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ABSTRACT 

The design of an experiment is an important component when collecting data to 
gain a deeper understanding of a problem. It is from the data collected that 
inferential statements concerning some phenomenon have to be made; 
therefore, we wish to extract as much relevant infonnation as possible from the 
data collected. Depending on the nature of the problem, good designs may be 
very different. The special type of problem studied here is the estimation of 
second order response surfaces. This type of response sutfaces are often used to 
locally approximate the response in a neighborhood of its maximum. 

The fIrst of the three papers included in the present study provides a brief 
overview of one of the most co~on designs of handling this problem. This 
design is a fractional two-level factorial design augmented with a star. An 
alternative design, called the complemented simplex design, is developed and 
compared with the augmented fractional factorial design. It is shown that the 
simplex design (up tQ six dimensions) is at least as good as the fractional 
factorial design with respect to a defmed design criterion. The comparison is 
made within the class of rotatable designs. Unfortunately, it shows that the 
complemented simplex design cannot be made rotatable in more than six 
dimensions. 

The second paper shows how saturated designs can be constructed from the 
complemented simplex design. These designs are compared with improved 
Koshal designs (up to six dimensions). Neither design was found to be superior 
to the other in all dimensions. Also, which design is superior depends on the 
design criterion. 

The third paper illustrates the complexity of rotatability and the difficulties in 
measuring rotatability. A graphical methQd of presenting degree ofllack of 
rotatability is presented. 

Key Words: Factorial Designs, Variance Function, D-optimality, Rotatability, 

Simplex Designs, Saturated Designs, Koshal Designs. 
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Introduction 

This thesis consists of three separate papers, all dealing with proble.ms in the field of 

experimental designs. The problems have their origin in an industrial process, where 

an assumed relationship (of second order nature and with a known maximum) between 

a response variable and several explanatory variables exists. It is of interest to establish 

this relationship using as few observations as possible, due to the high cost connected 

to each observation. 

The construction of experimental designs is one component in Response Surface 

Methodology (RSM), which comprises a group of statistical tools for model building 

and model exploitation. The type of problems in RSM have been discussed in 

numerous papers and textbooks over the years. One of the most important developers 

of RSM is George Box, who, with co-authors, wrote some classical papers in the early 

1950s and is still going strong. 

The designed experiment, when the assumed underlying model is of second order, is 

by tradition on one of the two forms: (i) a fraction of a two level factorial design, 

augmented with a star (composite design) or (ii) a fraction of a three level factorial 

design. A factorial design is a design where the factors (explanatory variables) only 

takes a few different values, two respectively three in the above mentioned designs. 
The star portion in the composite design consists of 2k points (k =# of factors) 

symmetrically placed out on the k axes in the factor space. Of these two designs, the 

composite design is the most often used and best understood design. The composite 

design have several desirable features. In general, it is not possible to construct a 

fractional three level factorial design, with the same nice properties as a composite 

design, using approximately the same number of design points. 

One might now ask how we can construct a design, not necessarily a factorial design, 

for estimating a second order surface with a known maximum, using fewer 

observations than the smallest possible fractional composite design? Further, the 

accuracy of the estimated model must be about as good as that of the composite 

design. 

If the underlying model had been of first order, the problem should be to find an 

alternative design to a fractional factorial two-level design. One such possible design is 

the simplex design. A regular simplex is defined by k + 1 points in k dimensions, with 

some fixed distance between all pairs of points. So, in the two dimensional case, take 

one observation in each corner of a triangle, and in the three dimensional case, take 

one observation in each corner of a tetrahedron. By adding a center point, we have 
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constructed a design consisting of k + 2 design points to estimate a model with k + 1 

parameters. 

In the first paper, the idea of using a simplex as a part of a design is further developed 

to also include second order surfaces. In order to estimate all parameters in the model, 

the simplex design must be complemented with additional design points. Even if it is 

possible to use this "complemented simplex design" for a full second order model, the 

paper deals with the problem in the situation when the maximum is known. 

When the number of observations in a design is reduced to a minimum, i.e., to the 

number of parameters to estimate, we have what is called a saturated design. The 

second paper shows how saturated designs for different types of second order models 

can be constructed by removing points from the complemented simplex design. A 

saturated design for estimating a second order model was given by Koshal in 1933. 

This design is slightly improved, and thereafter compared with the design constructed 

from the complemented simplex design. 

The third, and last, paper discusses some issues of rotatability. Under the conditions 

that the postulated model is correct, and an appropriate metric is chosen, a design is 

said to be rotatable if the distribution of information of the surface is spherically 

distributed about the design origin. The question whether a design is rotatable or not 

has been discussed since the 1950s, but the ftrst papers to discuss how to measure the 

degree ofllack of rotatability were not published until 1988 (Draper & Guttman and 

Khuri). In this paper we concentrate on a graphical method, by Giovanitti-Jensen & 
Myers, for presenting the _degree ofllack of rotatability. 
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Abstract 

Two level fractional factorial designs with a star are often used when working with lower 

polynomial models. In this paper an alternative design is discussed and compared with the 

fractional factorial design. We are working under the assumption that the true underlying model 

is of second order with a known maximum point. 

Keywords: Fractional factorial design, Simplex, Variance function, Rotatability. 
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1 Background And Introduction 

Quadratic Response Surface Methodology focuses on finding the optimum levels of 

some control variables ~ = (~l , ... , ~k ), to optimize the value of y. Y is assumed to 

depend on the control variables through a polynomial function of second order. The 

two level fractional factorial design is well known, well described and well used in 

practice when working with lower polynomial models. The reasons for this are many. 

The design is easy to construct by hand and easy to understand. Also it allows you, in 

a first order model, to mix both qualitative and quantitative variables. In this paper we 

concentrate on second order models with only quantitative variables. 

The construction of a design, i.e. the determination of design points, is today easily 

done with a computer. Say, for example, you wish to estimate a plane using a design 

with one observation in each comer of a tetrahedron. The coordinates of the design 

points is then derived with advantage by a computer. To choose one design before an 

other, because of its constructional benefits is no longer a valid argument. 

The fractional factorial design is a good design in many situations, but should not be 

used blindly. When facing a new problem, it is of great importance to identify the most 

important goals. Say for example the model Y = a + ~ x + 'Y x 2 + E is to be estimated. 

