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Different criteria of optimality are discussed. The shortcomings of 

some earlier criteria of optimality are demonstrated by their 

implications. The correspondences between some criteria of 

optimality and some methods are examined. The situations under 

which some commonly used methods have a certain optimality are 
thus illuminated. Linear approximations of the LR (likelihood ratio) 

method, which satisfies several criteria of optimality, are presented. 

These linear approximations are used for comparisons with other 

linear methods, especially the EWMA (exponentially weighted moving 

average) method. These comparisons specify the situations for which 

the linear methods can be regarded as approximations of the LR 

method. 
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There is a need of continual observation of time series, with the goal 

of detecting an important change in the underlying process as soon 

as possible after it has occurred. The timeliness of decisions is taken 

into account in the vast literature on quality control charts where it 

is often important with simplicity. Also the literature on stopping 

rules is relevant. The inferential problems involved are important for 

the applications and interesting from a theoretical view since they are 

linking together different areas of statistical theory. 

Some broad surveys and bibliographies are found in e.g. Zacks (1983), 

Vardeman and Cornell (1987) and Frisen (1994b). In the survey by 

Kolmogorov et al (1990) and the collection of papers edited by 

Telksnys (1986) the early results on optimal stopping rules by 

Kolmogorov and Shiryaev are reported and used in further research. 

Also the book by Brodsky and Darkhovsky (1993) on nonparametric 

methods in change-point problems is in the same spirit. This literature 

treats both the case of a fixed period and the case of continual 

observation. The survey by James et al (1987) only treats the former 

case. 

In recent years there has been a growing number of papers in 

economics, medicine, environmental control and other areas dealing 

with the need of methods for surveillance. Applications in medicine 

were described in i.e the special issue (no. 3, 1989) of "Statistics in 

Medicine" and by Frisen (1992). Applications in economics and 

especially the surveillance of business cycles were treated in i.e. the 

special issue (no. 3/4, 1993) of "Journal of Forecasting" and by Frisen 

(1994a). 

In Section 1 some notations are given and the case studied is 

specified. In Section 2 some criteria of optimality are described and 

analyzed. In Section 3 methods derived from optimality criteria as 

well as some commonly used methods are described. The two groups 

of methods are compared in order to characterize the commonly used 

methods by their optimality properties. In Section 4 some concluding 

remarks are given. 
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1. NOTATIONS AND SPECIFICATIONS 

The variable under surveillance is X = {X(t): t = 1,2, .. .}, where the 

observation at time t is X(t). It may be an average or some other 

derived statistic. In a case of surveillance of the foetal heart rate, 

described in Frisen (1992), X is a recursive residual of a measure of 

variation. The random process which determines the state of the 

system is denoted tL = {tLt: t = 1,2, ... }. 

The critical event of interest at decision time s is denoted C(s). As in 

most literature on quality control, the case of shift in the mean of 

Gaussian random variables from an acceptable value tL° (say zero) to 

an unacceptable value tL 1 is considered. Only one-sided procedures are 

considered here. It is assumed that if a change in the process occurs, 

the level suddenly moves to another constant level, tLl>tL°, and 

remains on this new level. That is tLt = tL° for t= 1, ... ,T-1 and tLt = tLl 

for t= T, T+ 1, .... We want to discriminate between 

We will consider different ways to construct alarm sets A(s) with the 

property that, when ~ belongs to A(s), there is an indication that 

C(s) occurs. 

Here tL° and tLl are regarded as known values and the time point T 

where the critical event occurs is regarded as a random variable with 

the density 

'7Tt=pr( T=t) 

and ~'1Tt = 1-'7T 00 • The intensity qt of a change is 
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The aim is to discriminate between the states of the system at each 

decision time s, s=1,2, ... by the observation ~ = {Xes): t :$ s} under 

the assumption that X(1) - JLl' X(2) - JL2" .. are independent normally 
distributed random variables with mean zero and with the same 

known standard deviation (say a=1). In some calculations below, 

where no confusion is possible,JLl is denotedp, andJLo=O and a=1 for 

clarity. 

