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Abstract 

Maximum pseudo-likelihood estimation method is an attractive method to estimate inter­
action parameters of Gibbs point processes. A drawback of the method is that it tends to 
overestimate interaction if there is strong repulsion between the points. We assumed that 
one reason for overestimation is that the method is sensitive to outlying points. Several 
techniques were used to detect outlying observations for the data of amacrine cells for 
which overestimation is suspected. Some strategies were then tested to take outliers into 
account in maximum pseudo-likelihood estimation. 

Key woms: Robustness, Thkey's sensitive curve, energy marks, EM algorithm, second 
order pseudo-likelihood, triplet interactions 

1. Introduction 

Gibbs point process is a model to describe spatial point patterns with inter­
acting objects. The process is constructed by using a pair potential or an 
interaction function. The maximum pseudo-likelihood method can be ap­
plied to estimate the parameters characterizing the interaction function in 
order to reveal the scale and strength of interaction between the points (Be­
sag, 1978). According to some empirical evidence, the method is not robust: 
it tends to overestimate interaction at least if repulsion between the points 
is strong (Sarkka, 1990; Diggle et al., 1994). We claim that the maximum 
pseudo-likelihood method is sensitive to the influence of a few individual out­
lying observations. Therefore methods to detect outlying points are needed. 

Wartenberg (1990) considered exploratory spatial analysis the aim of 
which is to provide a quick and meaningful summary of both spatial and 
aspatial characteristics of a data set. He suggested ways to recognize outly­
ing points. Stoyan and Grabarnik (1991) introduced a particular marking of 
points of Gibbs point process, so-called exponential energy marking, which 
can be applied in detecting local discrepancies. 

In this paper Thkey's sensitive curve, exponential energy marking, dis­
tance to the neighbouring points and the number of neighbours, are suggested 
as tools for detecting outlying points of inhibitive Gibbs point process. Most 
of the methods can be applied for point processes in general; as an excep­
tion, exponential energy marking is characteristic for Gibbs point processes. 
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In order to study the influence of outlying points on the maximum pseudo­
likelihood estimation the methods were applied to the data of amacrine cells 
(Diggle and Gratton, 1984). Interactions between the points of the data 
are strong and the maximum pseudo-likelihood estimates of the interaction 
parameters indicate stronger interaction than the corresponding maximum 
likelihood estimates which give a good fit. It appeared that isolated points 
cause the overestimation. We present several methods to take the isolated 
events into account in estimation to obtain better estimates. In addition, 
we summarize some additional trials that were made in order to correct the 
maximum pseudo-likelihood estimates. 

2. Preliminaries 

2.1. Gibbs point process 

We consider a simple, stationary and isotropic Gibbs point process ~ in JR? 
observed in a bounded sampling window W (Stoyan et aI., 1987). We con­
centrate on pairwise interaction processes, where a pair potential function 
¢ : [0,00) -t lR, depending only on the distance between two points, is 
applied to describe interactions between the points of the process. An in­
teraction function h = exp( -¢) can be used instead of the pair potential 
function. Especially for inhibitive processes it is convenient to use the inter­
action function because the values of it vary between zero and one and can 
be understood as probabilities to have points within a certain distance. 

The so-called local energy, the energy needed to add the point x to the 
configuration rp is given by 

E(x, rp) = a + l: ¢(llx - yll), 
yErp 

where a is a constant chemical activity connected to the intensity of the 
process and Ilx - yll is the distance between x and y. 

The density function of the pairwise interaction process in a bounded 
window W is 

1 
f( rpw) = z exp( -na - ?=<. ¢(llxi - xjl J)), 

t J 

where rpw = {Xl, X2, ... , xn} consists of the locations of n events in Wand Z 
is a scaling factor (Ripley, 1988). 

In order to avoid confusion with points of the process and points of W, we 
refer throughout this paper to events of the process or of the point pattern 
and to points of W. 
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All events of the point pattern are usually not observed, there are events 
outside of W that interact with the events of 'Pw. There are several possibili­
ties to take the edge effects into account (see e.g. Ripley, 1988). In this study 
periodic boundaries (opposite edges of Ware identified) have been applied 
in calculations in order to avoid the boundary effects. 