How can we choose the best design for doing this? Depending on if the primary goal is 

to minimize the joint confidence ellipsoid for all three model parameters (D-optimum 

design) or to minimize the confidence interval for 'Y (Ds-optimum design), different 

designs is to be considered as the best design. What is said with this is that designs that 

works well in some situations, should not be used without being checked in a new 

close related situation. 

Another important aspect to look at, when comparing designs, is the number of 

experimental points used by the designs. Since each observation is connected with a 

cost, it is of interest to keep down the number of experimental points. 

The problem discussed in this paper assumes that the optimum point is known, but it is 

of interest to estimate a whole region of the surface around this point. The problem can 

appear in an industrial process where the optimum point is known. Now the process 
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has to move, the reason can be environmental restrictions on the process or a 

possibility to produce to a lower cost. It is therefore of interest to explore the response 

surface around the optimum point. 
--

Assume that the optimal point is ~oPt = (SI,OPt , ••• , Sk,OPt) and that the expected response in 

this point is 

where 

k k k i-I 

Y; = ~~ + L~~~i + L~~'i~~ + LL~~,j~i~j +e, 
i=l i=l i=l j=l 

e distributed as a N(O,cr2
) random variable. Further we assume that the second order 

approximation of the surface is adequate over the region of interest. 

Since the optimum point is known, it is possible to simplify the model by doing an 

origin shift. Let \j!i = Si - Si,OPt' A direct consequence of this transformation is that the 

new system will take its optimum value in the origin. Since the optimum point is 

known, the system satisfies 

~: 1 ...... =0 =0, i=l, ... ,k. 

Under these restrictions it is easily verified that the model can be written as 

In next section is a design criterion defined and discussed. Thereafter follows two 

sections in which the two designs under investigation in this paper are defined, namely 

the fractional factorial design with a star and the simplex design with complement 

points. Mter that are the two designs compared and the last section puts the light on 

some fmal remarks. 

3 



2 One Way To Compare Designs 

A designed experiment is defined by its design matrix D, 

r
Xl1 X12 '" X lk I 
X21 X22 ... X2k I 

n=l" . J .. . 
Xnl Xn2 ••• Xnk 

where k is the number of explanatory variables and n is the number of experimental 

points in the design. Each row describes the setup for one experimental point, which is 

called a run. 

A matrix of more importance is the designs X-matrix. This matrix depends both on the 

design matrix D and on the model chosen. For the special model in this paper the x­

matrix looks like 

22\ Xl2 ... X1k Xu Xl2 Xl1 Xl3 ... XI,k-1 Xlk I 
X;2 ... X;k X21 X22 X21 X23 .. ; X2,k-1 X2k I ( ) t 

: : : = Xl x2 '" Xn . 

X~ ... X~ ~nlXn2 ~nlXn3 ... ~n'k-IXnkJ 
On what grounds would we choose one design over the other when performing a 

designed experiment? Obviously there is a need for design criteria that helps us to 

choose the most appropriate design for solving a particular problem. One such 

criterion is based on the variance function Vx' The variance of a predicted response at 

a point x is given by Var(y(x» = xt(xtxrlx if. The variance function is defined to 

be the standardized variance Vx = (n/d )Var(Y(x». When comparing designs it is 

helpful to use Vx rather than Var(y(x», since Var(y(x» always will be smaller if an 

extra design point is added to the design. It is of interest to hold down the number of 

experimental points, therefore should the designs be compared on a standardized basis. 

The following example shows the idea. 
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Ex. I. 

Consider the model Y = ~o + ~lX + E. 

Assume that.the design with design matrix D 1 is chosen, 

Then is Var(y(x» = (cr /1 0)(2x 2 -6x + 7) and Vx = (4/10)(2x 2 
- 6x + 7). 

If we instead chose to use the design D 2' 

then is Var(y(x» = (d /20) (2x2 
- 6x + 7) and Vx = (8/20) (2x2 

- 6x + 7). 

If Var(y(x» is used as a design criterion, D2 is to prefer before D l , since the variance 

of a predicted value is lower in each point. A better design can always be found by 

replicating Dl several times. However, when using Vx as the design criterion the two 

designs are on equal footing, which of course makes sense in this case. 

The use of Vx can also be-motivated by arguing in the following manner. Assume we 

have two designs Dl and D2 , consisting of n1 and n2 design points respectively. Each 

design gives us the possibility to estimate the predicted response y(x) in a point x. Let 

Var1 (y(x» and Var2 (y(x» represent the variances of the predicted responses for the 

two designs. With respect to the variances of the estimated responses, is it better to 

replicate D 1 ll2 times or is it better to replicate D 2 III times? In both situations are 

III x ll2 runs perfOlmed. By replicating the designs in the described way, the variance 

of the predicted response can be shown to be Var1 (y(x» / ll2 and Var2 (Y(x» / lll. We 

prefer Dl before D2 if 

or equivalently if 
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3 The Fractional Factorial Design With A Star 

A widely used technique when estimating a second order surface, with k control 

variables, is to use a two level 2 k-p fractional factorial design, complemented with a 

star and a center point. The star portion of this design consists of the 2k points 

(±a,O, ... ,O), (O,±a,O, ... ,O), ... , (O, ... ,O,±a) for some choice of a. A full two level 

factorial design consists of all possible combinations of ~ = ~i.OPt ± S i' i = 1, ... , k. It is 

more convenient to work with a scaled version of the explanatory variables, namely 

Xi = 'IIi lSi = (~ - ~.oPt) / Si' Then, the full two level factorial designs consist of all 

possible combinations of Xi = ± 1, i = 1, ... , k, and the model is written as 

A fractional factorial design means that not all 2 k, but 2 k-p for some p, combinations 

of Xi = ±1, i=l, ... ,k are used in the design. An example illustrates the idea, for a more 

detailed description see Box & Draper [1987]. 

Ex. 2. 

The problem is to find the smallest fractional factorial design with a star (i.e. the 

design with the fewest number of experimental points) that can estimate all the 

parameters in the model. The design matrix D full' and its relating Xful1-matrix, for the 

full design are shown on next page. 