2. OPTIMALITY CRITERIA 

The performance of methods for surveillance is dependent on the 

time T between the start of the surveillance and the time of the 

change. Sometimes it is appropriate to express the performance as a 

function of T, as in Frisen (1992), Frisen and A.kermo (1993) and 

Frisen and Cassel (1994). Sometimes, however, a single criterion of 

optimality is needed. In order to get an index, which is independent 

of T, several approaches have been used: 

1. In the literature of quality control it is often assumed that the 

surveillance started at the same time as the change occurred, that is 

T=O. See the section on ARL below. 

2. Sometimes it is assumed that the surveillance has been started a 

very long time before a possible change, that is T= 00 (Lindgren 1985, 

Pollak and Siegmund 1991, Srivastava and Wu 1993). 

3. A probability distribution of T is considered and summarizing 

measures over this distribution are used. See the Sections 2.2 and 2.3. 

4. A minimax criterion for the worst possible value of T is used. See 

Section 2.4 below. 
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2.1 ARL 

A measure which is often used in quality control is the average run 

length (ARL) until an alarm. See e.g. Wetherill and Brown (1990). It 

was suggested already by Page (1954). The average run length, ARLo, 

is the average number of runs until an alarm when there is no change 

in the system under surveillance. The average run length under the 

alternative hypothesis, ARLt, is the mean number of decisions that 

must be taken to detect a true level change (that occurred at the 

same time as the inspection started). The part of the definition in the 

parenthesis is seldom spelled out but seems to be generally used in 

the literature on quality control. 

In quality control optimality is often stated as minimal ARLl for fixed 
ARLo. 

Statement 2.1.1. The alarm statistic 

s 

EX(t»cs 
t=l 

gives the minimal ARLl for fixed ARLo for the normal case specified 

in Section 1. 

Proof. Both ARLl and ARLo are expected values under the condition 

that T=O. Under this condition and under the specifications in 

Section 1, the LR method described in Section 3.1 has the alarm 

statistic in the statement. The LR method has the property of Section 

2.2, that for each decision time s it gives the maximal probability of 

alarm for fixed false alarm probability. The constants Cs can be chosen 

to match any given false alarm probabilities and thus any given ARLo. 

For this fixed value the alarm statistic in the statement gives maximal 

detection probabilities for all times and thus the minimal ARLl. D 

Thus, methods based on equal weight of all observations satisfy the 

optimality criterion above. Such methods are not very often used in 

quality control. Examples of such methods are the simple CUSUM 

variants described in Section 3.4, where also the drawbacks with these 

methods are discussed. 
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Sometimes optimality is defined as minimal ARLI/ARLO. The 

skewness of the run length distributions (especially under the 

alternative) and other facts makes it easy to construct situations 

where obviously inferior methods satisfy this criterion. Below the 

shortcoming of this criterion is illustrated by an example. 

Statement 2.1.2 The optimality criterion of minimal ARLI/ARLO has 

unwanted consequences. 

Proof. The often used Shewhart method has the alarm set A( s) -

{~>g}. The method has ARL=l/(1-<I>(g-M» and thus a ratio 

ARLI/ARLO which is monotonically decreasing with g. This 

consequence is not reasonable. 0 

2.2 Error probabilities 

The problem of finding the method which maximizes the detection 

probability for a fixed false alarm probability and a fixed decision 

time was treated by de Mare (1980) and Frisen and de Mare (1991). 

The LR method of Section 3.1 is the solution to this criterion. 

2.3 Utilities 

Different kinds of utility functions were discussed by Frisen and de 

Mare (1991). An important specification of utility is that of Girshick 

and Rubin (1952) and Shiryaev (1963). They treat the case where the 

gain of an alarm is a linear function of the difference 'T-tA between 

the time of the change and the time of the alarm. The loss of a false 

alarm is a function of the same difference. Their solution to the 

maximisation of the expected utility is identical to the LR method 

(with constant limit) of Section 3.1 for the situation specified in 

Section 1. 
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2.4 Minimax 

Minimax solutions with respect to T avoid the requirement of 

information about the distribution of T. Pollak (1985) gives an 

approximate solution to the problem of minimizing the expected 

difference T-tA between the time of the change and the time of the 

alarm for the worst value of T. The solution is a randomized 

procedure which would hardly be used in practice. The start of the 

procedure is made in a way that avoids the properties to be 

dependent on T. For most applications however it would be more 

appropriate with a method depending on the distribution of T than 

one depending on an ancillary random procedure. Both dependencies 

fade off with time. 

