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ABSTRACT 

Play-the-winner allocations aim to place more subjects on the better treatment. The 
subjects enter the study sequentially. In this paper, a method for analyzing a 
dichotomous response, when using the randomized play-the-winner allocation and the 
modified play-the-winner allocation, is studied. The method is based on Wald's 
sequential probability ratio test. The properties of the method and of the allocation 
rules are studied for the case of simple hypotheses. The expected sample sizes and the 
expected numbers of subjects assigned to the inferior treatment are estimated by 
simulation. 

Keywords: Play-the-winner randomization, response dependent allocation, 
sequential probability ratio test, restricted randomization, 
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1 Introduction 

Consider an experiment where two treatments, say Tl and T2 , are compared. The 

response to the treatment is dichotomous, namely success or failure. Patients arrive 

sequentially at the experimental site and have to be treated immediately. The question 

arises how to allocate patients to the two treatments. 

A simple allocation rule is to choose randomly a treatment for each patient. To fulfill 

ethical requirements Play-the-winner allocations have been suggested, first by Zelen 

(1969). Characteristic for the Play-the-winner allocations is that the probability for a 

treatment increases as the number of successes for the treatment increases. Therefore, 

we can assume that less patients are allocated to the inferior treatment than to the 

superior one. 

For a sequential analysis of the experiments we can use Wald's sequential probability 

ratio test, SPRT, for simple hypotheses, 

Ho:PTt = PTz = PTtO = PTzO versus Hl :PTt = PTtl' PTz = PTzl . 

It will be assumed that 

PTtO '# PTtl and PTzO '# PTzl . 

Wald's SPRT is originally presented in the case of independent and identically 

distributed random variables. If a play-the-winner allocation is used the variables are 

not independent and identically distributed: the treatment of the current patient 

depends on the treatment, and the response to treatment, of one or more of the previous 

patients. Therefore, the original Wald's SPRT can be used for sequential analysis. We 

will present a generalization of the test that is suitable for this more complicated 

situation. We will assume immediate responses, to simplify the calculations. 

The paper is organized as follows. Three Play-the-Winner allocation rules, Play-the­

winner (PW) allocation, modified Play-the-winner (MPW) allocation and randomized 

Play-the-winner (RPW) allocation, are summarized in Section 2. In Section 3 we recall 

Wald's SPRT and some of its basic properties, and in Section 4, the test is generalized 

to our experimental situation, where the random variables are not independent and 

identically distributed. As main result we show that the error probabilities are 

bounded, for inference based on Wald's SPRT, when the RPW allocation rule is used 
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in the experimental setting of allocating patients to the two treatments. In Section 5 we 

compare two Play-the-Winner allocation rules, the RPW and the MPW, and total 

randomization (TR) , when using the SPRT, by means of expected sample size and 

expected number of patients allocated to the inferior treatment. TR assigns treatment 

Tl with probability ~ and treatment T2 with probability ~, each time a patient arrives. 

Hence, TR represents an allocation rule for which the random variables are 

independent and identically distributed. Note that, in the case of immediate responses, 

the PW and the MPW are identical (see Section 2). The expectations are calculated 

through simulations. 
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2 Play-the-winner allocation rules 

The ftrst Play-the-winner allocation was introduced by Zelen (1969). Zelen's 

allocation, denoted by PW, is best described by an urn. In the urn we for each success 

of a treatment put a ball representing the treatment, and for each failure put a ball 

representing the other treatment. When a patient is to be allocated to a treatment we 

draw a ball from the urn, without replacement. If the urn is empty, as it is at the start, 

each treatment has probability Vz. This method allows the responses to be delayed, but 

if many responses are delayed for substantial time treatments will mostly be assigned 

with probability Vz each. 

In the same paper Zelen introduced another allocation rule, where the responses were 

assumed to be immediate. When allocating the fIrst patient, the treatments have 

probability Vz each to be assigned to the patient. For the following allocations one 

keeps on assigning the same treatment until it gives a failure, then switches to the other 

treatment and keeps on assigning this one until it gives a failure. The allocation is 

continued in this manner until the experiment is stopped. This allocation rule is 

denoted by MPW, modifted play-the-winner. Note that, with immediate responses the 

MPW allocation is identical to the PW allocation. 

Later, a randomized Play-the-winner allocation was introduced by Wei and Durham 

(1978). Now we can think of an urn in which we, at the start, have WI balls 

representing treatment Tl and W2 balls representing treatment T2. When a patient is to 

be allocated to a treatment a ball is drawn from the urn, with replacement. If the 

response "success" is received, from a patient allocated to treatment Tl (or T2 

respectively), we add p T1-balls to the urn. If the response is a "failure" we add p T2 -

balls to the urn. Note that here, the history of successes and failures will affect every 

allocation, even if the responses are delayed. This last allocation rule is denoted by 

RPW(Wl'W2 ,p). A special case of the RPW(wl'w2 ,p) is when WI = w2 ' which is denoted 

by RPW(ro,p). 