The interaction terms in the model must be estimated from the factorial part of the 

design. There are 3 interaction terms in the model, so it is enough to have a 23-1 

design to estimate the interaction terms. The fraction used in the design can be 

chosen in different ways, some more attractive than others. By choosing the fraction 

where for all observations Xii x Xi2 X X i3 = 1, we ensure that no estimates of 

interaction terms are alias with other estimates of interaction terms. The final design 

matrix D frac and its relating Xfrac·matrix are shown on next page. 
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r -: 
-1 -ll r: 

1 1 1 1 1 
11 

-1 -1 1 1 1 -1 -1 11 
1 1 -1 1 1 1 1 -1 1 -11 

-1 1 -1 1 1 1 1 1 -1 -1 I 
1 -1 1 1 1 1 1 1 1 -1 I 

-1 -1 1 1 1 1 1 -1 -1 I 
-~ I 1 1 1 1 1 1 1 -1 1 

Dfull = -1 1 1 Xfull = 1 1 1 1 1 -1 11 

0 0 0 1 0 0 0 0 0 0 1 
I 

a 0 0 1 a 2 0 0 0 0 01 
-a 0 0 1 a 2 0 0 0 0 01 

0 a 0 1 0 a 2 0 0 0 0 1 

l ~ -a 

lJ li 0 a 2 0 0 0 0\ 
0 0 0 a 2 0 0 ~J 0 0 0 a 2 0 0 

r -: 
-1 -ll 

ri 
1 1 1 -1 -1 1 

1 -1 1 1 1 -1 1 -1 
-1 -1 1 1 1 1 1 -1 -1 

1 1 1 1 1 1 1 1 1 1 
0 0 0 1 0 0 0 0 0 0 

D frac = a 0 0 , X frac = 1 a 2 0 0 0 0 0 
-a 0 0 1 a 2 0 0 0 0 0 

0 -a 0 1 0 a 2 0 0 0 0 
0 -a 0 1 0 a 2 0 0 0 0 
0 0 a 1 0 0 a 2 0 0 0 
0 0 -a 1 0 0 a 2 0 0 0 

In general, the models discussed in this paper have 

(k) k k' 1+k+ =1+-+-
2 2 2 

parameters, one intercept term, k quadratic terms and (~) interaction tenns. The 

smallest possible fraction that can be used to estimate the interaction terms consists of 

2 k-p factorial points, where p is the largest integer such that 2 k-, 2: (~ ). 
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4 The Complemented Simplex Design 

An alternative design to use is a simplex design complemented with some points. 

A simplex is defmed by k+l points in !he k-dimensional space. I.e., in the plane a 

simplex is defmed by a triangle and in 3 dimensions it is defined by a tetrahedron. 

Now, construct a simplex in k dimensions, x = (Xl' ••• ,x k ), such that (i) each and one 

of the k+ 1 points are at the same distance from the origin and (ii) the distance between 

each pair of points is the same. Such simplex is called a -regular simplex. The 

complemented simplex design is now defined by having one observation at the origin, 

one observation in each corner of the simplex (simplex points), and finally, one 

observation on each ray going from the origin and between each pair of comers 

(complement points). Altogether this is 

experimental points. Notice that the number of experimental points in this design 

exceeds the number of parameters in the model with k+ 1. 

The construction of a regular simplex is straightforward. For example consider the 

case when k=3. 

J Xlj X 2j x 3j 

1 1 1 1 

2 -1 1 1 

3 0 -2 1 

4 0 0 -3 

Scale factor .J2 .J6 .J12 

Let Pi denote the i:th simplex point in the design and let Pij denote the complement 

point on the ray between the i:th and j:th simplex point. The design matrix D is then 

defmed by the design points 
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Po = {O,O,O} 

1 1 1 
Pl = {J2' .J6' .Jf2}Xd s 

-1 1 1 
P2 = {J2' .J6' .Jf2 }xds 

-2 1 
P -{O- --}xd 

3 - '.J6'.Jli s 

-3 
P4 = {O,O, .Jf2} xd s 

P12 =(Pl +P2)xde 

P13 = (Pl + P3)xdc 

Pl4 = (Pl + pJ xd c 

P23 =(P2 +P3)xd c 

P24 =(P2 +pJxde 

P34 =(P3 +pJxdc 

where d. and de are constants that determines the simplex points and the complement 

points distances from the origin. 
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5 Comparing The Two Designs 

It is of interest to find a good design that makes it possible to estimate the unknown 

parameter~ in the above described model. With a good design we mean a design that 

satisfies some properties like a high level of information and rotatability without using 

to many experimental points. A high level of information means that the variance of a 

predicted response is low. Rotatability means that the variance of a predicted response 

at a point x depends only on the distance between the origin and x. This means that we 

can writeVx = VP' where p = (xi+ ... +X~)1I2. 

The two discussed designs will now be compared with respect to the variance function. 

The fractional factorial design with a star can always be made rotatable by putting the 

star points at the distance (2 k
- P )1/4 

from the origin, given that the factorial points are 

described in terms of 1 and -1 (and therefore are at the distance .Jk from the origin). 

The Simplex design with complement points can be made rotatable by putting the 

complement points at a certain distance from the origin. Unfortunately is this only 

possible for k up to 6. Therefore will the two cases when k::;; 6 and when k> 6 be 

treated separately. 

From now a fractional factorial design with a star and a center point will be called a 

factorial design, and a simplex design with complement points and a center point will 

be called a simplex design. 

5.1 Comparison Up To 6 Dimensions 

Assume in the simplex design that the simplex points are at distance one from the 

origin. The following table shows at which distances, d(k), the complement points 

should be to make the design rotatable. For k=2 is the design rotatable for any choice 

of d(k). 

k 3 4 5 6 
d(k) (4/9 r/4 

(12/16)1/
4 

(32/25)1/
4 

(lOO/36f/4 

The two rotatable designs will now be compared with respect to their variance 

functions. It is of interest to compare the volumes under the variance functions over a 
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defmed region in the x-space. Assume we want to compare the designs over the region 

A = {x; IIxll =:;; I} and that the model used is valid over the region B = {x; Ilxll =:;; b, b ~ I} 

(all the following results holds also if we define A = {x; -1 =:;; Xi =:;; 1, i = 1, ... ,k}). For 

all rotatable designs discussed in this paper we have that Vol is of the form 

Now, for each k construct the rotatable factorial design that minimizes Vol = t Vxdx 

under the restriction that all design points belong to B, and do the same for the simplex 

design. The number of experimental points used in the two design are 

k 2 3 4 5 6 
................................................................................................................... 
Factorial 7 11 17 27 29 

Simplex 7 11 16 22 29 

The designs can now be compared with respect to Vol. In the following graphs the y­

axis represents Vol, i.e. the volume under the variance function over the region A. The 

x-axis represents the distance from the origin to the outermost points in the rotatable 

design. For the factorial design this is always the distance from the origin to the 

factorial points. For the simplex design it is for k =:;; 4 the distance from the origin to 

the simplex points and for k ~ 5 the distance from the origin to the complement points. 

