PB 

Therefore 

1 
-- Ieen ----+ n n-+oo 

1 (PA + PB) (1 - PA) (1 - PB) 

4 2 - PA - PB 

Correspondingly with IeJ-i(n) and IJ-iJ-i(n). 

The proportions of A- and B-balls in the urn converge to 

1- PB 
~im P (Yi = 1) = almost surely 
~-+oo 2 - PA - PB 

. 1- PA 
~lm P (Yi = 0) = almost surely 
~-+oo 2 - P A - P B 

see Wei (1979). 
As n -+ 00 observation of the two kinds A and B tend to be taken in those 

proportions, which is seen above since NA(n) ----+ I-PB almost surely and 
n n-+oo 2-PA-PB 

NB(n) ----+ I-PA almost surely. 
n n-+oo 2-PA-PB 

In Section 8.2 some of the properties of the Cox test in the RPW case will be 
investigated with help of simulations and these results seems to agree with the 
heuristic discussion above. 
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8.2. A simulation study of properties 

8.2.1. Description 

When performing the simulations we hade to decide on some special cases, namely 

Ho : ()o = 0 vs. HI : ()I = 0.6 

and 

Ho : ()o = 0 vs. HI : ()I = 1 

In both cases we let the nuisance parameter J-l take the values In ~ ,In ~,ln §, In ~,ln 4 
and In 9. Figure 8.2.1 illustrates the simulated cases in the PA-PB-space. 
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Wh d . . h . . C' . I d . . f 4I~9n-~ en use m practIce, t e test statIstlc (n) mc u es estlmatlon 0 4199n 1m 

/I. /I. 
This estimation can be expressed in terms of P A(n) and PB(n)l which are defined as 
soon as patients have been allocated to both treatments (see Section 7.3.1). This 
suggests that the experiment should not stop until a fixed number of patients,say 
no, have been allocated to both treatments. The estimation of () is not defined if 
one or more of the values SA(n), FA(n)l SB(n) or FB(n) is equal to zero. This was 
solved by substituting each of the values, SA(n), FA(nj, SB(n) or FB(n), that were 

/I. 

equal to zero with one in ()n' 

Hence, we decided to first allocate no patients to each treatment. Denote 
these first 2no observations the starting period. During the starting period the 
allocation were not adaptive. After the starting period the RPW allocation was 
used, but the first 2no observations were allowed to affect the urn. We then 

/I. /I. /I. 

calculated the values of ()n, PAin) and PB(n)' Now the sequential procedure started 
and the use of Cox's statistic. 
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To select a suitable no we simulated the case when ()I = 1 and used a starting 
period of length 10, no = 5, but this number seemed to be too small. Too many 
experiments (about 10 %) ended at the first possible stage. This behavior can 
still be observed, with about 1 % of the observations, in the case when ()I = 0.6 
and no = 10. The fact that experiments stop too early leads to a lowered power. 
In the actual simulations no were set at ten. 

An advantage of a starting period of length no = 10, is that the parameters 
are estimated based on 20 observations, at the start of the sequential procedure. 
A disadvantage is that the RPW allocation will not be used until the 21 'st step. 

In reality it is often required that the sample size will not exceed a certain 
fixed number. This cut-of point were 300 in these simulations. 

All results in this section are based on 100.000 independently simulated ex
periments. In the simulations the allocation RPW(l, 1) were used. 

8.2.2. Results 

We think of studies that are preferred to be of a size of about 150 observations. 
For an experimenter samples of this sizes could seem large, but one should bear 
in mind that a smaller sample could be taken if one can accept a lower power. 
For ()I = 1 the sample sizes seems to be reasonable for values of the nuisance 
parameter, /1, between -1.5 and 1.5, see Figure 8.2.2. For the situation with 
()I = 0.6 the sample sizes seems to be quite large for all values of the nuisance 
parameter, /1, investigated, see Figure 8.2.2. 

Sample size of Cox's test 

CI> 0 * ~ * N L!) * 'u; C\I 
0 CI> 0 a. 0 0 

E as 8 ~ en 
0 
0 g g 
or-

-2 -1 0 1 2 

Nuisance parameter 

FIGURE 8.2.2 ()I = 0.6 {+ Ho ~s true ()I = 1 {D Ho is true 
x HI IS true ' 0 HI is true 
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For both values on ()1 the significance level is below the intended level, 0.05, 
in the area investigated, see Figure 8.2.3. 

