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Abstract 

Two level fractional factorial designs with a star are often used when working with lower 

polynomial models. In this paper an alternative design is discussed and compared with the 

fractional factorial design. We are working under the assumption that the true underlying model 

is of second order with a known maximum point. 
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1 Background And Introduction 

Quadratic Response Surface Methodology focuses on finding the optimum levels of 

some control variables I; =(~l' ... '~k)' to optimize the value ofy. Y is assumed to 

depend on the control variables through a polynomial function of second order. The 

two level fractional factorial design is well known, well described and well used in 

practice when working with lower polynomial models. The reasons for this are many. 

The design is easy to construct by hand and easy to understand. Also it allows you, in 

a first order model, to mix both qualitative and quantitative variables. In this paper we 

concentrate on second order models with only quantitative variables. 

The construction of a design, i.e. the determination of design points, is today easily 

done with a computer. Say for example you wish to estimate a plane in the three 

dimensional space by having one observation in each comer of a tetrahedron. The 

coordinates of the design points can be derived with advantage by a computer. To 

choose one design before an other, because of its constructional benefits is no longer a 

valid argument. 

The fractional factorial design is a good design in many situations, but should not be 

used blindly. When facing a new problem, it is of great importance to identify the most 

important goals. Say for example the model Y = a + f3 x + y x2 + g is to be estimated. 

How can we choose the best design for doing this? Depending on if the primary goal is 

to minimize the joint confidence ellipsoid for all three model parameters (D-optimum 

design) or to minimize the confidence interval for y (Ds-optimum design), different 

designs is to be considered as the best design. What is said with this is that designs that 

works well in some situations, should not be used without being checked in a new 

close related situation. 

Another important aspect to look at, when comparing designs, is the number of 

experimental points used by the designs. Since each observation is connected with a 

cost, it is of interest to keep down the number of experimental points. 

The problem discussed in this paper assumes that the optimum point is known, but it is 

of interest to estimate a whole region of the surface around this point. The problem can 
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appear in an industrial process that has been on for a long time, and by experience the 

optimum point is known. Now the process has to move, the reason can be 

environmental restrictions on the process or a possibility to produce to a lower cost. It 

is therefore of interest to explore the response surface around the optimum point. 

Assume that the optimal point is l;opt =(~I,OPt""'~k,oPt) and that the expected response in 

this point is 

l1~t = E[Y ~t ], 

where 

k k k i-I 
Ys = 13~ + Ll3rl;i + LI3:,il;; + LLl3r,jl;il;j +a, 

i=1 i=1 i=1 j=1 

E distributed as a N(O,cr2
) random variable. Further we assume that the second order 

approximation of the surface is adequate over the region of interest. 

Since the optimum point is known, it is possible by doing an origin shift to simplify the 

model. Let \If i = ~ i - ~ i,opt' A direct consequence of this transformation is that the new 

system will take its optimum value in the origin. Since the optimum point is known, 

the system has to satisfy that 

:~ I"".~., ; 0, i; l, ... ,k. 

Under these restrictions it is easily verified that the model can be written as 

In next section a criterion for choosing between designs is defmed. Thereafter follows 

two sections in which the two designs under investigation in this paper are defined, 

namely the fractional factorial design with a star and the simplex design with 

complement points. After that are the two designs compared. The last section puts the 

light on some fmal remarks. 
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2 One Way To Compare Designs 

A designed experiment is defmed by its design matrix D, 

(XII X 12 ... X lk 1 
1 1 _I X 21 X22 ••• X2k 1 

D-l·· . j .. . 

Xnl X n2 ••• Xr.k 

where k is the number of explanatory- variables and n is the number of experimental 

points in the design. Each row describes the setup for one experimental point, which is 

called a run. 