2.2. Maximum pseudo-likelihood estimation method 

The idea of the maximum pseudo-likelihood (MPL) method is to construct 
a pseudo-likelihood (PL) function and maximize it with respect to the pa­
rameters. It is computationally easier than the maximum likelihood (ML) 
method since the likelihood function contains a scaling factor which cannot 
be calculated explicit ely. 

Jensen and M011er (1991) give a rigorous basis for using the maximum 
pseudo-likelihood method in estimation for spatial Gibbs point processes. 
According to their definition the PL function can be written as 

log P L((); 'Pw) = - L E(x, 'Pw \ {x}) - 1 exp( -E(~, 'Pw)) d~, 
xE~w w 

where () = (a, (3) and 13 is the parameter of the pair potential function cp. 
The estimation equations are obtained by maximizing the PL function 

with respect to the chemical activity and parameters of the interaction func­
tion. Therefore we obtain 

(1) 

by maximizing with respect to a and 

L L 8cp(llx-yll) = 1 L 8cp(llx-~II) exp(-E(~,'Pw))~ (2) 
xE~w YE~w\{x} 813 w xE~w 813 

by maximizing with respect to 13. 

3. Methods to detect outlying events 

Wartenberg (1990) studied outlying events in spatial data. He divided them 
into three groups: outliers, leverage events and influential events. An outlier 
is an observation which is relatively greater or smaller than all other obser­
vations. An observation that contributes disproportionately to a summary 
statistic is called a leverage event. If the deletion of a single observation 
effects a considerable change in the statistic being estimated the observation 
is said to be an influential event. Furthermore, he considered two types of 
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outliers, aspatial (global) and spatial (local). A value of a global outlier is un­
usual in any data set but a local outlier differs from the observations nearby 
it, not from all other observations. In this study we concentrate on influ­
ential events and local outliers and suggest methods to detect them. Most 
of the methods can be applied to point processes in general but calculating 
exponential energies is characteristic for Gibbs processes. 

3.1. Thkey's sensitive curve 

To detect possible influential events with respect to the parameter of interest 
we apply Tukey's sensitive curve 

where Tn is the estimate calculated from n events (Huber, 1981). The value 
of SCn(Xi) tells the influence of deletion of the event Xi on the estimate. 

3.2. Exponential energy marking 

Stoyan and Grabarnik (1991) suggested calculating exponential local energies 

m(Xi) = exp (E(Xi' tpw \ {Xi})) = exp (a + E ¢(llx - yll)) 
yErpw 

for the events of Gibbs process in order to make determining of moment 
characteristics easy for stationary and isotropic processes. 

Exponential energies can be used in exploratory analysis of Gibbs point 
processes. After a and parameters of ¢ have been estimated the exponential 
energy can be calculated for each event. Differencies between the energies 
indicate local discrepancies: events or groups of events with extreme ex­
ponential energies indicate regions of irregularity or outliers. Considering 
inhibitive point patterns, for the events near to the other events the values 
of the pair potential function and therefore of the exponential energy are 
large compared to the others, and for the events far from the others the cor­
responding values are small. Therefore exceptionally large values indicate 
clustering while small ones indicate isolation. For attractive models it is the 
contrary. 

3.3. Other methods 

Distance to the nearest events (nearest, second nearest etc.) or number of 
neighbours are suitable statistics to be applied in detecting outliers. Roughly, 
long distances to small number of neighbours indicate isolation and small 
distances to huge number of neighbours clustering. 
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To detect isolated events Wartenberg (1990) suggested to pay attention 
to the nearest neighbour distance or average distance from one event to all 
other events. He also mentioned correlograms, Voronoi tessellations and area 
of Thiessen polygons. 

4. Parameter estimation for contaminated data 

In the following we present methods to take outlying observations into ac­
count in estimation. Let Xio denote the location of an outlier and !Pw the 
point pattern {Xl, ... ,Xio-I,Xio+1' ... ,xn }. Methods are presented here for the 
case of one outlier but they can easily be applied to the case of several out­
liers, too. 