The statistical analysis of results from experiments where RPW(ro,p) allocation rules 

have been used has been discussed by several authors. Wei and Durham (1978) 

suggested an inverse stopping rule for deciding which one of the two treatments is the 
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better one. They also compared the RPW(O,l) with the PW, with respect to, the 

expected number of patients treated by the inferior treatment, the average sample size 

and the estimated probabilities of correct selection of the inferior treatment. The 

comparison of the average sample sizes was done when the inverse stopping rule was 

used. Wei and Durham concluded that the RPW(O,l) seemed to be approximately 

equal to the PW for practical use. 

Wei (1988) used the inverse stopping rule to stop the experiment, and proposed a fixed 

sample permutation test for the analysis. For comments on the work of Wei (1988), 

and general comments on difficulties with the inference after using the RPW(co,p) 

allocation, the discussion introduced by Begg (1990) is recommended. In Wei, 

Smythe, Lin and Park (1990) exact conditional, exact unconditional and approximate 

confidence intervals were studied. One of their conclusions were that the design should 

not be ignored in the analysis. However, the suggested analysis ignores the stopping 

rule and therefore ignores part of the design. 
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3 Wald's Sequential Probability Ratio Test 

In this section Wald' s sequential probability ratio test and some of its basic properties, 

are described. The theory below follows unpublished lecture notes, Holm (1990). A 

good introduction to the theory of sequential analysis can be found, for example, in 

Govindarajulu (1981) or Siegmund (1985). 

3.1 The test 

We are interested in discriminating between two simple hypotheses 

Ho:9=90 , HI:9=91 , where 90 ::;t:91' 

with a sequential probability ratio test, with desired significance level a and desired 

power in the alternative 1-[3, and the test is constructed as follows. 

Assume that Xl'""Xn are independent identically distributed random variables with 

probability distribution function fe (.), and with joint probability distribution function 

f n,e (.). Then the likelihood ratio An can be written as 

Let A and B be absorbing barriers. Then we have three possibilities: 

B < An < A continue with an additional observation 

An ::;; B stop the experiment and accept Ho 

An :2: A stop the experiment and reject Ho 

Often it is more practical to work with the log likelihood ratio, InAn , a=lnA and b=lnB. 

In the following we will use the notation {X}~ = {Xl , ... ,Xi}' 

3.2 Some important properties 

The following results enable us to choose the bounds A and B, so that the true 

significance level, a *, and the true power under the alternative, 1- ~ *, will be close to 

the desired ones. Equations 3.2.1 and 3.2.2 give us the bounds of the true a * and 

1- ~ *, while ex and 1-[3 are desired. 
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The proofs of the propositions below are included to illustrate that the proof of 

Proposition 3.2 is the only one that requires the assumption of independent and 

identically disttibuted random variables. 

Proposition 3.1 : Assume that P(N < 00) = 1. Then for given A and B 

1-~* ~* 
A:::; * and B;;:: *' 

a. I-a. 

where a* and ~* are the ttue type-I and type-II en-ors. 

Proof: Let 

Therefore, the Rn' s are mutually disjoint. Now we can wlite 

a. * = Pe (t,.,. ;;:: TJ = ~ P (R ) = ~ f f (x )dx . 
o £.J 9 0 n ~ 0.6 0 n n 

Remembering that 

on Rn we obtain 

0=1 0=1 Rn 

f 
n,e l T --> f - 1 
n,eo 

* ~ f 1 ~ f 1 ( ) 1 ( *) a. = < = -P > T = - I-I, fn,oo(xn)dx n - -I, fn.o,(xJdx n T el t,.,. - 1 T ~ 
n= 1 R. Tin = 1 R, 1 1 

Hence, 

Similarly we can show that 

• 
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Proposition 3.2 : If Xl' ... ,Xn are independent and identically distributed random 

variables and 

{I fe, (xJ - oJ 1 \-I. 
n ( )- < vI, 

fe X. 
o ' 

then 

P(N <00) = 1 . 

Proof: Let ~>O. Then 

implies that 

Furthelmore, 

and hence, 

Let 

8 



Then 

We now have that 

that implies 

Therefore 

• 
Proposition 3.3 : Assume that P(N < 00) = 1. If A and B are chosen to be 

A= 1- ~ and B=-~- , 
a I-a 

where a and ~ are the desired levels of the error probabilities, then the true level of 

significance, a *, and the true power under the alternative, 1- ~ *, satisfy 

a*+~*~a+~ . 
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Proof: As peN < 00) = 1 is assumed, the requirement of Proposition 3.1 is satisfied. 

