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SURVEILLANCE OF RARE EVENTS. 

ON EVALUATION OF THE SETS METHOD. 

By Hrafnhildur Arnkelsd6ttir 

SUMMARY 

Continual surveillance aiming to detect an increased frequency of some rare 

event is of interest in several different situations in quality control, medicine, 

economics and other fields. Examples are continual surveillance of defect 

articles in a production process or surveillance of a business cycle. 

Surveillance of rare health events in general and especially surveillance of 

congenital malformations has been a field of unabating interest during the 

last decades. Since the Thalidomide episode in the early 60's, several 

registries of congenital malformations are in operation all over the world. The 

basic idea is that if a 'catastrophe' occurs an alarm should be signalled as 

soon as possible after the occurrence. A method developed for this situation is 

the Sets method that focuses on the intervals between events under 

surveillance, e.g. intervals between successive births of malformed babies. If a 

previously defined number of such intervals are 'short' an alarm is triggered. 

The traditional evaluation measure used when discussing the Sets method is 

the ARL (Average Run Length). Here, evaluation measures such as the 

probability of a false alarm, the probability of a successful detection and the 

predictive value of an alarm are derived and discussed for the Sets method. 

The information provided by these measures is important for the 

implementation and use of a system of surveillance in practice. 

KEY WORDS: surveillance, rare health events, congenital malformations, the 

Sets method, probability of a false alarm, probability of a successful detection, 

predictive value. 
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The principles of surveillance are as follows: each month new reports are 

examined continually and clusters of unusual malformations or combinations 

of malformations noted. Each year a final report is made, this is mainly used 

for studies of long-term changes and equivalent material is available for the 

time period since 1965. Quarterly, information is summarised and reported to 

an international organisation known as the International Clearinghouse for 

Birth Defect Monitoring Systems (ICBDMS). 

1.2. Surveillance in General 

Surveillance can be viewed as continual observation in time where the goal is 

to detect a change in the underlying process as soon as possible after it has 

occurred. In terms of statistical inference we have a situation with three 

characteristics: the number of observations is increasing, decisions must be 

made successively and the "catastrophe" under surveillance could occur at 

any time. The hypotheses undergo successive changes since at decision point s 

we are interested in the hypothesis that no change has occurred before s, 

while at decision point s+ 1 a change before s+ 1 is of interest. 

This situation arises in different areas of medicine, for example surveillance of 

foetal heart rate during labour, regular health controls, post-marketing 

surveillance of adverse drug reactions and the scope of this paper, i.e. 

surveillance of congenital malformations. The timeliness and the accurateness 

of a decision are extremely important in view of the possible consequences of 

an increase going undetected for a long time, or, alternatively, having 

frequent false alarms. Each surveillance situation is unique and needs to be 

evaluated in the light of these factors. 
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When conducting statistical analyses in this area the fact that repeated 

decisions will be made and that no fixed hypothesis is of special interest is 

often ignored. However, several methods that take into consideration the 

sequential structure of the surveillance situation are available. The literature 

on surveillance of congenital malformations contains descriptions of a 

number of suitable methods. The CUSUM method is a well-known method 

originally developed in the field of quality control, cf. Barbujani (1987), Chen 

(1987), Gallus et.a!. (1986) and Lie et.a!. (1991). A method discussed almost 

exclusively in this context is the Sets method, discussed by e.g. Barbujani 

(1987), Chen (1987), Gallus et.al. (1986), Lie et.a!. (1991) and Sitter (1990). 

Gallus (1993) discusses the CUSETS method, a method partly based on the 

same idea as the Sets method. Other methods described in the context of 

surveillance of congenital malformations are for example Healy's weighted 

regression and sequential analysis by Barbujani (1987) among others, SM­

scheme by Shore and Quade (1989) and the CUSCORE by Lie et.al. (1991), 

Radaelli (1992) and Wolter (1987). Radaelli and Gallus (1989) discuss a 

stopping rule for surveillance of rare health events. Sitter et.a!. (1990) present 

a similar method to the Sets method developed for the surveillance of cancer 

rates. 