4.1. Omitting an outlier 

The simplest way to take an outlying observation into account in estimation 
is to omit it and estimate the parameters from the point pattern !Pw. The es­
timation equations (1) and (2) can be thought as equalities of sample means. 
However, omitting an outlier does not only mean that the mean values on 
the left sides of (1) and (2) are calculated as sums over n - 1 observations 
instead of n observations. One event has effect also on the other terms of the 
sums via the pair potential function. Hence, to use this method is a little 
doubtful. 

4.2. Simple replacement 

More sophisticated approach than omitting an outlier is to replace it by a 
new event. A new event can be added according to a Gibbs model, here the 
estimated MPL model. Adding a new event can be thought as one iteration of 
the birth-and-death process, a simulation procedure of Gibbs point processes 
(Ripley, 1977). The outlier is omitted (death) and a new location ~ E W is 
suggested (birth). We accept the new randomly chosen event with probability 
proportional to exp( - E (~, !Pw) ). If it is not accepted we suggest another one 
and repeat this until acceptance. A new event is added several times and 
the parameters are estimated. The mean values of these estimates are then 
taken as the final ones. 

4.3. Replacement by using EM algorithm 

We can also use the EM algorithm in adding new events and estimating the 
parameter (J (Tanner, 1991). Let the initial value (Jo be the MPL estimate 
calculated from the original point pattern !pw, and (Ji denote the current 
value of the parameter. 
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Each iteration of the algorithm consists of two steps, expectation step 
and maximization step. First, we compute the expectation 

(3) 

which gives the new location with respect to the conditional distribution 
p()i (~ I rpw) proportional to exp ( - E ()i (~, rpw) ). Then, we maximize the loga­
rithm of P L( (); rpw u {~n}) with respect to () to obtain ()i+ 1. The algorithm 
is iterated untilll()i+1 - ()ill is sufficiently small. 

Instead of predicting the new location ~n we can also predict a new value 
for the logarithm of the PL function, i.e. we compute the expectation 

/w log P L ((); rpw u {~}) . P()i (~ I rpw ) d~ (4) 

and maximize it with respect to (). 

4.4. Outlier regarded as measurement error 

In both of the replacement approaches above the new event is allowed to be 
added in the whole study area with the same probability (taken the model 
into account). However, more natural would be to regard the outlier as 
measurement error. We can assume e.g. that the distribution of the error is 
Gaussian, i.e. 

where CJ2 is the variance and ~ the "true" value of incorrectly observed Xio' 

In estimation the EM algorithm can be applied. Now the expectation (3) 
or (4) is computed with respect to the conditional distribution P()i (~ I rpw) 
proportional to exp( - E()i (~, rpw)) . Pu2 (Xio I rpw U {~}). 

5. Application: data of amacrine cells 

To find out influence of outlying observations on MPL estimates we studied 
the data consisting of locations of 152 amacrine cells within a rectangular 
region of a rabbit retinal ganglion cell layer (Diggle and Gratton, 1984). The 
cells form a regular pattern (see Figure 1) and therefore we chose an inhibitive 
interaction model 

h(r) = 1 - exp ( - (3(r - ro)2), (5) 

where r is the distance between two events, (3 is the parameter to be estimated 
and ro = 15fLm is the fixed hard-core radius. 
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In this data set interactions between the events are strong (for the de­
tails, see Sarkka, 1990). The MPL method gives {3 = 0.0002 (Sarkka, 1990) 
while the corresponding maximum likelihood (ML) estimate obtained by us­
ing Monte Carlo approximation is {3 = 0.0006 (Penttinen, 1986). The esti­
mated ML model fits well to the data (Penttinen, 1986) and the MPL model 
differs from it (see Figure 4). In the following we study whether the over­
estimation of the MPL method could be due to its sensitivity to outlying 
observations. 

5.1. Outlying events 

To find out the events that have most influence on the MPL estimate we 
calculated values of the Thkey's sensitive curve for each event (Figure 2). In 
the data of amacrine cells there were two events that had stronger effect than 
the others (squares in Figure 3). They appeared to be isolated events. 