The case k = 2 needs some extra consideration. Let the simplex points in the simplex 

design be at distance d from the origin and the complement points at distance a x d 

from the origin with a =:;; 1. It does not matter whether a is chosen to be smaller than 1 

or greater than 1, since for a = 1 the simplex part of the design and the complementary 

part of the design are mirror images of each other. The simplex design is rotatable for 

any choice of a and d. The problem is to chose a and d in the best way, i.e., in a way 

that minimizes the volume under the variance function. 
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For a equals 1, 2' 4 and 8" respectively, we get the following graphs. 
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Dimensions=2,a=1/2 

2 3 4 5 6 
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5.5~----~------~-== 

5.4 
5.3 

~5.2 
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:> 5 

4.9 
4.8 

2 3 456 7 
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The graphs shows how the volume under the variance function changes with d. In each 

of the four cases there is a unique d that minimizes the volume. Note the different 

scales on the y-axis in the four graphs. 

In practice a and d cannot be chosen arbitrarily. Say for example that the control 

variables can be controlled up to two decimals. That is, if a variable is set to be 0.50, it 

could be any value between 0.495 and 0.505. This gives an error of approximately 1 

percent. If instead the variable was set to 0.05 (could happen for small a), the true 

value could be any value between 0.045 and 0.055. This gives an error of approximate 

10 percent. So the smaller a is, the greater is the relative error in the controlled 

variable. How close to the origin the complement points can be is therefore determined 

by the accuracy of the controlled variables. A reasonable choice of a is a = t, meaning 

that the distance from the origin to the simplex points is twice as big as the distance 

between the origin and the complement points. This is what is used when comparing 

the simplex design with the factorial design in two dimensions. 
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There is also a limit on how far away from the origin the experimental points can be 

located. Experimental points cannot be located outside the region over which the 

model is valid. This means we must have d :::; b. 

In the following graph are the two designs compared. 

Dirnensions=2 

1 1.5 2 2.5 3 3.5 4 

d 

The two curves that are close together, are the curve for the factorial design and the 
I 

curve for the simplex design when a = T'4. The reason for this choice of a is that this 

makes the distance between the simplex points and complement points in the simplex 

design the same as the distance between the factorial points and the star points in the 

factorial design. The lower curve in the graph is the curve when a = t. 

With respect to the volume under the variance function, the two designs are almost 
I 

identical when a = 2-'4. The smaller a can be chosen, the more superior is the simplex 

design. Also note that the simplex design with a = t is superior the factorial design in 

the point where the factorial design is minimized. 

Comparisons of the designs when k = 3, ... ,6 are presented in the following graphs. 

The factorial design is abbreviated with F, and the simplex design with S. 
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Dirnensions=5 
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When k equals 3, the two designs are rotations of each other, and will therefore of 

course have the same variance function. When k equals 4 is the factorial design 

superior the simplex design. For k equals 5 and 6 are the two designs almost identical 

with respect to Vol. 

In a practical situation, there is a cost tied up to each observation and it is not nonnally 

possible to replicate the design several times. Therefore, when one of two designs with 

unequal number of design points is to be chosen, and the smaller design produces less 

accurate estimates than the larger design, a decision has to be made whether more 

accurate predictions to the cost of more observations is to prefer before fewer 

observations to the cost of less accurate predictions. In this situation we are more 

interested to compare the volumes under Var(y(x)) rather than the volumes under Vx ' 

and keeping the number of observations used in mind. That is, we will study the graph 

VoVn vs. d to detect the designs different ability to predict the response, and hereby, 

given the number of design points used by each design, decide which design is to 

prefer. 

Designs with equal number of design points are easy to compare. In this situation we 

chose the design that produces the most accurate predictions. Also, if the design with 

the fewest number of design points produces more accurate predictions than its 

competitor, the choice of design is clear. 

Let us see what happens when the simplex designs in 4 and 5 dimensions are extended 

with an extra center point. First we note that in 4 dimensions the simplex design and 

the factorial design have equally many design points and in 5 dimensions the simplex 

design has 4 design points less than the factorial design. 
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Now study the graphs of Volin vs. d. 
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Dimensions=5 

1 2 3 4 5 6 

d 

In 4 dimensions we see that the simplex design with two center points works better 

than the factorial design. The result in 5 dimensions is more surprisingly. Despite the 

fact that the simplex design with two center points has 4 design points less than the 

factorial design, the variances of the predicted responses are smaller from this design. 

To sum up, in 3 dimensions are the two discussed designs rotations of each other. In 6 

dimensions the two designs have equally many design points. From a practical point of 

view it is irrelevant, with respect to Vol, which design to use. In 2, 4 and 5 

dimensions the simplex design works better than the factorial design, after adding one 

extra center point to the simplex design in 4 and 5 dimensions. Still the number of 

design points will not exceed the number of design points in the factorial design. 

5.2 More Than 6 Dimensions 

As mentioned earlier, it is not possible to make the simplex design rotatable in 

dimensions higher than 6. To see why, we will fIrst see when a design is rotatable. 

For simplicity assume k=2. We have a design D and the relating X-matrix. When the 

true underlying model is of the kind discussed in this paper, it can be shown that the 

design is rotatable if the information matrix is of the form 

X'X={ro}. J~ 
I,J l~ 

3~ ~ ~I 
'" 3", OJ 
° ° '" 
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The extension to higher dimensions is obvious. Let us take a look at some of the 

elements in the information matrix when k=7. The simplex design is such that the 

simplex points are at distance 1 from the origin and the complement points are at 

distance d frem the origin .. For example, we need for a rotatable design that 

{roh,2 = {ro}4,4' But in 7 dimensions is {roh,2 = t+1id and {ro}4,4 = -rr+1id. Obviously 

there is no d to make {ro} 2,2 = {ro} 4,4' As indicated here the simplex design in 7 

dimensions can be made rotatable by letting d go to infinity. This is however a result 

of no practical value. And in higher dimensions is not possible at all to make the 

design rotatable. For example in 8 dimensions, we have {roh 2 = t + fstd ~ t + 1.19 d 

and {ro} 4,4 = -rr + m~ d ~ -rr + 1.22 d. Of course we can not find any positive d to make 

the two elements equal. 
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6 Final Remarks 

The classical use of simplex designs arises from problems where we have a restriction 

of the type I:I Xi = 1. This happens in applications where the proportion of Xi is the 

only thing that matters. 