Hence, 

Now it follows that 

which implies that 

Furthermore, 

and finally 

--Pa*::;I-~* 

{ 

1- A 

~ ~::; -~-(1- a *) , 
I-a 

{a*(l-~) ::; a(l- W) 
~*(l-a)::; ~(l-a*) . 

a*(l- ~)+ ~*(l-a)::; a(l- W)+ ~(l-a*) 

• 
Note that Proposition 3.2 implies Proposition 3.1, which implies Proposition 3.3. 

The allocation rule TR, where the two treatments aTe allocated with probability Y2 

each, satisfy the requirements for Propositions 3.1 - 3.3, as the random variables in this 

case are independent and identically distributed. 

By using Propositions 3.1 and 3.3 we obtain 

1- B 1- B-
---< *<--­A + - B - a - A - B-

and 

(3.2.1) 

(3.2.2) 

where A + is the maximum value of the likelihood ratio, when stopping and rejecting 

Ho' and B- is the minimum value of the likelihood ratio, when stopping and accepting 

Ho· 
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4 SPRT for a response dependent allocation 

We investigate allocation rules that create dependence between the random variables. 

Therefore we need to generalize the theory of Wald's SPRT to this situation. We do 

this for our specific experimental setting, where we want to compare two treatments 

that both have two possible responses, success and failure. 

In Section 4.1 we derive the log likelihood ratio, InA-n' and in Section 4.2 we show that 

the properties, discussed in Section 3.2, are true also for the generalized SPRT. These 

properties enable us to construct a generalized test in the same way as the ordinary 

Wald's SPRT is constructed. 

4.1 The log likelihood ratio 

To simplify the calculations immediate responses are assumed. 

From now on we use the following notations : 

PT = the success probability of treatment T 

ST(i-l) = number of successes of treatment T among the i-I first patients 

FT(i-l) = number of failure of treatment T among the i-I first patients 

where T is either TI or T2 • 

Furthermore, it is assumed that 0 < PT < 1 , 0 < PT < 1 and that PT ~ P'E . 
1 2 2 1 

Simple hypothesis of the following kind are considered 

Ha:PT = PT = PTa = PT a versus HI:PT = PTl' PT = PT I 1 2 1 2 1 1 2 2 

It is assumed that 

PT a ':t PT I and PT a ':t PT I . 1 1 2 2 

OUf response valiables al'e 

{
I if patient i was allocated to treatment TI 

Yi = 0 if patient i was allocated to treatment T2 

_ {I if the treatment on patient i was a success 

Xi - 0 if the treatment on patient i was a failure 

The likelihood function can be determined as 

LN = p(YI = YI ,XI = XI) 
N 

* n {p( Yi = Yil{y}~-I = {y}:-I ,{X}~-I = {x}~-I )P(Xi = xilYi = Yi)} 
1=2 
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Hence, the likelihood ratio is 

The test statistic we use is the log likelihood ratio, the same as in Wald's SPRT. It can 

be written as 

In~ 

4.2 Some properties 

Assuming that Condition 1 below holds we will show Proposition 4.1, the 

correspondence for Proposition 3.2. This implies Proposition 3.1, which implies 

Proposition 3.3. 

Condition 1: 

p{Yi+! = ~N > i) ::;; P(Yi+2 = ~N > i, Yi+1 = I,X i+1 = I) ::;;. .. 

< p(y. = liN . {y}~+m-l = {I}~+m-l {X}~+m-l = {I}~+m-l ) - l+m > 1, 1+1 1+1' 1+1 1+1 

and 

P{Yi+1 = QN > i) ::;;P(Yi+2 = qN > i, Yi+1 = O,X i+1 = I) ::;;. .. 

< p(y. = "'N . {y}~+m-! = {O}~+m-l {X}~+m-l = {l}~+m-l ) - l+m lI! > 1, 1+1 1+1' 1+1 1+1 

,'v'm 
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Proposition 4.1 : If Condition 1 is satisfied, then P(N < 00) = 1. 