Evaluation of the performance of surveillance methods has been discussed in 

the literature, cf. Frisen (1989) and Akermo (1993). Several evaluation 

measures have been suggested where each measure reflects different aspects 

of the surveillance method, e.g. the probability of detecting a true change 

within a certain period. 
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1.3. Notations and Specifications 

We are monitoring a rare health event, the occurrence of a specific congenital 

malformation in a well-defined population. We are interested in discovering a 

sudden shift from the accepted 'normal' rate of this malformation to an 

increased rate. 

The random process determining the state of the system is denoted 

p(u), 0 <p(u) < I, U = 1,2,3, .... We want to distinguish between the 'normal' 

rate of a congenital malformation Po and the increased rate Pl' A shift can 

occur at any time point 1'during the surveillance period. Thus p(u) = Po for 

u=l, ... ,1'-1 andp(u)=PI foru=1',1'+l, ... In Section 4.5 1'is a random variable 

with a specified density. The incidence of a shift, inc(t') = P{ t = t'lt;;::: t '}, is 

assumed constant. 

In other words, we view the surveillance situation as a random process with 

an accepted 'normal' rate of a congenital malformation but also with a risk of 

a 'catastrophe' present. If the lurking 'catastrophe' occurs it will manifest itself 

in a sudden shift to a higher level, i.e. a random process with an increased rate 

of the congenital malformation we are monitoring. Kennett and Pollak (1983) 

point out that modelling the change as a sudden shift is a simplification and 

that some kind of linear trend is a more realistic situation. Svereus (1995) 

gives a detailed discussion of a surveillance situation where the increase is a 

linear trend. Wessman discusses a multiple surveillance situation where 

several processes are observed simultaneously. 

Successive decisions must be taken and at decision point s the aim is to 

discriminate between the critical event C(s) and its complement D(s). The 

critical event is C(s) = {t:s;; s} = {p(s) = PI} the event that a shift occurs at s or 
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A(s) is the alarm set, i.e. a set of events with the property that when an 

observation belongs to A it is an indication that C occurs and a hypothesis 

stating a stable system is rejected. If an alarm is triggered the surveillance 

situation changes. Epidemiological research is needed to determine if the 

alarm is a false one or not and decisions on actions have to be taken. Thus 

only a first alarm is considered and the surveillance is regarded as being 

active in the sense of Frisen and deMare (1991). 
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2. THE SETS METHOD 

The Sets method, introduced by Chen (1978 and 1986), is a method especially 

developed for surveillance of rare health events. Distinguishing it from most 

other methods commonly used in this field. 

With the Sets method the test is carried out each time an event under 

surveillance occurs, in our case each time a baby with a congenital 

malformation is born. The variable used is the period between two 

consecutive births of babies with a specific congenital malformation. This 

period can be expressed by the time interval between the occurrence of two 

consecutive events or as the number of healthy babies born between two 

consecutive births of malformed babies. Here the latter expression is used. 

We then have a sequence of independent Bernoulli trials were 1t is the 

probability of each trial resulting in a malformed baby. Accordingly, the 

number of healthy babies born between two consecutive births of malformed 

babies is a geometrically distributed variable, X(j), where j is the j-th 

malformed baby born. 

We define a threshold value, T = ~ where k is a parameter of the Sets 
tro 

method. Furthermore, we define P = p{X(j) < T} in general and 

Po = p{X(j) < Tltr = tro} 

Pt = p{X(j) < Tltr = trt } 

In order to give an alarm, n consecutive realisations of X(j) must be shorter 

than the prespecified threshold value T. The Sets method thus has two 

parameters: k specifies the threshold value and n specifies how far back in 

history we want to go. 
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If XU) is assumed to be exponentially distributed, d. Chen (1978), then 

1 -k Po = -e 
PI = l_e-rk 

where r = 7r1 , r > 1. 
7ro 

For illustrations of results, the parameters of the Sets method are chosen as 

n=2 and k=O.2287. These values were used by Gallus (1986). The value of k 

determines the value of po in accordance with the exponential assumption 

above. The examples are calculated for different values of PI, thus defining 

the values of 'Y. 