To detect isolated events we calculated the exponential energy for each 
event. Two of the events of this data set differed from the others because of 
their small exponential energies (triangles in Figure 3). 

Distance to the nearest neighbours and the number of neighbours were 
also calculated. None of the events differed from the others by means of 
distance to the nearest or second nearest neighbour but two of them did 
when the distances to the third nearest events were measured. The same 
two events stand out when we calculated the number of neighbours (stars in 
Figure 3). Here the events closer than 100j.lm (interaction radius of the ML 
model) were regarded as neighbouring events. 

5.2. Estimation 

By studying the amacrine cells data we found three pairs of isolated events 
depending on the method we applied in detecting them. The new value of 
the MPL estimate appears to be the same for each pair. 

Applying the three first of the methods presented in Section 4, omitting, 
simple replacement or replacement by applying the EM algorithm, the new 
MPL estimate became 0.0005, quite close to the ML one (see Figure 4). To 
confirm that the model fits to the data we calculated Ripley's L function and 
the upper and lower envelopes from 99 simulations (Figure 5). The model 
seems to be reasonable. 

Next, we replaced the outliers with new events added near the original 
ones. We assumed that the outliers have been measured incorrectly and 
assumed the Gaussian distribution (with several values of the variance) for 
the error. However, this approach did not help for this data set. The MPL 
estimate remained 0.0002. 
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5.3. Some other trials to correct MPL estimates 

We studied the influence of outlying observations on MPL estimates and 
presented some methods how to take them into account in estimation. An­
other possibility is to try to make the method itself less sensitive to outlying 
observations. 

The MPL estimation equations (1) and (2) are equalities of sample means. 
Since sample means are sensitive to outlying observations we replaced them 
by sample medians, and calculated the MPL estimate of /3. The MPL esti­
mate of /3 remained 0.0002. 

The MPL method fails because of strong interactions between the events. 
It seems that the method does not sufficiently take into account dependencies 
between the events. To solve this problem we applied the second order MPL 
method presented by Mase (1992). It consideres pairs of events instead of 
single events and therefore we assumed that it better takes into account 
dependencies between the events. The second order PL function can be 
written as 

L E2 (x, y, 'Pw \ {x, y } ) 
xEcpw YECPw\{x} 

fw fw exp( -E2(~' ry, 'Pw))d~ dry, 

where 

zECPw zECPw 

is the energy needed to add the events x and y, x =1= y to the configuration 
'Pw. By maximizing the second order PL function with respect to /3 we 
obtained the estimate 0.0002. The method seems to have the same problem 
of overestimation as the MPL method of first order. 

Our model is a pairwise interaction model, higher order interactions are 
not allowed to exist. To confirm that the model is rich enough we allowed 
triplet interactions between the events. The local energy E can now be 
written as 

1 
E(x,'Pw)=a+ L 1>(llx- y ll)+"2 L L 'If;(x,y,z), 

yECPw yECPw ZECPw\{y} 

where 'If; is a triplet potential function. Following Fiksel (1988) we suggested 
two different choices for the triplet interaction function, 
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and 

{ 

0 
'l/J2(X, y, x) = 1 

exp( -bexp( -I'a(x, y, z))) 

if s(x, y, z) < ro 
if S(x, y, z) ;:::: R , 
otherwise 

where s(x, y, z) is the minimal and S(x, y, z) the maximal distance between 
the events x, y and z, a(x, y, z) is the maximal angle of the triangle formed 
by x, y, and z, ro = 15f.lm as before and R = 150f.lm is the fixed interaction 
radius. We applied the MPL method to estimate the pairwise interaction 
parameter f3 and the parameter d Of'l/Jl and the parameters b and I' of'l/J2. 
Estimate of f3 remains 0.0002 and the estimates of the parameters of both 
'l/Jl and 'l/J2 indicate that there are no triplet interactions between the events. 

One reason for existency of isolated events may be that all events of the 
point pattern are not observed. We tested this possibility by adding one or 
two events near to the isolated events of amacrine cells data according to the 
estimated MPL model. However, this procedure seems not to help for this 
data set. 