Proof : The following is tme for all values of i. 

r a - b l . r the absolute values of the possible l 
Let m=L--J+ 1, where t=mml. ... J. t Lmcreases of log lIkelIhood, m one step 

By assumptions P'IO '# PT 1 and PT 0 '# PT l' we have that 
1 1 2 2 

Let us denote 

and 

Therefore 

P(CT1 .i+1 UCT2 .i+1IN > i) = P(CTpi+1IN > i) + P(C T2 .i+1IN > i) 

= P(Yi+1 = ~N > i)P(Xi+1 = 11Yi+1 = 1) 
m 

*TI P(Y liN' {y}i+j-l {l}i+j-l {X}i+H {l}i+j-l )p(x 11y 1) . i+j = > 1, i+l = i+l' i+l = i+l i+j = ~ i+j = 
)=2 

m 

*TIp(y "'N' {y}i+H {o}i+H {X}i+j-l {l}i+j-l)p(X 11Y 0) . i+j = Uj > 1, i+l = i+l' i+l = i+l i+j = i+j = . 
)=2 

As a result of Condition 1 we obtain 

and furthelIDore 

p( CTl>i+l VCT2.i+1IN > i) ~ mi{(tP1i r,(tPT2 r ~ . 
Note that the events CTpi +1 and CT2 .i+1 are two possible events, but not the only ones, 

for hitting a boundary in m steps. 
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Hence, 
r 

P(N = 00):::; P(N > no + m,N > no + 2m, ... ) = limP(N > no + m)ITp(N > no + jrn/N > no +(j-1)m) 
r~~ r-2 

= lim(1- P(N:::; no +m))TI( 1- P(N:::; no + jrn/N > no +(j-1)m)) 
r~~ r-2 

We then have that 

P(N =00) ~ 0 , 

and hence 

P(N <00) = 1 . 

• 
Above it was proved that P(N < 00) = 1, under Condition 1. This implies Proposition 

3.1. We can now construct the SPRT in the same way as the Oliginal Wald's SPRT. 

4.3 Properties when using RPW and MPW 

In the subsections, 4.3.1 and 4.3.2, we show that Condition 1 is satisfied for RPW and 

MPW, and for PW which is identical to MPW in the case of immediate responses. 

4.3.1 RPW 

At the stmt of the expeliment we have ro balls representing each treatment in the urn. 

When receiving a response p balls moe added to the urn : balls of type Tl if we received 

a success for treatment Tl or a failure for treatment T2 and balls of type T2 if we 

received a failure for treatment Tl or a success for treatment T2. 

In the RPW case the probability of allocating a patient to treatment Tl is 

( 
_) _ 0)+ P(ST1(i-O + FT2 (i-l») 

P~-1- 2ro+p(i-O . 
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To see that Condition 1 is satisfied for the RPW allocation we need to check both 

inequalities. To show that the first one holds we first write 

( 
_ I .)- P(Yi+1 =1IN>i)(2(O+ pi)+ pP(Yi+1 =lIN>i) 

P Yi+1 - 1 N > 1 - ((. ») 2(0+ p 1+1 

P(Yi+1 = liN> i)(2(O+ pi)+ P 
<~--~------~----
- (2(0+ p(i+1») 

=P(Yi+2 =1IN>i'Yi+1 =l,Xi+1 =1) , 

and, for j = 2,3, ... , 

P(Y liN · {y}i+m-l {l}i+m-l {X}i+m-l {l}i+m-l ) i+j = > 1, i+j-l = i+j-l' i+j-l = i+j-l = 

p(y. . = liN> . {y}i+j-l = {l}~+~-1 {X}i+j-l = {l}~+j-l )(20) + (. + .)) 1+) 1, 1+1 1+)' 1+1 1+1 P 1 J 

( 20) + P (i + j)) 

p(Yi+j = liN> i, {y}::t
1 

= {U::tl, {X}::t 1 
= {u::i-

1 
)(20)+ p(i+ j-1))+ P 

<------------------~------~-----------------
- ( 20) + P (i + j)) 

= p( Yi+j+1 = ~N > i, {y} ::1 = {l}::J ' {x} ::1 = {l}::i) . 

Hence, 

P(Yi+1 = liN> i) ~ P(Yi+2 = ~N > i, Yi+1 = 1,Xi+1 = 1) ~ ... 
< p(y. = liN>· {y}~+m-l = {l}~+m-l {X}~+m-l = {l}~+m-l) - 1+m 1, 1+1 1+1' 1+1 1+1· 

Now, to see the second part of Condition 1, we can write 

P(Yi+1 = GIN > i) ~ P(Yi+2 = ~N > i, Yi+1 = O,Xi+1 = 1) ~ ... 
< p(y. = n1N > . {y}~+m-l = {O}~+m-l {X}~+m-l = {u~+m-l) - 1+m '-1 1, 1+1 1+1' 1+1 1+1 

