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SUMMARY 

The exact distribution of McNemar's test statistic is used to 

determine critical pOints for two-sided tests of equality of 

marginal proportions in the correlated 2x2 table. The result is 

a conservative unconditional test which reduces to the conditional 

binomial test as a special case. Exact critical points are given 

for the significance levels 0.05, 0.01 and 0.001 with the sample 

sizes n=6(1)50. A computer program for tail probabilities makes 

the calculation of power easy. It is concluded that McNemar's test 

is never inferior to the conditional binomial test and that much 

can be gained by using the McNemar test if the main purpose is to 

detect differences between the marginal proportions in small samples. 

A further conclusion is that the chi-squa~e approximation of 

McNemar's test statistic may be inadequate when n~50. Especially 

the 5% critical points are constantly too small. 

Key words: Exact unconditional test; Matched 2x2 table; 

Nuisance parameter; Power. 



1. Introduction 

McNemar (1947) introduced a well known test for the null hypothesis 

of equality of the marginal proportions in the matched 2x2 frequency 

table. In text-books the reader is often recommended to use this test 

with large samples, say greater than 20, in which case the asymptotic 

chi-square distribution with one degree of freedom (d.f.) is believed 

to be adequate. With smaller samples a conditional binomial test is 

usually suggested (cf. Conover, 1980). 

The present paper originates from an observation which has been made 

frequently during applied work. Namely, that the conditional binomial 

test may fail to reject the null hypothesis in cases when the latter 

is strongly rejected by McNemar's test or other unconditional tests 

such as the Likelihood ratio test. To find out whether this is due to 

a lack of agreement with the limiting distribution of the test 

statistic or to a genuine difference in power, one has to study the 

exact distribution of the unconditional test statistic. 

Bennett and Underwood (1970) compared a few exact significance levels 

of McNemar's test with those predicted by the chi-square distribution. 

For three sample sizes and three particular values of the nuisance 

parameter specified by the null hypothesis, they found that the exact 

levels may exceed the levels determined from the chi-square distri­

bution. Duffy (1984) made exact power calculations and Connett, Smith 

and McHugh (1987) performed simulation studies of the power to compare 

exact results with those based on asymptotic theory. In the latter two 

studies the critical points of the rejection region were determined 

from the asymptotic distribution. While the problem of finding exact 

critical points for unconditional tests has been solved for the 

unmatched case (Suissa and Shuster, 1985; Storer and Kim, 1990; 

Shuster, 1992), the same problem has remained unsolved in the matched 
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case. 

This paper presents exact critical points for the two-sided McNemar 

test. The nuisance parameter in the distribution is eliminated by -

maximizing the null power function over a domain of the nuisance 

paramet~r as described in Basu (1977). The result is a conservative 

unconditional test which contains the conditional binomial test as 

a special case. Section 2 provides some arguments for McNemar's test. 

Expressions for the exact distribution of the test statistic are 

given in Section 3, accompanied by a SAS program for numerical 

calculations. The critical pOints are given in Section 4, while 

Section 5 shows how to use the critical pOints for power calculations. 

Section 6 concludes with a discussion on the choice of test statistic 

_,when the main purpose is to detect differences between .the marginal 

proportions in small samples. 
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2. Background on the matched 2x2 table 

Consider n independent observations on the pair of random variables 

(Y1'Y2) with probabilities P(Y 1=i,Y 2=j)=Pij for i,j=0,1 in the table 

below: 

Y2 (Response 2) 

1 0 
1 P11 P10 P1+ 

Y1 
(Response 1 ) 0 P01 PO~ PO+ 

P+1 p+O 1 

The marginal probabilities P(Y1=1) and P(Y 2=1) are P1+=P11+P 10 and 

P+1=P11+P 01' respectively. The observed frequency in cell (i,j) is 

n ij for i,j=0,1. The marginal frequencies are n1+ and n+1 where 

n1+=n11+n10' n+1=n11+n01 and n 1 ++n O+=n=n+ 1+n+ 0 . 