Moustakides (1986) uses a still more pessimistic criterion by using not 

only the worst time T but also the worst possible outcome X
T

_1 before 

the change occurs. The CUSUM method below is (except for the first 

time point) the solution to the criterion posed by Moustakides. 

Ritov (1990) considers a loss function which is not identical to that 

of Shiryaev but depends on T and tA in addition to the dependency on 

T - tA" The worst possible distribution 

Pr( T=S+ 11 T>S;~) 

is assumed for each time s. With this assumption of a worst possible 

distribution (based on earlier observations) CUSUM minimizes the 

loss function. 

2.5 Successful detection within a time limit 

In some applications there is a limited time available for rescuing 

actions. Then, the expected value of the difference T-tA is not of main 

interest. Instead of using the expected value as in Section 2.3 and 2.4, 
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the probability that the difference does not exceed a fixed limit is 

used. The fixed limit, say d, is the time available for successful 

detection. This probability (as a function of 'T) was suggested by 

Frisen (1992) as a measure, PSD, of the performance. Bojdecki 

(1979) considered a criterion which is equivalent to the maximum of 

the minimum (with respect to 'T) of 

PSD( 1: ,d) =pr( 11: -tAl) ~d). 

See Section 3.6 for discussion of consequences of this optimality 

criterion. 

2.6 Predictive value and posterior distribution 

The posterior distribution PD( s) = pre C( s) I Xs) has been suggested 

as an alarm criterion by e.g. Smith et al (1983). Frisen and de Mare 

(1991) demonstrated that, when there are only two states C and D, 

this criterion leads to the LR method of Section 3.1. 

The predictive value PV(s) = pr(C(s) I A(s» has been used as a 

criterion of evaluation by Frisen (1992), Frisen and Mermo (1993) 

and Frisen and Cassel (1994). 

The relation between the PV and the PD functions will now be 

analyzed. 

Statement 2.6.1. At passive surveillance, that is when our actions at 

an earlier time point do not affect the distributions, we have : 

A method based on PD, that is A(s) = [~; PD(s):>c] implies 

PV(s) > c. Typically PV increases to one when s increases. 0 

Statement 2.6.2. At active surveillance, when the whole process will 

be stopped as soon as an alarm occurs, none of Statement 2.6.1 holds: 

Typically PV has an asymptote below one. PV is not monotonically 

increasing for all methods (not for CUSUM). 0 
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At active surveillance (contrary to passive) it is desirable (for many 

applications) to be able to take the same action whenever an alarm 

occurs. In those cases a constant PV would be a good property. 

Another distinction is that between a single decision and a sequence 

of decisions. At a single decision, alarm for PD>c or (when there is 

no prior) significance at an ordinary test is natural. For a sequence of 

decisions, characteristics of the sequence (such as constant PV or the 

expected waiting time to an alarm) become interesting. 

3. METHODS 

3.1 The likelihood ratio method 

A method constructed by Frisen and de Mare (1991) to meet several 

optimality criteria, i.e. those of Section 2.2 and 2.3, will first be 

presented. The general method uses combinations of likelihood ratios. 

Even though methods based on likelihood ratios have been suggested 

earlier, for other reasons, the use in practice is (yet) rare. The 

likelihood ratio method will be used as a "bench-mark". Commonly 

used methods are compared to it in order to clarify their optimality 

properties. 

Here, the method of Frisen and de Mare (1991) is applied to the shift 

case specified in Section 1. The "catastrophe" to be detected at 

decision time s is C = { T ::5 s} and the alternative is D = { T > s}. 

The method for this case will here be called the likelihood ratio 

method or shorter the LR method. 

The LR method has an alarm set consisting of those X for which the 

likelihood ratio exceeds a limit: 
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For the case of normal distribution specified in Section 1 we have 

where 

and 

g(s) exp( -(s+ 1)(1J.1)2/2) 
Pr('t'~s) 

which is a nonlinear function of the observations. 