Significance level of Cox's test 

Qi <::t 
> 0 

..9:! c:i 
C 

0 0 OJ 
CiS X 0 0 x 

0 x c:i )[ , 

-2 -1 0 2 

Nuisance parameter 

FIGURE 8.2.3: X : ()1 = 0.6 , 0 : ()1 = 1. 

The power under the alternative is unfortunately below the intended level, 
0.95, but for 11 around zero it is quite close to the intended level for the case with 
()1 = 1, see Figure 8.2.4. In the case with ()1 = 0.6 the power is around 0.65 and 
below, for the investigated values of 11, see Figure 8.2.4. 

Power of Cox's test 

to 0 
0 0 

0 c:i 
Qj x x 
~ 0 0 
0.. X X 

C\I 
c:i 

)[ , , x 

-2 -1 0 1 2 

Nuisance parameter 

FIGURE 8.2.4 : X : ()1 = 0.6 , 0 : ()1 = 1. 

A comment on the low power, for ()1 = 0.6, is that if a larger cut-off point, 
than N = 300, were chosen we would get a better power. The power should also 
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slightly be raised by choosing a longer starting period as a small proportion of 
experiments still stops too early. These comments can be summarized by saying 
that ()1 = 0.6 requires a larger sample size then ()1 = 1, to obtain the same power. 

Let us observe the number of experiments of different length. Four cases, 
()1 = 0.6 when either J.L = In ~ or J.L = In 9 and ()1 = 1 and J.L = In ~ or J.L = In 9 are 
shown in Figure 8.2.5. There it is clear that, when ()1 = 0.6, a large proportion 
of the experiments are truncated at N = 300. Note that the scales on the y-axes 
are different for ()1 = 0.6 and ()1 = 1. 

en () = 1 , J.L = In ~ 
en () = 0.6 , J.L = In ~ .J!! 

. ., __ .. 2 
CI) 

0. 

~ 
C. 

~ 
E § E 8 111 111 en 

0 en 0 
15 .... 15 0 

'" CD CD .0 

Q 
.0 

E 0 E 0 ,..r' 
:J :J 

Z Z 

0 50 150 250 0 50 150 250 

N N 

8=1,J.L=ln9 () = 0.6 , J.L = In 9 
en en Q) CI) 
C. 

ncJ 
C. 

~ 
E E 111 8 111 0 en en 0 
15 0 15 0 co 0 
CD CD 

C') 

.0 .0 
E 0 E 0 :J :J 
Z Z 

0 50 150 250 0 50 150 250 

N N 

FIGURE 8.2.5 

In Figure 8.2.6 we can see that the number of patients assigned to the inferior 
treatment is fewer in the case of ()1 = 1 than in the case of ()1 = 0.6. Note that this 
is probably due to the smaller sample sizes in the case of ()1 = 1. When considering 
the ethical perspective we are both interested in minimizing the actual number 
of patients receiving the inferior treatment and also to minimize the proportion 
of patients, in one experiment, receiving the inferior treatment. 
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8.2.3. Further results for a special case 

It is also of interest to see how the test behaves if the true 0 diverge from the 
value under the null hypothesis and from the value under the alternative. We 
have chosen to investigate the case where 01 = 1 and J1 = In ~ ~ 0.4055. 

Figure 8.2.7 illustrates the power curve for different values of 0, where J1 = ln~. 
When 0 is equal to or higher then 0.8 the power is greater then 0.8. 

The power 

00 
00 

0 
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(0 

== ci 0 0 
Q.. 

0 
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0.0 0.5 1.0 1.5 

Parameter of interest 

FIGURE 8.2.7 

In Figure 8.2.8 below it is illustrated were the chosen values J1 = In ~ ~ 0.4055 
and 0 < () < 1.4 are placed in the PA -Pa-space. 
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FIGURE 8.2 .. 8 : * symbolizes the simulated points. At the diagonal () = O. 

In Figure 8.2.9 the sample size and the number of patients on the inferior 
treatment are shown. It seems to be for values of () roughly between 0.3 and 1.3 
that the number of patients on the inferior treatment is less then half the sample 
SIze. 

Nand Nb 
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FIGURE 8.2.9 :0 represents the sample size, N, and * represents the number 
of patients on the inferior treatment, NB. 

We would shortly like to comment on the fact that the test is a bit on the 
conservative side. If the test limits were adjusted, how would this effect the error 
probabilities and the sample size? 