McNemar's test statistic for HO:P1+=P+ 1 may be written 

TMcN = (n10-n01)2/(n10+n01j ( 1 ) 

and HO is rejected for large values of TMcN • The use of (1) can be 

motivated in several ways: 

- - - - - 1/2 
(i) (1) is identical with the square of (P 1+-P+ 1 )/(VO(P 1 +-P+1» , 

where '-I is used to denote Maximum Likelihood (ML) estimators and Vo 

is an unhiased estimator of the variance of P 1 -f-P +1 under HO (Snedecor 

and Cochran, 1980). 

(ii) (1) is the chi-square goodness-of-fit statistic under HO with ML 

estimators inserted for the cell proportions (Bennett, 1967, 1968). 

(iii) To show how (1) is related to the Likelihood ratio statistic, 

let c be the covariance between Y1 and Y2 • Then P 11=P1+P +1+c , P10= 

P 1+(1-p+1)-c, P01=P+ 1 (1-P 1+)-c and POO=(1-P 1+) (1-P+1)+c. The likeli­

hood is proportional to the product TI(p .. )nij , where the p .. ;s are 
. 1J 1J 

functions of P 1+' P+ 1 and c. The unrestricted ML estimators are P 1+= 

-
n 1+/n, p+1=n+ 1/n and c=(n11 -n 1+n+,/n)/n. Under HO the ML estimators 

I 
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are P1+=P+1=PO=(n 1++n+ 1)/2n and c=(n 11 - PO)/n. These estimators 

inserted into the Likelihood ratio, A (likelihood under HO divided by 

unrestricted likelihood), yields 

n10+~01 n 10 n 01 A=«n 10 +n 01 )/2) /(n
10 

+n 01 )· 

By putting S=n 10 +n 01 and D=n 10-n01 and by using the expansion log(1+x) 

~x-x2/2 one obtains -2logA=(S+D)log(1+D/S)+(S-D)log(1-D/S;~ D2 /S=T
MCN

. 

(iv) Let z take the value +1 if Y1>Y 2 , the value 0 if Y1=Y 2 and the 

value -1 if Y'<Y 2 and let z and Sz denote the sample mean and standard 

deviation of n independent z;s. Then the square of the large-sample 

statistic zlil'/sz is (1'":'"1/n;TMCN/(1-TMCN/n)~TMCN for large n. 

An alternative to McNemar's test is to use the statistic n 10 , condition­

ally on n 10 +n 01 =n', with a binomial d~stribution to test the reform­

ulated hypothesis HO:P'=P10/{P10+P01)=1/2. This binomial test is 

sometimes called the exact version of McNemars test (cf. StatXact User 

Manual, 1991). This is not a correct description since the binomial 

test is only a special case of McNemar's test, as will be shown in 

this paper where the two tests are compared. 

The statistic in (1) does not cover the case n 10 =O=n 01 ' which may be 

likely in small samples. To handle also this case, the following 

natural extension of (1) is considered: 

{

O, if n 10 =O=n 01 T= 
TMcN ' otherwise .. 

(2) 
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3. Exact Distribution of McNemar's Statistic 

McNemar's statistic may be written d 2/s, where d=ln 10 -n 01 I and s= 

n 10 +n 01 ' Let p(d,s) be the joint probability function (p.f.) of d and 

s. Then p(d,s)=p(s)p(dis), where p(s) is a binomial p.f. with para­

meters nand P10+P 01 while p(dis) is a conditional p.f .. If n 10 (s) is 

the value of n 10 for given s, then n 10 (s) has a binomi~lp.f. with 

parameters sand P10/(P10+P01)' The p.f. of n 10 (s) is related to p(dls: 

in the following way: 

{

p(n 10 (S)=S/2), if d=O 
p(dls)= 

p(n 10 (s)=(s-d)/2)+p(n 10 (s)=(s+d)/2), if d>O. 