In order to achieve the optimal error probabilities described In 

Section 2.2 an alarm should be given as soon as p(xs) > Gs. 

In order also to achieve maximization of the utilities mentioned in 

Section 2.3 it is required that Gs == G and we must also consider the 

function g( s ). 

In Figures 1 and 6 the LR method is illustrated for s=2. 

3.2 Linear approximation of the likelihood ratio method 

To get a method which is easier to use, and also to clarify the 

connection with other methods, a linear approximation of Ps is of 

interest. The exponential functions of the x-values will be 

approximated by linear functions. The aim is to get a good 

approximation of the limit for alarm. Thus Taylor expressions around 
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values which might cause an alarm are used. Such values will 

approximately satisfy 

s 
LX(U) 

where a here is set to one. By using 

e4[E.x(u) -z';s-k+ 11} -1 + Il[ E.x(U) -z';s-k+ 11 

the following linear approximation is achieved: 

s s s 
ps(x)~ps *(xs)=c+ L1tka(k)1l LX(U)=C+1l Lx(u)m(u), 

k=1 u=k u=1 

where c does not depend on the data, 

and 

u 

m(u) = La(i)1tj 
i=1 

The linear approximation of the LR method is here denoted as the 

LLR(z) method. It will give an alarm as soon as 

s 

Ps **(xs) = Lx(u)m(u) 
u=1 

exceeds a limit.The value of z which gives the best approximation 

depends on how tight the limit for alarm is. The approximation is 

illustrated in Figure 1, for different values of z, for a case of a rather 

wide alarm limit. As can be seen, the approximation is not very 

sensitive to the value of z. In all illustrations below ILo=O, ILl=IL=1 

and qt=q=O.01. 
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Figure 1. Linear approximations of the LR limits - - -. 

The approximations are made with z=3 ---, z=3.5 --and z=4 --. 
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o~~~~~~~~~~~~~~~~~~~~~ 
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If the intensity is constant T has a geometric distribution '7Tk=(1-q)k-lq. 

Then, with 

the weights m(u) are 

u 

m(u)=q/(l-q)'E b iellzJs-i+l 

i=l 

The weight of x(u) is thus increasing with u. Later observations thus 

have a greater weight than older ones. 
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Figure 2. The weights m(u) of the linear approximation LLR with 

z = 3.5 - - and of the EWMA method - - - at the decision time s = 10. 
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Figure 3. As Figure 2 but s=30. 
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Figure 4. As Figure 2 but s=100. 
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With the approximation above, the relative weights depend on the 

decision time s, as was illustrated by Figures 2, 3 and 4. Some 

commonly used methods are linear but with weights which are 

independent of s. Thus, a further approximation of the LR method 

is made to get weights which are independent of s. In the figures 

above the case of wide limits for alarm was illustrated. If tight limits 

(which imply short run lengths) are used it might be reasonable to use 

z=O, that is 

expk~x(U+l +Il EX(U), 

For this LLR(O) method we have the weights 

where 

If the intensity is constant 

U 

U 

m(u)=La ini, 
i=l 

m(u)=q/(1-q)Lb i=qb(b U-l)/(b-l)(q-l)=b u_l. 
i=l 

3.3 Exponentially weighted moving average 

A method for surveillance based on exponentially weighted moving 

averages, usually called EWMA, was introduced in the quality control 

literature by Roberts (1959). Recently it has got much attention. This 

may be due to papers by Robinson and Ho (1978), Crowder (1987), 

Lucas and Saccucci (1990), Ng and Chase (1989) and Domangue and 

Patch (1991) in which positive reports of the quality of the method 

are given. Also the paper by Hunter (1986), where simple 

interpretations of the method by its relation to forecastings are given, 

has drawn the attention to EWMA. 
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The statistic is 

Zs = (I-A)Zs_1+ AX(S), s=I,2, .. 

where O<A<1 and in the standard version of the method Zo = p.o. 

