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When control charts are used in practice it is necessary to know the 
characteristics of the charts in order to know which action is 
appropriate at an alarm. The probability of a false alarm, the 
probability of successful detection and the predictive value are three 
measures (besides the usual ARL) used for comparing the 
performance of two methods often used in surveillance systems. One 
is the "Exponentially weighted moving average" method, EWMA, 
(with several variants) and the other one is the CUSUM method (V­
mask). Illustrations are presented to explain the observed differences. 
It is demonstrated that a high probability of alarm in the beginning 
(although it gives good ARL properties) might cause difficulties since 
a low predicted value makes action redundant at early alarms. 

KEY WORDS: Quality control; Control charts; EWMA; FIR; V­
mask; Predicted value; Performance; 
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Methods for continual surveillance to detect some event of interest, 
usually presented in the form of control-charts, are used in many 
different areas, e.g. industrial quality control, detection of shifts in 
economic time series, medical intensive care and environmental 
control. 

A wide variety of methods have been suggested, see e.g. Zacks (1983) 
and Wetherill and Brown (1990). Some methods (like the Shewhart 
test) only take the last observation into account. Others (simple sums 
or averages) give the same weight to all observations. For most 
applications it is relevant to use something in between. That is, all 
observations are taken into account but more weight is put on recent 
observations than on old ones. The CUSUM and the EWMA are 
such methods. They are much discussed and both are nowadays often 
recommended. Both these methods include the extremes mentioned 
above as special cases and the relative weight on recent observations 
and old ones can be continuously varied by varying their two 
parameters. A description of the methods is given in Section 2. 

Several extensive comparisons of these methods have been done, see 
e.g. Ng and Case (1989), Lucas and Saccucci (1990) and Domangue 
and Patch (1991). These comparisons are made for cases where the 
out-of-control state is present when the surveillance starts. The study 
by Domangue and Patch includes the case where the out-of-control 
state is a linearly increasing change, but also this state is assumed to 
start at the same time as the surveillance starts. The comparisons 
have not demonstrated any great differences. This is not surprising 
since by the two parameters the methods can be designed to fulfil two 
conditions. The methods can thus be designed to have the same 
average run length, ARL, (see Section 3.2) for both the in-control 
and the out-of-control state. Nearly all comparisons have been based 
on the ARL. Here a study is made of the remaining differences when 
the methods have the same ARL. 

The usual measures of a test's performance, namely the significance 
level and the power, would have to be generalized in any of many 
possible ways to take into account the dependence on the length of 
the period of surveillance and the time point t' where the change 
occurs. Here, a systematic demonstration is made to show how these 
variables (which vary between practical situations) influence different 
measures (for different methods). Other variables such as the rate of 
change (if the change takes place successively) will also influence the 
performance of a method of surveillance. However, the following 
discussion will be restricted to the influence of the first two 
mentioned variables which always influence the performance. Thus 
only sudden changes to another constant level will be studied in the 
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examples and simulations. 

This paper uses three measurements of performance suggested by 
Frisen (1992) for the comparison of the two methods in cases where, 
by the choice of design parameters, the first moment of the run­
length distributions are set equal. The main interest is the influence 
of time and the different risks of false judgements involved when 
repeated decisions will be made about hypotheses which might 
successively change. 

In Section 1 the situations considered are specified and some 
notations are introduced. In Section 2 the two methods are presented. 
In Section 3 measures to be used in the evaluations are introduced. 
In Section 4 the results are given and in Section 5 the results are 
discussed. 

1. SPECIFICATIONS 

Let X = {~: t = 1,2, .. .} be the observation of interest. It may be an 
average or some other derived statistic. In the case of surveillance of 
the fetal heart rate, X is a recursive residual of a measure of 
variation. The random process which determines the state of the 
system is denoted IJ- = {IJ-t: t = 1,2, .. .}. 

In the examples below the case of shift in the mean of Gaussian 
random variables from an acceptable value IJ-0 (zero) to an 
unacceptable value IJ-I (one) is considered. It is assumed that if a 
change in the process occurs, the level suddenly moves to another 
constant level, IJ-\ and remains on this new level. That is IJ-t = IJ-0 for 
t= 1, ... ,T-1 and IJ-t = IJ-I for t= T, T+ 1, .... 

Here IJ-0 and IJ-I are regarded as known values and the time point T 
where the critical event occurs is regarded as a random variable with 
known density. The incidence of a change, inc(t'), is the probability 
that the stochastic time T for the change takes the value t', 
conditioned on T > t' -1. The incidence is assumed constant in the 
following examples. 