Multiplication of the two p.f.'s yields 

n! s-d n-s 
p(d,s)= s+d s-O: (P10P 01)2 (1-P l0-P 01) _ old), (3) 

(n-s) ! (-2-)-! (-2-) ! ' 

d d 
where o(d)=1 if d=O and o(d)=P10+P01' In (3) O~d~s~n and for p(d,s) to 

be nonzer~d and s have to be both even or both odd. This set of 

values of d and s will be denoted A(d,s) in the sequel. 

The p.f. of the statistic T in (2) can now be expressed 

P(T~O)= L p(O,s) and for t>O, P(T=t)= ~ p(d,s), 
s>O s 

2 where S is the set'of values of d and s such that d /s=t. 

(4) 

To illustrate how (4) is used, consider an example with n=4 and Pl0= 

P01=1/3. The possible values of d 2/s=t together with the values of 

p(d,s) (in braces) are shown below. From these the p.f. and tail prob-

abilities are computed. 

s t P(T=t) P(T~t) 

0 ----1 ' 
2 3 4 0 19/81 T.oooo 

'0 0(1781 ) o (12781) 0(6/81) 
1/3 24/81 0.7654 

1 1 (8/81) ~(24/81) 1 16/81 0.4691 
d 2 2(12/81) 1 (8/81) 2 12/81 0.2716 

3 3(8/81) 
3 8/81 0.1235 

4(2/8"()1 4 4 2/81 0.0247 -
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The same calculations are performed by the SAS program in the Appendix 

1 • 

The p.f. in (4) depends on ~~e two para~eters P10 and P01' When P10= 

P01=P there is only ope nuisance para,meterand a ~imple expression 

can be obtained for the tail probability. Le~ t be an observed value 

of T and let s be a value in the main diagonal of the set A(d,s) which r 

is 2r steps below t, i. e. ( 2 . t= s -2r) /s r r for r=O,1, ... ,[n/2]. Then (3) 

gives 
sr n-sr P(T=s )=p(s ,s )=2(n)p (1-2p) . 

r r r sr 

Because of the relation 
s 

P(T=t=(Sr-2r;2/sr)=P(Sr-2r,Sr)=(rr)p(T=Sr) , 

the p.f. of T at any argument can be expressed in terms of the p.f. of 

T at sr' To find an expression for P(T~t*) one has to identify the set 

2 2 of values of rand s for which (sr-2r) /s >t*=(s *-2r*) /s *' say r r- r r 

C (r , s ). Then 
r 

P(T~t*)= 

The last expression in (5) is suitable for calculations based on 

binomial p.f.'s. 

(5; 

For the purpose of illustration, consider the previous example with 

n=4 and p=1/3. To find P(T~1) one notice that there are two diagonals 

in the set A(d,s) with values >1. The first appears in the main 

diagonal and thus sO=1. The first value ~1 in the diagonal which is 

two steps above the main diagonal appears in the column with s=4. So, 

s1=4 and the set c(r,sr) consists of (r,sr)=(O,1) and (1,4). Using 

these values in (5) gives P(T>1)=0.4691. 

(5) makes it possible to study P ('l'.2:,t) as a function of p. For numer-

ical calculations it may be easier to use (4). 
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4. Critical Points for MCNemar's Test 

To test the hypothesis HO:P10=P01=P one i~ interested in finding 

critical points, ~.g. the 5% point t 0- defined as the smallest t for . . ~ 

which p(T~tip10=P01=P)~ 0.05. HO is rejected if the observed value of 

T exceeds the critical point. The latter will in general be dependent 

on the value of the nuisance parameter p. Here, two cases will be 

considered: p=1/2 and 0~p<1/2. 

4.1 The Case p=1/2 

When p=1/2 no observations are possible in the cells (0,0) and (1,1) 

and s=n-10 +n 01 =n. Assume n 10 to be the smallest of n 10 and n 01 and 

therefore d=n-2n 10 . Then (5) gives, with p=1/2 and r*=n 10 , 
n 10 

P(T>t*=(n-2n )2/n )= (1/2)n-1 L: (n
r
). 