When thinking of a simplex and its ability to cover a region in the k-dimensional space 

using only k + 1 points, and its symmetrical properties, one is tempted to extend the 

use of simplexes in the theory of experimental designs. In this paper one possible 

application has been discussed. 

One extension of the model discussed in this paper is to let at least one factor affect the 

response variable independently of the other factors. For example we can have three 

factors interacting with each other and a fourth factor that does not interact with the 

three other factors. This model looks like 

One could use any of the two designs presented in this paper, with a small 

modification, to estimate the parameters. For the example mentioned here, take the 

design for the three dimensional case. Each point in this design is of the type 

p = {VI 'V2 ,v3 }. The desigQ. in four dimensions is now defined by all points of the type 

p = {VI 'V2 'V3 ,a} and one additional point {O,O,O, K}. This design is rotatable in 

R3 = {x; x4 =O}. The choice of K can be discussed. One may choose K so that Vol is 

minimized, or one may prefer to choose K in a way that makes the precision of 

predictions in the x4 direction as equal as possible the precision of predictions in the 

xl' x 2 and X3 directions. 

A related topic under examination is how saturated designs, i.e. designs that have 

equally many design points as parameters to estimate, can be constructed when the true 

underlying surface is of second order. The maximum point mayor may not be known. 

One or several factors mayor may not interact with the other factors. 
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1 Introduction 

The complemented simplex design, see Claes Ekman [1994], has good properties when 

estimating a second order surface with a known maximum up to 6 dimensions. It can be made 

rotatable and it is at least as good as a fractional factorial design with a star with respect to 

some alphabetic optimality criteria. In this paper we discuss how saturated designs, i.e. designs 

having equally many design points as parameters to estimate, can be constructed when 

estimating a second order surface. 

We assume that the underlying surface has a maximum. The maximum point mayor may not be 

known. We may also let any predictor interact or not interact with any other predictor. 

A simplex is defined by k + 1 points in k dimensions. A regular simplex is a simplex where all 

points are at the same distance from the center of the simplex, and the distance between each 

pair of points is the same. The complemented simplex design is defined by having one design 

point in each comer of the simplex, called simplex points, and one design point on each ray that 

goes from the center of the simplex and between each pair of simplex points, called 

complement points, and eventually, one or several center points. The simplex points are 

denoted Pi' i = 1, ... ,k + 1, and the complement points are denoted 

Pii' i = 1, ... ,k, j = i + 1, ... ,k +-1. The design point Pij is the complement point on the ray that 

goes between the simplex points Pi and p j' 
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2 The Models And The Designs 

In the following subsections are saturated designs for some different types of second order 

models described. 

2.1 Second Order Model With Unknown Maximum Point 

The second order model looks like 

where Y is the response variable and Xl" ",Xk are the predictors. This model has 

(
k) 3k k

2 

l+k+k+ =1+-+-
222 

parameters. The complemented simplex design, without centerpoints, has 

(
k+1) 3k k

2 

k+1+ =1+-+-222 

design points and is therefore a saturated design. 

2.2 Second Order Model With Known Maximum Point 

When the maximum point is known, the model can be simplified by doing an origin shift. The 

model can now be written as 

This model has 

(
k) k k

2 

l+k+ =1+-+-2 2 2 

parameters. Consider the design consisting of one center point and the complement points in a 

complemented simplex design. This design has 
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(
k+1) k k

2 

1+ =1+-+-
2 2 2 

design points and is therefore saturated. 

2.3 When Some Predictors Do Not Interact With The Other 

The frrst case to consider is when one predictor does not interact with any of the other 

predictors. We will now find a saturated design for this type of model. Start with the saturated 

design for the model with the k -1 interacting factors. Each design point in this design is of the 

type p = {VI , ••. ,Vk- I }, say. The design for the model where one predictor does not interact with 

the other predictors consists of the design points of the type p = {VI'" "Vk- I ,OJ, and one or two 

additional points. Two additional points are required if we do not know the maximum point, 

and therefore need both the linear and quadratic term in the model. If the maximum point is 

known, it is enough to have the quadratic term in the model. If two additional points are 

needed, take them as {O, ... ,O,±a}, if only one is needed, any of the two will do. 

If we have two predictors not interacting with the others, the design consists of the points of the 

type p = {VI" ",Vk- 2 ,O,O} and also the points {O, ... ,O,±a,O} and {O, ... ,O,O,±a}. Further extension 

is obvious. 

We could also think about a more messy situation when we allow all predictors to interact or 

not interact with any other predictor. If the simplex is constructed as described in Claes Ekman 

[1994] the design may be reduced in the following way. 

The design point Pij is the complement point that contains most information about the 

interaction between X i_I and x j-I' Therefore, if there is no interaction between X i- I and x j-l' Pij 

is removed from the design. This means that the complement points that are left in the design, 

are those that contains most information about the interaction terms in the model. 
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3 Another Saturated Design 

It is not easy to find examples of saturated designs in the literature for models in general. 

However, for polynomial models there exists saturated designs called Koshal designs, see 

Kosha1[1933]. The idea behind the construction of such designs is very intuitively. How to 

proceed is best shown through an example. 

Assume we are working in three dimensions. The model looks like 

There are 10 parameters to estimate, so we are looking for a design with 10 design points. Take 

one observation in the origin, (0,0,0), to estimate the intercept term. Next, to estimate the linear 

terms, take observations in (1,0,0), (0,1,0) and (0,0,1). To estimate the quadratic terms, take 

observations in (2,0,0), (0,2,0) and (0,0,2). Finally, the interaction terms are estimated by 

observations in (1,1,0), (1,0,1) and (0,1,1). The design matrix D looks like 

r~ ~ ~l 
010 

001 

2 ° ° 
020 

002 

II 1 OJ 
101 

011 

This design is very asymmetrical around the origin, but can be substantially improved. First, the 

design points used for estimating the quadratic terms can be exchanged with the points (-1,0,0), 

(0,-1,0) and (0,0,-1). Second, the design points used for estimating the interaction terms can be 

more spread out by exchange them with the points (1,1,0), (-1,0,1) and (0,-1,-1). The D 

matrix for this new design looks like 
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r ~ 
0 

~l 0 
0 1 0 
0 0 1 

-1 0 0 
0 -1 0 
0 0 -1 

H 
1 

-!J 
0 

-1 

The design points for estimating the interaction tenns in the improved design, are constructed 

by following rules. 