In a brief investigation, of the cases where () = 1 and either 11 = In ~ or 
11 = In 9, we varied the planned 0:' between 0.0.5, 0.06 and 0.07. In Figure 8.2.10 
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we can see how this effected the obtained significance level, a*, the obtained 
power, 1 - (3*, and the sample size. 

The significance level The power 

ell Q; .c c. v 0 ~ 0 0 0 'iii 0 0 
0 0 c. CX) 

"0 0 "0 0 
<D 
c: X <D 
·iii x c: 

x ~ x 
.E In X 

X 
0 0 0 0 0 

0.04 0.06 0.08 0.04 0.06 0.08 

chosen alpha chosen alpha 

The sample sizes 

<D 0 x N 0 X X 'iii C\j + + 
<D + 
a. 
E 

0 ell S U) 0 ~ ..... ~ 

0.04 0.06 0.08 

chosen alpha 

FIGURE 8.2.10 :0 (0 when Hltrue) when ()1 = 0.6, x (+ when H1true) 
when ()1 = 1. 

For a = 0.07 as the "intended" level we obtained a* ~ 0.046 as the true level 
and the sample size decreased from about 99 observations to about 86 observa
tions. This indicates that we could decrease the sample sizes, when Cox's test is 
used, by working more on the adjustment of the test limits. 

8.2.4. Wald's SPRT and Cox's SPRT 

To make a brief comparison between Wald's SPRT and Cox's SPRT the two 
hypothesis cases from Section 5 were simulated when using Cox's SPRT for the 
analysis. That is when ()1 ~ 0.98 and ()1 ~ 1. 79. 

Figure 8.2.11 summarizes the results. 
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FIGURE 8.2.11 :0 (0 when Ho true) when ()1 = 0.98 and x (+ when Ho 
true) when ()1 = 1.79. 

Not surprisingly the loss for Cox's test is regarding the power in the alter
native. The test is however constructed for a more complex situation. Note 
that Cox's test is more conservative then Wald's SPRT, and that is probably the 
reason why it requires a larger sample. 

8.3. Discussion 

The power, 1 - (3, for different values on J.l is more close to the nominal power 
for the case with ()1 = 1. than for the case with ()1 = 0.6. The significance 
levels were quite close in the two cases and considerably under the planned level. 
That means that the test is rather conservative, and this makes the sample sizes 
larger than they need to be. We would have preferred that the test was not 
this conservative and that the sample sizes had been reduced instead. One way 
to reduce the sample size could be to choose a higher Q then what is actually 
intended, and use this Q in the computations of the test limits. It is, however, 
necessary to investigate further how much one should depart from the intended 
Q. The most desirably approach would be to learn more about the behavior, for 
example the convergence speed, of the estimations and approximations used in 
the test statistic. That is, learn how the process Tn, discussed in Section 8, is 
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effected by using a RPW. We know that the increments are not independent and 
that their variances are not constant for all n. From this we should be able to 
proceed and gain theoretical knowledge which would help us to understand how 
to adjust the test limits. 

The sample sizes are less in the case of 01 = 1. This, and the above discussion, 
indicate that the test, in the present form, is more suitable for testing the null 
hypothesis against the alternative 01 = 1, rather than 01 = 0.6. As commented 
above in Section 8.2.2, the test, if used for 01 = 0.6, needs a larger sample size 
and therefore the starting period and the cut-off point need to be adjusted if used 
in this situation. 

9. Summary 

When starting the work with play-the-winner designs we had two main questions. 
<) Does the theory of known sequential analysis results hold when play-the

winner designs are used ? 
<) Is it possible to develop results useful in practice? 
The last question is probably very important to work with to make play

the-winner designs easy of access for conceivable users. It is, for example, of 
importance to adjust the test procedure to practical requirements and to identify 
the situations when the specific test procedure obtained is suitable. 

We had considerations on how the RPW design worked in general, but one 
has to specify a more concrete problem. We concentrated on the behavior of the 
error probabilities, the sample size and the number of unfavorable allocations. 
We started to investigate the RPW design, and to compare it with two other 
designs, using Wald's sequential probability ratio test, SPRT, for the analysis. 
Some important properties of Wald's SPRT were proved to hold for a broad class 
of play-the-winner designs. The comparison, of the three designs, was made to get 
a brief indication of how the RPW design worked in terms of the above mentioned 
quantities. We found that it seemed to work well, when used with Wald's SPRT 
for the analysis. This is the work mentioned in Sections 3, 4 and 5. 