- 10 r=O 
(6 ) 

(6) is identical with the probability (or p-value) obtained for a two-

tailed test of the hypothesis H6: p '=P1o/(P10+P01)=1/2 using the 

conditional binomial statistic n10in10+n01=n (Lehmann, 1959). 

To use the binomial test when n>n 10 +n 01 =n' is thus the same as using 

McNemar's test whith reduced sample size, nt, and assuming a value of 

the nuisance parameter, 1/2, which is designed for a very special case. 

4.2 The Case 0~p<1/2 

When there are at least one observation in the cells (0,0) or (1,1) anc 

without prior information about p, except that 0<p<1/2, it seems 

reasonable to determine conservative 100a% points from the requirement 

that 
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(7 ) 

Here, such critical points will be determined for n=6(1)50 and a=0.05, 

O. 01 and O. 001 . 

Consider the expression in (5) as a function of p for fixed n, say 

f (p). Local maxima of f (p) can be obtained by equating the derivative n n 

of f (p) to zero. But, this gives rise to a polynomial equation in p 
n 

of degree n-1 and numerical solutions may be inaccurate when n is large 

Instead,some properties of the expression in (5) can be exploited. 

Obviously fn(p)+O as p+O. For small p an upper bound for fn(p) can be 

derived, as shown in the Appendix 2. From the latter it was concluded 

that f (p) < a when p_<O. 008. n -

For larger values of p f (p) was calculated at arguments with in-n 

crements 10-6 • To check that fn(p)~ a between these arguments, the 

following inequality, derived in the Appendix 2, was used: 

For h~10-6, 

If (p+h)-f (p) 1< nh( f (p)-f 1 (p»/p + n(n-1)h2 /p2. (8) n n - n n-
r* 

Finally it remaineq to check that lim f (p)=(1/2)n-1 L (n)< a. 
p+1/2 n r=O r -

As an illustration, consider the determination of the 5% point t.05 

when n=50. By first running the SAS program in the Appendix 1 with 

P10=PO,=p=0.01 (0.01)0.49, the trial value t.05=169/43~ 3.93 was 

obtained. To compute P(T~169i43) by means of (S) the following set of 

values of rand sr was identified: 4(=sO),8,11,14,16,19,22,24,27,29,32, 

34,36,39,41,43,46,48(=s17). A plot of f50(P)=P(T~169/3), computed at 

arguments with increments 10-6 , is seen in Figure 1. fSO(p) attains 

its largest value, 0.049727~ O.OS, when p=0.424620. By means of (8) it 

was inferred that fSO(p) could not differ from 0.049727 by more than 
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-8 
1.4x10 . The next lower possible value of t.OS' 196/S0~ 3.92, had to 

be rejected because fSO(p» 0.05 for some values of p. 

0.050-

0.040 

0.030 

0.020 

0.010 

0.000 

0.10 0.20 0.30 0.40 0.50 

p 

Figure 1. Plot of f50(P)=P(T~169/43). 

The critical points of McNemar's test are shown in Table 1. For each 

value of n the critical point when p<1/2 is smaller than or equal to 

the critical pOint when p=1/2. In 14 cases, among a total of 135, the 

points are equal. This happens when the supremum of f (p) is attained 
n 

at the boundary value when p=1/2. One example is t. 001 =11 when n=11. 

Here (5) gives £11(P)= 2P11, which is less than 0.001 if p<O.5011. 

The critical pOints of McNemar's test can not be compared directly 

with those of the conditional binomial test based on the conditional 
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sample size n O+nO =n;<n. But, since the binomial test based on n' 
11-

observations is identical with McNemar's test based on n' observations 

and with p=1/2, it is clear from Table 1 that McNemar's test rejects 

HO more easily, possibly with a few exceptions where the tests are 

identical. 