The above inequality is equivalent to 

1- P(Yi+1 = liN> i) ~ 1- P(Yi+2 = liN> i, Yi+1 = O,Xi+1 = 1) ~ ... 
< 1- p(y. = liN>· {y}~+m-l = {O}~+m-l {X}~+m-l = {l}~+m-l) - l+m 1, 1+1 1+1' 1+1 1+1· 

Note that 

( 
_ I .)_ P(Yi+1 = liN > i)(2(O+ pi)+ pP(Yi+1 =lIN>i) 

P Yi+1 -1 N > 1 - ((. ») 
2ro+ p 1+1 

P(Yi+1 = liN> i)(2(O+ pi) 
>--~~----~----
- (2(0 + p (i + 1») 

= P(Yi+2 = liN> i, Yi+1 = O,Xi+1 = 1) . 
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Furthermore, for j = 2,3, ... , we have 

P(Y liN ' {y}i+m-l {O}i+m-l {X}i+m-l {l}i+m-l) i+j = > 1, i+j-l = i+j-l' i+j-l = i+j-l 

p(y. . = liN . {y}~+j-l = {o}i+!-1 {X}~+j-l = {l}i+j-l )(2ro + (. + .)) 1+) > 1, 1+1 1+)' 1+1 1+1 P 1 J 
=~----~------------------~-----------------

(200 + P (i + j)) 

p( Yi+j = liN> i, {y};:t1 = {O};:l-1 , {X};:t
1 

= {l};:t
1 
)( 2m + p (i + j -1)) 

>~----~------------------~------~-----------
- ( 200 + P (i + j)) 

= p( Yi+j+1 = ~N > i, {Y}::t = {O};:l, {X}::~ = {1}::~) . 
and hence, 

P(Yi+1 =oIN>i):S;P(Yi+2 =qN>i'Yi+1 =O,Xi+l =1):S; ... 

< p(y. = n1N . {y}~+m-l = {O}~+m-l {X}~+m-l = {l}~+m-l) - l+m Vj > 1, 1+1 1+1' 1+1 1+1 

Hence, it is proved that Condition 1, and therefore Propositions 4.1, 3.1 and 3.3, are 

satisfied for the RPW allocation. 

4.3.2MPW 

In the MPW case the probability of allocating a patient to treatment Tl equals 1 given 

that the previous treatment was Tl and the response a success or if the previous 

treatment was T2 and the response a failure, and for the probability of allocating a 

patient to treatment T2 , respectively. Therefore it is easy to see that the MPW, and 

therefore also the PW, satisfies Condition 1, as shown below. 

To show that the first inequality of Condition 1 is satisfied we write 

p(Yi+1 = liN> i):S; 1 = P(Yi+2 = ~N > i, Yi+1 = 1,Xi+1 = 1) 

and, for j = 2,3, ... , 

( I · {}i+m-l {}i+m-l {X}i+m-l {l}i+m-l) P Yi+j = 1 N > 1, Y i+j-l = 1 i+j-l' i+j-l = i+j-l 

= p(Yi+j = liN> i, Yi+j-1 = 1,Xi+j_1 = 1) = 1 . 

Hence, 

P(Yi+1 = liN> i):S; P(Yi+2 = liN> i, Yi+1 = 1,Xi+1 = 1) :S; ... 

P(Y liN ' {y}i+m-l {l}i+m-l {X}i+m-l {l}i+m-l) 
:s; i+m = > 1, i+l = i+l' i+l = i+l 

To show that the second part of Condition 1 holds, we note that 
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and, for j = 2,3, ... , 

P(Y A1N· {y}i+m-l {O}i+m-l {X}i+m-l {l}i+m-l) i+j = \.~ > 1, i+j-l = i+j-l' i+j-l = i+j-l 

= p( Yi+j = ~N > i, Yi+j-! = 0, X i+j-1 = 1) = 1 . 

Hence, 

P(Yi+1 = oIN > i):::; P(Yi+2 = ~N > i, Yi+1 = 0,Xi+1 = 1) :::; ... 
< p(Y = "'N . {y}~+m-l = {O}~+m-l {X}~+m-l = {l}~+m-l) - l+m "-"I > 1, 1+1 1+1' 1+1 1+1 

Therefore, Condition 1 is satisfied also for the MPW allocation lUle. 
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5 Comparison of three allocation rules 

We know that the RPW(co,p) allocates more patients to the treatment that, during the 

experiment, seems to be better. We would also like to know if the RPW(co,p) allocates 

fewer patients to the inferior treatment, than to the treatment superior in reality. 

Each allocation to the treatment inferior in reality can be viewed as a loss. It is 

therefore of interest to minimize the number of patients allocated to that treatment. 

Another important question is how the expected sample size behaves when one uses an 

RPW(co,p) allocation, compared to other allocation rules. 