Our problem is to discriminate between the states of the system at 
each decision time s, s = 1,2, ... by the observation Xes) = {~: t < s} 
under the assumption that Xl - IJ-I' X2 - IJ-2' ••• are independent Gaussian 
random variables with mean zero and with the same known standard 
deviation(in the examples a=1). 
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2. METHODS 

Since repeated decisions are made and hypotheses might change over 
time theory of ordinary hypothesis testing does not apply. Two 
specific methods of surveillance often used in quality control will be 
described below. For more exhaustive descriptions of methods used 
in quality control see e.g. Wetherill and Brown (1990). The two 
methods will be evaluated by the measures suggested in Section 3. 
Thus their principal differences will be enlightened. However, the two 
methods are by no means the only ones to be considered. Similar 
comparisons of other methods was made by Frisen (1992). The 
present methods are chosen because they are much discussed 
methods of similar type. The EWMA- and the CUSUM-method both 
take past observations into account by summation. They also have two 
parameters each. They can thus have the same ARL both with and 
without a specific shift. To make the methods comparable the 
parameters of the methods are set by the requirement that the ARLo 
and ARL1 (as described in Section 3) are the same. The actual values 
used in this study is for the in-control-state ARLo=330 and for the 
out-of-control state of a shift to J1-1 = 1 at the start of the surveillance, 
ARL1=9.6. Very extensive simulations were used to find parameter 
sets which resulted in the same values of ARL and for the figures. 
Thus only one set of parameters is used. However, this is enough to 
prove that important differences might exist in spite of equal ARL 
values. The results will also support the general discussion about 
which qualities we should require. 

Two-sided methods are used in the examples and simulations. The 
methods (with the same parameters as in the simulations) are 
illustrated in Figures 2 - 5 with data (Figure 1) used by Lucas and 
Crosier (1982) and Lucas and Saccucci (1990). In order to get 
simulation results which are suitable for comparisons between 
methods the same random numbers are used for all methods in each 
control sequence. The value for the first time point (and in some 
figures also the second one) is achieved by exact calculation. 

Although discrete time is considered continuous curves are drawn by 
linear connections between values to simplify the pictures. 
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2.1 CUSUM 

Page (1954) suggested that the cumulative sums of observed values 
should be used in a specific way to detect a shift in the mean of a 
normal distribution. His suggestion was that you calculate Ct=sum(~­
J.L0

), i=1, ... ,t , and that there will be an alarm for the first t with ICt-
Ct_i I is greater than h + ki for some i, and Co=O. Sometimes (see e.g. 
Siegmund 1985) the CUSUM test is presented in a more general way 
by likelihood ratios (which in the normal case reduce to Ct-Ct_} The 
test might be performed by moving a V -shaped mask over a diagram 
until any earlier observation is outside the limits of the mask (see 
Figure 2). Thus the method is often referred to as "the V-mask 
method". Another name used in some fields of the literature is 
"Hinkley's method". 
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Figure 1. The observed values X for each time t were generated by Lucas 
and Crosier (1982) by a process with constant mean (zero) for the first 
10 observations and with a shift in mean of one standard deviation 
(one) for the last observations. 

The properties of this method are determined by the value of the 
parameters k and h. The information from earlier observations is 
handled differently depending on the position in the time series. 
Recent observations have more weight than old ones. If h = 0, the V­
MASK-test degenerate to a SHEWHART-test with the alarm-limit 
equal to k. With a shift of size J.Ll_J.L0 and a constant variance, k=(p.l_ 
J.L°)/2 is usually recommended (see e.g. Bissel (1969». This value of k 
is supposed to give a test having the shortest ARLl (for this specific 
shift) for a given ARLo. Here the main aim is to demonstrate that 
important differences exist in spite of equal ARL. The choice of 
parameters in the examples is thus not important but was made for 
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Figure 2 .. CUSUM An alarm occurs at the first time any Ctfalls outside 
the V-shaped mask. In this case the first alarm is at time t=16 

practical reasons. The examples are however very similar to those in 
Lucas and Saccucci (1990)). The average run lengths have been fixed 
at ARLO = 330 and ARLl=9.7. The parameter h, which determines the 
distance between the last observation and the apex of the "V" is set 
to 4.73 and the parameter k, which determines the slopes of the legs 
is set to 0.49. The alarm region for the first two steps is illustrated in 
Figure 6. The region for the first three steps is illustrated in Figure 
7a. 