Chen (1978) presented a simple definition of an alarm, being n consecutive 

short intervals when we are at the decision point 5 

A(s) = ([X(s - n + 1) < T] n [X(s - n + 2) < T]n ... n[X(s) < Tn 

Gallus(1986) presented a new definition of an alarm, suggesting that the n 

consecutive short intervals should not be preceded by a short interval, i.e. 

whens=n 

A(s) = ([X(s - n + 1) < T] n [X(s - n + 2) < T]n ... n[X(s) < Tn 

and whens>n 

A(s) = ([X(s - n) ~ T] n [X(s - n + 1) < T]n ... n[X(s) < Tn 

The practical consequence of this definition is, of course, that a second alarm 

can only be triggered after n+1 events, i.e. A(s)nA(s+i)=0, i:s:.n. The 

alarm definition used from now on is the definition presented by Gallus. 

Since the surveillance situation is active, we are only interested in the first 

alarm. Hence we define an active alarm set as 

a A(s) = A(s) n A~_I where A~_I = AC(n)n ... AC(s -1), 

i.e. the set of events giving an alarm at s but no alarm earlier. 
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3. MEASURES OF PERFORMANCE 

The significance level a and the power of the test 1-~, being the usual 

measures for evaluation of the performance of statistical tests, are 

inappropriate in the surveillance situation. This is due to the fact that these 

measures do not account for the time dimension present in the surveillance 

situation. Other measures taking this into consideration have been suggested 

in the literature, d. Frisen (1992) and Akermo (1994). 

All measures depend on the run length distribution in some manner. Bear in 

mind that most systems of surveillance lead eventually to an alarm, whether 

a change has occurred or not. Here a run is defined as the period from the 

start of the surveillance until we get an alarm. Run length (RL) is defined as 

the length of this period, here being the number of events occurring until an 

alarm is triggered. The run length in terms of surveillance of congenital 

malformations is thus the number of infants born with a congenital 

malformation before an alarm is triggered for the first time. 

3.1. Average Run Length 

A common measure, developed in the field of quality control, is the Average 

Run Length (ARL) until an alarm is activated. ARLo is the average number of 

times an event, under surveillance, is observed until an alarm is triggered, 

when no change has occurred. ARLI is the average number of babies born 

with a congenital malformation until an alarm, in the case where the change 

occurred before the surveillance started. ARL is commonly used as an 

optimality criterion. 

" 

11 



ARL is, in the context of surveillance of congenital malformations, useful as a 

crude measure of when in the surveillance period an alarm is triggered, i.e. 

how quick we get an alarm. The RL-distribution is a skew distribution. More 

detailed information requires other measures in addition to the ARL measure. 

3.2. The Probability of a False Alarm 

Several false alarm probabilities are described in the literature. Three of these 

discussed here are: the probability of a false alarm at the decision point s, the 

cumulative false alarm probability and the conditional false alarm 

probability. 

The probability of a false alarm exactly at decision point sis 

a'(s) = P{RL = sID(s)} 

= p{ a A(s)ID(s)} 

= p{ A(s) nA~_lID(s)} 

= P{ first alarm at decision point sino change has occurred so far} 

This a-measure thus tells us how likely it is that when a infant with a 

congenital malformation is born we would conclude wrongly, for the first 

time, that the 'normal' rate of this malformation has indeed increased. It 

converges to zero when S--700 for most methods, d. Section 4.2, i.e. the longer 

we follow the process the smaller the probability of a first false alarm. 

A second interesting measure is the cumulative false alarm probability. 

as = P{RL::;; slDs} 
= p{AsIDs} 
= p{ a AsID(s)} 

= P { alarm no later than at decision point s I no change has occurred so far} 

12 



where aAs=aA(1)u ... uaA{s) = A(1)u ... uA{s) = As 

and Ds = D(1)n ... nD{s). 

Note that Ds = D{s) since D{s) = {r > s},s = 1,2, ... , is a non increasing sequence 

of sets, d. Frisen and deMan~ (1991). 

This a-measure does, in contrast to the first one, tell us how likely it is that at 

the birth of the s-th baby, with a congenital malformation, at least one false 

alarm is triggered then or has been triggered before. For methods like the Sets 

method, it can be expected to converge to 1 when s increases, d. Section 4.3. 