After this we wished to proceed to a more, in practice, useful situation, namely 
when a nuisance parameter is present. Here Cox's SPRT was used for the analysis 
and we tried, for some special parameter values, to identify when and how it 
worked, in terms of the error probabilities, the sample size and the number of 
unfavorable allocations. The results were basically that when 01 2: 1 the larger 
01 is the smaller the sample size and the shorter the starting period (2no ::; 20) 
can be. The truncation could also be set at a lower value than 300. If 01 < 1 the 
sample size needed to be increased, but for values of 0 roughly from 0.8 and larger 
the test with 01 = 1 worked quite well. Though the larger 0 we have the larger 
we should set 01 to get minimal sample and still get good properties. What we 
saw in this work was also that in order to test 01 = 0.6 (or smaller 01 ) a sample 
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size of , for many applications, unreasonable size is needed. This is discussed in 
Sections 6, 7 and 8. 

Note that we have not let the power, 1 - /3, vary. This could of course be 
done, and we expect that the sample size would decrease with decreasing power. 
The chosen power level of 0.95 is a common choice in statistical literature, but 
one should reflect on that this is probably a stronger requirement than what is 
often true when significance tests are used in practice. That is, it is not fair to 
compare our sample sizes with sample sizes from commonly used tests, without 
also remembering to compare the power of the tests. 

Let us close this summary by comment on the asked questions above. For 
the first question we have a positive answer for Wald's SPRT in general and 
heuristically seen for Cox's SPRT. The second question can also be positively 
answered, but we here only did the real development for some special cases. 
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APPENDIX 
The tables to follow contain the arithmetic mean and the standard error of 

the mean. 

Simulation results for Wald's SPRT, presented in figures 5.2.1-4. 
Ho : PA = PB = 0.7 vs. HI : PA = 0.8 , PB = 0.6 when HI true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 114.82 114.76 113.53 112.69 112.55 112.42 110.77 
s.d. 0.12 0.12 0.11 0.11 0.11 0.11 0.11 
NB 57.40 57.39 49.51 44.64 42.97 42.58 38.46 
s.d. 0.06 0.06 0.05 0.05 0.05 0.05 0.04 

1-f3 0.955872 0.955538 0.955976 0.955760 0.956034 0.955692 0.952918 
s.d. 0.000290 0.000292 0.000290 0.000291 0.000290 0.000291 0.000299 

Ho : PA = PB = 0.7 vs. HI : PA = 0.8 , PB = 0.6 when Ho true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 112.37 112.32 111.51 111.10 111.03 111.12 109.41 
s.d. 0.12 0.12 0.11 0.11 0.11 0.11 0.11 
NB 56.19 56.15 52.97 51.82 51.53 51.52 53.34 
s.d. 0.06 0.06 0.05 0.05 0.05 0.05 0.04 
a 0.045782 0.045936 0.045710 0.045922 0.046012 0.046292 0.047334 

s.d. 0.000296 0.000296 0.000295 0.000296 0.000296 0.000297 0.000300 

Ho.: PA = PB = 0.6 vs. HI : PA = 0.8 , PB = 0.4 when HI true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 33.34 33.33 32.94 32.52 32.30 32.30 31.88 
s.d. 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
NB 16.66 16.67 14.15 11.42 10.24 10.03 9.12 
s.d. 0.02 0.01 0.01 0.01 0.01 0.01 0.01 

1-f3 0.959464 0.959676 0.959786 0.959530 0.960056 0.959102 0.957672 
s.d. 0.000279 0.000278 0.000278 0.000279 0.000277 0.000280 0.000284 

Ho : PA = PB = 0.6 vs. HI : PA = 0.8 , PB = 0.4 when Ho true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 31.26 31.34 31.08 30.82 30.79 30.85 30.46 
s.d. 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
NB 15.29 15.66 14.62 13.84 13.68 13.69 14.27 
s.d. 0.03 0.02 0.01 0.01 0.01 0.01 0.01 
a 0.042368 0.042310 0.042254 0.04288 0.042574 0.04342 0.042822 

s.d. 0.000285 0.000285 0.000285 0.000286 0.000285 0.000288 0.000286 
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Simulation results for Cox's SPRT, presented in figures 8.2.2, 8.2.3, 8.2.4 and 
8.2.6. 