The statistic is sometimes referred to as a geometric moving average 

since it can equivalently be written as 

s-1 s s 

Zs=A L (I-AYx(s-j)+(I-AYZo=A(I-AYE(1-Atux(u)oc E k'x(u) 
j=o u=1 u=1 

The weights are thus kU, where k=I(I-A) is a constant> 1. An out­

of-control alarm is given if the statistic Zs exceeds an alarm limit, 

usually chosen as Laz, where L is a constant and U z the limiting value 

of the standard deviation. 

EWMA gives the most recent observation the greatest weight, and 

gives all previous observations geometrically decreasing weights. If A 

is equal to one only the last observation is considered and the 

resulting test is a Shewhart test. If A is near zero all observations have 

approximately the same weight. 

Also other variants of EWMA have been proposed. See Frisen and 

Mermo (1993) for a discussion of some variants and for a 

comparison with CUSUM. In the present study only the standard 

variant described above will be discussed. 

Statement 3.3.1 There does thus not exist any A or L which makes the 

EWMA exactly optimal in the sense of Sections 2.2 or 2.3. 

Proof The likelihood method gives alarm when a nonlinear function 

of the observations exceeds a fixed limit, while the EWMA method 

gives alarm when a linear function exceeds a fixed limit. D 

In Figure 6 some methods are illustrated for the first two 

observations. Since the EWMA has two parameters, A and L, these 

can be chosen to equal any other linear method when only two 
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observations are illustrated. When more than two steps are 

considered this is not true. 

Statement 3.3.2 The weights of the EWMA cannot be identified with 

the weights of the LLR(z) method. 

Proof The weights are dependent on s for the LLR(z) method but 

not for the EWMA. 0 

Statement 3.3.3 The weights of the EWMA cannot be identified with 

the weights of the LLR(O) method for the case of constant intensity. 

Proof At constant intensity q 

7Tj = (1_qY-lq i=1,2, .. 

The weights m(u) of the LLR method are found in Section 3.2. The 

relative weights are 

m(u+1)/m(u) = (1_bu+1)/(1_bU
) = b + (1-b)/(1-bU

). 

The relative weights are thus not constant for the LLR method as 

they are for the EWMA method. 0 

In the more general case one might ask which series of intensities 

would make an identification between the EWMA and the LLR(O) 

possible. 

Statement 3.3.4 For each combination of ILl, ql and 7T 00 there is one 

and only one series of intensities that makes identification between 

EWMA and LLR possible. 

Proof The identification implies that 

m(u+1) =km(u) 

where k=l/(1-A» 1 is the constant which determines the weights for 

the EWMA. At u= 1 
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m(2) = kIn(1) 

Atu>1 

m(u+1) = m(u) 

where 

c=k/a. 

The requirements (1) and (2) determine the series of intensities for 

each k. The value of k is uniquely determined by 

~ ~ 

L1t i =l-1t"" =1tl +1t l(k-l)/a+ LC i
-
21t l(k-l)/a=1t l(a-l)/(a-k) 

i=l i=3 

which gives 

which in turn implies 

It follows that k> 1 and the series 7ft satisfies the requirements of 

probabilities. D 

Corollary. In the case of 7f 00 = 0 it follows that 

and the series of intensities is determined by 
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formula (2) above and 

Figure 5. An example of values of 7Tj which makes identification 

between the EWMA and LLR(O) possible. As comparison the solid 

line is given. It represents a case of constant intensity. 
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The LLR methods are approximations of the LR method which has 

the optimality of Section 2.2. If, in addition, a constant limit (not 

depending on s) for the alarm statistic is used also the optimality of 

Section 2.3 is satisfied. 

Statement 3.3.4 The EWMA method can never be identified with the 

LLR(O) method, with a limit which does not depend on s, as required 

for the optimality of Section 2.3. 