• If the number of explanatory variables is odd, then change the "interaction points" in the 

original Koshal design so that each coordinate is represented with equally many 1 as -1. 

• If the number of explanatory variables is even, then change the "interaction points" in the 

original Koshal design so that the coordinates for half of the explanatory variables is 

represented with one more 1 than -1. The other half is represented with one more -1 than 1. 

The already described example illustrates the idea when k is odd. When k is even, say k = 4, 

the following "interaction parts" of the original Koshal design and the improved design are 

obtained 

r: 1 0 

~l r-: 
1 0 0

1 0 1 0 -1 0
1 

1 0 0 1 1 0 0 -1 

0 1 1 o ' 0 -1 1 0 
0 1 0 1 0 1 0 1 

0 0 1 1 0 0 -1 -1 
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4 A Measure On Rotatability 

One aspect of interest when looking at designs is whether the design is rotatable or not. When 

comparing two non-rotatable designs, one might ask which one is most rotatable? 

Designs for the special model we wish to compare here, that is the full second order model, are 

rotatable just when the information matrices are of a special form. What this form looks like is 

exemplified for the special case when k = 2, extension to higher dimensions is straightforward. 

The matrix is symmetric, therefore is only the upper triangle shown. 

r: 0 0 0 0 

~l 0 0 0 0 
0 0 0 

{ro}ji = 
0 

3A- A- 0 
3A- 0 

A-

Assume now we have a design D and its relating X-matrix. Further assume that the information 

matrix, XtX, for this design looks like 

ra:, 
a 12 a 13 a 14 a15 

a" I a 22 a 23 a 24 a 25 a 26 

a 33 a 34 a 35 a 36 

a 44 a 45 a46 

a55 a56 

a66 

The question we asks us is how much does this information matrix deviate from a rotatable 

design's information matrix? Let 

Ao = {ajil{ro}ji = 0, 'if i and j ~ i} 

As = {aijl{ro}ij = 0, 'if i and j ~ i} 

A. = {~ I{OJ}, = kA.,k E {1,3}, It i andj ~ i} 
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Let the number of elements in At be nt, .e E {8, A}. Now form 

The measure of rotatability is now defmed as 

The design is rotatable whenever Rot = o. 
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5 The Improved Koshal Design V s. The Complemented Simplex Design 

The complemented simplex designs are naturally divided in two sets of experimental points, the 

simplex points and the complement points. Also the Koshal designs can be divided in a similar 

way, by the interaction points, the star points and the center point. In the following when the 

two designs are compared, we allow the different sets of experimental points to be at any 

distance from the origin. Of course, we cannot have design points outside the region over which 

the model is valid. For simplicity, assume the model is valid only over the unit sphere. 

The primary criteria used when comparing the two designs is the D-criteria. A design is said to 

be D-optimal if it maximizes the determinant of the information matrix. This means that the 

joint confidence ellipsoid for the parameter estimates is minimized. The two designs are 

constructed in a way that maximizes the determinants of their respectively information 

matrices. Thereafter are the measures of deviation from a rotatable design calculated. 

The results up to 6 dimensions are summarized in the following table. Det stands for the 

determinant of the information matrix, Rot stands for the measure of deviation from a rotatable 

design. In the simplex designs, d(O;s) is the distance from the origin to the simplex points in the 

D-optimal design and d(O,c) is the distance from the origin to the complement points. In the 

Koshal designs, d(O,s) is the distance from the origin to the star points and d(O,i) is the distance 

from the origin to the interaction points. 

SIMPLEX KOSHAL 

Dim d(O,s) d(O,c) Det Rot d(O,s) d(O,i) Det Rot 

2 0.77 1 1.63 0.50 1 1 4 2.63 

3 0.87 1 0.25 1.73 1 1 1 4.06 

4 0.91 1 0.012 6.47 1 1 0.062 10.6 

5 0.93 1 1.710-4 15.1 1 1 9.810-4 13.5 

6 0.95 1 7.610-7 28.7 1 1 1810-6 24.1 
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We can see from the table that the improved Koshal designs are superior the complemented 

simplex designs with respect to Det. However, in 2,3 and 4 dimensions the complemented 

simplex designs have a smaller value on Rot, and will therefore provide a more uniform 

information of the response surface. In 5 and 6 dimensions are the improved Koshal designs 

better than the complemented simplex designs also with respect to Rot. 

The complemented simplex designs suffer from the lack of a center point. Let us see what 

happens if an extra center point is added to each design. 

SIMPLEX KOSHAL 

Dim d(O,s) d(O,c) Det Rot d(O,s) d(O,i) Det Rot 

2 1 1 30.4 0 1 1 8 2.63 

3 1 1 9.36 3.06 1 1 2 4.06 

4 1 1 0.72 8.97 1 1 0.12 10.6 

5 1 1 0.015 18.6 1 1 2.010-3 13.5 

6 1 1 9.210-5 32.6 1 1 7.610-6 24.1 

Now are the complemented simplex designs superior the improved Koshal designs with respect 

to Det. With respect to Rot are the complemented simplex designs better than the improved 

Koshal designs in 2,3 and 4 dimensions. Specially, in 2 dimension is the complemented simplex 

design rotatable. In 5 and 6 dimensions are the improved Koshal designs still better than the 

complemented simplex designs with respect to Rot. From this one can conclude that a center 

point is valuable for a design. 

Saturated designs do not allow estimation of the error, and should therefore be handled with 

care. By adding one or several center points, this drawback is eliminated. 
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1 Introduction 

When constructing designs, rotatability is one property that has to be considered. A 
design is said to be rotatable if there exists a point Xo ( the designs center point) such 

that the variance of a predicted value in a point x, Var(y(x», only depends on the 

distance between Xo and x, and of course on the experimental error. See Box and 

Draper [1987]. 