80 0 
81 0.6 

8 = 0.6 , that is HI true. 

J-l 1-(3 s.d. N s.d. NB s.d. 
In .! 

9 
0.06658 0.000788 269.51 0.26 130.76 0.13 

In .! 
4 0.40495 0.001552 261.68 0.18 123.79 0.09 

In ~ 
3 0.65027 0.001508 216.66 0.24 98.05 0.12 

In ~ 
2 0.65289 0.001505 214.59 0.24 93.84 0.12 

In4 0.41601 0.001559 256.99 0.20 111.68 0.11 
In 9 0.09265 0.000917 266.96 0.27 119.39 0.14 

Ho true 
J-l a s.d. N s.d. NB s.d. 

In .! 
9 0.00093 0.000096 260.90 0.28 130.28 0.14 

In .! 
4 

0.01317 0.000361 249.69 0.21 124.03 0.10 
In ~ 

3 0.02643 0.000507 207.11 0.26 101.63 0.12 
In ~ 

2 0.02783 0.000520 206.22 0.26 100.17 0.12 
In4 0.17410 0.000414 247.18 0.22 120.92 0.11 
In9 0.00345 0.000185 258.44 0.28 128.26 0.15 

80 0 
81 1 

HI true 
J-l 1-(3 s.d. N s.d. NB s.d. 

In .! 
9 0.54599 0.001574 224.94 0.26 107.20 0.13 

In .! 
4 0.86498 0.001081 161.70 0.22 74.07 0.11 

In ~ 
3 0.93685 0.000769 111.36 0.18 47.91 0.09 

In ~ 
2 0.93624 0.000773 110.24 0.19 45.60 0.09 

In4 0.86141 0.001093 157.97 0.23 64.93 0.11 
In9 0.55244 0.001572 218.46 0.27 92.69 0.14 

Ho true 
J-l a s.d. N s.d. NB s.d. 

In .! 
9 0.01029 0.000319 193.29 0.30 95.96 0.15 

In .! 
4 0.02481 0.000492 142.65 0.25 70.04 0.12 

In ~ 
3 0.03100 0.000548 99.01 0.20 47.54 0.09 

In ~ 
2 0.03268 0.000562 98.80 0.20 46.64 0.08 

In4 0.02702 0.000513 140.76 0.25 66.58 0.11 
In9 0.01406 0.000372 189.74 0.30 91.61 0.15 
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Simulation results for the case where {)l = 1 and f-l = In ~ ~ 0.4055 (() is not 
constant), presented in figures 8.2.7 and 8.2.9. 

e 1 - jJ ({)) s.d. N s.d. NB s.d. 
0.0 0.03268 0.000562 98.80 0.20 46.64 0.08 
0.1 0.05987 0.000750 112.25 0.22 52.12 0.10 
0.2 0.10921 0.000986 127.20 0.25 58.04 0.11 
0.3 0.18375 0.001225 140.23 0.26 63.12 0.11 
0.4 0.28875 0.001433 150.53 0.27 66.85 0.12 
0.6 0.55695 0.001571 153.98 0.27 66.73 0.12 
0.8 0.80207 0.001260 135.39 0.24 57.41 0.11 
0.9 0.88394 0.001013 122.89 0.21 51.48 0.10 
1.0 0.93624 0.000773 110.24 0.19 45.60 0.09 
1.3 0.99237 0.000275 82.54 0.11 32.76 0.05 
1.4 0.99638 0.000190 76.71 0.09 29.99 0.05 

Simulation results for different values on a, presented in Figure 8.2.10. 
PA = PB 0.6 

{)l 1 
eo 0 

1-jJ a a* s.d. N s.d. NB s.d. 
0.95 0.06 0.03917 0.000613 92.28 0.19 43.50 0.08 
0.95 0.07 0.04565 0.000660 86.45 0.18 40.71 0.08 

PA 0.7121 

PB 0.4764 
eo 0 
e1 1 
1-jJ a 1 - jJ* s.d. N s.d. NB s.d. 

0.95 0.06 0.93373 0.000787 102.85 0.18 42.82 0.08 
0.95 0.07 0.93062 0.000804 96.32 0.17 40.29 0.08 

PA =PB 0.9 
eo 0 
e1 1 

1-jJ a a* s.d. N s.d. NB s.d. 
0.95 0.06 0.01897 0.000431 181.68 0.3 87.56 0.14 
0.95 0.07 0.02399 0.000484 174.91 0.3 84.07 0.14 
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PA 0.9369 

PB 0.8452 
()o 0 
()1 1 
1-f3 a 1 - f3* s.d. N s.d. NB s.d. 

