
•• 
GOTEBORG 
UNIVERSITY 

Department of Statistics 

RESEARCH REPORT 1994:7 
ISSN 0349-8034 

ON PERFORMANCE OF METHODS 
FOR STATISTICAL SURVEILLANCE 

by 

o 

Goran Akermo 

Statistiska institutionen 

Goteborgs Universitet 

Viktoriagatan 13 

S-41125 Goteborg 

Sweden 



ON PERFORMANCE OF METHODS FOR STATISTICAL SURVEILLANCE. 

By Goran Akermo 
Department of Statistics, 

Goteborg University, S-411 25 Goteborg, Sweden 

SUMMARY. 

Statistical surveillance is used to detect a change in a process. It might for 
example be a change of the level of a characteristic of an economic time 
series or a change of heart rate in intensive care. An alarm is triggered 
when there is enough evidence of a change. When surveillance is used in 
practice it is necessary to know the characteristics of the method, in order 
to know which action that is appropriate at an alarm. 

The average run length, the probability of a false alarm, the probability of 
successful detection and the predictive value of an alarm are measures that 
are used when comparing the performance of different methods for 
statistical surveillance. 

In the first paper a detailed comparison between two important methods, 
the Exponentially Weighted Moving Average and the CUSUM, is made. 
Some consequences of using only the average run length as the measure of 
performance are demonstrated. Differences between the methods are 
discussed in regard to the measures mentioned above. 

The second paper is focused on the predictive value of an alarm, that is the 
relative frequency of motivated alarms among all alarms. The interpretation 
of an alarm is difficult to make if the predictive value of an alarm varies 
with time. Thus conditions for a constant predictive value of an alarm are 
studied. The Shewhart methods and some Moving Average methods are 
discussed and some general differences in performance are pointed out. 

Three different types of Exponentially Weighted Average are discussed and 
some differences established. It is further stated that if a Fast Initial 
Response feature is added to a method, this will in general lower the level 
of the predictive value of an alarm in the beginning of the surveillance. The 
increased probability of alarm in the beginning might thus be useless. 



The thesis consists of this summary and the following two papers; 

(1) Frisen, M and Akermo, G. (1993). Comparisons between two 
methods of surveillance: Exponentially Weighted Moving 
Average vs CUSUM. Research Report 1993:1. Department of 
Statistics, Goteborg University. Revised 1994. 

(2) Akermo, G. (1994). Constant predictive value of an alarm. 
Research Report 1994:6. Department of Statistics, Goteborg 
University. 



COMPARISON BETWEEN TWO METHODS OF SURVEILLANCE: 

CUSUM VERSUS EXPONENTIALLY WEIGHTED MOVING AVERAGE 

M Frisen and G Akermo 

Department of Statistics, G6teborg University. 

Viktoriagatan 13, S-411 25 G6teborg, Sweden. 

When control charts are used in practice it is necessary to know the 

characteristics of the charts in order to know which action is appropriate at an 

alarm. The probability of a false alarm, the probability of successful detection 

and the predictive value are three measures (besides the usual ARL) used for 

comparing the performance of two methods often used in surveillance systems. 

One is the "Exponentially weighted moving average" method, EWMA, (with 

several variants) and the other one is the CUSUM method (V-mask). Illustrations 

are presented to explain the observed differences. It is demonstrated that methods 

with high probabilities of alarm at the frrst time points of the surveillance should 

be used with care. They tend to have good ARL properties. However their low 

predicted value makes action redundant at early alarms. 

KEY WORDS: Quality control; Control charts; EWMA; FIR; V-mask; 

Predicted value; Performance; 
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Methods for continual surveillance to detect some event of interest, usually 

presented in the form of control-charts, are used in many different areas, e.g. 

industrial quality control, detection of shifts in economic time series, medical 

intensive care and environmental control. 

A wide variety of methods have been suggested, see e.g. Zacks (1983) and 

Wetherill and Brown (1990). Some methods (like the Shewhart test) only take 

the last observation into account. Others (simple sums or averages) give the same 

weight to all observations. For most applications it is relevant to use something 

in between. That is, all observations are taken into account but more weight is 

put on recent observations than on old ones. The CUSUM and the EWMA are 

such methods. They are much discussed and both are nowadays often 

recommended. Both these methods include the extremes mentioned above as 

special cases and the relative weight on recent observations and old ones can be 

continuously varied by varying their two parameters. A description of the 

methods is given in Section 2. 

Several extensive compansons of these methods have been done, see e.g. 

Roberts (1966), Ng and Case (1989), Lucas and Saccucci (1990) and Domangue 

and Patch (1991). Most comparisons are made for cases where the out -of-control 

state is present when the surveillance starts. The study by Domangue and Patch 

includes the case where the out-of-control state is a linearly increasing change, 

but also this state is assumed to start at the same time as the surveillance starts. 

Roberts (1966) gives, by technical reasons results for the case where the change 

appears at time 8. Lucas and Saccucci (1990) give results both for the case where 

the change appears immediately and the case of "steady state" where the time of 

the change tends to infinity. The comparisons have not demonstrated any great 

differences. This is not surprising since by the two parameters the methods can 

be designed to fulfil two conditions. The methods can thus be designed to have 

the same average run length, ARL, (see Section 3.2) for both the in-control and 

the out-of-control state. Nearly all comparisons have been based on the ARL. 
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Here a study is made of the remaining differences when the methods have the 

same ARL. 

Because of the dependence on the length of the period of the surveillance and on 

the time of the change, the significance level and the power have to be 

generalized in some of many possible ways. Other variables such as the rate of 

change (if the change takes place successively) will also influence the 

performance of a method of surveillance. However, the following discussion will 

be restricted to the influence of the first two mentioned variables which always 

influence the performance. In the examples below the case of a sudden shift in 

the mean of Gaussian random variables from an acceptable value l (zero) to an 

unacceptable value p.l (one) is considered. 

This paper uses three measurements of performance suggested by Frisen (1992) 

for the comparison of the two methods in cases where, by the choice of design 

parameters, the first moment of the run-length distributions are set equal. The 

main interest is the influence of time and the different risks of false judgements 

involved when repeated decisions will be made about hypotheses which might 

successively change. 

In Section 1 the two methods are presented. In Section 2 measures to be used in 

the evaluations are introduced. In Section 3 the results are given and in Section 

4 the results are discussed. 
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1. METHODS 

Since repeated decisions are made, the theory of ordinary hypothesis testing does 

not apply. Two specific methods of surveillance often used in quality control will 

be described below. For more exhaustive descriptions of methods used in quality 

control see e.g. Wetherill and Brown (1990). The two methods will be evaluated 

by the measures suggested in Section 2. Thus their principal differences will be 

enlightened. However, the two methods are by no means the only ones to be 

considered. Similar comparisons of other methods were made by Frisen (1992). 

The EWMA- and the CUSUM-methods both take past observations into account 

by sum~ation. They also have two parameters each. They can thus have the 

same ARL both with and without a specific shift. To make the methods 

comparable the parameters of the methods are set by the requirement that the 

ARLO and ARLI (as described in Section 2) are the same. The actual values used 

in this study are for the in-control-state ARLo=330 and for the out-of-control 

state of a shift to III = I at the start of the surveillance, ARL 1= 9 . 7 . Very 

extensive simulations were used to find parameter sets which resulted in the same 

values of ARL and for the figures. Thus only one set of parameters is used. 

However, this is enough to prove that important differences might exist in spite 

of equal ARL values. The results will also support the general discussion about 

which qualities we should require. 