A third similar measure is called the conditional false alarm probability. This 

is the probability of getting a false alarm at s conditioned on not having had 

any false alarms earlier. 

a(s) = P{RL = slRL > s-l,D(s)} 

= p{A(s)IA~_l'D(s)} 
= P{ alarm at decision point sino alarm earlier, no change has occurred so far} 

In other words, when s-1 babies with a birth defect have been born and no 

false alarms have been triggered so far, how likely it is to get a false alarm the 

next time a baby with a birth defect is born. This a-measure is the probability 

of getting a false alarm at decision point s when we are at decision point s-1 

and have not got an alarm. 

These three preceding a-measures illustrate different aspects of time vs. false 

alarm probability. The next two measures focus instead on the power of the 

method. 
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3.3. The Probability of a Successful Detection 

A measure reflecting the power of the surveillance method is the probability 

of a successful detection (PSD). This is the probability of detecting a true 

change occurring at t', i.e. 't=t', within a certain interval t'5.s<t'+d, on 

condition that no alarm has been triggered before t'. In other words, if a 

'normal' rate of a congenital malformation suddenly increases at t' how likely 

is it that we discover the change before d more malformed babies are born, 

given we have not had any false alarms before t'. 

PSD{t' ,d, r} = P{RL::; t'+d - ~RL > t'-1, r = t'} 

= p{ At'+d-lIA~,_l' r = t'} 
= P{ alarm at least at t'+d -llno alarm before t' I a shift occurred at t'} 

We would want this measure to be high since the' cost' of d more malformed 

babies is hard to accept. For a constant t' and 'Y, the greater d gets the easier it 

is to discover the increase before d more babies are born, i.e. PSD converges 

to 1 for increasing d. 

3.4. The Predictive Value of an Alarm 

The predictive value of an alarm is the relative frequency of motivated alarms 

among all alarms at a certain decision point. In other words this measure tells 

us how likely it is that a true change has occurred when we have had an 

alarm. 
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PV{t" ,y, inc} = p{ T ~ t"IRL = til} 

= p{C(tl)laA(t")} 

= P( a shift has occurred at til or earlier I first alarm at til) 

We would, of course, want a high predictive value, i.e. we would like to be 

able to rely on that an alarm indicates a change in the 'norma1' rate of a 

congenital malformation under surveillance. 
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4. RESULTS 

4.1. The Probability of an Alarm 

Here we give results on the probability of an alarm which will be used in 

subsequent sections. 

According to the definition of an alarm by the Sets method, presented in 

Section 2, the proper sequence of events giving an alarm at the decision point 

s>n is 

A(s) = ([X(s - n) ~ T] (l [X(s - n + 1) < T](l ... n[X(s) < Tn 

k 
where T = - , nand k are the parameters of the Sets method. 

1[0 

Hence n=2 gives A(s) = ([X(s - 2) ~ T] (l[X(s -1) < T] (l[X(s) < Tn for s>n. 

Gallus (1986) and Kenett and Pollak (1983) discuss the probability of a first 

alarm at a certain decision point s, p{aA(s)} = P{A(s) (lA;_l}. Feller (1950) 

discusses the same probability in the context of the theory of recurrent events 

and success runs. 

When s<n no alarm can be triggered, but when s=n we have 

p{ a A(n)} = p{ A(n)} = P{[X(l) < T](l ... (l[X(n) < T]} = pn 

where p is defined in Section 2. 

Likewise, when n<sQ.n, the probability of a first alarm exactly at the decision 

points is 

pe A(s)} = P{A(s)} 

= p{[X(s - n) ~ T](l[X(s- n + 1) < T](l ... (l[X(s) < Tn 

= (1- p)p" 
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When s>2n a more complicated situation arises since several alarm sequences 

could have occurred before the decision point s. 