0.95 0.06 0.59160 0.001554 209.40 0.27 89.19 0.14 
0.95 0.07 0.62062 0.001534 201.16 0.27 85.94 0.14 

Comparison between Wald's and Cox's SPRT. The results are presented in 
figure 8.2.11. 

PA 0.8 
PB 0.6 
()o 0 
()1 0.9808 

1 - f3 s.d. N s.d. NB s.d. 
0.91174 0.000897 130.88 0.21 53.79 0.10 

a s.d. N s.d. NB s.d. 
0.03081 0.000546 117.09 0.22 55.20 0.10 

PA 0.8 
PB 0.4 
()o 0 
()1 1.7918 

1-f3 s.d. N s.d. NB s.d. 
0.96427 0.000587 51.83 0.07 20.09 0.03 

a s.d. N s.d. NB s.d. 
0.01600 0.000397 37.40 0.07 17.36 0.03 

51 



References 

BARTLETT, M. S. (1946). The large sample theory of sequential test. Proc. 
Cambridge Philos. Soc. 42, 239-44 

ZELEN, M. (1969).Play-the-winner rule and controlled clinical trial. J. Am. 
Statist. Ass. 64,131-4 

BEGG, B. (1990). On inference from Wei's baised coin design for clinical 
trials. Biometrika. 77, 467-84 

COX, D. R. (1963). Large sample sequential tests for composite hypotheses. 
Sankhya Ser. A. 25, 5-12 

FLOURNOY,N & ROSENBERGER, W. F. (1995). Adaptive design: Se
lected Proceedings of a 1992 joint AMS-IMS-SIAM summer conference. 

GHOSH. (1970). Sequential tests of statistical hypotheses. Addison- Wesley. 

GOVINDARALUJU. (1981). The sequential statistical analysis of hypoth
esis testing, point and interval estimation and desicion theory. American 
series in mathematical and management sciences. 

HOLM, S. (1985). Sequential likelihood ratio tests. Sequential methods in 
statistics Banach center publications. 16, 193-232 

HOLM, S. (1990). Unpublished lecture notes. Department of Mathematics) 
Chalmers University of Technology and Goteborg University. 

LEHMANN, E. L. (1991). Testing statistical hypotheses. Wadsworth & 
Brooks/Cole 

ROSENBERGER,W. F. (1996) New directions in adaptive designs. Statis
tical Science. 11, 137-149 

SIEGMUND, D. (1985). Sequential analysis. Tests and confidence intervals. 
Springer- Verlag. 

WEI, 1.J. (1979). The generalized Polya's urn design for sequential medical 
trials. The Annals of Statistics. 7, 291 

WEI, L.J. (1988). Exact two-sample permutation test based on the RPW. 
Biometrika. 75, 603-6 

52 



WEI, L.J. & DURHAM, S. (1978). The randomized play-the-winner rule in 
medical trials. J. A m. Statist. Ass. 73, 830-43 

WEI, L.J., SMYTHE, R.T., LIN, D.Y. & PARK, T.S. (1990). Statistical 
Inference With Data-Dependent Allocation Rules. J. A. Statist. Ass. 85, 
156-62 

WILLIAMS, D. (1991). Probability with martingales. Cambridge University 
Press. 

53 



Research Report 

1995:1 

1995:2 

1995:3 

1996:1 

1996:2 

1996:3 

1996:4 

1996:5 

Arnkelsdottir, H 

Svereus, A 

Ekman,C 

Ekman, A 

Wessman,P 

Frisen, M. & 
Wessman,P 

Wessman,P. 

Siirkkii, A. 

Surveillance of rare events. On evaluations of 
the sets method. 

Detection of gradual changes. Statistical 
methods in post marketing surveillance. 

On second order surfaces estimation and 
rotatability. 

Sequential analysis of simple hypotheses when 
using play-the-winner allocation. 

Some principles for surveillance adopted for 
multivariate processes with a common change 
point. 

Evaluations of likelihood ratio methods for 
surveillance. 

Evaluation of univariate surveillance proce
dures for some multivariate problems. 

Outlying observations and their influence on 
maximum pseudo-likelihood estimates of 
Gibbs point processes. 