Proof. The weights of the EWMA do not depend on s. For the usual 

version studied here, also the limit of the linear expression for alarm 

is independent of s. For the LR method with constant limit we have 

an alarm when 



where 

g(s) = exp( -(s+ 1)(j.L 1)2/2) 
Pr('t~s) 
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When Ps is approximated by LLR(O) the weights m(u) are 

independent of s but the limit is G/g(s). This limit is decreasing with 

s, as g(s) is increasing with s. 0 

3.4 Simple cumulative sums 

Sometimes CUSUM is used as a unifying notation for methods based 

on the cumulative sum of the deviations between a reference value 

and the observed values. In the simplest form there is an alarm as 

soon as the cumulative sum 

t 

Ct= L (Xi-j.L~ 
i=1 

exceeds a fixed limit. This method is sometimes called the simple 

CUSUM. It will here be denoted as SCUSUM. For each t the 

likelihood ratio is a function of Ct only. As was demonstrated by 

Frisen and de Mare (1991), the SCUSUM is optimal in the sense of 

Section 2.2 for '7"=0 in the normal cased specified in Section 1. By 

Statement 2.1.1 it was seen that the SCUSUM minimizes the ARLl 

for fixed ARLo. However, when '7">0 it was demonstrated by Frisen 

(1992) that SCUSUM does not compare with other methods with the 

same ARL. The probability of successful detection within a short time 

is lower. Also, the predicted value of an alarm is strongly decreasing 

with the time of the alarm. 
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Another simple method based on cumulative sums gives an alarm as 

soon as Ct exceeds a linear function of t. This method is here called 

the LCUSUM method This method is identical with the method 

which gives an alarm when the likelihood ratio for T=O exceeds a 

fixed constant. It is a sequential probability ratio test without the limit 

for acceptance. In Figure 6, where the alarm limit for s=2 is 

illustrated, the LCUSUM is identical to the SCUSUM since the only 

difference is how the limit for alarm depends on the decision time s. 

In both the SCUSUM and the LCUSUM, the data from all earlier 

points in the time series have the same weights as the last one. For 

most applications this is not considered rational. Anyhow, as soon as 

only T=O is considered (as in the criterion that minimizes the ARLI 

for fixed ARLO) these weights are the optimal ones. The most often 

suggested optimality criterion in the literature on quality control does 

thus lead to a type of method which is seldom used. 

3.5 CUSUM 

The variant of cusum tests which is most often advocated is the 

CUSUM or V-mask. It can be based on a diagram of the cumulative 

sums of deviations from the target value. In the two sided case a V­

shaped mask is moved over the diagram until some earlier 

observation is outside the limits of the mask and an alarm is given. 

The two legs of the V are usually placed symmetrically to the 

horizontal line. The apex of the V is placed on the same level as the 

last observation but at a distance to the right of the observation. 

There is thus an alarm for the first t for which I Ct-Ct_i I > h + ki 

(for some i=1,2, ... t), where Co=O and hand k are chosen constants. 

The parameter k determines the slopes of the legs in the "V" and h 

determines the location of it. The distance between the apex and the 

last observation is hlk if the axes have the same scale. In that case the 

angle of the "V" is 2*arctan(k). In V-masks with a very narrow angle 

there is no big difference between the weights of recent and old 

observations and there are similarities to the simple cusum test. With 

a wide angle the last observations have a heavy weight and there are 

similarities to the Shewhart test. In this test the information from 
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earlier observations is handled quite differently depending on the 

position in the time series. 

Figure 6. Alarm limits at decision time s=2. 
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Sometimes (see e.g. Siegmund 1985 and Park and Kim 1990) the 

CUSUM test is presented in a more general way by likelihood ratios 

(which in the normal case reduce to Ct-Ct_} Observe however that 

this is not the LR method described above. It was demonstrated by 

Frisen and de Mare (1991) that the CUSUM is the result of a natural 

(but not optimal) combination of methods, where each of them is 

optimal to detect a change that occurs at a specific time point. 

It is often stated that the choice of k=(u°+JL1)/2 is optimal. The chain 

of references (if any) usually ends with Ewan and Kemp (1960). In 

that paper they conclude from nomograms that this value seems to be 

about the best. The optimal likelihood ratio method for T=i and with 
constant limit Gs = G gives alarm for 



s 
LXt > C + i(J.!. 0 + J.!. 1)/2. 
t=i 
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Thus also here we have the slope (J1-°+p})/2. That this slope is optimal 

in each step does explain why it "seems to be about the best". 

However it does not prove that it is optimal for the sequence of 

decisions. 