We compare the RPW(co,p) with the MPW and with total randomization, TR. TR is 

the simplest randomized allocation rule used and it satisfies the requirements for 

Wald's SPRT (independent identical distributed random variables). MPW, on the other 

hand, is one of the simplest play-the-winner allocation rules, but given that the 

response from the previous patient is known, the next allocation is deterministic. 

RPW(co,p) is response dependent, but not deterministic. 

We study the differences between the allocation rules by means of the expected sample 

size, E[N], and the expected number of patients allocated to the inferior treatment, 

E[ N B]' These expectations are complicated to compute for the MPW and RPW, since 

we do not have independent and identically distributed random variables. The 

probability that patient i is allocated to treatment Tl depends on all the earlier 

allocations and responses. Simulations were therefore conducted to investigate the 

behavior of the expected values E[N] and E[ N B]' 

5.1 Description of the simulation study 

The RPW was simulated with five different combinations of the parameters co and p, 

namely RPW(100.000,l), RPW(10,1), RPW(1,l), RPW(1,lO) and RPW(1,I00.000). 

At the start of the experiment the allocation probability is ~ for each treatment, for 

every value on co and p. The larger the ratio -£i is, the faster the response affects the 

allocation probability. 
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Large response dependency, in the early states of the experiment, could be hard to get 

accepted when the allocation rule is used in a real practical setting, but to get a good 

understanding of how the RPW allocation behaves, extreme response dependency is 

included. 

As co increases the RPW gets closer to total randomization. High values of co let the 

play-the-winner quality come slower into the experiment. Correspondingly for p, the 

RPW gets closer to the MPW as p increases. 

For each of the three allocation rules two different hypothesis cases were tested, 

namely 

1. Ho:p'1' =PT =0.7 versus HI:PT =0.8,PT =0.6 
'I 2 1 2 

and 

2. Ho: p'1' = P'1' = 0.6 versus HI: PT. = 0.8, PT = 0.4 . 
'I '2 1 2 

Hypothesis case 1. represents a small treatment difference while 2. represents a larger 

treatment difference. Simulations were done in these two cases both under the 

assumption that H 0 is false and H I is true and under the assumption that 

H 0 is true and H I is false. 

We used Wald's sequential probability ratio test, with significance level u=O.05 and 

power under the alternative 1-~=O.95. 

The true significance level (X' and the true power under the alternative 1-/3' are 

bounded as below (see equation 3.2.1 and equation 3.2.2). 

Hypothesis case 1 : 

54 • 55 
0.0375 <= 1441 ~ (X ~ 1081 "" 0.0509 

4104 • 1045 
0.9493 <= 4323 ~ 1-/3 ~ 1081 <= 0.9667 

Hypothesis case 2 : 

36 • 37 
00333 <= - ~ (X ~ - <= 0.0513 

. 1081 721 

1026 • 703 
0.9491 <= 1081 ~ 1-/3 ~ 721 <= 0.9750 
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For each of the four·cases, two hypothesis under two different assumptions, 500.000 

independent experiments were simulated. 

5.2 Results of the simulations 

For Hypothesis case 1. (see figure 1), the sample sizes were about the same for total 

randomization and RPW(100.000,1). The sample size seems to decrease with 

decreasing co. Values of p seem not to affect the sample size in a major way: when co 

is held constant, co=l, and p is increasing there is no difference in sample size for the 

chosen values of p. 

The results for Hypothesis case 2. were similar, see figure 2, but the differences in the 

average sample sizes were so small that they are perhaps not of practical importance. 

Figure 1 The mean, and two times the standard errors, of the sample sizes from the 

500.000 simulations of hypothesis case I, for the different allocation rules. On the x­

axis the following allocation rules are represented: TR, RPW(1000.000,I), 

RPW(10,l), RPW(1,I), RPW(1,IO), RPW(l,lOO.OOO), MPW. Furthermore, a 

represents the situation when HI is true and b the one when Ho is true. 

HO:pa=pb=O.7, H1 :pa=O.8, pb=O.6 
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Figure 2 The mean, and two times the standard errors, of the sample sizes from the 

500.000 simulations of hypothesis case 2, for the different allocation rules. On the x­

axis the following allocation rules are represented: TR, RPW(1000.000,l), 

RPW(10,1), RPW(1,I), RPW(1,IO), RPW(1,IOO.OOO), MPW. Furthennore, a 

represents the situation when HI is true and b the one when Ho is true. 

HO:pa=pb=O.6 , H1 :pa=O.8, pb=O.4 
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Note that the sample size follows approximately the same pattern both under the null 

hypothesis and under the alternative hypothesis, but that it is a little smaller under the 

null hypothesis. That is, the sample size is smaller when the treatments are as good 

than when there is a true difference between them. 