Using the following facts 

A(s)nA(s +i) = 0 when i:::;; n, 

A(s) and A(s + i) are independent when i> n. 

we get 

peA(s)} = P{A(s)nA~_l} = P{A(s)nA~_n_l} 

= P{A(s)}P{A~_n_l} 

= P{A(s)}[1-P{QAs_n_1}] 

=P{A(S)}[l-~P{'A{j)}] 

In order to simplify the notations when calculating the probability of a 

successful detection and the predictive value of an alarm, discussed in Section 

4.5 and 4.6 respectively, we introduce a notation for the probability of a first 

alarm at t" when a change has occurred at t' 

p{ Q A(t")IT = t'} = m(t"lt') 

Observe that when t"<t' we have the probability of a first false alarm at t" 

discussed in Section 4.2. 
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4.2. The Probability of a False Alarm at each Decision Point 

We have 

a"Cs) = p{" ACs)IDCs)} 
= P{ACs) nA~_lIDCs)} 

= P { first alarm at decision point sino change has occurred so far} 

By definition, an alarm cannot occur before n observations, i.e. a*(s) = 0 when 

s=t ... / n-1. 

When exactly 11 observations are available, i.e. whens=n, we get a"Cn) = p~. 

As in Section 4.1, only one alarm sequence can occur when n < s :::; 2n 

a"Cs) = p{" ACs)IDCs)} = p{ACs)IDCs)} = p~(I- Po). 

If s>2n, using the relation in Section 4.1, we have 

a*Cs) = p{ a ACs)IDCs)} 

= p{ A( S)!D(S)}[ 1-Ip {. A(j)!D( s)} ] 

= a'(n+l>[l- ~la'(j)] 

co 

According to Feller (1950), we have L a*(j) = 1. In view of the results in 
j=n 

s 

Section 4.3 where as = La*(j) when s>2n, we can then calculate the limit 
j=n 

value lima*(s) = lim[ as - as_I] = o. 
8~OO S~OO 
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Figure 1 confirms these results and demonstrates the characteristic look of the 

plot of the false alarm probability at each decision point a· (s) vs. the decision 

point s. Note especially the distinct peek at s=n. 

a' (5) 
0.05 

0.04 

0.03 

0.02 

0.01 

s 
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

Figure 1 The probability of a first false alarm a· (s) at decision point s for the Sets 

method, n=2 and k=O.2287. 

4,3. Cumulative False Alann Probability 

We have 

= P{ alarm no later than at decision point sino change has occurred so far} 

As before, an alarm cannot occur before n observations have been achieved, 

i.e. as = 0 whens=l, ... , n-l. 
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If s~n the cumulative false alarm probability is 

as = p{AsID(s)} 

= p{aAsID(s)} 

= ± p{ a A(j)ID(j) } 
j=n 

using the fact that a A(j')na A(j") = 0, j' =f. j". 

GO 

We know from Feller (1950) that lim as = 2:a*(j) = 1. Figure 2 confirms these 
8-':;00 . 

J=n 

results and demonstrates the characteristic look of the plot of the cumulative 

false alarm probability as vs. the decision point s. 

as 
1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

0 10 

s 
20 30 40 50 60 70 80 90 100 110 120 130 140 150 

Figure 2 The cumulative probability of a false alarm a s at decision point 5 for the 

Sets method, n=2 and k=O.22S7. 
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4.4. The Conditional Probability of a False Alarm at each Decision Point 

We have 

= P { alarm at decision point sino alarm earlier, no change has occurred} 

By definition an alarm cannot occur before n observations have been 

achieved, i.e. a(s) = 0 when s=l, ... , n-1, When s?n the conditional false alarm 

probability is 

a(s) = p{ A(s)IA;_l' D(s)} 

p{ A(s) n A;_lID(s)} 
= ---=-=----'-."..---"-

P{A;_lID(s)} 

a*(s) = ---'--'--
(l-a s_1) 

. A C aAc SInce 5-1= 5-1' 

When lim a+(~(-)I) = A- it follows that lim _00 a s _00 

a*(s-n-l) _ a*(s-n-l) a*(s-n) 
a*(s-l) - a*(s-n) a'(s-n+l) 

a+(s-n-l) n. 

'( ) = A SInce a s-1 

a*(s-2) 
a*(s-I)' 

A reformulation of the expression for a*(s), cf. Section 4.2, gives for s?n 

a*(s) = a*(s -1) - a*(n + l)a*(s - n -1) 

<=> 

a*(s) =1- *( l)a*(s-n-l) 
* a n+ -~*----~ 

a (s-l) a (s-l) 

thus giving an equation determining the value of A-

I +( A- = 1- a n + 1)A-n , 

21 



Note that 2 is then a constant depending only on nand k. 