Most of the critical points for McNemar's test in Table 1 exceed the 

points t.OS=3.84, t. 01 =6.63 and t. 001 =10.83, determined from the chi­

square distribution. Especially t.OS=3.84 turns out to be constantly 

too small. 



1 1 

Table 

Sample size (n) and 5%, 1% and 0.1% critical pOints for McNemar's 

test with two choices of the nuisance parameter p 

n ~. p<1/2 
"6 6 5 

7 7 

8 8 

9 49/9 

10 32/5 

81/11 

16/3 

81/13 

50/7 

27/5 

25/4 

81/17 

50/9 

121/19 

5 

121/21 

72/11 

121/23 

6 

121/25 

72/13 

169/'?7 

36/7 

169/29 

24/5 

169/31 

49/8 

169/33 

98/17 

169/35 

49/9 

169/37 

98/19 

75/13 

49/10 

225/11 

14/3 

225/43 

49/11 

5 

128/23 

225/47 

16/3 

225/49 

5 

5 

9/2 

9/2 

9/2 

49/11 

49/11 

5 

49/11 

49/11 

81/17 

49/11 

49/11 

81/19 

4 

32/7 

4 

81/19 

4 

4 

9/2 

4 

81/19 

4 

4 

50/11 

4 

81/19 

4 

25/6 

169/37 

25/6 

49/11 

4 

25/6 

4 

4 

49/11 

4 

13/3 

4 

169/41 

121/31 

y-1/2 p<1/2 

8 

9 

10 

11 

25/3 

121/13 

72/7 

121/15 

9 

169/17 

8 

169/19 

49/5 

169"/21 

98/11 

225/23 

49/7 

9 

98/13 

25/3 

64/7 

225/29 

128/15 

289/31 

8 

289/33 

128/17 

289/35 

9 

289/37 

162/19 

289/39 

81/10 

361/40 

54/7 

361/43 

81/11 

361/45 

200/23 

361/47 

25/3 

361/49 

7 

7 

7 

8 

7 

7 

81/11 

7 

7 

50/7 

7 

7 

81/11 

32/5 

7 

81/11 

7 

1 1 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 128/25 169/43 8 

7 

121/17 

169/25 

121/17 

169/25 

169/25 

169/23 

169/25 

7 

121/17 

169/25 

121/17 

169/25 

169/25 

289/39 

169/25 

64/9 

128/19 

128/19 

128/19 

128/19 

289/41 

289/43 

169/25 

361/49 

72/11 

t.OOl 

p=1/2 p<1/2 

11 

12 

13 

14 

169/15 

49/4 

225/17 

128/9 

225/19 

6<175 

289/21 

128/11 

289/23 

27/2 

289/25 

162/13 

361/27 

81/7 

361"/29 

40/3 

361/31 

25/2 

147/11 

200/17 

63/5 

121/9 

441/37 

242/19 

529/39 

121/10 

529/41 

242/21 

529/43 

144/11 

529/45 

288/23 

11 

10 

10 

1 1 

169/15 

72/7 

10 

11 

10 

10 

98/9 

128/11 

10 

75/7 

289/25 

10 

75/7 

81/7 

10 

98/9 

361/31 

72/7 

1 1 

72/7 

32/3 

169/15 

32/3 

32/3 

289/25 

32/3 

54/5 

54/5 

32/3 

100/9 

32/3 

32/3 

625/47 .169/15 

12 32/3 

625/49 98/9 

288/25 288/25 

Notes: I_I indicates that no critical paint exists. Critical points 

whith p=1/2 shall only be used when no observations are found in the 

cells (1,1) and (0,0). 
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5. Power Calculations 

Let ta be a 100a% critical pOint in Table 1 and let P(T~ta) be the 

power of the two-sided test which rejects HO:P10=POl when observed 

values of T are greater than or equal to t . The power of this test a 

regarded as a function of·P10-P01=P1~-P+1 can easily be computed by 

means of the SAS program in Appendix 1. 