Several variants of the method have been suggested. Lucas (1982) 
suggested a combination with the Shewhart method. Observe that a 
CUSUM always will give an alarm if any observation deviates more 
than h + k from the target value. Also the standard version of 
CUSUM can thus be regarded as a combination with a Shewhart test 
with the limit h + k. Yashchin (1989) has suggested that the weights 
of different observations should be separately chosen to meet some 
specific purposes. Here the original version of the method by Page 
(1954) is studied. The method has certain optimality properties as 
described in Moustakides (1986), Pollak (1987) and Frisen and de 
Mare (1991). 

2.2 EXPONENTIALLY WEIGHTED MOVING AVERAGE 

Exponentially weighted forecasts have been advocated by e.g. Muth 
(1960). A method for surveillance based on exponentially weighted 
moving averages, here called EWMA, was introduced in the quality 
control literature by Roberts (1959) but has for a long time been 



7 

rarely used. Recently it has got more attention as a process 
monitoring and control tool. This may be due to papers by Robinson 
and Ho (1978), Crowder (1987), Lucas and Saccucci (1990), Ng and 
Chase (1989) and Domange and Patch (1991) in which techniques to 
study the properties of the method and also positive reports of the 
quality of the method are given. 

The statistic is 

where 0<A<1 and in the standard version of the method Zo = f.L0. 

The statistic is sometimes referred to as a geometric moving average 
since it can equivalently be written as 

i-I 

Zi=A L (l-A)jXi_j+(l-A)iZo 
j=O 

EWMA gives the most recent observation the greatest weight, and 
gives all previous observations geometrically decreasing weights. If A 
is equal to one only the last observation is considered and the 
resulting test is a Shewhart test. If A is near zero all observations have 
approximately the same weight. 

If the observations are independent and have a common standard 
deviation ax, the standard deviation of Zj is 

~ A 2 . Gz.= ~(l-(l-A) ~ )Gx 
1 2-A. 

For the first observation az takes the value Aax, and as i increases az 
increases to its limiting value 

az=~ (2~X) ax 

An out-of-control alarm is given if the statistic IZj I exceeds an alarm 
limit, usually chosen as Laz, where L is a constant. It might seem 
natural (and is sometimes advocated) to use the actual value of the 
standard deviation of Zi. However, usually the limiting value az rather 
than a Zj is used in the alarm-limits for EWMA control charts (see e.g. 
Roberts (1959), Robinson and Ho (1978), Crowder (1989) and Lucas 
and Saccucci (1990)). For a two-sided control chart this results in two 
straight warning-limits, one on each side of the nominal level of Z. 
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This variant is therefore called the "straight EWMA" in the following. 
See Figure 3. 
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Figure 3. Straight EWMA. Z denotes the exponentially weighted sum of 
the observations X The straight alarm limits are at a distance Laz from 
the target value. 

By using a Zi the alarm limits start at a distance of LA-ax from the 
target value and increases to Laz. This variant is called "variance 
corrected EWMA" in the following. See Figure 4. 

Z 
2.0 

1.5 
z; 

1.0 ~ z z z 

0.5 
z z z 

z ';I' ~ 
z 

0.0 z z z 
-0.5 

z 
z 

-1.'0 "--
-1.5 

I I I I I I I I I I I 

0 2 4 6 8 10 12 14 16 18 20 

t 

Figure 4. Variance corrected EWMA. The alarm limits are based on the 
actual values of the variance of Z for each time point. 

Lucas and Saccucci (1990) recommend that instead of the standard 
starting value Zo = fJ-0 = 0, another value should be used to achieve 
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a "Fast Initial Response", FIR. Two one-sided EWMA control 
schemes are simultaneously implemented. One is implemented with 
Zo = a and one with Zo = -a. There is an alarm if any of the one­
sided schemes exceeds its constant limit. We will now study the 
relation between the different variants of EWMA more closely and 
concentrate on the one-sided upper limits for simplicity. 

Let 
c=La z=LV'A/(2-'A)a x 

The straight EWMA gives alarm for Zj > C. 