Two-sided methods are used in the examples and simulations. The methods are 

illustrated in Figures 2 - 5 with data (Figure 1) used by Lucas and Crosier (1982) 

and Lucas and Saccucci (1990). In order to get simulation results which are 

suitable for comparisons between methods, the up to 1,000,000 sets of random 

numbers for the control sequences are the same for all methods. The value for 

the first time point (and in some figures also the second one) is achieved by exact 

calculation. Although discrete time is considered continuous curves are drawn by 

linear connections between values to simplify the pictures. 
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t 

Figure 1. The observed values X for each time t '0,)ere generated by Lucas 
and Crosier (1982) by a process wilh constant mean (zero) for the first 
10 observations and with a shift in mean of one standard deviation 
(one) for the last observations. 

1.1 CUSUM 

Page (1954) suggested that the cumulative sums of observed values (xt t= 1,2, _ .. ) 

should be used in a specific way to detect a shift in the mean of a normal 

distribution. His suggestion was that you calculate Ct=sum(xi-fL~, i = 1, ... ,t , and 

that there will be an alarm for the first t with I Ct-Ct-i I is greater than h + ki for 

some i, and Co=O. Sometimes (see e.g. Siegmund 1985) the CUSUM test is 

presented in a more general way by likelihood ratios (which in the normal case 

reduce to Ct-Ct.J. The test might be performed by moving a V-shaped mask over 

a diagram until any earlier observation is outside the limits of the mask (see 

Figure 2). Thus the method is often referred to as "the V-mask method". 

Another name used in some fields of the literature is "Hinkley's method". 
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Figure 2_ CUSUM. An alarm occurs at the first time any C, falls outside 
the V-shaped mask. [n this case the first alarm is at lime t = 16 

Recent observations have more weight than old ones. If h=O, the V-MASK-test 

degenerates to a SHEWHART-test with the alarm-limit equal to k. With a shift 

of size p..l-l and a constant variance, k=(p..l_p..°)/2 is usually recommended (see 

e.g. Bissel (1969)). This value of k is supposed to give a test having the shortest 

ARL 1 (for this specific shift) for a given ARLo. Here the main aim is to 

demonstrate that important differences exist in spite of equal ARL. 

The examples are very similar to those in Lucas and Saccucci (1990». The 

average run lengths have been fixed at ARLo=330 and ARL1=9.7. The 

parameter h, which determines the distance between the last observation and the 

apex of the "V" is set to 4.73 and the parameter k, which determines the slopes 

of the legs is set to 0.49. 

Several variants of the method have been suggested. Lucas (1982) suggested a 

combination with the Shewhart method. Observe that a CUSUM will always give 

an alarm if any observation deviates more than h + k from the target value. Also 

the standard version of CUSUM can thus be regarded as a combination with a 

Shewhart test with the limit h + k. Yashchin (1989) has suggested that the weights 
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of different observations should be separately chosen to meet some specific 

purposes. Here the original version of the method by Page (1954) is studied. The 

method has certain optimality properties as described in Moustakides (1986), 

Pollak (1987) and Frisen and de Mare (1991). 

1.2 EXPONENTIAlLY WEIGHTED MOVING AVERAGE 

Exponentially weighted forecasts have been advocated by e.g. Muth (1960). A 

method for surveillance based on exponentially weighted moving averages, here 

called EWMA, was introduced in the quality control literature by Roberts (1959) 

but has for a long time been rarely used. Recently it has got more attention as 

a process monitoring and control tool. This may be due to papers by Robinson 

and Ho (1978), Crowder (1987), Lucas and Saccucci (1990), Ng and Chase 

(1989) and Domange and Patch (1991) in which techniques to study the 

properties of the method and also positive reports of the quality of the method 

are given. 

The statistic is 

where 0 < A < 1 and in the standard version of the method Zo = Jio. 

EWMA gives the most recent observation the greatest weight, and gives all 

previous observations geometrically decreasing weights. If A is equal to one only 

the last observation is considered and the resulting test is a Shewhart test. If A 

is near zero all observations have approximately the same weight. 

If the observations are independent and have a common standard deviation <Tx, 

the standard deviation of Zj is 
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where (Jz is the limiting value for large i. 

An out-of-control alarm is given if the statistic jZ;/ exceeds an alarm limit, 

usually chosen as L(Jz, where L is a constant. It might seem natural (and is 

sometimes advocated) to use the actual value of the standard deviation of Zi. 

However, usually the limiting value (Jz rather than (JZi is used in the alarm-limits 

for EWMA control charts (see e.g. Roberts (1959), Robinson and Ho (1978), 

Crowder (1989) and Lucas and Saccucci (1990». For a two-sided control chart 

this results in two straight warning-limits, one on each side of the nominal level 

of Z. This variant is therefore called the "straight EWMA" henceforth. 

See Figure 3. 
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Figure 3. Straight EWA1A. Z denotes the exponentially H'eighted sum of 

the obselVations X. The straight alann Ii/nits are at a distance La/. from 

the {algel valu.e. 

By using (JZi the alarm limits start at a distance of LA(Jx from the target value and 

increases to L(Jz. This variant is called "variance corrected EWMA" henceforth. 

See Figure 4. 
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Figure 4. Variance corrected EWA1A. The alarm limits are based on the 
actual values of the variance of Z for each time pain£. 

Lucas and Saccucci (1990) recommend that instead of the standard starting value 

Zo = 11
0 

= 0, another value should be used to achieve a "Fast Initial Response", 

FIR. Two one-sided EWMA control schemes are simultaneously implemented. 

One is implemented with Zo = a and one with Zo = -a. There is an alarm if any 

of the one-sided schemes exceeds its constant limit. We will now study the 

relation between the different variants of EWMA more closely and concentrate 

on the one-sided upper limits for simplicity. 

Let 

c=L(J =L ~(J 
z ~ (2=I) x 

The straight EWMA gives alarm for 

Zi > c. 

The variance corrected EWMA gives alarm for 
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Zj>cV1-(1-}..)2i 

, The FIR have the same alarm value c as the straight EWMA but because of the 

starting value we have 

that is 

If 

a = Lax{(}../(2 - }..»1!2 - }..}/(l - }..) 

then the upper limit for the first observation will be the same as for the variance 

corrected EWMA which has the limit 

Both the FIR and the variance corrected EWMA have the same alarm limit as the 

straight EWMA for late observations. However the limits will converge faster to 

the constant limit for the last mentioned method than for the FIR method for all 

values of A as can be proved by direct evaluation of the difference between the 

limits. See Figure 5 where the three variants (with the same}.. and L as used for 

the variance corrected method in the other figures) are compared. In this figure 

the parameters (}.. =0.283 and L=2.858) are not chosen to give the same ARL 

but to give the alarm limit the same asymptotic value and to give the FIR and the 

variance corrected variants the same limit at time t = 1 . 

Also other variants of EWMA have been proposed, e.g. for multivariate 

problems (Lowry et.al. 1992). In the present study the characteristics of the 

straight and the variance corrected EWMA as described above are studied in 

detail. The parameter values are chosen to give the same average run lengths (see 

below) as the CUSUM both when there is no shift and when there is a shift to 

fll = 1 , ARLo = 330 and ARL I = 9 . 7. The parameter values are for the straight 

EWMA L=2.385 and A = .220 and for the variance corrected EWMA L=2.858 

and A = .283. Except for Figure 5 these parameter values are used in all figures 

and simulations. 
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The alarm reglOn at the first time point IS simple. As soon as the first 

observation exceeds a limit there is an alarm. At the second time point the alarm 

region is more complicated. The combinations of observations at the first and 

second time point which would result in an alarm not later than at the second 

time point are illustrated for CUSUM, straight EWMA and variance corrected 

EWMA in Figure 6. 