Note that treatment T2 is the inferior treatment when there is a treatment difference. 

The behavior of the number of patients allocated to treatment T2 follows a different 

pattern than the sample size, see figures 3 and 4, except for total randomization and 

RPW(100.000,l). These two allocation rules behave quite similarly, and they are the 

allocation rules that allocate more patients to treatment T2 than the others, both when 

T2 is inferior and equal to TI . 

When there is a treatment difference MPW seems to allocate the least number of 

patients to treatment T2 , and the number of patients allocated to the inferior treatment 

decreases with increasing ~, which was expected. 
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When there is no difference between the treatments one could think that the number of 

allocations to treatments TI and T2 would be the same. This is true for the total 

randomization and for the RPW(100.000,I) allocation. On the other hand, the other 

four RPW allocations and the MPW allocation still allocate fewer patient to treatment 

T2 than to TI. This can be understood by looking at the Wald statistic for the RPW and 

the MPW and by remembering that we have simple hypothesis. Note that because of 

the simple alternative it is enough that the data shows that one of the statements, 

PA = 0.7, PB = 0.7, PA = 0.8 or PB = 0.6, is not true, to be able to either accept or reject 

Ho. This is an interesting and important fact: if we want to test Ho: PA = PB = 0.7 it is 

not fair towards Ho to have a simple alternative unless this simple hypothesis and the 

simple alternative are the only likely truths. 

Figure 3. The mean, and two times the standard errors, of the 500.000 simulations of 

hypothesis case 1, for the sample sizes from the different allocation rules. On the x­

axis the following allocation rules are represented: TR, RPW(1000.000,l), 

RPW(10,1), RPW(1,I), RPW(I,10), RPW(l,I00.000), MPW. Furthermore, a 

represents the situation when HI is true and b the one when H 0 is true. 

....; HO:pa=pb=O.7 , H1 :pa=O.8, pb=O.6 
a:s 
Q) ..... -..... 0 0 CD .;:: 
Q) 

I -.s: LO 
0 LO - a 
0 0 
0 LO a co 
en LO - "<:t c: a 
Q) a 
~ 0 

a 
c.. "<:t - a 0 
..... LO 
Q) (t) 
.0 
E 
::J 

TR (10,1) (1,10) z MPW 

Allocation rule 

22 



Figure 4 The mean, and two times the standard errors, of the 500.000 simulations of 

hypothesis case 2, the sample sizes from for the different allocation rules. On the x­

axis the following allocation rules are represented: TR, RPW(lOOO.OOO,l), 

RPW(lO,l), RPW(l,l), RPW(l,IO), RPW(l , 100.000), MPW. Furthermore, a 

represents the situation when HI is true and b the one when Ho is true. 
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For all allocation rules the true significance level and the true power under the 

alternative are close to the intended quantities (see the tables in the appendix). Note 

also that for all allocation rules the standard errors of the expected values seems to be 

small (see the figures and the tables in the appendix). 

Some interesting remarks are that the RPW gets closer to total randomization as co 

increases, and for small treatment differences the sample size is larger for total 

randomization than for the allocations with response dependency, even under H o. It 

means that even if there is no treatment difference we obtain a smaller sample size by 

using a response dependent allocation rule rather than the total randomization. 

For large treatment differences the sample sizes are about the same for all allocation 

rules compared, but there is a large difference in the number of patients allocated to 

the inferior treatment. 

Note also that for the case with less treatment difference, P A = 0.8 and PB = 0.6, the 

actual number of patients allocated to the inferior treatment differs more between the 

23 



allocation rules than in the case with greater treatment difference, P A = 0.8 and 

PB = 0.4. 

24 



6 Discussion 

Wald's sequential probability ratio test is originally presented for independent and 

identically distributed random variables. As shown in Section 4 some important 

properties of the test, hold for a certain class of response dependent allocation rules, 

like RPW and the MPW. 

We compare the RPW allocation rule to the MPW allocation rule and to total 

randomization. Two important questions are the expected sample size and the number 

of patients allocated to the treatment inferior in reality. However, both expectations are 

hard to derive theoretically, and, thus, they were estimated by simulations. 

Regarding the expected sample size and the expected number of patients allocated to 

the inferior treatment, the MPW is slightly better than the others, for the cases studied, 

and after the MPW comes the RPW. There are, however, some negative characteristics 

of the MPW to be considered. The MPW allocation is non-random in the following 

sense: Given that the response from the previous patient is known, the next allocation 

is deterministic. In addition, the MPW requires immediate responses. 