A matrix of more importance is the designs X-matrix. This matrix depends both on the 

design matrix D and on the model chosen. For the special model in this paper the X­

matrix looks like 

11 X;I 

11 x;] 
X=I . . 

l~ ~~1 
On what grounds would we choose one design over the other when performing a 

designed experiment? Obviously there is a need for design criteria's that help us to 

choose the most appropriate design for solving a particular problem. One such criteria 

to study is the variance function VI.. The variance of a predicted response at a point x 

is given by Var(y{x)) = xt(XtXtlx er. The variance function is defmed to be the 

standardized variance Vx = (n/er )Var(Yex)). When comparing designs it is helpful to 

use VI. rather than Var(Y(x)) since Var(y(x)) always will be smaller if an extra design 

point is added to the design. It is of interest to hold down the number of experimental 

points, therefore should the designs be compared on a standardized basis. The 

following example shows the idea. 
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Ex. 1. 

Consider the model y = 13 0 + 13 1 X + 8. 

Assume that the design with design matrix Dl is chosen, 

Now is Var(y{x»= (<I/I0)(2x 2 -6x+7) and Vx = (4/10) (2X2 -6x+7). 

If we instead chose to use the design D 2 , 

then Var(y(xJ) = (a2 /20)(2x~1 - 6X 11 + 7) and V" = (8/20)(2x~1 - 6X 11 + 7). 

If Var(y(x)) is used as a design criteria, the design D2 is to prefer before Dl since the 

variance of a predicted value is lower in each point. A better design can always be 

found by replicating Dl several times. However, when using Vx as the design criteria 

the two designs are on equal footing, which of course makes sense in this case. 

The use of Vx can also motivated by arguing in the following manner. Assume we have 

two designs Dl and D2 consisting of n l and n 2 design points respectively. Each design 

gives us the possibility to estimate the predicted response y (x) in a point x . Let 

Varl (y(x» and Var2 (y(x» represent the variance of the predicted response for the two 

designs. With respect to the variances of the estimated response, is it better to replicate 

Dl n2 times or is it better to replicate D2 n l times? In both situations are n l x n2 runs 

performed. By replicating the designs in the described way, the variance of the 

predicted response can be shown to be Varl (y( x» / n2 and Var2 (y( x» / n l • We prefer 

Dl before D2 if 

or equivalently if 
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3 The Fractional Factorial Design With A Star 

A widely used technique when estimating a second order surface, in k control 

variables, is to use a two level 2 k-p fractional factorial design, complemented with a 

star and a center point. The star portion of this design consists of the 2k points 

(±u,O, ... ,O), (O,±u,O, ... ,0), ... , (O, ... ,O,±u) for some choice of a. A full two level 

factorial design consists of all possible combinations of ~i = ~i,oPt ± S i' i = 1, ... , k. It is 

more convenient to work with a scaled version of the explanatory variables, namely 

Xi = \lfi lSi = (~i - ~i,OPt) I Si' Then, the full two level factorial designs consist of all 

possible combinations of Xi = ± 1, i = 1, ... , k, and the model is written as 

A fractional factorial design means that not all2k, but 2k-p for some p, combinations 

of Xi = ±1, i=1, ... ,k are used in the design. An example will show the idea, for a more 

detailed description see Box & Draper [1987]. 

Ex. 2. 

The problem is to fmd the smallest fractional factorial design with a star (i.e. the 

design with the fewest number of experimental points) that can estimate all the 

parameters in the model. That is, we need a design with at least 7 experimental 

points. The design matrix D full' and the relating Xfull-matrix, for the full design are 

shown on next page. 

The interaction terms in the model must be estimated from the factorial part of the 

design. There are 3 interaction terms in the model, so it is enough to have a 23
-

1 

design to estimate the interaction terms. The fraction used in the design can be 

chosen in different ways, some more attractive than others. By choosing the fraction 

where for all observations XiI Xi X i2 X X i3 = 1, we ensure that no estimates of 

interaction terms are alias with other estimates of interaction terms. The final design 

matrix D frac and its relating X frac -matrix are shown on next page. 
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In general, the models discussed in this paper has 

(
kJ k k

2 

l+k+ = 1+-+-
222 

parameters, one intercept tenn, k quadratic tenus and (~J interaction tenus. The 

smallest possible fraction that can be used to estimate the interaction terms consist of 

2"P factorial points, where p is the largest integer so that 2 k
-

p ;,-(~J. 
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4 The Complemented Simplex Design 

An alternative design to use is a simplex design complemented with some points. 