Furthermore the expression for a(s) can be rewritten in the following manner 

a *(s) * a *(s) 
a( s) = = a (n + 1) ---:::-* ---'--'--

(1-as_1) a (n+s) 

giving 

lima(s)=a*(n+1)2n =1-1.. 
S~OO 2 

Figure 3 confirms these results and demonstrates the characteristic look of the 

plot of the conditional false alarm probability a(s) vs. the decision point s. 

Note especially the distinct peek at s=n. 

a(s) 
0.05 

0.04 

0.03 

0.02 

0.01 

s 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Figure 3 The conditional probability of a false alarm a(s) at each decision point s 

for the Sets method, n=2 and k=0.2287. lim a(s) = 0.036. 
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4.5. The Probability of a Successful Detection 

The probability of a successful detection (PSD) is the probability to discover a 

true shift within d units after the change has occurred given that no alarm has 

been triggered earlier. PSD is dependent on the size of the shift y, the length of 

the detection interval d and the time point of the change t'. 

We have 

PSD{t' ,d,g} = P{At'+d-1IA~'-l' t = t'} 

. A C aAc SInce 5-1 = 5-1 

4.1. 

= 
{g~ A(sllt = t'} 

P{A~'_llt = t'} 
t'+d-1 
IpeA(s)lt= t'} 

_ 5=t' 

1- a t'-l 

t'+d-1 
I w(slt') 
5=t' =--::::.:'-----

1- a t'-1 

and using the notation p{ a A(s)lt = t'} = w(slt') from Section 

Similar to Section 4.1, when t'>2n the above relation can be written as 

I [P{ A(s II t = t'} (1- '~'w(jlt'))] 
PSD{t' , d, gl t' > 2n} = --=-----------= 

1- a t'-l 

Two illustrative special cases are subjects of a closer study: PSD{t' = l,d,g} 

and PSD{t',d = l,g}. 

The first special case studied is where t'=l. This implies that the malformation 

rate is at the increased level when surveillance starts. The process is thereby in 
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process is thereby in the same state, the increased level, at all decision points 

including the present one. This can be compared with the cumulative false 

alarm probability where the process has been in the 'normal' state at all 

decision points. 

When d<n we have PSD{t' = 1, d, r} = 0 but when d~n we get 

d 

PSD{t' = 1, d, r} = L aJ( sll). 
s=n 

Note that we sum from n since by definition cv(sll) = 0 when s<n. 

In similarity to previous measures, when d=n we get 

PSD{t' = 1, d, r} = cv( nil) = p~ . 

When n<d~n we get 

d 

PSD{t' = 1, d,r} = cv(nll) + Lcv(sll) 
s=n+l 

= p~ + (d - n)(l- Pl)P~ 

Finally when d>2n we get 

PSD{t' ~ lA r} = m( nil) + 1m(sl1) + ..t.,[ P{ A(s)lr = l} (1- ~'m(jll))] 

= p; + n(l- p,)p; +(1- p,)p; ~t, (1- ImW)) 

Figure 4 illustrates the characteristics of the plot of the PSD{t' = 1, d, r} vs. d. 

Note the steep increase from zero for d<2 to 0.81 for d=2. This must be seen in 

light of the parameter values chosen for nand k. Similar to as' the cumulative 

false alarm probability, in Section 4.3, lim PSD{t' = 1, d, r} = 1. Note that 
d~", 
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PSD{t' = 1, d, y} converges even faster than as since the probability of an 

alarm is much higher in the increased state. 

PSD 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 d 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Figure 4 A plot of the probability of a successful detection PSD{t' = 1, d, r} vs. d for 

the Sets method, n=2 and k=O.2297. This is the special case of t'=l, i.e. a 

shift, y=10, occurred at the beginning. 

The second special case, where d=l, demonstrates other important aspects of 

the PSD measure. This is the probability of discovering the change at the 

same time it occurs given that we have had no false alarms earlier. Note the 

parallel to the conditional false alarm probability a(s) in Section 4.4. 

The following relation holds for t'=l, 2, .... 