5.4. Light-off amacrine cells 

In fact, the data of amacrine cells consist of two types of cells: 152 light­
on and 142 light-off cells (Diggle, 1986). The data set that was studied in 
Sections 5.1-5.3 is the one of cells prosessing light-on information. Diggle 
(1986) concludes that the point patterns formed by light-on and light-off 
cells are generated by very similar mechanisms. Both patterns are regular 
(see Figure 6). Therefore a natural assumption is that the MPL method 
overestimates interaction between the light-off cells, too. 

We estimated the parameter f3 of the model (5) with the hard-core radius 
12J.tm (minimum interpoint distance) by the MPL and ML methods. The 
MPL and ML estimates we obtained are 0.0002 and 0.0004, respectively. 

Furthermore, we applied the methods presented in Section 3 to detect 
possible outliers of the light-off data. We found one influential event and 
two outliers by using exponential energy marking, number of neighbours or 
distance to the nearest neighbour as a criteria (see Figure 7). The outliers 
detected by using the last two methods were the same. Applying the first 
three methods given in Section 4 we obtained a new MPL estimate of f3 in 
each case. If the influential event was considered an outlier we got 0.0004 as 
the new estimate. In the other cases the value of f3 became 0.0005. According 
to the L function study presented in Figure 8 both of the models, with 
f3 = 0.0004 and f3 = 0.0005, seem to be reasonable. 

6. Discussion 

The maximum pseudo-likelihood estimation method tends to overestimate 
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interaction if it is strong between the events. The aim of this paper was to 
find out the reason for the overestimation. The study of the light-on and 
light-off amacrine cells data showed that for these inhibitive data sets the 
overestimation was caused by isolated events. The result was reasonable 
since isolated events lie far from other events and therefore seem to inhibite 
the other events strongly. 

We presented several methods to detect isolated events and methods to 
take them into account in estimation. First, we suggested to omit the isolated 
events in estimation. However, omitting them is questionable method since 
the number of events changes. The events that are omitted interact with the 
other events and have effect on them, e.g. on the values of the local energies. 
Therefore a better way is to replace the outlying events by new events added 
according to some rule. The replacement methods given in Section 4 can be 
applied also when values of Thkey's sensitive curve are calculated. 

Only the influence of single outliers was studied here, no attention was 
paid to groups of outliers. Similar kind of problems may appear if, for ex­
ample, the point pattern is regular in general but on one part of the study 
area it is clustered. 

We applied the methods suggested for detecting outliers and estimating 
given the outliers only to one data set. However, this study gives some em­
pirical tools to study robustness of the maximum pseudo-likelihood method. 
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Labels of figures 

Figure 1. Locations of 152 amacrine cells within a 1070j1mx600j1m rectan­
gular region. 

Figure 2. Influence of the events on the MPL estimate of (3. The size of the 
circles are related to the values of Tukey's sensitive curve. Events with small, 
unessential influence are denoted by crosses only. 

Figure 3. Locations of amacrine cells: squares, triangles and stars indicate 
outlying events with respect to the values of Tukey's sensitive curve, expo­
nential energy and number of neighbours, respectively. 

Figure 4. Interaction functions: corrected MPL estimate (solid), ML estimate 
(dashed) and original MPL estimate (dotted). 

Figure 5. L function calculated from the data (solid) and the upper and 
lower envelopes from 99 simulations of the corrected MPL model (dashed). 

Figure 6. Locations of 152 amacrine cells light-on cells (crosses) and 142 
light-off cells (circles) within a 1070j1mx600j1m rectangular region. 

Figure 7. Locations of light-off amacrine cells: squares, triangles and stars 
indicate outlying events with respect to the values of Tukey's sensitive curve, 
exponential energy and number of neighbours, respectively. 

Figure 8. L function calculated from the data of light-off cells (solid) and 
the upper and lower envelopes from 99 simulations of the model (5) with 
(3 = 0.0004 (dashed) and (3 = 0.0005 (dotted). 
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