A simplex is defined by k+ 1 points in the k-dimensional space. I.e., in the plane a 

simplex is defmed by a triangle and in the 3-dimensional space it is defmed by a 

tetrahedron. 

Now, construct a simplex in the k-dimensional space x = (xl' ... ,xk ) such that (i) each 

and one of the k+ 1 points are at the same distance from the origin and (ii) the distance 

between each pair of points is the same. Such simplex is called for a regular simplex. 

The complemented simplex design is now defined by having one observation at the 

origin, one observation in each comer of the simplex (simplex points), and fmally, one 

observation on each ray going from the origin and between each pair of comers 

(complement points). Altogether this is 

experimental points. Notice that the number of experimental points in this design 

exceeds the number of parameters in the model with k+ 1. 

The construction of a regular simplex is straightforward. For example consider the 

case when k=3. 

J xlj x 2j x 3j 

1 1 1 1 

2 -1 1 1 

3 0 -2 1 

4 0 0 -3 

Scale factor .J2 ..J6 .Jl2 
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Let Pi denote the i:th simplex point in the design and let Pij denote the complement 

point on the ray between the i:th andj:th simplex point. The design matrix D is then 

defmed by the design points 

Po = {O,O,O} 

1 1 1 
PI = {.[i"' J6' .JU}xds 

-1 1 1 
P2 = {.[i' J6' .JU}xds 

-2 1 
P -{O---}xd 
3- 'J6'.JU s 

-3 
P4 = {O,O, .JU} x d s 

P12 = (PI +pJ x de 

Pl3 = (PI +pJ x de 

PI4 =(PI +pJ xde 

P23 = (P2 +P3) X de 

P24 =(P2 +P4)xde 

P34 = (P3 +P4) X de 

where d s and de are constants that determines the simplex points and the complement 

points distances from the origin respectively. 
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5 Comparing The Two Designs 

It is of interest to fmd a good design that makes it possible to estimate the unknown 

parameters in the above described model. With a good design we mean a design that 

satisfies some properties like a high level of information and rotatability without using 

to many experimental points. A high level information means that the variance of a 

predicted response is low. Rotatability means that the variance of a predicted response 

at a point x depends only on the distance between the origin and x. That means that we 

can writeVx = Vp , where p = (x~+ ... +xDlI2. 

The two discussed designs will now be compared with respect to the variance function. 

The fractional factorial design with a star can always be made rotatable by putting the 

star points at the distance (2 k-p ) 1/4 from the origin, given that the factorial points are 

described in terms of 1 and -1 (and therefore are at the distance Jk from the origin). 

The Simplex design with complement points can be made rotatable by putting the 

complement points at a certain distance from the origin. Unfortunately is this only 

possible for k up to 6. Therefore will the two cases when k ~ 6 and when k> 6 be 

treated separately. 

From now a fractional factorial design with a star and a center point will be called a 

factorial design, and a simplex design with complement points and a center point will 

be called a simplex design. 

5.1 Comparison Up To 6 Dimensions 

Assume in the simplex design that the simplex points are at distance one from the 

origin. The following table shows at which distances, d(k), the complement points 

should be to make the design rotatable. For k=2 is the design rotatable for any choice 

ofd(k). 

k 3 4 5 6 
d(k) (4/9t4 (12/16t

4 (32/25)1/4 (100/36t4 

The two rotatable designs will now be compared with respect to their variance 

functions. It is of interest to compare the volume under the variance function over a 
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defmed region in the x-space. Assume we want to compare the designs over the region 

A = {x ; Ilxll ~ I} and that the model used is valid over the region B = {x ; IIxll ~ b, b ~ I} 

(all the following results holds aiso if we defme A = {x; -1 ~ Xi S 1, i = 1, ... ,k}). For 

all rotatable designs discussed in this paper we have that Vol is of the form 

Now, for each k construct the rotatable factorial design that minimizes Vol = t Vxdx 

under the restriction that all design points belong to B, and do the same for the simplex 

design. The number of experimental points used in the two design are 

k 2 3 4 5 6 
........................................................ -........................................................ 