O)(t' It') 
PSD{t', d = 1, y} =--'---'--'--

1- at'-l 

When t'<n. we have PSD{t',d = l,y} = 0, but when t'=n we get 

PSD{t',d = l,y} = P{A(n)ll' = n} = p~-lpl' 
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OJ(f'lf') (1 ) n-l 
When n<t'~n we get PSD{f' , d = 1, r} = = - Po Po PI 

1- a t'-1 1-a t'-1 

and finally f'>2n gives 

( 
t'-n-l ) 

P{A(f')Iz- = f'} 1- LOJ(jlf') 
PSD{f' , d = 1, r} = j=n = (1- PO)p~-IPl (1- a t'-n-l) 

1- at'-1 (1- a t'-I) 

In order to examine limPSD{f',d = 1,r}, we rewrite the ratio in the above 
t'~co 

expression 

using the relation from Section 4.3 where a· (s) = a· (n + 1)[1- a s- n- 1 ] for s>2n. 

a·(s-l) 
When lim . () = A, see Section 4.4, the case of n =2 yields 

s~co a s 

(1- a t'-I) = 1- a· (3)[a· ~f'-2) + a· ~f'-l)] ~ 1- a· (3)[...1,2 + A]. 
(1- a t'-3) a (f') a (f') t'~co 

Which gives 

lim PSD{t', d = 1, r} = (1- Po)p;-'p, 1 '[' 1 
t'~co 1- (1- Po)Po A + A 

This limit value is 0.16, see Figure 5, for k=0.2287 and y=10. Figure 5 

illustrates the characteristics of the plot of PSD{f' , d = 1, r} vs. f'. Note the 

similarity to Figure 3. 
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Figure 5 A plot of the probability of a successful detection PSD{t' ,d = 1, r} vs. t f for 

the sets method, n=2, k=0.2287 and "FlO. This is a special case of d=l, i.e. 

we want to discover the change as soon as it occurs. 

lim PSD{t' ,d = 1, r} = 0.16 
tl-)OO 

4.6. The Predictive Value of an Alarm 

The predictive value of an alarm (PV) is the probability of a change being 

present at occasion t" given that an alarm has been triggered at occasion t". It 

measures how much an alarm should be trusted. 

PV is dependent on the alarm occasion t", the size of the shift 'Y and the 

incidence inc. The changing point 't is regarded as random. The incidence of a 

change is inc(tl) = P{" = til" ~ tl}. We will assume that the incidence is 

constant inc, 't thus has a geometric distribution. 
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Bayes's rule gives us 

PV{t" ,y,inc} = p{C(t")la A(t")} 

_ P{C(tll)}p{a A(t")IC(t")} 

- P{D(t")}P{ a A(t")ID(t")} + P{C(t")}p{ a A(t")IC(t")} 
t" 

L inc(l- inc/'-l m(t" It') 
= ______ ~t~'-~l ____ -= ______________ __ 

t" 

(1- inc)t" a· (til) + L inc(l- inc)t'-lm(t"lt') 
t'=l 

using the notation P { a A( t")1 T = t'} = m( til It') from Section 4.1. 

Exact calculations of PV are tedious but Figure 6 demonstrates simple cases of 

PV for the Sets method with n=2 and k=O.22B7, where y=10 and inc is 0.001, 

0.01 and 0.1 respectively. In Figure 6 it can be seen that the incidence 

inc=O.OO1 gives extremely low PV at a seemingly constant level. This constant 

level is really a slight monotone increase. When inc=O.Ol the level of the PV 

measure increases and an extreme increase can be seen with inc=O.l We 

therefore conclude that the incidence is of crucial importance for the level of 

the PV measure. 

The incidence is the probability of the 'catastrophe' occurring at a certain 

decision point. Since the Sets method involves each birth of a malformed 

baby as a decision point, the value of the incidence must thus be interpreted 

in the context of malformed babies. For example, inc=O.l means that we 

believe the risk of a 'catastrophe' leading to a y-high increase in the 'normal' 

rate of a malformation to be ten percent. In order to lend ten percent some 

meaning this can be rephrased in the following way: we expect a 

'catastrophe' leading to a y-high increase in the 'normal' rate of a 

malformation at every tenth birth of baby with that malformation. The 
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meaning of the incidence in calendar time is therefore dependent on the rarity 

of the malformation under surveillance and the population size. 
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inc=O.l 
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inc=O.OOl 
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ttl 

A plot of the predictive value of an alarm PV {ttl, r, inc} vs. ttl for the Sets 

method, n=2 and k=0.2297. The size of the shift 'Y is 10 and the incidence inc 

is 0.001, 0.01 and 0.1 respectively. 