The alarm reglOn for the first three steps is illustrated for CUSUM and the 

variance corrected EWMA in Figure 7. In this three-dimensional figure, the 

alarm region for the Shewhart method is given to add reference lines in the 

figure. The implications of Figures 6 and 7 are further discussed in Sections 3 

and 4. 
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Figure 6. Detailed comparison between CUSUM and EWMA for the 
first two observations. The parameters in this and the following 
figures are the same as in Figure 2 - 4. Limits for alarm not later than 
at the second observation. 
CUSUM---
Straight EWMA- - - - - -
Variance corrected EWMA- - - -
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Figure 7.Limits for alarm not later than at the third observation. For 
reference the cube that is the limit for the Shewhart method with 

alarm limit 5.22 for each time point is included. 
a.CUSUM b.Variancc corrected E\VMA 

2_ MEASURES OF THE PERFORMANCE 

2.1 RUN LENGTH DISTRIBUTION 

The run-length distributions for all interesting cases (also those where the change 

appears after the start of the surveillance) contains the information necessary for 

an evaluation of a method or a comparison between some methods. The actual 

comparison is usually based on some of the run-length distributions 

characteristics, mostly the average run length, but also the median or some other 

percentile could be considered. Several authors e.g. Zacks (1980), Crowder 

(1987) and Yashchin (1989) have pointed out that only one summarizing measure 

of the distribution is not enough. Run-length distributions are usually skew, 

especially those connected to the alternative hypotheses (see Figures 8 - 11). 
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2.2 ARL 

A measure which is often used in quality control is the average run length (ARL) 

until an alarm e.g. Wetherill and Brown (1990). It was suggested already by 

Page (1954). The average run length under the hypothesis of a stable process, 

ARLo, is the average number of runs before an alarm when there is no change 

in the system under surveillance. The average run length under the alternative 

hypothesis, ARL I, is the mean number of decisions that must be taken to detect 

a true level change that occurred at the same time as the inspection started. 

Values of the ARL are much used information for the design of control charts 

for specific applications. Roberts (1966) has given very useful diagrams of the 

ARL. Later several authors e.g. Saccucci and Lucas (1990), Champ and Rigdon 

(1991), Champ et.al. (1991), Yashchin (1992) and Yashchin (1993) have studied 

the ARL of specific methods and models. The distribution of the "run length" is 

markedly skew at the out-of-control case. The skewness differs between methods. 

The ARL will thus not give full information. This has been pointed out by e.g. 

Woodall (1983). 

Since both the EWMA and the CUSUM methods have two parameters they can 

be constructed to give the same ARL both for the null- and for an alternative 

situation (here JL 1= 1). By the choice of design parameters ARLo is set to 330 and 

ARL' to 9.7 for the methods compared below. Here the remaining differences 

are of main interest. 

Because of a complicated time dependence, and the dependence of the incidence 

of the change to be detected, other measures (Frisen 1986, 1992) than the 

average run length should be considered in the evaluation of different methods. 

Beckman et aI. (1990) advocate similar measures as those in Sections 2.4 and 2.5 

for the case of flood warning systems. 
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2.3 THE PROBABILITY OF FALSE ALARM 

The distribution when the process is under control is described by a measure at 

which corresponds to the probability of erroneous rejection of the null 

hypothesis, the level of significance, but is a function of the time t. at is the 

probability of an alarm no later than at t given that no change has occurred. It 

is also the cumulative distribution function of the run length when the process is 

in control. Computer programs for the calculation has been given by Gan (1991) 

for EWMA and by Gan (1993) for CUSUM. 

2.4 mE PROBABILITY OF SUCCESSFUL DETECTION 

The distance between the change and the alarm, sometimes called "residual RL" 

(RRL) is of interest in many cases. The optimality conditions by Girshick and 

Rubin (1952) and Shiryaev (1963) are based on this distance. One 

characterization of the distribution of the RRL is the probability that the RRL is 

less than a certain constant d (the time limit for successful rescuing action). This 

measure, PSD( d), the probability of successful detection, is the probability to get 

an alarm within d time units after the change has occurred, conditioned that there 

was no alarm before the change. The PSD is a function of the time distance d, 

the time of the change t' and the size of the shift Ill. 

PSD(d, t', Ill) = P(RL < t' + d I RL > t') 
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2.5 PREDICTIVE VALUE 

The predictive value of an alarm is the probability that a change has occurred 

given that there is an alarm. Here, the time point T where the change occurs is 

regarded as a random variable. The incidence of a change, inc(t'), is the 

probability that the stochastic time T of the change takes the value t', given that 

there has been no change before t'. In the following examples the incidence is 

assumed constant. That is, T has a geometric distribution. 

The predictive value, PV, depends on the incidence inc, the size of the shift J.L 1 

and the time til of the alarm. It gives information on whether an alarm is a strong 

indication of a change or not. 

PV(t", inc, J.Ll) = peTS til I RL = til). 

Sometimes a late alarm is regarded with some doubt (e.g. Johnson 1961). This 

might be for the same reason as a significant result at a very big sample size is 

considered less impressing than a significant result at a small sample size. 

However there is no analogy here unless you only consider cases where the 

change appears at the same time as the surveillance starts. The trust you should 

have in an alarm is measured by the predictive value. 
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3. RESULTS 

The alarm regIOns up to the first two observations are gIven III Figure 6. 

Considering the first and second observation the CUSUM has an "acceptance 

region" which contains that of the straight EWMA-method, except the extreme 

situation with two observations on the boundary, one in each direction. This 

"worst case" was discussed by Yashchin (1987) and Lucas and Saccucci (1990). 

The differences in size of the areas illustrate the different alarm probabilities at 

the first time points. Notable is also the shape of the regions, determined by the 

choice of the weight parameter A and the reference value k. 

In Figure 7 above, the three-dimensional regions of alarm at any of the runs 1, 

2 or 3 are given. 

In Figures 8 and 9 below, the cumulative probabilities of false alarms illustrate 

the differences (in spite of equal ARL) between the methods. The probabilities 

are estimated by simulation of at least 100,000 replicates of each situation. 
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The variance corrected EWMA has a greater probability (about 1 %) of false 

alarm in a great part of the beginning than. the straight EWMA which in tum has 

a slightly greater false alarm rate at the start than the CUSUM. 

The median is much smaller (about 230) than the ARL (330) which illustrates the 

skewness of the distribution. The probability to exceed the ARL is about 30%. 

-------------------_._-,------"--

o 10 20 30 

t 
L-______________________________________ ---' 

Figure 9. As Figure 8, but detailed picture up to l = 30 

In Figures 10 and 11 the probability distributions of the residual run length are 

given for different times of shift. The results are based on at least 40,000 

replicates. In Figure 10 it is given for the case where the shift occurs at the same 

time as the surveillance starts. ARU is the expected value under this assumption. 

It is the same 9.7 for all methods. The median is however one unit less (equal 

to 7) for the variance corrected EWMA than for the CUSUM (equal to 8) which 

is an indication of the different shapes of the distributions, as is also seen in the 

figure. The EWMA has a higher probability for small run lengths. In Figure 11 

the distributions are given for the case where the shift occurs at the 9th run. The 

positions of the curves are now interchanged. In the figure, the median is the 

RRL that corresponds to FRRL =0.5. Now, the CUSUM has the least median. 
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In Figure 12 it is demonstrated that the probability of successful detection within 

d = 1 unit, that is immediately after the shift, is best for the variance corrected 

EWMA and better for the straight EWMA than for the CUSUM. The differences 

are most pronounced if the shift occurs soon after the surveillance has started 
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(small n. This is a case where fast initial response is desired and the FIR variant 

of EWMA by Lucas and Sacclicci (1990) would be relevant. Each point in 

Figures 12 an 13 is based on at least 40,000 replicates.In Figure 13 it is 

demonstrated that the differences are in the opposite direction for detection 

within d= 10 units. Then the differences are least pronounced soon after the start 

of the surveillance. 
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Figure 12. Probability of su.cces~jlil detectioll, PSD. The probability of 

an aLann within d time units after the time [' of a shift to fLl = 1, glven 

that there was no alann before t'. d= 1. 
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In Figures 14 and 15 it is seen that at early time points the predicted value is low 

and va.)'ing for the EWMA methods (specially the variance corrected one). This 

implies that early alarms for the EWMA are very hard to interpret. 