For some classes of models, rotatable designs can always be constructed. Specially, 

this is true for polynomial models (Box and Draper [1987]). For other types of models, 

or when blocked designs are used, it may not be possible to find an exact rotatable 

design. Another situation when a rotatable design not can be found, is when the 

number of experiments that are required not can be performed. 

This leads us to the problem of measuring rotatability. This is a fairly new topic in the 

theory of construction of designs and has its origin in two articles from 1988, Khurl 

[1988] and Draper and Guttman [1988]. These two articles deals with single number 

measures ofrotatability. A design's departure from a rotatable design can take many 

forms. Also is the departure different at different distances from the design center. This 

complexity makes it impossible, which is also mentioned by Draper and 

Guttman[1988], to describe the degree of /lack of rotatability with a single number. 

Giovanitti-lensen and Myers [1989] suggest a graphical method of assessing the 

degree of /lack of rotatability, using what they call a variance dispersion graph. 

In next section we will stUdy an example to emphasize the complexity of rotatability. 

Thereafter is the graphical method presented together with an alternative method for 

constructing such graphs. The last section includes a brief discussion of the problem 

with measuring rotatability, and some words about a related property to rotatability, 

but not so well understood or examined. 
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2 An Example of a Non-Rotatable Design 

Consider following situation. We have a response variable Y and two explanatory 
variables Xl and x 2 • Over a well defined region we want to determine the functional 

relationship between the response variable and the explanatory variables. The usual 

assumptions of Li.d. normally distributed measurement errors are assumed. We know 

that the relationship is on one of the two forms; 

(i) E[Y] = ~o + ~lXl + ~2X2 
(li) E[Y] = ~o + ~lXl + ~2X2 + ~llxi + ~22X; + ~l2XlX2 

Now assume that the collection of data is of such nature that changing the levels of the 

explanatory variables and the preparations for a set of runs are connected with great 

costs. Because of this we like to perform only one set of runs, minimum of six 

observations to be able to estimate model (li), and to use as few levels as possible. One 

possible design meeting these restrictions is the design with design matrix 

0 0 
0 1 

0 -1 
D= 

1 0 
-1 

l 1 ~) 
What this design looks like is shown in next figure. As seen, the design has an 

x2 

1 • 

~--------~~---------+x1 

-1 1 

-1 

asymmetrical pattern, and we would not expect it to be rotatable. Intuitively one would 
guess that the variance of the predictions are lower when both Xl and x2 are greater 
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than zero, compared with other points at the same distance from the origin. The 

variance of a predicted value in any point x, can be shown to be 

Var(y(x)) = Xl (XIXrlx d' 

where X is the designs X-matrix and cf is the variance of the experimental error and 
y(.) is the fitted model. 

We are now interested in studying Var(y(-)) at fixed distances from the origin. To do 

this, introduce polar coordinates 

{
Xl = r cos(t) 

x 2 = r sin(t) 

where r E (0,00) and t E (0,21t). Now, hold r fixed and let t go from 0 to 21t. By 

constructing graphs for some different values of r, we will get a good picture of how 
Var(Y(·)) behaves in different directions and how this behavior depends on r. 

Let us now examine model (i) and model (ii) one by one. 

2.1 Examination of the first order model 

For r = 0.25 we obtain the following graph. Not surprisingly, the best predictions are 

r=0.25, First order model 

0.23 

o Pi 2 Pi 

t 

made in the direction t = 1t / 4, i.e. in the direction towards the design point (1,1). The 

worst prediction are made in the opposite direction, t = 51t /4. When r = 05, next 
graph, Var(y(·)) looks somewhat different. The best predictions are still made in the 

direction of t = 1t / 4. However, the worst predictions are now made in two new 
directions, t = 51t / 4 ± tr , r = 05. When r gets large, tr tends to 1t / 2. 
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r=0.5, First order model 

0.32 

0.2 

o Pi 2 Pi 

t 

From a practical point of view it is of interest to study Var(Y(·» for moderate values 

of r (r not much larger than the distance from the design center to the outermost design 

point), but from a theoretical viewpoint, also large values of r are of interest. The two 
following graphs shows the behavior of Var(y(-» when r = 1.5 and r = 100. 

r=1.5, First order model 

o Pi 2 Pi 

t 

r=100, First order model 

o Pi 2 Pi 

t 
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The last graph, r = 100, does not show the values of V ar(H·)). What is interesting is 

the shape of Var(y(·)). The best predictions are made in the two directions t = 1t /4 

and t = 51t /4, for large r, and the worst predictions are made in the two directions 

t = 31t / 4 and t = 71t / 4. Notice that for small values of r .. t = 51t /4 is the worst 

direction for predictions, but as r gets larger the predictions are better and better 

(relative other directions) and asymptotically it is the best direction together with 

t = 1t /4. 

We have seen that even for the simplest of models, the degree of /lack of rotatability 

will not be easily described. Let us now examine the second order model. 

2.2 Examination of the second order model 

This model is somewhat more complicated than the first order model. Still, intuitively, 

it is reasonable to believe that predictions are made with greater accuracy in the 
direction t = 1t /4. By studying the graph of Var(y(-)) when r = 0.25 we see that this is 

not true for small values of r. 

r=0.25, Second order model 

0.98 

o Pi 2 Pi 

t 

In fact, the best predictions are made in the directions t = 5rc / 4 ± tr, r = 0.25. When r 

tends to zero, it can be shown that tr tends to 1t / 2. Further, when r is small, 

Var(y(t = 1t /4))::: Var(y(t = 51t /4)), and t = 1t /4 and t = 51t /4 are the worst 

directions of predictions. So compared with the fIrst order model is the situation very 

different. 

By introducing polar coordinates, and then study Var(y(x» = xt(XtXf1x <f, for 

small values of r, one will gain a mathematical understanding of the behavior of 
Var(y(·)) close to the origin. However, it is not easy to see intuitively why Var(Y(·)) 

behaves as it does in the graph above. So even in this trivial example with a simple 
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design and a well understood model, the behavior of V ar(y(·)) at fixed distances from 

the design center is not easy to grasp. 

What follows is a sequence of graphs for some different values of r, namely r = 05, 
r = 0.75 and r = 1. The purpose is to show how different Var(y(-)) looks at different 

distances, and also to show the complexity of Var(y(')) at some fixed distances. 

r=0.5, Second order model 

1 

_0.9 
<:>. 
~0.8 
a:! 