To make a fair comparison between McNemar's test and the conditional 

binomial test regarding the ability to detect deviations in P10-P01 

from zero, one has to compare the power of McNemar's test with the 

unconditional power of the binomial test, 

E P(reject Holn10+n01=n')p(n10+n01=n'), 
n' 

where n 10 +n 01 has a binomial law with parameters nand P10+P 01' This 

unconditional power obviously summarizes the performance of the 

conditional test in the long run. 

Table 2 compares the powers of the two tests in two cases: One with a 

lower turn-over rate (P10+P 01=O.20) and one with a higher (P10+P 01= 

0.80). The sample sizes are n=30,40 and 50 while a is 0.05. 

It is seen from the table that the power of McNemar's test is always 

greater than that of the binomial test, which never recovers from the 

bad start at P10-P 01=O. As might be expected, the greater gain by 

using McNemar's test is obtained when P10+P 01 is small. 
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Table 2 

Power of McNemar's test with p<1/2 compared to the power of the 

conditional binomial test 

P1O+P01=0.80 
n=30 n=40 n=50 

P10-P 01 McN Bin McN Bin McN Bin 

.00 .044.5 .0295 .0449 .0302 .0488 .0348 

.10 .0846 .0605 .0995 .0741 . 1212 .0945 

.20 .2155 .1687 .2776 .2269 .3506 .2992 
~30 .4403 .3728 .5596 .4957 .6728 .6191 
.40 .7031 .6386 .8270 .7823 .9097 .8833 
.50 .9021 .8663 .9660 .9515 .9901 .9854 
.60 .9859 .9773 .9980 .9966 .9998 .9996 

P10+P01=0.20 
n=30 n=40 n=50 

P10-P 01 McN Bin McN Bin McN Bin ------
.00 .0479 .0128 .0443 .0187 .0429 .0221 
.02 .0537 .0154 .0520 .0232 .0527 .0285 
.04 .0716 .0236 .0758 .0377 .0833 .0491 
.06 .1032 .0387 .1183 .0646 .1380 .0878 
.08 .1506 .0630 .1827 .1080 .2204 . 1501 
.10 .2166 .0993 .2718 .1724 .3324 .2412 
.12 .3040 .1510 .3869 .2620 .4709 .3631 
.14 .4147 .2217 .5250 .3787 .6258 .5120 
.16 .5491 .3146 .6788 .5205 .7796 .6754 
.18 .7052 .4316 .8341 .6791 .9097 .8313 
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6. Discussion 

Today there is a wide-spread requirement of statistical significance 

wh~n reporting statistical results. Signiflcance is usually declared 

when the power under HO (p-value) reaches below 5%, 1% or 0.1%. 

Failure of achieving significance should obviously not merely be a 

result of using a test which is too weak. 

This paper has shown that the binomial test, when testing the hypothesi& 

HO of equal marginal proportions in the matched 2x2 table against two­

sided alternatives, is a special case of McNemar's test when the 

nuisance parameter P10=P01=P equals 1/2. For p<1/2 McNemar's test has 

smaller critical values and thus rejects HO more easily. The gain in 

power by using McNemar's test may be considerably, especially when 

the turn-over rate, P10+P01' is small. It was also shown that McNemar's 

test arises from appealing general test criteria when the purpose is 

to detect differences between the marginal proportions. 

The problem of eliminating the nuisance parameter in finite samples 

can be solved in several ways (Basu(1977). The binomial test is a 

result of eliminating p by conditioning. The popularity of the test 

may be due to computational convenience, to confusion with the fact 

that the test is uniformly most powerful for testing the reformulated 

hypothesis HO:P'=P10/(P10+P01)=1/2 against two-sided alternatives 

(Lehmann(1959»), or to statements favouring conditional tests in front 

of unconditional frequently made during 1980's (cf. Cox(1984) and 

Yates(1984». 