Each point in the figures is calculated as a function of the probabilities of false 

alarms and motivated alarms. The probabilities of false alarms are estimated by 

simulations of at least 100,000 replicates while the estimates of the probabilities 

of motivated alarms are based on at least 40,000 replicates. For t" = 1 the 

probabilities are calculated exactly and for t" = 2, 3 and 4 the probabilities of 

motivated alarms are based on 1,000,000 replicates. The fact that the curve (for 

small values of t") in Figure 15 is not a. smooth one is thus not due to 

uncertainty in the simulations. In fact, the predicted value is not always an 

increasing function of t" (Frisen (1992». 
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4. DISCUSSION 

As was also commented in the results, Figures 6 and 7 illustrate a difference in 

shape of the alarm region between the EWMA and the CUSUM which is general 

and which explains why the EWMA has bad "worst possible" properties 

(Yashchin 1987) while the CUSUM has minimax optimality (Moustakides 1986). 

In Figures 6 and 7 interesting differences in symmetry are also illustrated. The 

alarm area is symmetrical for the CUSUM but not for the EWMA methods. That 

is for the probability of an alarm not later than at t all observations up to Xt have 

the same weight for the CUSUM. For the EWMA methods the ~ ones have 

more weight. However for the probability of an alarm .at time t the last 

observations have the greatest weight both for CUSUM and EWMA methods. 

In Figures 10 and 11 it is also demonstrated that for changes which occurred at 

the same time as the surveillance started the probability of a detection within a 

short time (shorter than 10) is better for the examined EWMA methods than for 

the CUSUM, while the opposite is true for times longer than 10. If the shift 

occurs some time after the start the short time is less than 10. In most studies 

only the case of a shift at the same time as the start of the surveillance is 

studied. As was seen above CUSUM compares more favourable with EWMA in 

other cases. 

As is illustrated by the relative size of the rejection areas in Figures 6 and 7, and 

more generally seen by the formulas for the methods, the examined EWMA 

methods have a higher probability than the CUSUM for alarms shortly after the 

surveillance has started - both false and motivated ones. This does not mean that 

the probability is higher shortly after the shift has appeared, if the shift occurs 

later, as is seen in Figures 10-13. 

One relation between the false and motivated alarms is given by the predictive 

value. In the simulations the predicted value is never better for the EWMA than 
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for the CUSUM. In Figures 14 and 15 it is seen that the low and variable 

predicted value for the EWMA methods (specially the variance corrected one) at 

early time-points makes the early alarms for the EWMA methods very hard to 

interpret. This may make the variance corrected EWMA worthless shortly after 

the start. In the beginning when the predicted value of an alarm is very low and 

varying no alarm could be trusted. In the example with ARLI =9.7 the alarms 

by the EWMA before the 9th run have such a low predicted value that for most 

applications they must be disregarded. Thus the benefit of a higher probability 

of an alarm in the beginning cannot be taken advantage of. 

. The general conclusion from the comparisons is that there might be important 

differences in characteristics in spite of equal ARLO and ARLI. Even though only 

one set of parameters were examined for each method this is enough to 

demonstrate that differences exist. 

In this paper only constant incidences are considered and the above discussion is 

relevant for this case. However, in some applications a higher incidence at the 

start of the surveillance might be relevant. The properties of the EWMA methods 

(especially the FIR variant) will then be more favourable. Only an approximately 

constant predictive value makes the method easily usable since only then it is 

possible to have the same kind of action independently of how far from the start 

the alarm is. 
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SUMMARY 

One main purpose of statistical surveillance is to detect a change in a 

process, often expressed as a shift from one level to another. When a 

sequence of decisions is made, measures, like the number of decisions that 

have to be taken before an alarm are of interest. In many situations a shift 

might occur any time after the surveillance was initiated. 

Prior knowledge of the probability of a change, the incidence, can become 

crucial when a method is selected and the parameter values of the method 

are set. The predictive value of an alarm is a measure of performance that 

takes this information into consideration and is an important tool for 

evaluating methods. 

Mostly an alarm is useful only if its predictive value is large. The 

predictive value of an alarm is the probability that a change has occurred 

given an alarm. In this paper it is demonstrated that the incidence in the 

first point has to be relatively high, or the alarm limits very wide, in order 

to achieve a predictive value greater than, say 0.5. 

The interpretation of an alarm is difficult to make if the predictive value of 
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an alarm varIes with time. For the ordinary Shewhart method and a 

selection of Moving Average Methods it is demonstrated how the 

predictive value increases with time if the incidence is constant. The 

incidence which would give the methods a constant predictive value are 

determined. The methods are thus demonstrated to give easily interpreted 

alarms only if the values of the incidence are strongly decreasing with time. 

Since in most applications a constant incidence is assumed a modification 

of the ordinary Shewhart method is suggested. With this modification it is 

possible to obtain a constant predictive value in the whole range of 

observations or in some interesting interval. 

KEY WORDS: Predictive Value; Shewhart; Moving Average. 
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1 INTRODUCTION 

This paper deals with the situation where the number of observations is 

successively increasing and successive decisions are required. The goal is 

to detect an important change in an underlying process as soon as possible 

after the change has occurred. The time point when the change occurs is 

here regarded as a random variable. 

The predictive value is a measure of how strong an indication of a critical 

event an alarm is. A constant predictive value is desired if the same action 

is supposed to be taken whether the alarm occurs late or early. 

In Section 2 the situation is formally described with the notation introduced 

by Frisen and de Mare (1991Y. In Section 3 some measures of performance 

are discussed and in Section 4 some general aspects of the predictive value 

are gIven. 

In the following section a selection of statistical standard methods are 

studied. The conditions necessary for a constant level of the predictive 

value of an alarm are examined. The methods used represent different ways 

to invoke the history of the process in the test procedure. 

Finally in Section 6 some concluding remarks are made about how the 

methods discussed in this paper behave in some different situations and also 

the possibilities of modifications are further discussed. 
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2 SPECIFICATIONS. 

The random process that determines the state of a system is denoted 

fl={fl(U):UET}. In the following examples there is a shift in the mean value 

of Gassuian random variables. The shift occurs as a sudden jump from an 

acceptable value flO to an unacceptable value fll (fll = 1 in examples). 

fl(U) = flo for u= 1, ... ,7-1 and fl(U)=fli for U=7,7+ 1, .... Both flO and fll are 

assumed to be known values and 7 is a generalized random variable with 

density P( 7 = k) = 7r k (k = 1,2, ... ) and E7r k = 1-7r (X). The incidence of a shift is 

Pk=P(r=Idr> k). 

At decision time point s the aim is to discriminate between the critical event 

C(s) and some other set of events, in this case its complement, D(s). C(s) 

is a set of realizations of the fl-process. The critical event under 

consideration is C(s) = {7 < s} = {fl(S) = fll}, the event that a shift occurs at 

s or earlier with the complement D(s) = {7 > s} = {fl(S) = flO}. All changes 

before s are of interest, and hypotheses involved are such that they change 

successively. 