:::- 0.7 

0.6~------~------~~~ 

o Pi 2 Pi 

t 

r=0.75, Second order model 

o Pi 2 Pi 

t 

r=l, Second order model 

2 

---<:>. 
-1.5 

~ :::-

Pi 2 Pi 

t 
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The shape of Var(y('» for the second order model, remains more and more of the 

shape of the corresponding function for the first order model, when r gets large. This is 
verified by studying Var(Y(·» when r = 100. One can see that the curves of Var(y(-», 

r = 100, for the ftrst order model and the second order model have the same 

characteristics, even if they not are exactly identical. 

r=100, Second order model 

o Pi 2 Pi 

t 

2.3 Mathematical examination of the variance functions 

As seen, the form of Var(y(·» can be very complex at some distances and will not be 

easily expressed in mathematical terms. When r tends to zero or inftnity the expression 
of Var(Y(·» is simplifted, and it is worthwhile to study these special cases to learn 

more about the behavior of the function. 

Let ~ denote V ar(Y(· » in the first order case, and V2 the same function in the second 

order case. The following results are easily verifted. 

VI ~al +~ sin(t+1t/4) as r~O, 

VI ~ bl + b~ sin(2t) as r ~ 00, 

V2 ~ ~ + a~ sin(2t) as r ~ 0, 
V2 ~ b2 + b~ sin(2t) (1- sin(2t)j2) as r ~ 00 

This explains why V2 is so flat when 2t is close to 1t I 4 and 51t I 4 for large r in the 

second order model. To see this, let u = 2t. A Taylor expansion of sin(u) around 

u = 1t 14 (the case u = 51t 14 is similar), gives sin(u) "'" 1- (u -1t 14)2/2. Therefore is 

sin(u) (1- sin(u) 12) "'" 1/2 - (u -1t 14)4 18. That is, in a neighborhood of u = 1t 14 can 

the function be approximated with a fourth order polynomial function with multiple 

roots in 1t 14. 

8 



3 The Variance Dispersion Graph Approach 

A design is said to be rotatable if Var(Y(·» is constant on spheres of radius r, centered 

at the desIgns center. This means that a non-rotatable design is not constant on spheres, 

and a natural way of measuring the departure from rotatability is to find 
max{Var(y(·»} and min{Var(Y(·»} on the spheres. 

We can now construct a variance dispersion graph by plotting (max{Var(y(·»}, 

min {Var(Y(·» }) against r for some appropriate chosen values of r. 

The problem is to find max {V ar(y(·»} and min {V ar(y(·»}, for a given r. We have 

seen in the previous section, that even in a simple situation, Var(YC·» can have a 

rather complex form. 

Giovanitti-Iensen and Myers [1988] suggest two different solutions depending on if 

the model is of first order or second order. In the first order case it can be shown that 
max{Var(y{»} = (1/ N + Amaxr2)ci and min{Var(YC·»} = (1 / N + Aminr2)ci where Amax 

and Amin are the largest and the smallest eigenvalues of (Xtxt1
• In the second order 

case they use a search algorithm (not described in the paper) to find an optimum. The 

problem with using such algorithm is commented upon by the authors in their paper 

and their reflection of this problem is partly reproduced in the following quotation. 

"In many situations, multiple locations exist for the maximum value of the variance 

on a particular sphere. As in the case of many optimization routines in which one 

has nonlinear equality £onstraints and the objective function is this complex, there is 

no guarantee of finding the global optimum." 

This is a problem that not should be underestimated. Consider the graph of the second 

order model when r = 1. There is local optimum at the point t = 1t /4. If the value of 
V ar(Y(·» in this point is reported as max {V ar(Y(·» }, this will of course affect the 

variance dispersion graph negative. 

What we need to do is to fmd all local maxima and minima on the spheres, and then 

fmd out which ones are global. This can be done using Lagrange multiplicator. After 

solving the nonlinear equation system 

aL -0 
ax

1 
- . 
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where L = Var(y(x» - A(L~=l x~ - r2), it is easily verified which of the optimum 

values that is global. 

It is also useful in the variance dispersion graph, for each r, plot the mean of Var(Y(·» 

on the sphere. If'l'r is the surface area of the sphere U r at distance r, the mean is found 

as 'l'~l I Var(y(x» dx. Below is shown what these graphs looks like for the two 
Ur 

examples in the previous section. 

First order model 

1.2 
1 

<Z!0.8 
~ 0.6 
:> O. 4 

0.2 
0 

0 0.5 1 1.5 2 

r 

Second order model 

3 

<~ 
-2 
\..I __ a:l 

:>1 

0 
0 0.5 1 1.5 2 

r 

For studying the characteristics of a design, with respect to rotatability, the variance 

dispersion graph is useful. When coming to a situation when a visual examination of 

the graphs not is enough for discriminating between several designs, one need a 

measure of the degree ofllack of rotatability to be able to pick one of the proposed 

designs. A measure close related to the variance dispersion graph is the area between 

the upper and the lower curve. The smaller the better and an area equals zero means 

that the design is rotatable. 
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4 Discussion 

Rotatability is a property which is important when predictions in all directions are of 

equal interest. In many situations it is not possible to construct an exact rotatable 

design, but it shows that in many situations you can often find an almost rotatable 

design, without suffering (to much) from other nice properties of the design. It is 

therefore of interest to learn how to compare designs with respect to rotatability, and 

learn how to construct almost rotatable designs in different situations. 

The examples shows the difficulties in understanding the behavior of V ar(y{)). Also 

one can understand the difficulties in measuring the degree of /lack of rotatability with 

a single value. In a rotatable design is V ar(y(-)) constant for each fixed value of r, i.e. 

the graphs in section 2 had been straight lines parallel to the x-axis. It is not hard to 

imagine that the departure from rotatability can take many forms. 

Rotatability implies constant variance on spheres centered at the design center. Taking 

this one step further, one wishes constant variance over all spheres. That is, constant 

variance over the whole region of interest. Is it possible to construct such designs? 

This is a problem that has not been discussed in the literature. 

A rotatable design is represented as a single curve in the variance dispersion graph. A 

design with constant variance over the whole region of interest, would be represented 

as a line parallel to the x-axis. With this knowledge, one can construct measures of 

how close a design is to meet the condition of a "constant variance design", and this is 

a first step in the search of designs with this desired property. 
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