Non-randomness could, for example, lead to selection bias. By selection bias we mean 

that when the experimenter knows for certain which treatment will be assigned to the 

next patient he may, consciously or unconsciously, bias the experiment by deciding 

beforehand who is or is not a suitable experimental subject. 

One could argue that the disadvantages, non-randomness and immediate responses, 

could be solved by using Zelen's PW allocation. It allocates the treatments with 

probability Y2 if there are a lot of delayed responses, and it tends to be close to the 

MPW allocation if there are few delayed responses. 

The RPW(ro,p) allocation rule (RPW(10,l), RPW(1,l), RPW(1,lO), RPW(1,lOO.OOO)) 

was quite good, both in terms of the expected sample size and in terms of minimizing 

the number of patients allocated to the inferior treatment, and it does not have the 

disadvantages of Zelen's MPW allocation rules mentioned above. 

A general remark on the comparisons, in the cases with simple hypotheses, shown 

here, is that if the responses are allowed to affect the allocation enough the play-the­

winner rules not only decrease the number of patients allocated to the inferior 
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treatment, but also decrease the sample size, compared to the total randomization. For 

the RPW(l,l) and for the rules with even more response dependence, the simulations 

indicated the statement above. 
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APPENDIX 

In the tables to follow the arithmetic mean and the standard error of the mean, of the 

simulated values, is given for N, N B and PHI (rej. H 0) . 

Table 1 : 

HO:PA =PB =0.7 versus HI:PA =0.8, PB =0.6 whenHo false and HI true. 

P(Y =1)=~ RPW RPW RPW RPW RPW 

(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

E[N] 114.82 114.76 113.53 112.69 112.55 112.42 

~crE[Nl 0.12 0.12 0.11 0.11 0.11 0.11 

E[Nb] 57.40 57.39 49.51 44.64 42.97 42.58 

~crE[Nbl 0.06 0.06 0.05 0.05 0.05 0.05 

1\1 (rej.Ho 0.955872 0.955538 0.955976 0.955760 0.956034 0.955692 

cr PHI (rej.Ho) 
0.000290 0.000292 0.000290 0.000291 0.000290 0.000291 

Table 2: 

HO:PA =PB =0.7 versus HI:PA =0.8, PB =0.6 whenHo true and HI false. 

P(Y =1)=~ RPW RPW RPW RPW RPW 

(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

E[N] 112.37 112.32 111.51 111.10 111.03 111.12 

crE[Nl 0.12 0.12 0.11 0.11 0.11 0.11 

E[Nb] 56.19 56.15 52.97 51.82 51.53 51.52 

O'E [Nb 1 0.06 0.06 0.05 0.05 0.05 0.05 

PHI(rej.Ho 0.045782 0.045936 0.045710 0.045922 0.046012 0.046292 

crPHI (rej.Ho) 0.000296 0.000296 0.000295 0.000296 0.000296 0.000297 

MPW 

110.77 

0.11 

38.46 

0.04 

0.952918 

0.000299 

MPW 

109.41 

0.11 

53.34 

0.04 

0.047334 

0.000300 



Table 3: 

Ho: P A = PB = 0.6 versus H 1 : P A = 0.8, PB = 0.4 when Ho false and Hl true. 

P(Y =1)=~ RPW RPW RPW RPW RPW MPW 

(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

E[N] 33.34 33.33 32.94 32.52 32.30 32.30 31.88 

crE[N] 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

E[Nb] 16.66 16.67 14.15 11.42 10.24 10.03 9.12 

" 0.02 0.01 0.01 0.01 0.01 0.01 0.01 <JE[Nb] 

PHI (rej. Ho 0.959464 0.959676 0.959786 0.959530 0.960056 0.959102 0.957672 

eJPHI (rej.Ho) 0.000279 0.000278 0.000278 0.000279 0.000277 0.000280 0.000284 

Table 4: 

HO:PA =PB =0.6 versus H1:PA =0.8, PB =0.4 whenHo trueandH1 false. 

P(Y =1)=~ RPW RPW RPW RPW RPW MPW 

(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

E[N] 31.26 31.34 31.08 30.82 30.79 30.85 30.46 

" 0.03 0.03 0.03 0.03 0.03 0.03 0.03 <JE[N] 

E[Nb] 15.29 15.66 14.62 13.84 13.68 13.69 14.27 

" 0.03 0.02 0.01 0.01 0.01 0.01 0.01 <JE[Nb] 

PHI (rej. Ho 0.042368 0.042310 0.042254 0.04288 0.042574 0.04342 0.042822 

eJPHI (rej.Ho) 0.000285 0.000285 0.000285 0.000286 0.000285 0.000288 0.000286 
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