However, the nuisance parameter can also be eliminated by maximizing 

the power under HO of McNemar's test over a certain domain of p. This 

means that the worst possible configuration of p is taken into consider­

ation to preserve the size of the test. The choice of a domain of p 

may sometimes be a problem. Here, the problem can be settled by notic­

ing that p=1/2 implies that no observations are possible in the cells 

(1,1) and (0,0) under HO. This naturally leads to the device: "If at 

least one observation is found in the cells (1,1) or (0,0), then use 

McNemar's test with the conservative critical values in Table 1 and 

otherwise the binomial test". Consider for instance an example with 

n 10=0, n 01 =5 and n=6. Then HO can never be rejected at the 5% level 

by the binomial test, or equivalently by McNemar's test with p=1/2. 

But, since actually one observation is in one of the cells (1,1) or 

(0,0) it is hard to see the point in including p=1/2 into the domain 
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of p. Since sup P(T~5Ipl0=P01=P)=O.0387 for O~p<1/2, obtained at 

p=O.46, it seems reasonable to reject HO at the 5% level. 

The results in this paper agree with results reported earlier for 

tests of the same hypothesis using independent samples. Namely, that 

th~ unconditional (Z) test is stronger than the conditional (Fisher's 

exact) test (Suissa and Shuster (1985)). It should be stressed that 

this concerns the ability to detect differences between P1 and p . 
+ +1 

For other parametrizations, such as P10/(P10+P01)' In(p10/P01) or 

the odds ratio P11POO/P10P01 (cf. Frisen(1980)), other results are 

possible. 
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APPENDIX 1 

A SAS program. for the computation of tail probabilities, P{T~t), 

of McNemar's test statistic when n=6 and P10=P01=1/3. Below is 

the corresponding outprint. 

DATA A; 

N=6; 

DO V=O TO FLOOR(N/2); 

DO U=O TO V; 

SJ=2*V; DJ=2*U; SU=2*V+l; DU=2*U+l; 

OUTPUT; END; END; 

DATA BJ; SET A; S=SJ; D=DJ; 

DATA BU; SET A; S=SU; D=DU; 

DATA B; SET BJ BU; 

IF S=O THEN T=O; ELSE T=D*D/S; 

IF S>N OR D>N THEN DELETE; 

DATA C; SET B; 

PI0=1/3; POl=I/3; 

Gl=GAMMA(N+l); G2=GAMMA(N-S+l); G3=GAMMA(I+(S+D)/2); 

G4=GAMMA(1+(S-D)/2); GP=G2*G3*G4; G=Gl/GP; 

KP=(PI0*POl)**«S-D)/2)*(I-PI0-POI)**(N-S); 

IF D=O THEN DELT=I; ELSE DELT=PI0**D+POl**D; 

PDS=G*KP*DELT; 

DATA D; SET e; 

PRoe SORT; BY T; PRoe MEANS NOPRINT SUM; VAR PDS; BY T; 

OUTPUT OUT=DATI SUM=PT; 

DATA E; SET DATI; 

SPT+PT; LT=I-SPT; 

TAIL~LAG(.LT); IF TAIL=' .' THEN TAIL=I; 

PRoe PRINT; VAR T PT TAIL; 

OBS T PT , TAIL 

1 0.00000 0.23457 1.00000 

2 0.33333 0.29630 0.76543 

3 1.00000 0.19753 0.46914 

4 2.00000 0.14815 0.27160 

5 3.00000 0.09877 0.12346 

6 4.00000 0.02469 0.02469 
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APPENDIX 2 

An upper bound for f (p) used in Section 4.2 
n 

Put g=(1-2p)/(1-p) and let B(n,g) denote a random variable with 

a binomial p.i. having parameters nand g. Then, from (5) 

r* 
fn(p)~ 2 L p(B(n-r)~n-sr)' 

r=O 

In the latter sum the first term, p(B(n,g)~n-sO)' is largest since 

n-sr~n-sr+1+1 (c.f. Feller(1968), p.173). Thus, 
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