The test procedures are based on observation Xs={X(u):uET,u<s} and in 

the following it is assumed that X( 1)-fl(1) ,X(2)-fl(2),... are independent 

Gaussian random variables with expected value zero and the same and 

known variance (a2= 1 in examples). A(s) is the alarm set given by the 

method under consideration. It is a set of events with the property that 

when Xs belongs to A(s) it is an indication that C(s) occurs and a 

hypothesis stating a stable system is rejected. 

The surveillance is active in the sense that the procedure is stopped if A(1) 

occurs. Otherwise the complement AC(1) occurs, the procedure continues 

for s=2,3, ... as long as AC(s-I) occurs. 
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3 MEASURES OF PERFORMANCE 

In most application areas averages from the run length distributions, the 

time to an alarm, are used both for evaluating methods and comparisons 

between competing methods. ARLo, the average run length under the 

hypothesis of a stable process, is defined as the average number of 

decisions taken until an alarm occurs when there is no change in the 

process under surveillance. The average run length under the alternative 

hypothesis, ARLI is the average number of decisions that must be taken to 

detect a true level change that occurred at the same time as the inspection 

started. 

In this paper the ARL is used as the basis for a comparison between some 

test procedures. In the following examples all methods are assigned the 

same ARLO
• The average run length profiles for the test procedures are 

presented in figures. This measure has the obvious disadvantage of being 

sensitive to skew run length distributions. And furthermore when this 

measure is used the test procedure is restricted to taking only a single 

alternative hypothesis into consideration, which in most cases of continual 

surveillance is an unrealistic simplification. 

The false alarm probability, conditioned on no alarm before s, for each 

time s is defined as 

a(s) =P(A(s) I D(s) ,A~_l) , 

where 
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The cumulative false alarm probability is here defined as 

as =p(AsIDs) =-

where 

which in the present case is D(s). Also the probability of a false alarm at 

s is used in this paper and it is written as 

For each method discussed, as is shown in a figure. 

The probability to neglect to stop the process when the critical event occurs 

is defined as 

The predictive value of an alarm is a measure where the time point of the 

change is considered as a random variable, this measure will be defined in 

the next section. 
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4 GENERAL CHARACTERISTICS OF THE PREDICTIVE VALUE 

The measure of performance that this paper is focused on is the predictive 

value of an alarm. The predictive value is the relative frequency of 

motivated alarms among all alarms at s, 

PV(s)=P(C(s) IA(s) ,A~_l)= PMA(s) 
PMA(s)+PFA(s) 

where the unconditional probability of a false alarm at tA is 

PFA(tA)=[O:(l-Pt) ] a"(tA) 
t~l. 

where 

If the incidence of a shift is constant, Pt=P, PFA is reduced to 

The probability of a motivated alarm at tA is defined as 

where Po=O. With a constant incidence of a shift, PMA becomes 

PMA(tA) = ~ (l_p)tC-l.pP(RL=tAI r=t C
) 

tCol. 

Contrary to passive surveillance, with active surveillance the predictive 

value typically has an asymptote below one, Frisen (1994)\ but with a 

constant incidence the function is not necessarily monotonously increasing 

for all methods. If it is possible to obtain a constant level of the predictive 
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value of an alarm, this would be a desirable property of a method in those 

applications where it is considered important to take the same action 

whenever an alarm occurs. 

A constant level of the predicted value implies 

And furthermore 

PMA(l) 
PFA(l) 

PMA(t) 
PFA( t) , 

t > 1. 

PV(t) PMA(t) < 1.0 = PV(t) < 0.5 
1-PV(t) PFA(t) 

Also, 

smce 

~ < P(A( 1) 1 D( 1) ) 
1-p~ P(A(l)jC(l)) 

PV(I) 
I-PV( I) 

= PV(I) < 0.5, 

PMA(I) 
PFA(l) 

(i) 

With the requirement of a constant level of the predictive value the 

condition (i) implies PV(t) < 0.5. 
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5 THE PREDICTIVE VALUE OF SOME METHODS. 

In this section a selection of standard methods representing different 

approaches in statistical surveillance are briefly described. The observation 

Xs, together with some rules for rejecting the hypothesis of a stable process 

constitutes a method. Some characteristic differences between methods are 

pointed out, particulary in regard to different structures in shift 

probabilities. The methods to be mentioned represent different ways to 

include the history of the process in the test procedure. 

The two main approaches discussed in this paper are rules based on the last 

observation, Xs= {X(t):tET,t=s} =X(s), that is no consideration is taken to 

earlier observations. This approach will henceforth be referred to as the 

Shewhart method. 

The second approach is rules based on the history of the process, 

Xs={X(t):tET,t<s}. Some methods based on moving averages will be 

discussed. 

For methods where it is possible to obtain a constant, or almost constant 

level of the predictive value, the corresponding shift probabilities are 

illustrated in figures. 
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5.1 SHEWHART. 

The Shewhart method is widely used in different application areas of 

statistical surveillance. For a situation formulated by Frisen and de 

Mare(1992)1 the method is optimal in an extended Neyman-Pearson sense. 

This is the situation when the only interesting time point is the present, 

s =1. It is assumed that no previous observations include any valuable 

information about the state of the underlying process. 

The performance of the Shewhart method in different situations often stands 

as a standard for comparisons when othe~ methods, maybe competing ones, 

are evaluated. There are probably several reasons for this. One obvious 

reason is the fact that the method is a. standard norm since it is used in a 

wide range of areas, i.e. quality control, where the Shewhart method often 

has the alarm limits 3 a away from the target value, p.,0, Bergman and 

Klevsjo (1994)3, which in the literature concerning quality control is 

referred to as the natural variation of the process. The illustrations in this 

paper are based on the Shewhart method with alarm limits closer to p.,0 and 

ARLO equals 15. For comparison with other methods, the corresponding 

sequence from the Shewhart method is added in each figure. 

Another reason is that the method has a simple structure. This is achieved 

through the restrictive assumptions about the underlying process. If the 

successive observations are independent, successive values of the statistic 

used also becomes independent and by that measures of performance can 

be reached with straightforward calculations. 

Also, the Shewhart method turns out to be a special case of many other 

methods, i.e. EWMA, MA and Hinkley's method. In more complicated test 

procedures, like Hinkley's method, the Shewhart test is usually one 
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component in that procedure. Another example of the latter is Shewhart 

control charts with additional warning limits, orland some other decision 

rules added to it. Notahle is also that at t = 1 almost any method has the 

same properties as the corresponding Shewhart test. Methods excluded are 

for example, tests based on window techniques with a window size greater 

than one. 

Often the ordinary theory of testing hypotheses is applied to the problem, 

every time t the hypothesis is challenged by the alternatives it is done with 

identical probabilities of rejection for each test. 

In the one-sided case the method only has one parameter G, the alarm 

limit. This makes the Shewhart method easy to work with and the 

interpretation of the parameter setting and the outcome at t becomes 

straightforward. 

With Normally distributed observations it is possible to find distributions 

of the incidence that gives a constant level of the predicted value of an 

alarm. To obtain a constant and preferable high level of the predictive 

value, the probability that a shift in the underlying process has occurred at, 

or before the first observation, has to be rather high compared to the 

probability for the following observations. This will be further discussed in 

Section 5. 1. 2. 