Figure 7 shows PV for inc=O.l with the size of the shift yequal to 2, 6 and 10, 

respectively. It is seen that changing the size of the shift does not affect the 

level of the PV measure in the same exceptional manner. Instead a change in 

pattern is seen where the higher values, y=6 and y=10, achieve their level 

faster than the low level,y=2. The difference is most obvious when y=10 and 

y=2 are compared. 
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A plot of the predictive value of an alarm. PV {til, r, inc} vs. til for the Sets 

method, n=2 and k=0.2287. The incidence of a shift is inc=O.l and the size 

of the shift ,,(is 2, 6 and 10 respectively. 
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5. CONCLUDING REMARKS 

One of the objectives of this paper was to derive measures for evaluation of 

the performance of the Sets method. The traditional evaluation measure used 

is ARL. Other measures reflect different aspects of the Sets method and might 

eventually be better suited depending on the situation at hand. Explicit 

expressions were obtained for the three false alarm measures: the probability 

of a false alarm at each decision point a' (s), the cumulative false alarm 

probability as and the conditional false alarm probability a(s). The 

probability of a successful detection (PSD) as well as the predictive value of 

an alarm (PV) resulted in general expressions and their properties were 

discussed in the contexts of special cases and examples. For all measures the 

results were illustrated using the same example namely the Sets method with 

the parameters chosen as n=2 and k=O.22B7 and the size of the shift y=10. 

The probability of a false alarm at each decision point a '(s) peaks at s=n, 

remains constant for n<s~2n and converges towards zero as s grows, see 

Figure 1 for example. The relation between the cumulative false alarm 

probability a s and a' (s), and the early peak of a' (s), leads to a very high 

cumulative false alarm even for moderately high a '(s) levels. This is 

demonstrated in Figures 1 and 2 where a s is 0.11 already at s=4. The 

conditional probability of an alarm a(s) peeks at s=n, in the same way as 

a '(n), but converges very fast towards a limit value which can be calculated 

for relevant values of nand k, see Figure 3 for example. 

The probability of a successful detection PSD measures the power of the 

method. The first special case PSD{t' = l,d,g} where the change has occurred 

at the beginning is essentially a cumulative power measure, analogous to the 

cumulative false alarm probability. In Figure 4 it converges towards one in 
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the same way as the cumulative false alarm but at a faster rate. Figure 4 

shows a level of 0.81 already at d=2 in the example. The second special case 

PSD{t' ,d = I, y} is comparable to the conditional false alarm a(s) since it 

measures how likely it is that we discover a true change at the same time it 

occurs, conditioned on the fact that we have had no alarm earlier. 

PSD{t' ,d = I, y} peaks at t'=n and converges swiftly towards a limit value. In 

the example illustrated the maximum value of PSD{t' ,d = I, y} is 0.18 and the 

limit value, reached already at t'=9, is 0.16. This is a lower value than would 

be preferred especially since the size of the shift is considerable. 

Simulation results indicate that the PSD measure converges with increasing t' 

even when d>l, demonstrating the same pattern as PSD{t',d = l,y}. This can 

be interpreted as follows: 'after an initial period, it is of no importance for the PSD 

measure where the change occurs in the surveillance period'. A plausible 

explanation to this could be the fact that any decision upon an alarm is based 

on n observations, regardless of how long the surveillance has been in 

progress. 

The predictive value of an alarm measures the degree of trust we should have 

in an alarm and seems to be extremely dependent on how likely we consider 

that a 'catastrophe' would happen, i.e. the incidence. It is also dependent on 

the size of the shift 'Y although this dependency does not appear to be as 

distinct. 

This knowledge of how the different measures interact is very valuable since 

it opens new possibilities of how to vary the parameters of the Sets method in 

order to achieve certain qualities in a specific surveillance situation. 

This work should be considered as an appetiser and, at least in the authors 

mind, gives rise to several ideas of how the work could be proceeded. 
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