The CUSUM satisfies certain minimax conditions (Moustakides 1986 

and Ritov 1990) as was discussed in Section 2.4 above. In Basseville 

and Benveniste (1986 p 18) it is stated that the CUSUM method have 

the optimality property of Section 2.3. However, this is true only 

under specific conditions. See Section 2.4. 

3.6 Moving average 

The moving average Ct-Ct_d for fixed window width d is compared with 

a fixed alarm limit. It can be shown to be a special case of the 

solution of Bojdecki (1979) to a maximization of 

where tA is the time of alarm. See Section 2.5 for discussion on this 

optimality criterion. 

4. CONCLUDING REMARKS 

The performance depends on the time of the change T, as was 

demonstrated by the evaluations by Frisen (1992). To get a single 

value, either a summarizing measure over the distribution of T, or 

evaluation for a specific value of T, can be used. 

Suggested optimality criteria based on specific values of T are those 

based on T=O, T= 00 or T= "worst possible value". In Roberts (1959 

and 1966) the value T=8 was used, but that was because of technical 
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reasons. In quality control, optimality criteria based on ARL, which 

implies T=O, is the common choice. Sometimes the criterion is 

expressed as the ratio ARLl/ARLO. As was noted in Statement 2.1.2, 

this has unreasonable implications, such as "the greater limit for the 

Shewhart method the better". More often the criterion is stated as 
minimal ARLl for a fixed ARLo. As was noted in Statement 2.1.1 this 

criterion implies methods where all observations have the same 

weight. The shortcomings of such methods were pointed out in 

Section 3.4 and they are not often recommended. Instead, methods 

which have all weight on the last observation (Shewhart) or gradually 

less weight on the older observations (EWMA and CUSUM) are 

commonly recommended in the literature on quality control. The 

solution to an optimal criterion based on T= "worst possible value" 

is a randomized procedure. Later suggestions are to make the 

minimax criterion still more pessimistic by also assuming the worst 

possible outcome. 

A summarizing optimality criterion is achieved by usmg an 

assumption on the distribution of T. Exact information about the 

distribution might be lacking. However, the drawbacks, with the 

criteria for special values of T, demonstrate the importance of any 

information on the distribution of T. Several criteria of this type result 

in the LR method. The error probabilities in each step are optimal 

for any limits. To achieve a minimum expected delay until an alarm, 

it is also necessary that the limits are independent of time. 

Criteria based on the posterior distribution have an intricate relation 

both to the LR method and to the predicted value of an alarm. These 

relations were analyzed in Section 2.6 for passive and active 

surveillance. 

The LR method is nonlinear with respect to the data. Commonly 

used methods are equivalent to the LR method only at extreme cases 

where the nonlinearity disappears. The linear approximation LLR( z) 

has relative weights which are dependent on the decision time s. Thus 

the linear method EWMA, which lacks this dependency, cannot be 

identified with the LLR( z) method. 
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For a further approximation to LLR(O) the identification is possible. 

For a specified choice of parameters, EWMA will be approximately 

optimal with respect to error probabilities in each step. However, this 

is possible only for a decreasing series of intensities. Especially the 

intensity in the first point must be great. The result that the EWMA 

method has good properties, only if the probability of a change is 

greatest in the beginning, is in accordance with the results in Frisen 

and Mermo (1993) based on the predicted value. 

Identification between the EWMA and the LLR(O) with constant 

limit, which is the requirement for minimum expected waiting time 

until an alarm, is not possible. The EWMA is too generous with 

alarms in the beginning. The suggestion in the literature of a variant 

of EWMA which is intended to give a fast initial response (FIR 

EWMA) by closer limits in the beginning would do this worse. 

The EWMA method has continuously decreasing weights for older 

observations. The CUSUM method has a discrete adaptive way of 

including old observations. This can explain the good minimax 

properties for the CUSUM method. The EWMA method has bad 

"worst possible" properties according to Yashchin (1987). The best 

thing would be to have continuous adaptive weights. That is actually 

what the LR method gives. 

The simple cumulative sum methods SCUSUM and LCUSUM satisfy 

optimality conditions for 7=0. They are linear, but with equal weight 

of all observations in contrast to the linear approximations of the LR 

method which give more weight to later observations .. 
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