The method is defined by the quantity XCt), which might be the observation 

itself or some other quantity derived from a set of observations obtained in 

the choosen interval. The usual choice of quantity is an' average calculated 

over equally spaced intervals and the method is also referred to as a Xbar 

Chart. 
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The hypothesis ·stating a stable process is rejected when, for the first time 

X(t) exceeds the alarm limit G. Usually G is expressed as 

where L is a chosen constant, a..'1d 

the standard deviation of X(t). With independent observations and a 

common standard deviation the unconditional probability of a false alarm 

is a(t)=a, and the expected value in the RL distribution is a-I when the 

hypothesis of no change in the process is true. Considering the sequential 

procedure the probability of a false alarm at or before a certain time point 

t, Fig.1, is al> where 

In Fig. 1 and the following figures the twosided case is considered where 

the alarm limits Gu and GI are located on each side of, and at the same 

distance from, p,0. 

--.-p 

J 6 9 12 15 18 21 24 2J 30 

t 

Figure 1. The Shewhart method. The probability of a false alarm at 
time point t or earlier. 
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In Fig. 1 the constant L is equals 1.83 and (Ix is unity. 

AR~I 
. , ',' 

" . 
, 

\ , , , , 
"- '. 

" 

-------

my 

Figure 2 The average run length profile for the Shewhart method, 
ARI}=15. 

This gives a senes, with an expected value of RL equal to 15, if the 

process is stable. All methods discussed in this paper have an average run 

length, ARLo, equal to 15. 

In Fig.2 the average run length profile is calculated with the usual 

assumption that the shift occurred at the same time as the inspection started, 

tC = 1. If the time point for the shift is described by a stochastic variable, 

the probability of a false alarm at tA is 

t A 

PFA(t A
) = [II (l-pt)] (l_a)tA ~a, 

t .. ~ 

and with a constant incidence of a shift, Pt=P, the probability of a false 

alarm at tA becomes, 

14 



Constant Predictive Value of an Alarm 

In this model the probability of not stopping at t when there has been a shift 

is B(t) = B, and the probability of a motivated alarm becomes 

where 

With the same incidence of a shift at each time the probability of a 

motivated alarm becomes 

t A 

PMA(tA) L (l-p)tC-~pP(RL=tAI r=tC) 
tCo~ 

Usually the alarm limits Gu and G1 are located at the same distance from flo, 

and are also considered to be constants. If any assumptions are made about 

the incidence of a shift it is mostly stated that it is constant with time. In 

the following section some consequences of this approach will be discussed, 

particulary when requirements on the predictive value are present. 

The Shewhart method always has its highest probability of first detection 

at the time point of the shift, which is seen in that 

- (I-B) .sBn(l-B). 

Actually, given the same probability of a false alarm, lX, no other method 

exists that has a higher detection probability in the present time point than 

the Shewhart method, Frisen and de Mare (1992)1. That is, if, according 

to the previous notation, s = t then the best choice of method is the 

Shewhart method. 
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5.1.1 CONSTANT INCIDENCE. 

With the same incidence of a shift at each time t, and if aCt) = 0', the 

predictive value can not be the same in the whole range of time points. 

This is true except for a test where the hypothesis is always rejected at 

t = 1. This is seen in that, 

PV ( t) = PV ( t + 1 ) = 

PMA(t+l) = PFA(t+l) PMA(t) I {t=I / 2 / ••. }, 
PFA(t) 

( 1-p) ( I-a) [pBt~ ( I-B) + ( 1-p) p ( I-a) B t
- 2 ( I-B) + ••• + ( 1-p) t-~ P ( I-a) t ~ ( I-B) ] I 

Bt = 0 = B = o. 

Furthermore, with the same assumptions as above, the predictive value of 

an alarm is a monotonously increasing function in t. Suppose 

PV(t) > PV(t+l) I 

PMA(t) > PMA(t+l) 
PFA(t) PFA(t+l) 

= 

When t becomes large and the surveillance is active, the predictive value 

will increase to its limiting value, Frisen(l991)\ 
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PV 

0 

0 9 

0 S 
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2 4 
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t-7a:J t 

--, 
p+ac 

1 (l-p) (l-a) -11 
(1-a)(1-8) 

5 8 

1 
+ --. 

1-a 

t 

Figur 3 Predictive value of an alarm in the case of the same 
probability of a shift at each time point. inc = 0.1 

In Figure 3, p is set to 0.1. The low predictive value of an alarm for early 

observations is explained by the high false alarm probabilities compared to 

the probability of a shift. The probability of a false alarm, PFA, is a 

monotonously decreasing function in t. Suppose 

PFA(t) ~PFA(t+1) => 

1 
1-p ~ -- > 1. 

1-a 
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5.1.2 VARYING INCIDENCE. 

If, as usual, we have the Shewhart method with constant limits, that is 

aCt) =0', it is possible to obtain a constant level of the predictive value for 

specific series of decreasing incidence. 

p 

o 3 j 
I 
I 

"'I 
o 1 

I 

o 0 l 
o 

\\ ". 
\ ........................ . 

'. ,'------_ .. _._.- ... -_ ..... _._--_._--

2 

Figur 4 The probability structure that gives a constant predictive 
value level. The dotted curve corresponds to PV=O.50 

In Figure 4, the lower curve, PI is set equal to 0.1 and Po i> I, are chosen 

in such a way that at a constant predictive value is obtained. 

PMA(t) 
PFA(t) 

PMA(t+l) 
PFA(t+l) 

The required property is satisfied for the first step if I-a > B and 
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For greater values of t the formula is more complicated, but it is no 

problem to compute the values. In figure 4 PI is set equal to 0.1 and f.11 = 1, 

the lower curve. In this case the predictive value is just above 0.25 at t= 1, 

which means that on average only one out of four alarms at t= 1 will 

actually be a motivated one. The curve representing the higher shift 

probabilities in figure 4 corresponds to the situation where the predictive 

value of an alarm at tA is 0.50. Both curves indicate that a constant level 

of the predictive value for the Shewhart method sometimes requires a rather 

high shift probability at the first time point compared to the second, and 

later observations. 
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5.1.3 CONSTANT INCIDENCE AND VARYING ALARM LIMITS. 

By letting the alarm limits of the Shewhart method change over time the 

predictive value can be made constant. 

First, consider the first and second observation from a Normal distribution. 

If a(l) < a(2) this implies that 

a(l) < a(2) 
1-8(1) 1-8(2) 

With a constant incidence of a shift it is possible to obtain the same 

predictive value of an alarm for both points. 

where 

PV(2) = PV(l) -

PMA(2) 
PFA(2) 

PMA(l) 
PFA(l) -

a(2) a(l).k 
1-8(2) 1-8(1) , 

k= 8(1) +1>1. 
(l-p) (l-a(l) 

This means that, with normally distributed observations, the alarm limits 

for the second observation should be closer to 11° than for the first one if a 

test procedure with the same predictive value of an alarm is required. 
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It is possible to choose the limit get + 1) in such a way that a constant level 

of the predictive value is obtained. 

PV ( t) = PMA ( t) 
PMA(t) +PFA(t) 

PV(t) = (l+PFA(t) )-1 = 
PMA(t) 

PV(t) 1 

(l-p)t IT(l-a(i) )a(t) 
1 + --,-___ i c_1 _____ _ 

t 

L.P(r=j)P(RL=t I r=j) 
j=1 

where the sum in the numerator can be written, 

p(1-8(t»[8(1) ••• 8(t-1)+(1-p)(1-a(1»B(2) ••• B(t-1)+ ••• + 

(1-p)t-2(1-a(1» 0 0 0 (1-a(t-2) )B(t-l)+(1-p)t-1(1-a(t-1»]. 

This implies that 

PV(t) = 1-B(t) of 

1-PV(t) aCt) t-1' 

where ft-1 only depends on t~e characteristics of the surveillance before time 

point t. 