The variance corrected EWMA gives alarm for 

The FIR have the same alarm value c as the straight EWMA but 
because of the starting value we have 

that is 

If 

Z/= Zj + a(l - 'AY > c 

Zj> c - a(l - 'AY 

a = Lax{('A/(2 - 'A))1!2 - 'A}/(l - 'A) 

then the upper limit for the first observation will be the same as for 
the variance corrected EWMA which has the limit 
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Figure 5. Straight EWMA ------, Variance corrected EWMA- - -, 
FIR-----
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Both the FIR and the variance corrected EWMA have the same 
alarm limit as the straight EWMA for late observations. However the 
limits will converge faster to the constant limit for the last mentioned 
method than for the FIR method for all values of A as can be proved 
by direct evaluation of the difference between the limits. See Figure 
5 where the three variants (with the same A and L as used for the 
variance corrected method in the other figures) are compared. In this 
figure the parameters (A =0.283 and L=2.858) are not chosen to give 
the same ARL but to give the alarm limit the same asymptotic value 
and to give the FIR and the variance corrected variants the same 
limit at time t=1. 

Also other variants of EWMA have been proposed, e.g. for 
multivariate problems (Lowry et.al. 1992). In the present study the 
characteristics of the straight and the variance corrected EWMA as 
described above are studied in detail. The parameter values are 
chosen to give the same average run lengths (see below) as the 
CUSUM both when there is no shift and when there is a shift to JL 1 

= 1, ARLo=330 and ARLl=9.7. The parameter values are for the 
straight EWMA L=2.385 and A = .220 and for the variance corrected 
EWMA L=2.858 and A=.283. Except for Figure 5 these parameter 
values are used in all figures and simulations. Alarm regions for the 
first two steps are illustrated in Figure 6. The alarm region for the 
first three steps is illustrated for the variance corrected EWMA in 
Figure 7. 

The EWMA is not exactly optimal in the sense of Frisen and de Mare 
(1991) for any situation. 

Figure 6. Detailed 
companson between 
CUSUM and EWMA for 
the first two observations. 
The parameters in this 
and the following figures 
are the same as in Figure 
2 - 4. Limits for alarm not 
later than at the second 
observation. 
CUSUM---, 
Straight EWMA- - - - -, 
Variance corrected 
EWMA----. 
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x, 

Figure 7.Limits for alarm not later than at the third observation. For 
reference the cube that is the limit for the Shewhart method with 
alarm limit 5.22 for each time point is included. 
a.CUSUM b.Variance corrected EWMA 

3. MEASURES OF THE PERFORMANCE 

3.1 RUN LENGTH DISTRIBUTION 

The run-length distributions for all interesting cases (also those where 
the change appears after the start of the surveillance) contains the 
information necessary for an evaluation of a method or a comparison 
between some methods. The actual comparison is usually based on 
some of the run-length distributions characteristics, mostly the 
average run length, but also the median or some other percentile 
could be considered. Several authors e.g. Zacks (1980), Crowder 
(1987) and Yashchin (1989) have pointed out that only one 
summarizing measure of the distribution is not enough. Run-length 
distributions are usually skew to the left, especially those connected 
to the alternative hypotheses (see Figures 8 - 11). 
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3.2ARL 

A measure which is often used in quality control is the average run 
length (ARL) until an alarm e.g. Wetherill and Brown (1990). It was 
suggested already by Page (1954). The average run length under the 
hypothesis of a stable process, ARLo, is the average number of runs 
before an alarm when there is no change in the system under 
surveillance. The average run length under the alternative hypothesis, 
ARLl, is the mean number of decisions that must be taken to detect 
a true level change that occurred at the same time as the inspection 
started. 

Values of the ARL are much used information for the design of 
control charts for specific applications. Roberts (1966) has given very 
useful diagrams of the ARL. Later several authors e.g. Saccucci and 
Lucas (1990), Champ and Rigdon (1991), Champ et.al. (1991), 
Yashchin (1992) and Yashchin (1993) have studied the ARL of 
specific methods and models. However, ARL-curves do not contain 
all information about the methods. The distribution of the "run 
length" is generally markedly skew, so the ARL will give limited 
information. This has been pointed out by e.g. Woodall (1983). 

Since both the EWMA and the CUSUM methods have two 
parameters they can be constructed to give the same ARL both for 
the null- and for an alternative situation (here Ml=1). By the choice 
of design parameters ARLo is set to 330 and ARLI to 9.7 for the 
methods compared below. Here the remaining differences are of main 
interest. 

Because of a complicated time dependence, and the dependence of 
the incidence of the change to be detected, other measures (Prisen 
1986, 1992) than the average run length should be considered in the 
evaluation of different methods. Beckman et al. (1990) advocate 
similar measures as those in Sections 3.4 and 3.5 for the case of flood 
warning systems. 