Factorial 7 11 17 27 29 

Simplex 7 11 16 22 29 

The designs can now be compared with respect to Vol. In the following graphs the y­

axis represents Vol, i.e. the volume under the variance function over the region A. The 

x axis represents the distance from the origin to the outermost points in the 

respectively rotatable design. That is for the factorial design always the distance from 

the origin to the factorial points. For the simplex design it is for k s 4 the distance 

from the origin to the simplex points and for k ~ 5 the distance from the origin to the 

complement points. 

The case for which k = 2 need some extra consideration. Let the simplex points in the 

simplex design be at distance d from the origin and the complement points at distance 

a x d from the origin with a ~ 1. It does not matter whether a is chosen to be smaller 

than 1 or greater than one, since for a = 1 the simplex part of the design and the 

complementary part of the design are mirror images of each other. The simplex design 

is rotatable for any choice of a and d. The problem is to chose a and d in the best way, 

i.e. so that the volume under the variance function is minimized. 
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For a equals 1,~,! and ~ respectively we get the following graphs. 
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The graphs shows how the volume under the variance function changes with d. In each 

of the four cases there is unique d that minimizes the volume. Note the different scales 

on the y-axis in the four graphs. 

In practice a and d cannot be chosen arbitrarily. Say for example that the control 

variables can be controlled up to two decimals. That is, if a variable is set to be 0.50, 

that could be any value between 0.495 and 0.505. This gives an error of approximately 

1 percent. If instead the variable were set to be 0.05 (could happens for small a), the 

true value could be any value between 0.045 and 0.055. This gives an error of 

approximate 10 percent. So the smaller a is, the greater is the relative error in the 

controlled variable. How close to the origin the complement points can be is therefore 

determined by the accuracy of the controlled variables. A reasonable choice of a is 

a = t, meaning that the distance from the origin to the simplex points is twice as big as 

the distance between the origin and the complement points. This is what is used when 

comparing the simplex design with the factorial design in two dimensions. 
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There is also a limit on how far away from the origin the experimental points can be 

located. Experimental points cannot be located outside the region over which the 

model is valid. This means we must have that d s b. 

In the following graph are the two designs compared. 
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The two curves that are close together are the curve for the factorial design and the 
-1 

curve for the simplex design when a = 24". The reason for this choice of a is that this 

makes the distance between the simplex points and complement points in the simplex 

design the same as the distance between the factorial points and the star points in the 

factorial design. The lower curve in the graph is the curve for which a = + . 
With respect to the volume under the variance functio~ the two designs are almost 

identical when the distance between the simplex points and the complement points in 

the simplex design is equal to the distance between the factorial points and the star 

points in the factorial design. The smaller a can be chosen, the more superior is the 

simplex design. Also note that the simplex design with a = + is superior the factorial 

design in the point where the factorial design is minimized. 

A comparison of the designs for k = 3, ... ,6 is presented in the following graphs. 
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When k equals 3 the two designs are rotations of each other, and will therefore of 

course have the same variance function. When k equals 4 is the factorial design 

superior the simplex design. For k equals 5 and 6 are the two designs almost identical 

with respect to V 01. 

In a practical situation, there is a cost tied up to each observation and it is not nonnally 

possible to replicate the design several times. Therefore when one of two designs with 

unequal number of design points is to be chosen, and the smaller design produces less 

accurate estimates than the larger design, a decision has to be made whether more 

accurate predictions to the cost of more observations is to prefer before fewer 

observations to the cost of less accurate predictions. In this situation we are more 

interested to compare the volume under Var(y(x» rather than the volume under Vx ' 

and keeping the number of observations used in mind. That is, we will study the graph 

VoVn vs. d to detect the designs different ability to predict the response, and hereby 

given the number of design points used by each design decide which design is to 

prefer. 