1-B(t) 
aCt) 

1-4?(g-J.L1) 

1-4?(g-J.4°) 

increase continuously when the limit, g(t) , increase. 
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Choose g(t+ 1) in such a way that, 

I-B( t+l) _ f t _ 1 I-B( t) 
a(t+l) - -y;. aCt) 

It can be shown that, 

get) ~ g(t+l) => 

PV(t) S PV(t+l) => 

A constant level of the predictive value of an alarm requIres that 

get) > g(t+ 1). 

For example, a one sided 3a control chart (Xbar Chart) is used on Normal 

distributed observations, 110 =0 and ax= 1, and the aim is to detect a shift 

of size a. If the incidence is constant and equals 0.1, this test procedure 

will give a predictive value of an alarm at t= 1 that is just above 0.65. To 

obtain the same predictive value of an alarm at time point two the alarm 

limit has to be moved to a 2.1 a distance from 110' 
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5.2 MOVING AVERAGES 

The results in the following sections are mainly obtained through computer 

simulations. 

Surveillance methods based on moving averages dates back to about forty 

years ago, and since then, the most investigated and discussed method in 

this family has been the ones with weights exponentially decreasing in time, 

Exponentially Weighted Moving Average. The EWMA methods are 

developments of the Moving Average, MA, method based on k 

observations, Roberts ( 1959)6. Some consequences of choosing these type 

of methods, or methods with similar properties, are discussed. In this paper 

the MA method based on k observations is modified to a Expanding 

Average, k=s, to illustrate some effects on the ARL and the predictive 

value properties of a method if the alarm probabilities in the initial face of 

the series are not constant. 
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5.2.1 EXPANDING AVERAGE. 

Moving Windows are techniques to describe the influence of earlier 

observations in the process. The quantity are usually averages calculated 

from the last k observations at decision time point s. Observations obtained 

before s-k + 1 are considered of no interest at all, while the last k 

observations usually are considered equally important. By using this 

techniques to modify methods improved predicted value properties can be 

achieved since this technique demands k-l auxiliary points before the first 

test can be made. If the parameter k is one in this model the Shewhart 

method is obtained. 

The Expanding Average is a special case of a Moving Average. If at 

decision time point s all available observations are considered equally 

important, k=s, a Moving Average with equal weights, kl, assigned to the 

last k observations, is obtained. This model is mainly discussed because of 

its remarkably good ARL properties and the general effect on the ARL 

measure if a skewed RL-distribution is present, Fig 5. 

ARL 
16 

----,----,,------,--- ----,-

o.on 0 25 0.50 0.75 1 00 1 25 1 50 

Figure 5. The ARL profile of the Expanding Average and the Shewhart 
method (dotted line). 
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For each new observation an average is calculated with the actual s as 

denominator, 

k-s 

The quantity Ms converges to Jlo as s becomes large, and the variance of 

Ms becomes small. 

The process under surveillance is considered to be in balance as long as the 

outcome on Ms stays within the alarm limits 

where (Jx is the same known standard deviation of the observation Xt. 

In the Figures 5-8 L is 0.924 and (Jx= 1, this gives an average run length 

of 15 if D(t) =D, the process is in control. In Fig. 6 the probability of a 

false alarm, at> is compared with the Shewhart method. 

---------------- ... _-

o 6 

o 5 

0.4 

o 2 .' 0.) l 
:. ~ ----~------._-,___-_.__-- ... -··---__r_-----~-.---l--··-··-·-

o 6 9 12 15 is 21 24 27 3~ 

Figure 6. The probability of a false alarm at or before t for the 
Expanding Average and the Shewhart method (dotted line). 
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This method is characterised by a initially high alarm probability. With 

this choice of parameter values the false alarm probability at t= I is 0.36. 

This makes the run length distribution markedly skew to. generate an 

average of 15. Given a shift in the process, this method will most of the 

times generate an early alarm, but in a few trials it will have difficulties to 

detect that change. This gives a rather impressive ARL-proflle for the 

method, but it is only suitable in situations where late alarms are not 

crucial. Given a shift at tC
, the method has its highest probability of 

detection at tC at the beginning of the series, just like the Shewhart method. 

But if there is a late shift the method have its highest probability of 

detection at some time point later then tC
, and al~o, the probability of an 

immediate detection is decreasing with t. For the case illustrated (Fig.5-7) 

the probability of an immediate detection if tC = 1 is 0.55, while if tC =20, 

the probability falls below 0. 1. 

In the following sections the predictive value properties of the Expanding 

A verage will briefly be discussed. 
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5.2.1.1 CONSTANT INCIDENCE. 

With this choice of L and a constant incidence of a shift it is not possible 

to obtain a constant level of the predictive value of an alarm. In the Normal 

distribution the probability of a motivated alarm, PMA, and the probability 

of a false alarm, PF A, are decreasing functions in t. The predictive value 

of an alarm is an increasing function in t which means that an application 

where this method is suitable has to be such that a low predictive value at 

the beginning of the sequence is acceptable, Fig. 7. 

PV 

1 0 

o 2 4 6 8 10 12 14 16. 18 20 

t 

Figure 7. Predictive value of an alarmfor Expanded Average and the 
Shewhart method, the lower curve. The probability of a shift is 0.1 at 
each time point. 
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5.2.1.2 VARYING INCIDENCE. 

In a Normal process it is .possible to obtain a constant predictive value of 

an alarm with this method. Though the incidence of a shift has to be rather 

high at the first time point relatively to the following points. 

p 

a 151 

I 
o 10 i 

o 05 

1....--_.----_._. _________ _ 
o 00 1-1 --.------.--r-----r- --:--r-------r--,.------,---~-_, 

o 2 3 4 ·5 6 

Figure 8. The incidence of a shift that gives a constant predictive value 
of an alarm for the Expanding Average method and the Shewhart 
method (the lower curve). 

In the example the probability of a shift, the incidence, at t= 1 is 0.1 and 

then decreases to give an overall predictive value of an alarm of 0.26 for 

the Shewhart method and O. 15 for the Expanding Average method. The 50 

percent level of the predictive value of an alarm for the Expanding Average 

corresponds to PI equals 0.39. 
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5.3.2. EXPONENTIALLY WEIGHTED MOVING AVERAGE 

The EWMA methods are a group of methods with a particular weight 

pattern that assigns the history of the underlying process weights in an 

infinite, geometrically decreasing sequence from the most recent back to the 

first observation. 

If the parameter A is equal to one in the EWMA model the Shewhart 

method is obtained, and if }" tends to zero the method degenerates towards 

a test with the present observation excluded. EWMA(g) methods where the 

alarm limits, g, are based on the standard deviations of the statistic usually 

(unimodally distributed statistic) have higher alarm probabilities than the 

standard version with straight alarm limits, G, when the limiting value of 

g is G. This generates alarm probabilities, and predictive value properties, 

closer to the Shewhart method. 

If a Fast Initial Response feature, Lucas and Crosier(l990)6, is added to 

the standard EWMA(G) the alarm probabilities in the initial points are 

increased in a way similar to the EWMA(g) methods. 

The EWMA is sometimes referred to as a geometric moving average 

since it can be written as a moving average of the current and the past 

observations, 

t-~ 

Zt=AL (l-A)jXt_j+(l-A)tzo ' 
j"O 
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If the X's are independent and have a common standard deviation (Jx, the 

standard deviation of Zj is 

a Z = ~ A ( 1 - ( 1 - A ) 2t ) a x 
t 2-1.. 