3.3 THE PROBABILITY OF FALSE ALARM 

The distribution when the process is under control is described by a 
measure at which corresponds to the probability of erroneous 
rejection of the null hypothesis, the level of significance, but is a 
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function of the time t. at is the probability of an alarm no later than 
at t given that no change has occurred. 

3.4 THE PROBABILITY OF SUCCESSFUL DETECTION 

The distance between the change and the alarm, sometimes called 
"residual RLn (RRL) is of interest in many cases. The optimality 
conditions by Girshick and Rubin (1952) and Shiryaev (1963) are 
based on this distance. One characterization of the distribution of the 
RRL is the probability that the RRL is less than a certain constant 
d (the time limit for successful rescuing action). This measure, 
PSD( d), the probability of successful detection, is the probability to 
get an alarm within d time units after the change has occurred, 
conditioned that there was no alarm before the change. The PSD is 
a function of the time distance d, the time of the change t' and JL 1. 

PSD(d, t', JLl) = P(RL < t'+ d I RL ~ t') 

3.5 PREDICTWE VALUE 

PV, the predictive value of an alarm is the relative frequency of 
motivated alarms among all alarms at a certain point in time. This 
measure is a function of the incidence inc, JL 1 and the time tn of the 
alarm. It gives information on whether an alarm is a strong indication 
of a change or not. Let T be the (stochastic) time of change, then 

PV(t", inc, JLl) = P( T:5 t" I RL = tn). 

Sometimes a late alarm is regarded with some doubt (cf. e.g. Johnson 
1961). This might be for the same reason as a significant result at a 
very big sample size is considered less impressing than a significant 
result at a small sample size. However there is no analogy here unless 
you only consider cases where the change appears at the same time 
as the surveillance starts. The trust you should have in an alarm is 
measured by the predictive value. 



4. RESULTS 

The alarm regions up to the first two observations are given 
in Figure 6. Considering the first and second observation the 
CUSUM has an "acceptance region" which contains that of the 
straight EWMA-method, except the extreme situation with two 
observations on the boundary, one in each direction. This is 
the case called "worst possible" discussed by Yashchin (1987). 
The differences in size of the areas illustrate the different 
alarm probabilities at the first time points. Notable is also the 
shape of the regions, determined by the choice of the weight 
parameter A and the reference value k. 

In Figure 7 above, the tree-dimensional regions of alarm at 
any of the runs 1, 2 or 3 are given. 

In Figures 8 and 9 below, the cumulative probabilities of false 
alarms illustrate the differences (in spite of equal ARL) 
between the methods. The probabilities are estimated by 
simulation of at least 100,000 replicates of each situation. The 
variance corrected EWMA has a greater probability (about 
1 %) of false alarm in a great part of the beginning than the 
straight EWMA which in turn has a slightly greater false alarm 
rate at the start than the CUSUM. The median is much 
smaller (about 230) than the ARL (330) which illustrates the 
skewness of the distribution. The probability to exceed the 
ARL is about 30%. 
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Figure 8. The probability a of an alarm not later than at time t given 
that no change has occurred. The lines are linear connections between 
the values for each time point. Overview up to t=400. 
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Figure 9. As Figure 8, but detailed picture up to t= 30 

In Figures 10 and 11 the probability distributions of the residual run 
length are given for different times of shift. The results are based on 
at least 40,000 replicates. In Figure 10 it is given for the case where 
the shift occurs at the same time as the surveillance starts. ARLI is 
the expected value under this assumption. It is the same 9.7 for all 
methods. The median is however one unit less (equal to 7) for the 
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variance corrected EWMA than for the CUSUM (equal to 8) which 
is an indication of the different shapes of the distributions, as is also 
seen in the figure. The EWMA has a higher density for small run 
lengths. In Figure 11 the distributions are given for the case where 
the shift occurs at the 9th run. The expected value in these 
distributions are not at all equal to ARLI. 
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Figure 10. The distribution of run lengths after a shift to Ji/=l at 
different times t'. The run length distribution F RL when t' = l. 
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Figure 11. As Figure 10, but the residual run length distribution F RRL 