Designs with equal number of design points are easy to compare. In this situation we 

chose the design that produces the most accurate predictions. Also if the design with 

the fewest number of design points produces the most accurate predictions than its 

competitor, the choice of design is clear. 

Let us see what happens when the simplex design in 4 and 5 dimensions are extended 

with an extra center point. First we note that in 4 dimensions the simplex design and 

the factorial design have equally many design points and in 5 dimensions the simplex 

design has 4 design points fewer than the factorial design. 



Now study the graphs ofVoVn vs. d. 
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In 4 dimensions )¥e see that the simplex design with two center points works better 

than the factorial design. The result in 5 dimensions is more surprisingly. Despite the 

fact that the simplex design with two center points has 4 design points less than the 

factorial design, the variance of the predicted responses are smaller from this design. 

To sum up, in 3 dimensions are the two discussed designs rotations of each other. In 6 

dimensions the two designs has equally many design points. From a practical point of 

view it is irrelevant, with respect to Vol, which design to use. In 2, 4 and 5 

dimensions the simplex design works better than the factorial design, after adding one 

extra center point to the simplex design in 4 and 5 dimensions. Still the number of 

design points will not exceed the number of design points in the factorial design. 

5.2 More Than 6 Dimensions 

As mentioned earlier, it is not possible to make the simplex design rotatable in 

dimensions higher than 6. To see why, we will ftrst see when a design is rotatable. 

For simplicity assume k=2. We have a design D and the relating X-matrix. When the 

true underlying model is of the kind discussed in this paper, it can be shown that the 

design is rotatable if the information matrix is of the form 

8 8 01 
31.. A 0 I 
A 31.. 0 I· 
o 0 A) 

The extension to higher dimensions is obvious. Let us take a look at some of the 
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elements in the information matrix when k=7. The simplex design is such that the 

simplex points are at distance 1 from the origin and the complement points are at 

distance d from the origin. For example, we need for a rotatable design that 

{ro}2,2 = {ro}4,4' But in 7 dimensions is {ro}2,2 = t+ !~ d and {ro}4,4 = l~ + !~ d, Obviously 

there is no d to make {ro}2,2 = {ro}4,4' As indicated here the simplex design in 7 

dimensions can be made rotatable by letting d go to infInity. This is however a result 

of no practical value. And in higher dimensions is not possible at all to make the 

design rotatable. For example in 8 dimensions, we have {ro} 22 = t + ~i~ d ~ t + 1.19 d 

and {ro} 4,4 = l~ + g~; d ~ l~ + 1.22 d. Of course we can not find any positive d to make 

the two elements equal. 
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6 Final Remarks 

The classical use of simplex designs arise from problems where we have a restriction 

of the type L~=I Xi = 1. This happens in applications where the proportion of Xi is the 

only thing that matters. 

When thinking of a simplex and its ability to cover a region in the k-dimensional space 

using only k + 1 points, and its symmetrical properties, one is tempted to extend the 

use of simplexes in the theory of experimental designs. In this paper one possible 

application has been discussed. 

One extension of the model discussed in this paper is to let at least one factor affect the 

response variable independently of the other factors. For example we can have three 

factors interacting with each other and a fourth factor that does not interact with the 

three other factors. This model looks like 

One could use any of the two designs presented in this paper, with a small 

modification, to estimate the parameters. For the example mentioned here, take the 

design for the three dimensional case. Each point in this design is of the type 

p = {v I' V 2 , V 3 }. The design in four dimensions is now defined by all points of the type 

p = {VI' V2 , V3 ,O} and one additional point {O,O,O, K}. This design is rotatable in 

R 3 = {x ; x 4 = O}. The choice of K can be discussed. One may choose K so that Vol is 

minimized, or one may prefer to choose K in a way that makes the precision of 

predictions in the X 4 direction as equal as possible the precision of predictions in the 

Xl' x 2 and X3 directions. 

A related topic under examination is how saturated designs, i.e. designs that have 

equally many design points as parameters to estimate, can be constructed when the true 

underlying surface is of second order. The maximum point mayor may not be known. 

One or several factors mayor may not interact with the other factors. 
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