For the first observation (Jz takes the value A(Jx, and as i increases (Jz 

increases to its limiting value 

An out of-control alarm is triggered if the estimate I Zt I falls outside the 

limits 
g=La Zt • 

Usually the limiting value (Jz rather than (JZt is used in constructing the 

warning-limits for EWMA control charts, e.g. Roberts(1959)5, Robinson 

and Ho(1978)1, Crowder(1987)8 and Lucas and Saccucci(l990)9. For a 

twosided control chart this results in two straight alarm limits, Gu and 

G1• They are usually placed at equal distance, on each side, from the 

nominal level, flO. As shown in Fig. 9 the EWMA(G) probability of a 

false alarm at or before t has a structure similar to the Shewhart method. 

In this example A is arbitrarily set to 0.5, any other choice would also 

have been possible. Actually, for a given shift, fl, the parameter A and L 

can be chosen in such a way that both ARLO and ARLI are exactly the 

same as for any other method, specified by one or two parameters. 

The parameter L is set to 0.924 to satisfy the ARL requirement of 15. 

The low initial alarm probabilities are consequences of using Gu and G1 

as alarm limits. By choosing Gu and G1 as alarm limits the lowest alarm 

probabilities are obtained at t = 1. This fact is sometimes considered as a 
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Figure 9 The probability of a false alarm at time point t or earlier for 
the Elt'MA method and the Shewhart method (the dotted line). 

disadvantage of the EWMA(G) method, and other methods with the 

same structure. To overcome this a FIR feature can be applied to the 

method. A desirable change of the probability pattern can be 

accomplished in several different ways. Two different approaches using 

the same quantity and with the same purpose are discussed and their 

relation to the EWMA(G) is established. 

First, by using <Tzo alarm limits are created that start at a distance of 

LA<Tx from the nominal level and increase to L<Tz. By using the variance 

of the statistic a EWMA(gJ is created. This gives faster detection for 

early shifts, but also higher probabilities of early false alarms are 

obtained. If the EWMA(G) method, with G= L<Tz, is transformed to a 

EWMA(gJ in such a way that, 

lim La = G 
t-+oo Zt 

then, 
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that is given the same value 'on Laz for both methods, the early alarm 

probabilities that are obtained after a modification, are higher than they 

would have been without the modification. The difference decreases as t 

gets larger. How fast this goes depends on the choice of A which also 

determines the magnitude of the difference. 

If the FIR technique is applied to the EWMA(G) method a similar false 

alarm pattern is recognized as for the variance corrected EWMA(gt). 

This way to accomplish higher alarm probabilities are of a more general 

kind than the previous and can be applied to almost any other method. 

The idea is to assign a starting value, Zo, that is not equal to the 

expected value in the process. By this a faster detection is obtained if 

there is an early shift in the process. If no shift occurs the statistic, Zo 

will find its way back to the expected level. The hypothesis is rejected 

for the first time Zt exceeds the limit of type gt, 

When the constant A is written as, 

~-A 
A = La ~ 2=x 

x I-X ' 

it is the same as if Zo is selected in such a way that, at t = I, the same 

probabilities of alarm as for the EWMA(gt) are obtained, and 

1 i m G - ( 1 - A ) t A = La 
t-+oo Z 

With the same way of reasoning as above, given the same value on Laz 

V At t 

with equality at t = 1. This is seen in that 
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for all A and t. The probability of not rejecting the null hypothesis when 

one of the alternatives is true is affected in an analogous way for both 

modification procedures. 

A modification of a method might have an influence on all the measures 

involved in an analysis. But if, like here, the procedures involved are 

specified by some known functions, the directions of changes are known. 

In figure 10 the ARL profile for the EWMA(G) is compared to the 

Shewhart method. 

ARL 
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Figure 10 The ARL profile jor the ElVMA (G) and the Shew hart 
method, the lower curve. 

Its relatively poor ARL profile is explained by low alarm probabilities at 

the beginning of the run, and the way the ARL I measure is defined. 

If the EWMA(G) is modified according to the previous, both the ARLo 

and the ARLI decrease. The only possibility to equality among these 
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methods is if the rejection rule is to always reject at t= 1. The 

magnitudes of the changes are determined by the choice of A and L. The 

relationship between the average run length properties given by these 

examples can be summarized as follows. 

Given the same choice of LO"z for all three methods, and Zo in 

EWMA(FIR) are such that, the probability of a false alarm at the first 

time point is the same as for EWMA(gJ, then 

and 

When a method is modified in the way described above its seems 

reasonable to do so, only if there is a high probability of a shift at the 

beginning of the series. Using the ARL measure as a guideline might be 

misleading since crucial information about later observations are lost. 

The run length distribution at t = 1 can become rather extreme compared 

to distributions obtained at a later shift. A consequence of this is that, in 

the light of other measures the ARU alone becomes a poor measure of 

performance when the effect of the FIR features are evaluated. In 

particular if the assumption of a high initial shift probability is not 

satisfied. 
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5.3.2.1 CONSTANT INCIDENCE. 
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Figure 11 The predictive value of an alarm with a constant 
probability of a shift. The EWMA(G) , the upper curve, and the 
Shewhart method. 

The predictive value of an alarm curve for the EWMA(G) has a shape 

similar to the Shewhart tests, which was indicated by the a-structure, 

Fig. 6. Consider the case where a Shewhart test is replaced by a 

EWMA(G) in such a way that G= L<Tz. With this restriction the 

EWMA(G) has a higher PV than the Shewhart, figure 10, and equality 

only for A equals one. The differences due to the choice of statistic is 

mainly stated at the behaviour at the first two observations after a shift. 

The Shewhart method always has its highest detection probability at the 

time point of the shift, tC. With this choice of A, the detection probability 

for the EWMA(G) has its peak at tC+ 1, and then decreasing faster than 

for the Shewhart method. In case of a shift, the EWMA(G) is most 

sensitive to that shift at tC + 1 or higher, depending on the choice of A. 

The EWMA(G) might be a candidate if s > t, and in particular if a 

specific time point after the shift is of main interest. 
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5.3.2.2 VARYING INCIDENCE. 

With the parameter setting given in Section 5.3.2 it is not possible to 

obtain an overall constant level of the predictive value of an alarm. 
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Figure 12. The probabilities of a shift that generate a constant level of 
the predictive value of an alarm. The EWA1A(G) and the Shewhart 
method. 

The shift probability for the EWMA(G) has to be negative at t=2 to 

obtain the desired property. 
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6 CONCLUDING REMARKS. 

A constant level of the predictive value is a reasonable requirement in a 

situation where an alarm is considered equally important regardless of when 

the alarm occurs. That is, the surveillance model has to be designed in such 

a way that the proportionality between the probability of a false alarm, PFA 

and the probability of a motivated alarm, PMA, is constant and preferably 

in such a way that the predictive value is greater than 0.5. 

If the predictive value is used as a design criterion when a surveillance 

system is' designed knowledge or assumptions about the shift probability 

structure is crucial, both with regard to the choice of method as well as for 

the parameter setting. Since all the methods considered in this paper have 

the properties of the ordinary Shewhart method at t = I and the predictive 

value functions are increasing it is possible to calculate the minimum 

predictive value for each method. The rather low values of the predicted 

value of an alarm is partially explained by the choice of two-sided tests. 

If a constant incidence of a shift is present the predictive value can not be 

constant for the ordinary Shewhart method. If the method is modified in 

such a way that the alarm limits are moved away from flO for early 

observations it is possible to obtain a constant level of the predictive value 

in the whole range of observations. Generally, for a method characterized 

by a monotonously increasing predictive value function the method has to 

be modified in such a way that the probabilities of an alarm are decreasing 

for early observations to reach a constant predictive value. This also means 

that methods designed to detect early shifts can be applied when initially 

there is a rather high probability of a shift. If, for instance , the incidence 
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of a shift is constant, the system under surveillance has to be such that the 

consequences of a false alarm is not crucial. 
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