when t'=9. 
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. In Figure 12 it is demonstrated. that the prol?ability of successful 
detection within d=1 unit, that is immediately after the shift, is best 
for the variance corrected EWMA and better for the straight EWMA 
than for the CUSUM. The differences are most pronounced if the 
shift occurs soon after the surveillance has started (small t'). 
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Figure 12. Probability of successful detection, PSD. The probability of 
an alarm within d time units after the time t' of a shift to f.l-l =1, given 
that there was no alarm before t'. d=l. 
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Figure 13. As Figure 12, but d=10. 
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Each point in Figures 12 an 13 is based on at least 40,000 
replicates.In Figur~ 13 it is demonstrated that the differences are in 
the opposite direction for detection within d=10 units. Then the 
differences are least pronounced soon after the start of the 
surveillance. 
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Figure 14. Predicted value of an alarm, pv. The incidence of a shift to 
11} = 1 is 0.1. 
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Figure 15. As Figure 14 but the incidence of a shift to p/ = 1 is 0.01 

In Figures 14 and 15 it is seen that the predicted value is low and 



19 

varying for the EWMA methods (specially the variance corrected 
one) at early time-points. This implies that early alarms for the 
EWMA are very hard to interpret. 

Each point in the figures is calculated as a function of the 
probabilities of false alarms and motivated alarms. The probabilities 
of false alarms are estimated by simulations of at least 100,000 
replicates while the estimates of the probabilities of motivated alarms 
are based on at least 40,000 replicates. For t" = 1 the probabilities are 
calculated exactly and for t" = 2, 3 and 4 the probabilities of 
motivated alarms are based on 1,000,000 replicates. The fact that the 
curve (for small values of t") in Figure 15 is not a smooth one is thus 
not due to uncertainty in the simulations. In fact, the predicted value 
is not always an increasing function of t" (Frisen (1992». 

5. DISCUSSION 

As was also commented in the results, Figures 6 and 7 illustrate a 
difference in shape of the alarm region between the EWMA and the 
CUSUM which is general and which explains why the EWMA has 
bad "worst possible" properties (Yashchin 1987) while the CUSUM 
has minimax optimality (Moustakides 1986). 

In Figures 6 and 7 interesting differences in symmetry are also 
illustrated. The alarm area is symmetrical for the CUSUM but not for 
the EWMA methods. That is, for the probability of an alarm not later 
than at t all observations up to ~ have the same weight for the 
CUSUM. For the EWMA methods the older ones have more weight. 
However for the probability of an alarm at time t the last 
observations have the greatest weight both for CUSUM and EWMA 
methods. 

In Figures 10 and 11 it is also demonstrated that for changes which 
occurred at the same time as the surveillance started the probability 
of a detection within a short time (shorter than 10) is better for the 
examined EWMA methods than for the CUSUM, while the opposite 
is true for times longer than 10. If the shift occurs some time after 
the start the short time is less than 10. In most studies only the case 
of a shift at the same time as the start of the surveillance is studied. 
As was seen above CUSUM compares more favourable with EWMA 
in other cases. 

As is illustrated by the relative size of the rejection areas in Figures 
6 and 7, and more generally seen by the formulas for the methods, 
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the examined EWMA methods have a higher probability than the 
CUSUM for alarms shortly after the surveillance has started - both 
false and motivated ones. This does not mean that it is higher shortly 
after the shift has appeared, if the shift occurs later, as is seen in 
Figures 10-13. 

One balance between the false and motivated alarms is given by the 
predictive value. In the simulations the predicted value is never better 
for the EWMA than for the CUSUM. In Figures 14 and 15 it is seen 
that the low and variable predicted value for the EWMA methods 
(specially the variance corrected one) at early time-points makes the 
early alarms for the EWMA methods very hard to interpret. This may 
make the variance corrected EWMA worthless shortly after the start. 
In the beginning when the predicted value of an alarm is very low and 
varying no alarm could be trusted. In the example with ARLl =9.7 the 
alarms by the EWMA before the 9th run have so low predicted value 
that they for most applications must be disregarded. Thus the benefit 
of a higher probability of an alarm in the beginning cannot be taken 
advantage of. 

The general conclusion from the comparisons is that there might be 
important differences in characteristics in spite of equal ARLo and 
ARLl. Even though only one set of parameters were examined for 
each method this is enough to demonstrate that differences exist. 

In this paper only constant incidences are considered and the above 
discussion is relevant for this case. However, in some applications a 
higher incidence at the start of the surveillance might be relevant. 
The properties of the EWMA methods (especially the FIR variant) 
will then be more favourable. Only an approximately constant 
predictive value makes the method easily usable since only then it is 
possible to have the same kind of action independently of how far 
from the start the alarm is. 
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